
Improved Differentially Private Regression
via Gradient Boosting

Shuai Tang1, Sergul Aydore1, Michael Kearns1, 2, Saeyoung Rho3,
Aaron Roth1, 2, Yichen Wang1, Yu-Xiang Wang1, 4, and Zhiwei Steven Wu1, 5

1Amazon AWS AI/ML
2University of Pennsylvania

3Columbia University
4University of California, Santa Barbara

5Carnegie Mellon University

Abstract—We revisit the problem of differentially private
squared error linear regression. We observe that existing state-
of-the-art methods are sensitive to the choice of hyperparameters
— including the “clipping threshold” that cannot be set optimally
in a data-independent way. We give a new algorithm for private
linear regression based on gradient boosting. We show that our
method consistently improves over the previous state of the art
when the clipping threshold is taken to be fixed without knowledge
of the data, rather than optimized in a non-private way — and
that even when we optimize the hyperparameters of competitor
algorithms non-privately, our algorithm is no worse and often
better. Additional experiments also that our algorithm is also
more robust to outliers.

Index Terms—differential privacy, linear regression, gradient
boosting

I. INTRODUCTION

Squared error linear regression is a basic, foundational
method in statistics and machine learning. Absent other con-
straints, it has an optimal closed-form solution. A consequence
of this is that linear regression parameters have a deterministic
relationship with the data they are fitting, which can leak
private information. As a result, there is a substantial body of
work aiming to approximate the solution to least squares linear
regression with the protections of differential privacy [1]–[7].

We highlight the AdaSSP (“Adaptive Sufficient Statistics
Perturbation”) algorithm [4] which obtains state-of-the-art
theoretical and practical performance when the maximum
norm of the features and labels are known—these bounds
are used to scale the noise added for privacy. When a data-
independent bound on the magnitude of the data is not known,
in order to promise differential privacy, they must be clipped
at some data-independent threshold, which can substantially
harm performance. In this work, we give a new algorithm for
private linear regression that substantially mitigates this issue
and leads to improved accuracy across a range of datasets and
clipping thresholds.

Our approach is both conceptually and computationally
simple: we apply gradient boosting [8], using a linear model
as the base learner, and to incorporate privacy guarantees, at
each boosting round, the linear model is solved using AdaSSP.

When applied to a squared error objective, gradient boosting
is exceedingly simple: it maintains a linear combination of
regression models, repeatedly fitting a new regression model
to the residuals of the current model, and then adding the new
model to the linear combination. Absent privacy constraints,
gradient boosting for linear regression does not improve
performance, because linear models are closed under linear
combinations, and squared error regression can be optimally
solved over the set of all linear models in closed form.
Nevertheless, in the presence of privacy constraints and in the
absence of knowledge of the data scale (so that we must use a
data independent clipping threshold), we show in an extensive
set of experiments that gradient BoostedAdaSSP substantially
improves on the performance of AdaSSP alone. Moreover, we
show that our BoosedAdaSSP algorithm outperforms other
competitive differentially private solutions to linear regression
in different conditions, including gradient descent on the
squared loss objective, and interestingly performs better than
a tree-based private boosting algorithm. We also show that our
algorithm is less sensitive to hyperparameter selection.

Due to the boosting nature of our algorithm, it leverages
many benefits of boosting algorithms, and one of them is
robustness to outliers. On a simulated dataset, we consider
three corruption approaches that generate outliers, including
label, feature and model corruption,and we show that our
algorithm is indeed more robust to outliers than the original
AdaSSP, and also more robust to a strong competitor in many
scenarios.

In addition to our empirical results, we provide stylized
theoretical explanations. In the zero-dimensional case, AdaSSP
reduces to computing the empirical mean of the clipped
data, and aggressive clipping thresholds can cause the bias
of empirical mean to be arbitrarily large. In this setting,
gradient boosting with AdaSSP as a base learner corresponds
to iteratively updating an estimator of the mean by the clipped
empirical residuals , i.e. the empirical mean of the difference
between the current mean estimate and the data. In Section
VI, we show that, for Gaussian data, the boosting method
converges to the true mean for any non-zero clipping threshold.

The intuition behind this improvement of boosting over the
one-shot empirical mean is that, even clipped estimates of
the mean are directionally correct, which serves to further
de-bias the current estimate and reduce the negative effect of
aggressive clipping. The convergence of our boosted algorithm
under arbitrary clipping provides a significant improvement
over AdaSSP, especially when the clipping bound must be
independent to the data.

Finally, we show that BoostedAdaSSP can sometimes out-
perform differentially private boosted trees [9] as well, a
phenomenon that we do not observe absent privacy. This
contributes to an important conceptual message: that the
best learning algorithms under the constraint of differential
privacy are not necessarily “privatized” versions of the best
learning algorithms absent privacy—differential privacy rewards
algorithmic simplicity.

A. Additional Related Work
Because of its fundamental importance, linear regression has

been the focus of a great deal of attention in differential privacy
[1]–[7], [10], using techniques including private gradient
descent [11], [12], output and objective perturbation [13], and
perturbation of sufficient statistics [14]. As already mentioned,
the AdaSSP (a variant of the sufficient statistic perturbation
approach) [4] has stood out as a method obtaining both optimal
theoretical bounds and strong empirical performance — both
under the assumption that the magnitude of the data is known.

[7] have previously noted that AdaSSP can perform poorly
when the data magnitude is unknown and clipping bounds
must be chosen in data-independent ways. They also give a
method — TukeyEM [7] — aiming to remove these problematic
hyperparameters for linear regression. TukeyEM privately
aggregates multiple non-private linear regressors learned on
disjoint subsets of the training set. The private aggregate uses
the approximate Tukey depth and removes the risk of potential
privacy leaks in choosing hyperparameters. However, because
each model is trained on a different partition of the data, as [7]
note, TukeyEM performs well when the number of samples
is roughly 1, 000 times larger than the dimension of the data.
We include a comparison to both TukeyEM and AdaSSP in
our experimental results.

Another line of work has studied differentially private
gradient boosting methods, generally using a weak learner
class of classification and regression trees (CARTs) [15], [16].
[9] gives a particularly effective variant called DP-EBM, which
we compare to in our experiments.

There is a line of work that aims to privately optimize
hyperparameters (e.g. [17]–[19]) — we do not directly compare
to these approaches, but our experiments show that our
algorithm dominates comparison methods even when their
hyperparameters are optimized non-privately.

II. PRELIMINARIES

We study the standard squared error linear regression
problem. Given a joint distribution D over p dimensional
features x 2 Rp and real-valued labels y 2 R. Our goal

is to learn a parameter vector ✓ 2 Rp to minimize squared
error:

L(✓,D) = E(x,y)⇠D[(h✓, xi � y)2]. (1)

In order to protect privacy of individuals in the training data
when the learnt parameter vector ✓ is released, we adopt the
notion of Differential Privacy.

A. Differential Privacy (DP)

Differential privacy is a strong formal notion of individual
privacy. DP ensures that, for a randomized algorithm, when two
neighboring datasets that differ in one data point are presented,
the two outputs are indistinguishable, within some probability
margin defined using ✏ and � 2 [0, 1).

Definition II.1 (Differential Privacy [20]). A randomized
algorithm M with domain D is (✏, �)-differentially private for
all S ✓ Range(M) and for all pairs of neighboring databases
D,D

0 2 D,

Pr[M(D) 2 S]  e
✏ Pr[M(D0) 2 S] + �, (2)

where the probability space is over the randomness of the
mechanism M.

A refinement of differential privacy, a single-parameter
privacy definition (Gaussian differential privacy, GDP) was
later proposed [21]. In this work, we use GDP in order to
achieve better privacy bounds. We present several key results
in [21] that we use in our privacy analysis.

Definition II.2 (`2-sensitivity). The `2-sensitivity of a statistic
m over the domain of dataset D is �(m) = supD,D0 km(D)�
m(D0)k2, where k·k2 is the vector `2-norm, and the supremum
is over all neighboring datasets.

Theorem II.3 (Gaussian Mechanism, Theorem 2.7 from
of [21]). Define a randomized algorithm GM that oper-
ates on a statistic m as GM(x, µ) = m(x) + ⌘, where
⌘ ⇠ N (0,�(m)2/µ2) and �(m) is the `2-sensitivity of the
statistics m. Then, GM is µ-GDP.

For n GDP mechanisms with privacy parameters µ1, · · · , µn

,the following composition theorem holds:

Corollary II.4 (Composition of GDP, Corollary 3.3 of
[21]). The n-fold composition of µi-GDP mechanisms isp
µ2
1 + · · ·+ µ2

n-GDP.

There is a tight relationship between µ-GDP and (✏, �)-DP
that allows us to perform our analysis using GDP, and state
our results in terms of (✏, �)-DP.

Corollary II.5 (Conversion between GDP and DP, Corollary
2.13 of [21]). A mechanism is µ-GDP if and only if it is
(✏, �(✏))-DP for all ✏ � 0, such that

�(✏) = �

✓
� ✏

µ
+

µ

2

◆
� e

✏�

✓
� ✏

µ
� µ

2

◆
(3)

where � denotes the standard Gaussian CDF.

III. IMPROVED ADASSP VIA GRADIENT BOOSTING

Our algorithm for private linear regression uses gradient
boosting with AdaSSP as a weak learner.

A. Gradient Boosting

For regression tasks, we assume that we have a dataset
D = {xi, yi}ni=1, where xi 2 Rp and yi 2 R, 8i 2 [n]. Let
T be the number of boosting rounds, and ft be the model
obtained at iteration t 2 [T]. Since our base learner is linear
and the objective is the squared loss, at the t-th round, the
objective of a gradient boosting algorithm is to obtain:

✓t = argmin✓
Pn

i=1(yi � (
Pt�1

k=1 ✓
>
k xi + ✓

>
xi))2 (4)

= argmin
✓

nX

i=1

�
gi,t � ✓

>
xi

�2
, (5)

where gi,t = yi �
Pt�1

k=1 ✓
>
k xi is the steepest gradient of the

objective function w.r.t. the ensemble predictions made by
previous rounds. Therefore, each gradient boosting round is
solving a squared error linear regression problem where the
features are data, and the labels are gradients. The model
update at t-th round is simply ✓̂ = ✓̂ + ✓t, and the final model
is ✓̂ =

PT
k=1 ✓k.

Since the update preserves the linearity of the model, and
squared error regression can be solved optimally over linear
models. Absent privacy, gradient boosting cannot improve the
error of linear regression in the standard setting. Nevertheless,
when we replace exact linear regression with differentially
private approximations, the situation changes.

B. Private Ridge Regression as a Base Learner

Let X 2 Rn⇥p be the matrix with xi’s in each row and
gt 2 Rn be a vector containing gradients of training samples at
t (i.e., gi,t). Absent privacy, there exists a closed-form soluion
to Eq. 5, and it is

✓t = (X>
X)�1

X
>
gt, (6)

To provide differential privacy guarantees, AdaSSP (Algo-
rithm 2 of [4]) is applied to learn a private linear model at
each round. It also requires us to adjust our solution at each
round from OLS to Ridge Regression as follows:

✓t = (X>
X + �I)�1

X
>
gt, (7)

where � controls the strength of regularization, and I 2 Rp⇥p

is the identity matrix.
Let X and Y be the domain of our features and labels,

respectively. We define bounds on the data domain ||X || =
supx2X ||x|| and ||Y|| = supy2Y ||y||. Given as input privacy
parameters ✏ and �, and bounds on the data scale ||X || and
||Y|| for xi and gi,t, AdaSSP chooses a noise scale to obtain
µ-GDP for the appropriate value of µ, and adds calibrated
Gaussian noise to three sufficient statistics: 1) X>

X , 2) X>
gt,

and 3) �. The adaptive aspect of AdaSSP comes from the
fact that � is chosen based on X

>
X , therefore, we also need

to allocate privacy budget for computing �̂. Details of the

Algorithm 1 BoostedAdaSSP

Input Dataset D = {X, y}, privacy parameters ✏, �, split
ratio a, b, c, and clipping threshold ⌧

Initialize ✓ = 0
Find µ such that µ-GDP satisfies (✏, �)-DP.
Calibrate µ1, µ2, µ3 such that µ1 : µ2 : µ3 = a : b : c and
µ =

p
µ2
1 + µ2

2 + µ2
3

Clip the norm of samples xi = clip(xi, 1), 8i 2 [n]

Private release of b� = GM(�min(X>
X), µ3) and \X>X =

GM(X>
X,µ1)

Compute � = (\X>X + b�I)�1

for t 2 [T] do
gt = y �X✓ # negative gradient
gi,t = clip(gi,t, ⌧), 8i 2 [n] # gradient clipping
\X>gt = GM(X>

gt,
µ2p
T
) # private release

✓t = �\X>gt # private linear model
✓ ✓ + ✓t # model update

end for
Return ✓

* clip(x, ⌧) = xmin(1, ⌧/||x||)
* GM(X,µ) denotes the Gaussian mechanism that satisfies
µ-GDP for releasing noisy X

AdaSSP algorithm for learning one ridge regressor are deferred
to Appendix B.

Let \X>X = GM(X>
X,µ1), \X>gt = GM(X>

gt, µ2),
b� = GM(�min(X>

X), µ3) be the private release of sufficient
statistics from a single instantiation of AdaSSP to learn ✓t and
GM as defined in Theorem II.3. The final model b✓ can be
expressed as

b✓ =
PT

t=1
b✓t =

⇣
\X>X + b�I

⌘�1PT
t=1

\X>gt (8)

Therefore, when running gradient boosting, we only need to
release GM(X>

X,µ1) and GM(�min(X>
X), µ3) once at

the beginning of our algorithm, and at each stage, the only ad-
ditional information we need to release is GM(X>

gt, µ2/
p
T);

this provides a savings over naively repeating AdaSSP (given
as Algorithm 2 in the Appendix) for T rounds.

Putting it all together, our final algorithm BoostedAdaSSP
is shown in Algorithm 1, and the privacy guarantee is shown
in Theorem III.1.

Theorem III.1. Algorithm 1 satisfies (✏, �)-DP.

Proof. We use the privacy of the Gaussian mechanism, and
the composition theorem stated in corollary II.4, which

gives us a GDP bound of:
r
µ2
1 + T

⇣
µ2/
p
T

⌘2
+ µ2

3 =
p
µ2
1 + µ2

2 + µ2
3 = µ. The conversion from GDP to DP follows

from Corollary II.5.

C. Data-independent Clipping Bounds
As described in [4] and mentioned in [7], the clipping bounds

on X and Y are taken to be known — but if they are selected

(a) Non-privately Tuned BoostedAdaSSP vs. Non-privately Tuned AdaSSP

(b) Fixed BoostedAdaSSP vs. Non-privately Tuned AdaSSP

(c) Fixed BoostedAdaSSP vs. Fixed AdaSSP

Fig. 1: BoostedAdaSSP vs. AdaSSP. “Non-privately Tuned” indicates that hyperparameters of the algorithm are non-privately
optimized on each dataset, and “Fixed” indicates that the hyperparameters are fixed and shared across all datasets. Each dataset
is shown as a point on the plot, labeled with the error obtained by BoostedAdaSSP (y axis) and AdaSSP (x axis). Points below
the diagonal are datasets on which BoostedAdaSSP improves over AdaSSP—the fractions of datasets lying above and below
the diagonal are annotated.

as a deterministic function of the data, this would constitute a
violation of differential privacy. For Y , the most natural solution
is to use a data-independent ⌧ to clip labels and enforce a bound
of ⌧ ; but as we observe both empirically and theoretically, this
introduces a difficult-to-tune hyperparameter that can lead to
a substantial degradation in performance. For X , one way to
resolve this issue, (as is done in the implementation of AdaSSP
1) is to normalize each individual data point to have norm 1, but
this is not without loss of generality: it fundamentally changes
the nature of the regression problem being solved, and so does

1https://github.com/yuxiangw/autodp/blob/master/
tutorials/tutorial_AdaSSP_vs_noisyGD.ipynb

not always constitute a meaningful solution to the original
problem. Instead, we clip the norm of data points so that
the maximum norm doesn’t exceed a fixed data independent
threshold (but might be lower).

IV. EXPERIMENTS

We selected 33 tabular datasets with single-target regression
tasks from OpenML 2 [22] for evaluating and comparing our
algorithm to other algorithms. Task details are presented in
Table II . The selected tasks include both categorical and
numerical features. We assume that the schema of individual

2https://www.openml.org

https://github.com/yuxiangw/autodp/blob/master/tutorials/tutorial_AdaSSP_vs_noisyGD.ipynb
https://github.com/yuxiangw/autodp/blob/master/tutorials/tutorial_AdaSSP_vs_noisyGD.ipynb
https://www.openml.org

tables is public information, and so convert categorical features
into one-hot encodings.

We compare our approach with a number of other algorithms.
First, we compare to other private linear regression methods:
AdaSSP, DP Gradient Descent, and TukeyEM. These represent
the leading practical methods (with accompanying code) used
for solving linear regression problems. DP Gradient Descent
solves the linear regression problem through noisy batch
gradient descent with noise calibrated with clipped per-sample
gradients, meanwhile, TukeyEM trains nonprivate linear models
on disjoint subsets and privately aggregates the learned linear
models. Since our algorithm is based on gradient boosting, in
addition to algorithms that solve linear regression problems,
we also compare to DP-EBM 3, the current state-of-the-art
differentially private gradient boosting algorithm, which uses
trees as its base learners. Rather than finding the optimal splits
for each leave based on the data, DP-EBM uses random splits,
which significantly improves the efficacy of the privacy budget.
We also include our own implementation of DP-Adaptive-
Mini-Batch-Shuffled-SGD (DP-AMBSSGD) [6], as it currently
doesn’t have publicly available codebase.

As each algorithm has it own hyperparameters (which are
often tuned non-privately in reported results), we present three
sets of comparisons. 1) First, we compare performance of the al-
gorithms when the hyperparameters are non-privately optimized
for each dataset, for each of the algorithms. This provides an
(unrealistically) optimistic view of each algorithm’s best case
performance. 2) Next, we use a fixed set of hyperparameters
for our algorithm (BoostedAdaSSP), which remain unchanged
from dataset to dataset, while still non-privately optimizing
the hyperparameters of each of our comparison partners on a
dataset-by-dataset basis. This provides an (unrealistic) best-case
comparison for the methods we benchmark against. 3) Finally,
we show what we view as the fair comparison, which is when
the hyperparameters of our method (BoostedAdaSSP) as well
as those of all of our comparison partners are held constant
across all of the datasets. For hyperparameter tuning, Optuna
[23] is applied. The tuning ranges of hyperparameters, and the
fixed hyperparameters for our method are reported in Table I
in the Appendix. For each comparison partner, when we fix the
parameters, we use parameters recommended in their papers.

Gradient Boosting Improves AdaSSP. When hyperpa-
rameters are non-privately tuned for both methods, then the
mean squared error is quite similar on most datasets for both
methods, but our method (BoostedAdaSSP) obtains lower
error on the majority of datasets at all tested privacy levels.
When BoostedAdaSSP uses fixed hyperparameters, it remains
competitive with AdaSSP even when AdaSSP is non-privately
tuned on each dataset. Finally, when both methods use fixed
hyperparameters, BoostedAdaSSP has substantially improved
error across a majority of datasets at all privacy levels. This
indicates a substantial advantage for our method. Comparisons
are presented in Fig. 1.

3https://github.com/interpretml/interpret

BoostedAdaSSP outperforms DP-Gradient Descent. Gra-
dient descient and BoostedAdaSSP are similar iterative al-
gorithms. But in all comparison settings (including when
the hyper-parameters of gradient descent are non-privately
optimized on individual datasets, and BoostedAdaSSP uses
fixed hyperparameters across all datasets), BoostedAdaSSP
substantially outperforms. BoostedAdaSSP can be viewed as
gradient descent in function space rather than parameter space,
and is able to take advantage of the optimized ridge regression
estimator of AdaSSP at each step. Results are in Fig. 2

BoostedAdaSSP outperforms TukeyEM. BoostedAdaSSP
also outperforms TukeyEM in all experimental regimes; we can
see that the advantage that BoostedAdaSSP enjoys diminishes
as the privacy parameter increases, since (when we optimize
for the hyperparameters for both methods), both approach
non-private (exact) linear regression. TukeyEM has only one
hyperparameter, but it requires a massive number of data
samples to train, due to its subsample-and-aggregate nature,
and it produces an all-zero parameter vector in many scenarios.
In contrast, our BoostedAdaSSP has only a couple more
hyperparameters, and a common selection for them works
well on many datasets. Comparisons are shown in Fig. 3.

With privacy, gradient boosting over linear models
outperforms gradient boosting over tree based models.
Results in Fig. 5 show that BoostedAdaSSP outperforms DB-
EBM in all experimental regimes. DB-EBM is also a private
gradient boosting algorithm, using tree based learners as base
models. This is something that does not occur absent privacy
(gradient boosting cannot improve on exact linear regression,
as the update steps preserve linearity). This is emblematic
of a more general message, that differential privacy rewards
algorithmic simplicity (even when more complex algorithms
outperform absent privacy constraints). This is because more
complex algorithms require more noise addition for privacy,
which is often ultimately not worth the tradeoff.

Theory work has been attempting at advancing differen-
tially private linear regression with nearly optimal accuracy
guarantees, and [6] notably provided two algorithms, but
there is no public implementation of it. To demonstrate the
empirical effectiveness of our work, we implemented the
second algorithm in [6], namely DP-AMBSSGD (DP-Adaptive-
Mini-Batch-Shuffled-SGD), with our best attempt, though the
constants/hyperparameters in the algorithm are hard to realize.
Therefore, for fair comparison, we only provide results with
tuned hyperparameters for DP-AMBSSGD.

V. ROBUSTNESS RESULTS

Since our algorithm directly leverages the idea of gradient
boosting, it also benefits from the robustness of gradient
boosting algorithm to outliers. This section presents prediction
errors of our algorithm — BoostedAdaSSP — in the presence
of outliers in the training set, in comparison to AdaSSP and
TukeyEM.

https://github.com/interpretml/interpret

(a) Non-privately Tuned BoostedAdaSSP vs. Non-privately Tuned DP Gradient Descent

(b) Fixed BoostedAdaSSP vs. Non-privately Tuned DP Gradient Descent

(c) Fixed BoostedAdaSSP vs. Fixed DP Gradient Descent

Fig. 2: BoostedAdaSSP vs. DP Gradient Descent. BoostedAdaSSP outperforms DP Gradient Descent in all comparisons,
even when our algorithm uses a fixed set of hyperparameters.

The dataset is generated from the following linear regression
model:

y = x
>
w + z, (9)

where w 2 Rd, x ⇠ N(0, Id⇥d), z ⇠ N(0, 0.1), and Id⇥d is a
d⇥ d identify matrix. In our experiments, we fix d to be 10.

In our experiments, the total number of data samples vary
from 10,000 to 1,000,000 to accommodate the desired setting
for Tukey where the number of data samples should be 1,000
times larger than the dimension of samples. We also only
consider high-privacy regime, where ✏ = 0.5 and ✏ = 1.

For data corruption, we consider the following scenarios,
including introducing outliers to the label space, to the feature
space, and outliers from the different linear models. We
here present the data generation process for outliers and the

performance of individual algorithms. All results are averaged
over 10 random trials.

A. Outliers in the label space
We first compare three different algorithms in the scenario

where a small portion of labels are corrupted. Specifically,
these labels are generated with much higher noise as follows:

yout = x
>
w ⇥ 10 + z, (10)

Fig. 6 and Fig. 7 present comparisons of our algorithm
against AdaSSP and TukeyEM respectively. The first observa-
tion is that BoostedAdaSSP consistently outperforms AdaSSP
when outliers are presented regardless of the private level, the
total number of training samples, and the portion of outliers.
Then, the second observation is that, when the portion of
outliers is relatively low, i.e. 1%, and with a large number of

(a) Non-privately Tuned BoostedAdaSSP vs. Non-privately Tuned TukeyEM

(b) Fixed BoostedAdaSSP vs. Non-privately Tuned TukeyEM

(c) Fixed BoostedAdaSSP vs. Fixed TukeyEM

Fig. 3: BoostedAdaSSP vs. TukeyEM. BoostedAdaSSP outperforms TukeyEM in all comparisons, even when our algorithm
uses a fixed set of hyperparameters. TukeyEM has the advantage of only having a single hyperparameter (number of models),
however, in our experiments we find that there isn’t a universally good selection for this hyperparameter.

training samples, TeukeyEM outperforms our BoostedAdaSSP
algorithm. However, when the number of outliers increases,
our algorithm consistently outperforms TukeyEM.

B. Outliers in the feature space
We then present a scenario where input features of a small

portion of the dataset are corrupted, but the parameter vector
stays the same. After the dataset is generated, the features of a
small portion of samples are scaled up by 10, and it is shown
as follows:

xout = x⇥ 10, (11)

Fig. 8 presents the comparison of our algorithm and AdaSSP.
The boosting nature of our algorithm improves the robustness
to outliers, and the empirical evidence also reflects the

improvement. Fig. 9 shows the comparison against TukeyEM,
and the observation here is rather contradictory to that when
the labels are corrupted. Here, when the number of samples
are small and the corrupted samples are also small, TukeyEM
outperforms, otherwise, ours dominates the performance.

C. Outliers from a different model
The last scenario that is worth considering is when a

small portion of samples are produced from a different
linear regression model. In our experiments, this other linear
regression model is as follows:

yout = x
>
outwout + z, (12)

where xout ⇠ N(5, Id⇥d), and wout = w + 5. Fig. 10 and Fig.
11 shows the performance comparison of our BoostedAdaSSP

(a) Non-privately Tuned BoostedAdaSSP vs. Non-privately Tuned DP-EBM

(b) Fixed BoostedAdaSSP vs. Non-privately Tuned DP-EBM

(c) Fixed BoostedAdaSSP vs. Fixed DP-EBM

Fig. 4: BoostedAdaSSP vs. DP-EBM. BoostedAdaSSP and DP-EBM are both gradient boosting algorithms. BoostedAdaSSP
uses linear models as the base class, whereas DP-EBM uses tree based models. Our method outperforms in all experimental
regimes.

against AdaSSP and TukeyEM respectively. In this slightly
more complicated scenario, boosting helps our algorithm
overcome the impact of outliers, and outperforms AdaSSP.
In addition, our algorithm is also more robust to outliers than
TukeyEM.

VI. THEORETICAL INSIGHTS

The improvement of BoostedAdaSSP over the base learner
AdaSSP, from a theoretical perspective, can be attributed to
the former’s ability to adapt to arbitrary data clipping bounds.
While the base learner AdaSSP is known to be optimal when
the data clipping bounds are data-dependent and well-chosen
([4], Theorem 3), it suffers from significant bias when the
data clipping bounds are mis-specified (i.e. much closer to 0
relative to the data range).

This bias exists even in the simplest “zero-dimensional”
case where linear regression reduces to estimating the
population mean of real-valued data. Consider a data set
Y1, Y2, · · · , Yn

i.i.d.⇠ N (µ, 1). With C⌧ (a) = amin(1, |a|/⌧)
denoting the clipping operator, the zero-dimensional AdaSSP
estimator is simply µ̂1 = n

�1
P

i2[n] C⌧ (Yi) + Z, where Z is
the requisite Gaussian noise for differential privacy. The bias
of the AdaSSP estimator, |Eµ̂1 � µ|, is then at least |µ|� ⌧ ,
since |Eµ̂1|  ⌧ .

In contrast, the BoostedAdaSSP algorithm converges to the
population mean µ for any non-zero clipping bound ⌧ . The
theoretical analysis is in Section E of the appendix.

(a) Non-privately Tuned BoostedAdaSSP vs. Non-privately Tuned DP-AMBSSGD

(b) Fixed BoostedAdaSSP vs. Non-privately Tuned DP-AMBSSGD

Fig. 5: BoostedAdaSSP vs. DP-AMBSSGD. BoostedAdaSSP and DP-AMBSSGD are both iterative algorithms. DP-AMBSSGD
adaptively chooses the clipping bound in each iterative to achieve theoretically optimal performance on linear regression. We,
with our best attempt, implemented the algorithm, and only presented results with tuned hyperparameters using Optuna in a
non-private way. As we can see, our algorithm BoostedAdaSSP with optimally tuned hyperparameters outperforms optimally
tuned DP-AMBSSGD, and even with fixed hyperparameters, our algorithm still achieves lower MSE values on a majority of
datasets.

VII. CONCLUSION

We present an augmentation of AdaSSP via gradient boosting
for differentially private linear regression, and we name it Boost-
edAdaSSP. Through extensive experiments and comparisons
against other approaches, we show that BoostedAdaSSP is
less sensitive to hyperparameter choices than other approaches,
and with fixed hyperparameters, BoostedAdaSSP outperforms
other algorithms on a majority of real datasets. Moreover, on
synthetic data, we demonstrate the robustness of our algorithm,
BoostedAdaSSP, to outliers in the training set. Overall, our
algorithm is a practical and robust solution to situations where
hyperparameters of linear regression problems are hard to
determine.

REFERENCES

[1] X. Wu, M. Fredrikson, W. Wu, S. Jha, and J. F. Naughton, “Revisiting
differentially private regression: Lessons from learning theory and their
consequences,” arXiv preprint arXiv:1512.06388, 2015.

[2] O. Sheffet, “Differentially private ordinary least squares,” in International
Conference on Machine Learning, pp. 3105–3114, PMLR, 2017.

[3] O. Sheffet, “Old techniques in differentially private linear regression,”
in Algorithmic Learning Theory, pp. 789–827, PMLR, 2019.

[4] Y.-X. Wang, “Revisiting differentially private linear regression: optimal
and adaptive prediction & estimation in unbounded domain,” Uncertainty
in Artificial Intelligence (UAI-18), 2018.

[5] D. Alabi, A. McMillan, J. Sarathy, A. Smith, and S. Vadhan, “Dif-
ferentially private simple linear regression,” Proceedings on Privacy
Enhancing Technologies, vol. 2, pp. 184–204, 2022.

[6] P. Varshney, A. Thakurta, and P. Jain, “(nearly) optimal private linear
regression for sub-gaussian data via adaptive clipping,” in Conference
on Learning Theory, pp. 1126–1166, PMLR, 2022.

[7] K. Amin, M. Joseph, M. Ribero, and S. Vassilvitskii, “Easy differentially
private linear regression,” arXiv preprint arXiv:2208.07353, 2022.

[8] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[9] H. Nori, R. Caruana, Z. Bu, J. H. Shen, and J. Kulkarni, “Accuracy,
interpretability, and differential privacy via explainable boosting,” in
International Conference on Machine Learning, pp. 8227–8237, PMLR,
2021.

[10] D. Kifer, A. Smith, and A. Thakurta, “Private convex empirical
risk minimization and high-dimensional regression,” in Conference on
Learning Theory, pp. 25–1, JMLR Workshop and Conference Proceedings,
2012.

[11] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimiza-
tion: Efficient algorithms and tight error bounds,” in 2014 IEEE 55th
annual symposium on foundations of computer science, pp. 464–473,
IEEE, 2014.

[12] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

[13] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization.,” Journal of Machine Learning Research,
vol. 12, no. 3, 2011.

[14] D. Vu and A. Slavkovic, “Differential privacy for clinical trial data:
Preliminary evaluations,” in 2009 IEEE International Conference on

Fig. 6: Label Corruption, BoostedAdaSSP vs. AdaSSP. It is
easy to see that BoostedAdaSSP outperforms AdaSSP when a
small portion of the labels are corrupted. p refers to the portion
of corrupted labels, and the unit of ’# Samples’ is a million.

Data Mining Workshops, pp. 138–143, IEEE, 2009.
[15] Q. Li, Z. Wu, Z. Wen, and B. He, “Privacy-preserving gradient boosting

decision trees,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 784–791, 2020.

[16] N. Grislain and J. Gonzalvez, “Dp-xgboost: Private machine learning at
scale,” arXiv preprint arXiv:2110.12770, 2021.

[17] J. Liu and K. Talwar, “Private selection from private candidates,” in
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pp. 298–309, 2019.

[18] S. Mohapatra, S. Sasy, X. He, G. Kamath, and O. Thakkar, “The role
of adaptive optimizers for honest private hyperparameter selection,” in
Proceedings of the aaai conference on artificial intelligence, vol. 36,
pp. 7806–7813, 2022.

[19] A. Koskela and T. Kulkarni, “Practical differentially private hyperpa-
rameter tuning with subsampling,” arXiv preprint arXiv:2301.11989,
2023.

[20] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proceedings of the 3rd Conference
on Theory of Cryptography, TCC ’06, pp. 265–284, 2006.

[21] J. Dong, A. Roth, and W. Su, “Gaussian differential privacy,” Journal of
the Royal Statistical Society, 2021.

[22] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on tabular data?,” arXiv preprint
arXiv:2207.08815, 2022.

[23] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[24] T. T. Cai, Y. Wang, and L. Zhang, “The cost of privacy: Optimal rates of
convergence for parameter estimation with differential privacy,” Annals
of Statistics, vol. 49, no. 5, pp. 2825–2850, 2021.

Fig. 7: Label Corruption, BoostedAdaSSP vs. TukeyEM. When
the corruption is only limited to a tiny portion of the data, and
the number of samples is large, TukeyEM outperforms ours.
While in all other scenarios, ours is more robusted to outliers.

Fig. 8: Feature Corruption, BoostedAdaSSP vs. AdaSSP. The
iterative approach of our algorithm improves the performance
of AdaSSP even in the case where features of a small portion
of data samples are corrupted.

Fig. 9: Feature Corruption, BoostedAdaSSP vs. TukeyEM.
When higher privacy budget is allocated, TukeyEM becomes
more resilient to outliers in the training set when the total
number of samples is small. However, ours still outperforms
TukeyEM in other situations.

Fig. 10: Model Corruption, BoostedAdaSSP vs. AdaSSP.

Fig. 11: Model Corruption, BoostedAdaSSP vs. TukeyEM.
When a small fraction of data samples are generated from a
different linear model, our algorithm BoostedAdaSSP is more
robust to these type of outliers than Tukey.

APPENDIX

A. Hyperparameters

TABLE I: Hyperparameters of individual algorithms, and their individual tuning ranges.

Hyperparameters
Data

Clipping
Bound

Gradient
Clipping
Bound

Models
/Iterations
/Updates

Learning
Rate

Schedule
Leaves

Tuning Range [1e-5,1e+5] [1e-5,1e+5] [1,4000] {1,t�1,t�1/2} [1,1000]
Algorithm

BoostedAdaSSP Yes No Yes Yes No
AdaSSP Yes No No No No

DP-Gradient Descent No Yes Yes Yes No
TukeyEM No No Yes No No
DP-EBM Yes No Yes No Yes

Fixed Hyperparameters
BoostedAdaSSP 1 - 100 1 -

B. AdaSSP Algorithm for Learning a Single Ridge Regressor
Let b. denote private versions of the corresponding statistics. Then, AdaSSP privately releases the sufficient statistics of

ridge regressor as follows.

Algorithm 2 Private Ridge regression via AdaSSP(data X, y, calibration ratio a, b, c , Privacy parameter ✏, �, Bound on
||X ||, ||Y||)

Find µ such that µ-GDP satisfies (✏, �)-DP. # Corollary II.5
Calibrate µ1, µ2, µ3 such that µ1 : µ2 : µ3 = a : b : c and µ =

p
µ2
1 + µ2

2 + µ2
3.

Clip X so that maxi ||xi||  ||X ||
Clip y so that maxi ||yi||  ||Y||
\X>X = GM(X>

X,µ1, ||X ||)
[X>y = GM(X>

y, µ2,
p
||X ||||Y||)

b� = GM(�min(X>
X), µ3, ||X ||)

Output b✓t = (\X>X + b�I)�1[X>y

Algorithm 2 instantiates three Gaussian mechanisms with µ1, µ2, and µ3 to privately release each sufficient statistic. Hence
the composition

b✓t = (\X>X + b�I)�1\X>gt (13)

is (✏, �)-DP. Detailed proof is available in Theorem 3 of [4].

C. Datasets
All 33 datasets in our experiments come from OpenML. Task information is listed in Tab. II.

TABLE II: Regression Tasks. ‘Task ID’ refers to the task id on OpenML, n refers to the number of total data points, d refers
to the dimension of features after one-hot encoding the categorical features, and ‘True Bound’ indicates the maximum absolute
value of labels.

Task ID n # Columns d True Bound n / d
361072 8192 21 21 99.000000 390.095238
361073 15000 26 26 100.000000 576.923077
361074 16599 16 16 0.078000 1037.437500
361075 7797 613 613 26.000000 12.719413
361076 6497 11 11 9.000000 590.636364
361077 13750 33 33 0.003600 416.666667
361078 20640 8 8 13.122367 2580.000000
361079 22784 16 16 13.122367 1424.000000
361080 53940 6 6 9.842888 8990.000000
361081 10692 8 8 13.928840 1336.500000
361082 17379 6 6 977.000000 2896.500000
361083 581835 9 9 5.528238 64648.333333
361084 21613 15 15 15.856731 1440.866667
361085 10081 6 6 1.000000 1680.166667
361086 163065 3 3 11.958631 54355.000000
361087 13932 13 13 14.790071 1071.692308
361088 21263 79 79 185.000000 269.151899
361089 20640 8 8 1.791761 2580.000000
361090 18063 5 5 12.765691 3612.600000
361091 515345 90 90 2011.000000 5726.055556
361092 8885 62 82 1.000000 108.353659
361093 4052 7 12 2.300000 337.666667
361094 8641 4 5 40.000000 1728.200000
361095 166821 9 23 10.084141 7253.086957
361096 53940 9 26 9.842888 2074.615385
361097 4209 359 735 265.320000 5.726531
361098 10692 11 17 13.928840 628.941176
361099 17379 11 20 977.000000 868.950000
361100 39644 59 73 13.645079 543.068493
361101 581835 16 31 5.528238 18768.870968
361102 21613 17 19 15.856731 1137.526316
361103 394299 6 26 6.480505 15165.346154
361104 241600 9 15 8.113915 16106.666667

D. Impact of the Ratio N/d

Fig. 12: The plot shows the comparison between our algorithm, BoostedAdaSSP, versus TukeyEM when both algorithms use
fixed and shared hyperparameters across datasets. Specifically, the size of each marker represents the ratio between the number
of samples of a dataset and the dimension of features. It doesn’t seem obvious that the ratio N/d is a controlling factor for the
success of an algorithm.

E. Omitted Material in Section VI

The zero-dimensional BoostedAdaSSP algorithm for estimating µ from Y1, Y2, · · · , Yn
i.i.d.⇠ N (µ, 1) is defined in Algorithm

3.

Theorem A.1. For every ⌧ = O(1) not depending on sample size n, Algorithm 3 is Gaussian DP with parameter ⇢, and there
exists a data-independent choice of number of boosting rounds R such that the estimator µ̂R converges to the true parameter
µ, with the rate of convergence

E|µ̂R � µ| = O

log np

n
+

log3/2 n

n
p
⇢

!
. (14)

Proof of Theorem A.1. The Gaussian DP of Algorithm 3 follows from the Gaussian mechanism II.3 and the composition
theorem II.4, by observing that the sensitivity of the clipped sample mean is 2⌧/n. Next, we establish the convergence of µ̂R

by comparing with Algorithm 4, an “infinite-sample” version of Algorithm 3.

Algorithm 3 Zero-dimensional BoostedAdaSSP
Require: Clipping function C⌧ , number of rounds R, Gaussian DP parameter ⇢.
Require: Data Y1, Y2, · · · , Yn

i.i.d.⇠ N (µ, 1).
Initialize: µ̂0 = 0
for t 2 [R] do

Compute DP residual mean

µ̂j = µ̂j�1 +
1

n

X

i2[n]

C⌧ (Yi � µ̂j�1) + Zj , (15)

where Zj ⇠ N
⇣
0, 4R⌧2

n2⇢

⌘
.

end for
Output µ̂R

Algorithm 4 Infinite-sample algorithm
Require: Clipping function C⌧ , number of rounds R.
Require: Infinite samples from N (µ, 1).

Initialize: ✓0 = 0
for t 2 [R] do

Compute true truncated residual mean

✓j = ✓j�1 + EY⇠N (µ,1)C⌧ (Y � ✓j�1). (16)

end for
Output ✓R

By considering an idealized “infinite sample” setting where we have access to true distributional quantities {EC⌧ (Y �
✓j�1)}j2R, Algorithm 4 removes all the randomness in the finite-sample Algorithm 3 and allows us to focus entirely on the
bias-reduction effect of boosting. Indeed, the infinite-sample “estimator” ✓R converges deterministically to µ.

Proposition A.2. Suppose the number of rounds R >
max(0,|µ|�⌧)
(�(2⌧)�1/2)⌧ . The error of ✓R is bounded by

|✓R � µ|  ⌧ (3/2� �(⌧))R� max(0,|µ|�⌧)
(�(2⌧)�1/2)⌧ . (17)

That is, after a warm-up of max(0,|µ|�⌧)
(�(2⌧)�1/2)⌧ rounds, the error of ✓R decays geometrically fast, as 0 < 3/2� �(⌧) < 1 for any

⌧ > 0. It now suffices to bound the difference |✓R � µ̂R|.

Proposition A.3. The difference between outputs of Algorithms 3 and 4 is bounded by

E|µ̂R � ✓R| = O

✓
R⌧p
n
+

R
3/2

⌧

n
p
⇢

◆
. (18)

By choosing an R = O(log n) and R >
max(0,|µ|�⌧)
(�(2⌧)�1/2)⌧ , we have |✓R � µ| = O(⌧/n) by Proposition A.2, and then

E|µ̂R � µ|  |✓R � µ|+ E|µ̂R � ✓R| (19)

= O

⇣
⌧

n

⌘
+O

⌧ log np

n
+

⌧ log3/2 n

n
p
⇢

!
. (20)

As ⌧ = O(1) by assumption, the main proof is complete. Propositions A.2 and A.3 are proved in Section E.
1) Proof of Proposition A.2: Let �t = ✓t�1 � µ, so that |�t| is the bias of Algorithm 4 after t� 1 iterations. We would

like to see |�t| decay as quickly as possible in t. The following lemmas quantify the rate of decay.

Lemma A.4. Let t � 0 and ⌧ be the clipping threshold. Suppose |�t|  ⌧ . Then |�t+1| 
�
3
2 � �(⌧)

�
|�t|, where �(·) is the

standard Gaussian CDF.

Lemma A.5. Let t � 0 and ⌧ be the clipping threshold. Suppose |�t| > ⌧ . Then |�t+1|  |�t|� (�(2⌧)� 1/2)⌧, where �(·)
is the standard Gaussian CDF.

The lemmas taken together suggest that, if |µ| > ⌧ , then it takes |µ|�⌧
(�(2⌧)�1/2)⌧ rounds for the error |�t| to decrease below ⌧ .

As soon as |�t|  ⌧ , then |�t| decays geometrically by a factor of (3/2��(⌧)) each round. Then, for R >
max(0,|µ|�⌧)
(�(2⌧)�1/2)⌧ , the

desired bound in Proposition A.2 follows.
It remains to prove the two lemmas.

Proof of Lemma A.4. Let mt denote the true truncated residual mean in the t-th step.
Throughout the proof, let Pt denote N (�t, 1). Note that if µt = 0, then mt = �t = �t+1, and so the inequality holds.
Now we consider the case where �t 6= 0. Without loss of generality, assume µt > 0. Let C denote the clipping operation,

that is C(Y) = Y min(1, ⌧/|Y |). Then we can decompose the estimate mt as follows:

mt = EPt [C(Y)] (21)
= Pr

Pt

[Y < �⌧](�⌧) + Pr
Pt

[Y > ⌧ + 2�t]⌧
| {z }

T1

+ Pr
Pt

[Y 2 [�⌧, ⌧ + 2�t]]E[C(Y) | Y 2 [�⌧, ⌧ + 2�t]]
| {z }

T2

(22)

Since the distribution Pt is symmetric about �t, T1 = 0. Now we further decompose T2 by considering three different intervals:

T2 = Pr
Pt

[Y 2 [2�t � ⌧, ⌧]]EPt [C(Y) | Y 2 [2�t � ⌧, ⌧]]
| {z }

T3

+ Pr
Pt

[Y 2 [�⌧, 2�t � ⌧]]EPt [C(Y) | Y 2 [�⌧, 2�t � ⌧]]
| {z }

T4

+ Pr
Pt

[Y 2 [⌧, ⌧ + 2�t]]EPt [C(Y) | Y 2 [⌧, ⌧ + 2�t]]
| {z }

T5

(23)

In the interval of T3, no Y is clipped, so C(Y) = Y . Since the interval is also centered at the mean �t, the conditional
expectation is �t, so

T3 = Pr
Pt

[Y 2 [2�t � ⌧, ⌧]]�t. (24)

In the interval of T5, each Y is clipped, so

T5 = Pr
Pt

[Y 2 [⌧, ⌧ + 2�t]]⌧. (25)

In the interval of T4, no Y is clipped. Moreover, for any y, y
0 2 [�⌧, 2�t � ⌧] such that y > y

0, the density Pt(y) > Pt(y0).
This allows us to lower bound T4:

T4 =

Z

[�⌧,2�t�⌧]
Y Pt(Y)

=

Z

[�t�⌧,2�t�⌧]
Y Pt(Y) +

Z

[�⌧,�t�⌧]
Y Pt(Y)

=

Z

[�t�⌧,2�t�⌧]
[Y Pt(Y) + (2�t � 2⌧ � Y)Pt(2�t � 2⌧ � Y)]

�
Z

[�t�⌧,2�t�⌧]
(�t � ⌧) (Pt(Y) + Pt(2�t � 2⌧ � Y)) (26)

= (�t � ⌧)

Z

[�⌧,2�t�⌧]
Pt(Y)

= (�t � ⌧) Pr
Pt

[Y 2 [�⌧, 2�t � ⌧]] (27)

where the step in inequality (26) follows from the fact that for any four numbers a, b, c, d such that a � c and b � d, then
ab + cd � (a+c)

2 (b + d). Finally, note that PrPt [Y 2 [�⌧, 2�t � ⌧]] = PrPt [Y 2 [⌧, 2�t + ⌧]] since the two intervals are
symmetric about �t. Thus,

T4 + T5 =
�t

2

✓
Pr
Pt

[Y 2 [�⌧, 2�t � ⌧]] + Pr
Pt

[Y 2 [⌧, 2�t + ⌧]]

◆
(28)

Putting (24), (25) and (27) together, we get

mt = T3 + T4 + T5 �
�t

2
Pr
Pt

[Y 2 [�⌧, ⌧ + 2�t]] (29)

Finally, note that

Pr
Pt

[Y 2 [�⌧, ⌧ + 2�t]] = Pr
Pt

[Y ��t 2 [�⌧ ��t, ⌧ +�t]] (30)

� Pr
Pt

[Y ��t 2 [�⌧, ⌧]] (31)

= 2�(⌧)� 1 (32)

This means

�t+1 = �t �mt  (3/2� �(⌧))�t (33)

which completes the proof.

Proof of Lemma A.5. Throughout the proof, let Pt denote N (�t, 1). Without the loss of generality, assume �t > 0. We start
by decomposing the mean of the clipped distribution:

mt = EPt [C(Y)] (34)
= Pr

Pt

[Y < �⌧](�⌧) + Pr
Pt

[Y > ⌧ + 2�t]⌧
| {z }

T1

+ Pr
Pt

[Y 2 [�⌧, ⌧ + 2�t]]E[C(Y) | Y 2 [�⌧, ⌧ + 2�t]]
| {z }

T2

(35)

By the symmetric property of Pt, T1 = 0. Now we will further break down T2 into the parts that were unclipped and clipped:

T2 = Pr
Pt

[Y 2 [�⌧, ⌧]]E[Y | Y 2 [�⌧, ⌧]]
| {z }

T3

+ Pr
Pt

[Y 2 [⌧, 2�t + ⌧]]⌧
| {z }

T4

(36)

First, note that for each y 2 [0, ⌧], we have Pt(y) � Pt(�y) since y is closer than �y to the mean �t. This implies

T3 =

Z

[�⌧,⌧]
Y Pt(Y)

=

Z

[0,⌧]
[Y Pt(Y) + (�Y)Pt(�Y)]

�
Z

[0,⌧]
[Y Pt(Y) + (�Y)Pt(Y)] = 0 (37)

Finally, we note that in T4, the probability of interval can be lower bounded as:

Pr
Pt

[Y 2 [⌧, 2�t + ⌧]] = Pr
Z⇠N (0,1)

[Z 2 [⌧ ��t,�t + ⌧]]

� Pr
Z⇠N (0,1)

[Z 2 [0, 2⌧]] (38)

where the last inequality follows from ⌧  �t. Thus, mt � (�(2⌧)� 1/2)⌧ , which recovers the stated bound.

2) Proof of Proposition A.3: Define

Aj,n :=
1

n

X

i2[n]

C⌧ (Yi � ✓j)� EC⌧ (Y � ✓j), Bj,n :=
1

n

X

i2[n]

(C⌧ (Yi � µ̂j)� C⌧ (Yi � ✓j)) , (39)

then for every j 2 [R] it holds, by equations (15) and (16), that

µ̂j � ✓j = µ̂j�1 � ✓j�1 +Aj�1,n +Bj�1,n + Zj . (40)

To simplify the right side, observe that:
• each term in Bj�1,n, C⌧ (Yi � µ̂j�1)� C⌧ (Yi � ✓j�1) is of the same sign as (Yi � µ̂j�1)� (Yi � ✓j�1) = ✓j�1 � µ̂j�1,

since clipping preserves ordering: if a  b, then C⌧ (a)  C⌧ (b);
• the magnitude |C⌧ (Yi � µ̂j�1)� C⌧ (Yi � ✓j�1)| is upper bounded by |(Yi � µ̂j�1)� (Yi � ✓j�1)| = |✓j�1 � µ̂j�1|, as

clipping is non-expansive: for any a, b, |C⌧ (a)� C⌧ (b)|  |a� b|.
It follows that |µ̂j�1 � ✓j�1 +Bj�1,n|  |µ̂j�1 � ✓j�1|, and therefore (40) implies

|µ̂j � ✓j |  |µ̂j�1 � ✓j�1|+ |Aj�1,n|+ |Zj |. (41)

Since |µ̂0 � ✓0| = 0 by definition, we have

|µ̂R � ✓R| 
R�1X

j=1

|Aj�1,n|+
RX

j=1

|Zj |.

The desired bound in Proposition A.3 is then the consequence of two observations.
• Each Aj,n is the difference between the sample mean of i.i.d. bounded random variables {C⌧ (Yi � ✓j)}i2[n] and their

expectation. E|Aj�1,n| 
q
EA2

j�1,n = O

⇣
⌧p
n

⌘
.

• The Zj’s are independently drawn from N (0, 4R⌧2

n2⇢). We have E|Zj | = O(
p
R⌧

n
p
⇢).

F. Optimality of Boosting under Lossless Clipping
When the true data scales kXk, kYk are known, [4] studies the rate of convergence of AdaSSP estimator ✓̂AdaSSP to the

non-private least squares estimator ✓⇤ by showing that, under mild regularity conditions for the design matrix X , the squared
distance k✓̂AdaSSP � ✓

⇤k2 is less than C
kXk2tr[(X>X)�2]

✏2/ log(1/�) with probability at least 1� �/3 (Theorem 3, [4]) for some constant C.
As argued in the original paper, this rate of convergence is optimal for (✏, �)-differentially private linear regression ([11], [24]).

In Theorem A.6 we show that the boosted algorithm can attain the same rate of convergence, which helps explain why
BoostedAdaSSP performs no worse than one-shot AdaSSP in our experiments when the clipping threshold is data-dependent.

Theorem A.6. If y|X is sampled from a Gaussian linear model and the minimum eigenvalue of the Gram matrix satisfies
�min(X>

X) � ↵nkXk2

d for some ↵ > 0, then there exists a high-probability event E not depending on y|X such that, as long
as the number of boosting rounds T = O(1), the BoostedAdaSSP estimator ✓̂T satisfies

E(k✓̂T � ✓
⇤k2|X,E)  C

kXk2tr[(X>
X)�2]

✏2/ log(1/�)
(42)

for some constant C.

Proof. Let M denote the sum of �̂I (where �̂ is defined in Algorithm 1) and the symmetric Gaussian matrix perturbation to
X

>
X . convergence of Algorithmsider two convergence of Algorithmsecutive iterates of Algorithm 1. We have

✓t+1 = (X>
X +M)�1

X
>(y �X✓t) + Zt+1, (43)

where Zt+1 ⇠ Nd

�
0, ⌫2(X>

X +M)�2
�

is the fresh Gaussian noise drawn in the (t+ 1)-th iteration. The coefficient ⌫2 in
the covariance matrix depends on privacy parameters and data scales and shall be specified later.

With ✓
⇤ = (X>

X)�1
X

>
y, rearranging terms yields

✓t+1 � ✓
⇤ = (I � (X>

X +M)�1
X

>
X)(✓t � ✓

⇤) + Zt+1. (44)

With the same choice of high-probability event as Section B of [4], we have 0.5(X>
X + �̂I) � X

>
X +M � 2(X>

X + �̂I),
and therefore there exists some absolute convergence of Algorithmstant 0 <  < 1 such that

k✓t+1 � ✓
⇤k  (1� )k✓t � ✓

⇤k+ kZt+1k. (45)

Iterating this noisy convergence of Algorithmtraction yields

k✓t+1 � ✓
⇤k  (1� )tk✓1 � ✓

⇤k+
tX

j=1

(1� )t�jkZjk. (46)

To bound the right side in expectation, observe that E(k✓1 � ✓
⇤k2|X,E) is of the same order as Ek✓̂AdaSSP � ✓

⇤k2|X,E when
T = O(1). For the noise term, again with T = O(1), the requisite ⌫

2 in AdaSSP is of the order kXkkYk
✏2/ log(1/�) ; the overall

magnitude of the noise term kXk2kYk2

✏2/ log(1/�) tr[(X>
X +M)�2] is bounded by C

kXk2tr[(X>X)�2]
✏2/ log(1/�) under the high probability event

for (X>
X +M)�1 and with the same choice of C in Theorem 2(iii) of [4].

G. Additional Theoretical Perspectives & Robustness of BoostedAdaSSP

In this section, we provide some additional theoretical justification of BoostedAdaSSP.

• In Section G1, we will prove a more fine-grained finite sample separation result between one-shot AdaSSP and
BoostedAdaSSP: even if we know a bounded support of the data a priori at [�B,B], and even if we can choose
the threshold ⌧ optimally as a function of this bound B and the sample size n, BoostedAdaSSP can already adapt to the
small-variance of the actual data distribution with T = 2 steps, while non-BoostedAdaSSP with an optimally chosen ⌧

cannot do any better than the worst-case that depends on the global boundedness parameter B.
• In Section G2, we derive a new interpretation of BoostedAdaSSP as an iterative optimization algorithm optimizing a

“robustified” objective function from a fixed-point iteration perspective. This analysis offers new theoretical insight into the
practical benefits of choosing large T and small ⌧ .

Throughout this section, [x][a,b] = min(max(x, b), a) denotes the clipping operator. To avoid the notational collision with
the µ-Gaussian Differential Privacy, we use define ⇢ := µ

2 and will use ⇢ for the privacy parameter throughout the section.
This can be interpreted as ⇢-zCDP or p⇢-GDP. The symbol µ will reserved for the mean of the random variable.

1) Finite-Sample Separation between AdaSSP and BoostedAdaSSP: To see the constant error incurred by AdaSSP in the
finite-sample setting, consider estimating µ = EY using a private data set Y1, ..., Yn ⇠ P . The worst-case MSE of one shot
AdaSSP is characterized by the following theorem.

Theorem A.7. Suppose there exists parameter B,�, µ, such that the distribution P of random variable Y 2 R satisfies that
Pr(|Y |  B) = 1, (b) µ = EY , (c) Y � µ is �

2-subgaussian. Let µ̂⌧
n(Y) be the AdaSSP estimator with clipping at ⌧ . If its

zCDP parameter ⇢ < n and n � C
p
log n/⇢ for a universal constant C, then for any clipping level ⌧ and any n, we have

max
P

E[(µ̂⌧ (Y)� µ̄)2] � ⌧
2 + µ

2

18n2⇢
+

2max2(B � ⌧, 0)

9
(47)

In addition, there exists parameters ⌧1, ⌧2 such that BoostedAdaSSP for two iterations with threshold in first round chosen as
⌧1 and second round chosen as ⌧2 such that

E[(µ̂⌧1:2
2 (Y)� µ̄)2] = O

✓
�
2 log(n⇢) + µ

2

n2⇢
+

B
2 + µ

2

n4⇢2

◆
. (48)

Theorem A.7 implies that the one-step AdaSSP cannot gain by choosing ⌧ < B without incurring a non-vanishing constant
asymptotic error. Moreover, for large n, a dependence on B in the leading term is necessary no matter how ⌧ is chosen.

Meanwhile, BoostedAdaSSP with T = 2 is able to get rid of the dependence in B from the leading term by adaptively
choosing the clipping threshold. This separation can be orders-of-magnitude when B � max{�, µ}.

We further note that the expression of interest we consider is how well a differentially private estimator can approximate the
empirical mean µ̄. Results for estimating the population level mean parameter µ are directly implied, since E[(µ̄� µ)2]  �2

n .
Whenever ⇢ is small, or µ� � is large, or B � q, the additional error due to DP from (47) and (48) could easily become
larger than the statistical error for small to moderate sized data. From this perspective, Boosting in AdaSSP could make a
difference in enabling applications of private data analysis to significantly smaller datasets than its non-boosted counterpart.

Proof of Theorem A.7. Let the noise added be Z1, Z2 from the first round of AdaSSP. Specifically, Z1 is added to n, and Z2

is added to
P

i(Yi)[�⌧,⌧]. Z3 is added to
P

i(Yi � µ̂1)[�⌧2,⌧2].
Condition on the event E1 that |Z1|  �1

p
2 log(2/�), which happens with probability � 1� � by the standard Gaussian

tail bound. Under the assumption n > 2�1

p
2 log(2/�) (we will work out the choice of �1 and � later such that this will

match what’s stated in the theorem), this implies that |Z1|  n/2. Observe that the conditional random variable Z1|E1 remains
�
2-subgaussian with a variance at least 0.5�2. 4 Also observe that, under the same event and assumption on n, the clipping in

the denominator at 1 does not occur, i.e., max{1, n+ Z1} = n+ Z1.

4This can be checked by the variance of truncated Gaussian random variable.

Thus under E1, we can write

µ̂
⌧ (Y)� µ̄ =

P
i[Yi][�⌧,⌧] + Z2

n+ Z1
�
P

i Yi

n

=

P
i[Yi][�⌧,⌧] + Z2

n+ Z1
�
P

i Yi

n+ Z1
+

P
i Yi

n+ Z1
�
P

i Yi

n

=

P
i[Yi][�⌧,⌧] � Yi

n+ Z1

Z2

n+ Z1
+
�Z1

P
i Yi

n(n+ Z1)

=

P
i[Yi][�⌧,⌧] � Yi

n+ Z1| {z }
(⇤)

+
Z2 � Z1µ̄

n+ Z1| {z }
(⇤⇤)

. (49)

Next, we discuss two cases. First consider ⌧ � B, the first term (⇤) is 0 and it remains to bound the second term (⇤⇤)
����
(Z2 � Z1µ̄)

3n/2

����
2

 |µ̂⌧ � µ̄|2 
����
(Z2 � Z1µ̄)

n/2

����
2

(50)

where conditioning on Y1:n and E1, (Z2�Z1µ̄)
n/2 is subgaussian with parameters �2

2+µ̄2�2
1

(n/2)2 . Note that �2
2 = ⌧2

⇢ and �
2
1 = 1

⇢ (for an
even splitting of the privacy budget). Taking conditional expectation gives

4(⌧2 + µ̄
2
/4)

9n2⇢
 E[(µ̂⌧ � µ̄)2|µ̄, E1] 

4(⌧2 + µ̄
2)

n2⇢
. (51)

Take expectation over on both sides over µ̄|E1 (notice that µ̄ and E1 are independent) we obtain an upper and bound of the
form C(⌧2+µ2+Var(µ̄))

n2⇢ for constant C = 4 and C = 1/9 respectively.
By Assumption (c), Var(µ̄)  �

2
/n. This gives rise to an upper bound

E[(µ̂� µ̄)2|E1] 
4(⌧2 + µ

2)

n2⇢
+

4�2

n3⇢
. (52)

Note that under Ec
1, we have

E[(µ̂⌧ � µ̄)2|Ec
1] = E[(

X

i

[Yi][�⌧,⌧] + Z2 �
P

i Yi

n
)2|Ec

1]  n⌧
2 +

⌧
2

⇢
+ µ

2 +
�
2

n
. (53)

It follows that if we choose �  1/n3 (under the assumption ⇢ < n)

E[(µ̂� µ̄)2]  (1� �)E[(µ̂⌧ � µ̄)2|E1] + �E[(µ̂⌧ � µ̄)2|Ec
1] = O(

(⌧2 + µ
2 + �

2
/n)

n2⇢
), (54)

Moreover, it is clear that by a subgaussian concentration bound, we can prove a high probability error bound (in the ⌧ � B

regime) which says that with probability 1� 2�,

(µ̂⌧ � µ̄)2  8(⌧2 + µ
2
�
2
/n) log(4/�)

n2⇢
. (55)

To get a matching lower bound, consider a particular P such that Pr(Y = µ) = 1, thus Var(µ̄) � 0 and

max
P

E[(µ̂⌧ (Y)� µ̄)2] � (1� �)(⌧2 + µ
2)

9n2⇢
. (56)

Now let’s consider the case when ⌧ < B. We can still start from (49). Observe that we can still use (51) to bound (⇤⇤), in
fact, we can obtain the same E[(⇤⇤)2] � (1��)(⌧2+µ2)

9n2⇢ for any ⌧ < B too. It remains to construct a lower bound (⇤) for using
the same family of distributions. The idea is that (⇤) will introduce additional bias that is not vanishing even if n!1.

Again, we will consider a trivial distribution where Pr(Y = µ) = 1. Assume µ > ⌧ , then

max
P

E
"����

P
i[Yi][�⌧,⌧] � Yi

n+ Z1

����
2
#
� max

µ>⌧
E[(n(µ� ⌧)+

n+ Z1
)2] (57)

� max
µ>⌧

Pr(E1)(
n(µ� ⌧)+

3n/2
)2 =

4(1� �)max2(B � ⌧, 0)

9
, (58)

where we applied the |Z1|  n/2 which is implied by E1, for which we will choose � < 1/2.

Clearly, the above lower bound says that if we stick with T = 1, one cannot gain anything by choosing ⌧ < B in terms of
the max error.

Next, we will analyze the algorithm with T = 2. We will set ⌧1 = B and ⌧2 = O

⇣
max{ B

n
p
⇢ ,�}

p
log(n)

⌘
.

The second boosting round will estimate

µ̂2 = µ̂1 +

P
i[Yi � µ̂1][�⌧2,⌧2] + Z3

n+ Z1
. (59)

where Z3 ⇠ N (0,�2
3)

Besides E1, we will further consider the following high probability events.
(E2) Following (55),with probability 1� 2�, |µ̂1 � µ̄|  CB

p
log(4/�)

n
p
⇢ .

(E3) With probability 1� � for all i = 1, ..., n, |Yi � µ|  �
p

2 log(2n/�).
(E4)Again by subgaussian concentration, with probability 1� �, |µ̄� µ|  �

p
2 log(2/�).

Thus with by triangle inequality, with probability 1� 4�, |µ̂1 � Yi|  max{ B
n
p
⇢ ,�}

p
C log(2n/�) for a constant C.

Let event E = E1 \E2 \E3 \E4. Under event E, when ⌧2 is set with such a bound, clipping will not happen for any data
point and

µ̂2 � µ̄ = µ̂1 �
Pn

i=1(�µ̂1)

n+ Z1
+

P
i Yi + Z3

n+ Z1
� µ̄

=
Z1µ̂1

n+ Z1
+

Z3 + Z1µ̄

n+ Z1

=
Z1(µ̂1 � µ̄)

n+ Z1
+

Z3 + 2Z1µ̄

n+ Z1
(60)

It follows that

E
⇥
(µ̂2 � µ̄)2|E

⇤
 2E


(
Z1(µ̂1 � µ̄)

n+ Z1
)2
����E
�
+ 2E


(
Z3 + 2Z1µ̄

n+ Z1
)2
����E
�

(61)

= O

✓
B

2 + µ
2

n4⇢2
+

�
2 log(n/�) + µ

2

n2⇢

◆
. (62)

Under the complement event Ec, we apply a trivial bound that can be enforced by the algorithm (clipping the estimate at
[�B,B] knowing that µ 2 [�B,B])

E[(µ̂2 � µ̄)2|Ec] = 4B2
. (63)

Choose � = 1
n4⇢2 , by the law of total expectation, we get

E
⇥
(µ̂2 � µ̄)2

⇤
= O

✓
B

2 + µ
2

n4⇢2
+

�
2 log(n⇢) + µ

2

n2⇢

◆
, (64)

which completes the proof.

2) Robustness to outliers via clipping and boosting — a fixed-point iteration persepctive: An additional benefit of boosting
is robustness to outliers. For simplicity, here we analyze the non-private version of BoostedAdaSSP without noise addition. The
reason for this simplification is that the robustness of BoostedAdaSSP can be revealed even without noise. Adding noise for
privacy entails straightforward modification to the analysis below.

We consider a contaminated dataset with n data points Y1, ..., Yn. Among them n� k are in-liers drawn i.i.d. from P - an
arbitrary distribution supported on [µ� �, µ+ �] with mean µ, and k are outliers with a value of B. Without loss of generality,
we assume the in-liers are the first n� k.

A non-boosted algorithm will have to add noise proportional to B to the non-private estimator given by µ̂ =
kB+

Pn�k
i=1 Yi

n .
The MSE for estimating µ := EPY is

E(µ̂� µ)2 =
k
2(B � µ)2

n2
+

�
2(n� k)

2n2
. (65)

Note that |B � µ| can be arbitrarily large. The estimator is thus vulnerable to outliers.
For the boosted version of the algorithm, we fix a relatively small clipping threshold ⌧ through many iterations until

convergence. The solution can be viewed as iteratively solving the nonlinear equation
nX

i=1

(Yi � µ)[�⌧,⌧] = 0, (66)

because algorithmically, BoostedAdaSSP iteratively simulates the following fixed point equation until convergence:

µ̂t+1 = µ̂t +
1

n

nX

i=1

(Yi � µ̂t)[�⌧,⌧]. (67)

Theorem A.8 explains why solution to (66), to which the noiseless BoostedAdaSSP algorithm converges, is robust to outliers.

Theorem A.8. As ⌧ ! 0, the solution to (66) converges to Median(Y1:n). For a constant ⌧ , the solution to (66) minimizes the
Huber loss with radius ⌧ .

Proof of Theorem A.8. When ⌧ ! 0, we may rewrite the equation as lim⌧!0
1
⌧

Pn
i=1(Yi � µ)[�⌧,⌧] = 0. Then, observe that

lim⌧!0
1
⌧ (µ� Yi)[�⌧,⌧] 2 @|µ� Yi|, and a valid solution certifying the sub-gradient optimality condition for minµ

P
i |Yi � µ|

is the sample median. For the second statement, observe that (µ� Yi)[�⌧,⌧] =
@
@µHuber⌧ (µ� Yi). A fixed point satisfying the

optimality condition is a minimizer.

Minimizers of the Huber loss functions is among the most well-known robust M-estimators studied in the classical literature.
In the regime when µ̂t is ⌧ -away from the true support, the iteration moves towards µ as long as the outlier is less than half of
the data. Assume 2� < ⌧ < B � µ, once µ̂t 2 [µ� ⌧, µ+ ⌧] the in-lier data will no longer be clipped, and the fixed point
equation becomes

Pn�k
i=1 (Yi� µ̂) + k(B� µ̂)[�⌧,⌧] = 0, which gives µ̂1 =

Pn�k
i=1 Yi+k(B�µ̂1)[�⌧,⌧]

n�k , with an MSE error bound
of E(µ̂1 � µ)2  2k2⌧2

(n�k)2 + 2�2

(n�k) .

Compared to the error of empirical mean estimator (65), the BoostedAdaSSP with a moderate ⌧ and large T converges to a
solution that is significantly more robust to outliers.

	Introduction
	Additional Related Work

	Preliminaries
	Differential Privacy (DP)

	Improved AdaSSP via Gradient Boosting
	Gradient Boosting
	Private Ridge Regression as a Base Learner
	Data-independent Clipping Bounds

	Experiments
	Robustness Results
	Outliers in the label space
	Outliers in the feature space
	Outliers from a different model

	Theoretical Insights
	Conclusion
	References
	Appendix
	Hyperparameters
	AdaSSP Algorithm for Learning a Single Ridge Regressor
	Datasets
	Impact of the Ratio N/d
	Omitted Material in Section VI
	Proof of Proposition A.2
	Proof of Proposition A.3

	Optimality of Boosting under Lossless Clipping
	Additional Theoretical Perspectives & Robustness of BoostedAdaSSP
	Finite-Sample Separation between AdaSSP and BoostedAdaSSP
	Robustness to outliers via clipping and boosting — a fixed-point iteration persepctive

	Appendix

