

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BREAKING THE LIMITS OF OPEN-WEIGHT CLIP: AN OPTIMIZATION FRAMEWORK FOR SELF-SUPERVISED FINE-TUNING OF CLIP

Anonymous authors

Paper under double-blind review

ABSTRACT

CLIP has become a cornerstone of multimodal representation learning, yet improving its performance typically requires a prohibitively costly process of training from scratch on billions of samples. We ask a different question: *Can we improve the performance of open-weight CLIP models across various downstream tasks using only existing self-supervised datasets?* Unlike supervised fine-tuning, which adapts a pretrained model to a single downstream task, our setting seeks to improve general performance across various tasks. However, as both our experiments and prior studies reveal, simply applying standard training protocols starting from an open-weight CLIP model often fails, leading to performance degradation. In this paper, we introduce **TuneCLIP**, a self-supervised fine-tuning framework that overcomes the performance degradation. TuneCLIP has two key components: (1) a warm-up stage of recovering optimization statistics to reduce cold-start bias, inspired by theoretical analysis, and (2) a fine-tuning stage of optimizing a new contrastive loss to mitigate the penalization on false negative pairs. Our extensive experiments show that TuneCLIP consistently improves performance across model architectures and scales. Notably, it elevates leading open-weight models like SigLIP (ViT-B/16), achieving gains of up to +2.5% on ImageNet and related out-of-distribution benchmarks, and +1.2% on the highly competitive DataComp benchmark, setting a new strong baseline for efficient post-pretraining adaptation.

1 INTRODUCTION

Contrastive vision-language models such as CLIP which learn joint image-text representations at scale by training on hundreds of millions of large scale image-text pairs (Radford et al., 2021; Cherti et al., 2023) show broad utility across downstream tasks spanning classification, cross-modal retrieval, multimodal reasoning (Shen et al., 2021; Zhao et al., 2023) and generation (Ao et al., 2023). Recent efforts to improve CLIP have primarily focused on pretraining by constructing ever larger datasets (Fang et al., 2023), designing novel objective functions (Qiu et al., 2023; 2024), or developing refined optimization algorithms (Qiu et al., 2024; Wei et al., 2024). While these directions have advanced the state of the art, they come at staggering cost due to billions of image-text pairs, massive GPU clusters, and days or weeks of computation. In this work, we ask a complementary but equally important question “*How can we unlock more from the CLIP we already have?*”, shifting from “*How can we pretrain a better CLIP from scratch?*”, which leads to a path that is cheaper, faster, and far more compute-efficient.

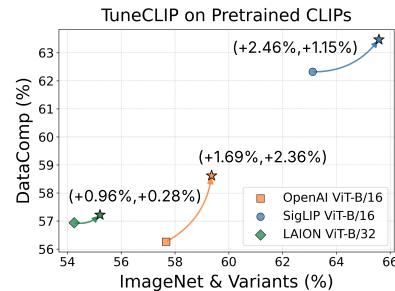


Figure 1: Improvements delivered by TuneCLIP (★) over baseline models on complementary evaluation suites: large-scale DataComp Benchmark (38 datasets) & ImageNet’s 7 distributional variants.

054 A very common way to improve the model is supervised fine-tuning, which is performed on spe-
 055 cific datasets of a target domain (Nguyen et al., 2024; Srinivasan et al., 2023; Goyal et al., 2023).
 056 These prior works leverage class labels or captions to steer the embedding space. An issue with
 057 these methods is that strong adaptation to the target domain can harm generalization contributing
 058 to reduced robustness to distribution shifts (Ding et al., 2022; Jha et al., 2024). Thus, supervised
 059 fine-tuning cannot be regarded as a procedure to improve a CLIP model in general, rather, it is a
 060 *domain adaptation* for a specific distribution, often at the expense of transferability.

061 These limitations motivate an alternative paradigm that we propose, namely *self-supervised fine-*
 062 *tuning* (SSFT), which we define as the process of improving a pretrained CLIP model’s overall
 063 representational quality and general-purpose performance, rather than tailoring it to a specific down-
 064 stream task. What makes SSFT actually “self-supervised”? Traditionally, supervised fine-tuning is
 065 carried out on datasets such as ImageNet, CIFAR, or Flickr (Yang et al., 2023; Krizhevsky et al.,
 066 2017; Van Zwol, 2007; Wortsman et al., 2022; Dong et al., 2022; Fahes et al., 2024; Goyal et al.,
 067 2023; Liu et al., 2025), which were constructed through human annotation or domain-specific fil-
 068 tering and are thereby inherently biased models toward a particular domain. By contrast, we use
 069 large-scale web corpora that was constructed for pretraining CLIP models, e.g., (Fang et al., 2023).
 070 The result is task-agnostic corpora, positioning SSFT on them as representation refinement rather
 071 than task adaptation.

072 At first glance, SSFT resembles pretraining, yet key nuances render its optimization and learning
 073 process substantially more difficult. From the optimization perspective, the contrastive losses in
 074 CLIP training lack unbiased stochastic gradient estimators (Yuan et al., 2022). Consequently, the
 075 optimization error is heavily influenced by the accuracy of the gradient estimates at initialization.
 076 Standard strategies such as zero-initializing the first-order moment in Adam (Kingma & Ba, 2014)
 077 can induce large estimation errors, negating the benefits of a good initial model and causing signif-
 078 icant performance drops at the start of training (cf. Figure 2). We refer to this issue as **cold-start**
 079 **bias**.

080 From the learning perspective, self-supervised contrastive learning suffers the issue of false negative
 081 data, i.e., those that are semantically similar to the anchor data are mistakenly treated as negatives.
 082 This issue becomes more pronounced as models improve. Fine-tuning further amplifies the gap
 083 between positive-pair and negative-pair similarities, allowing false negatives to distort embeddings
 084 of semantically similar data. Consequently, retrieval performance degrades, since it relies on ranking
 085 within a set of highly similar examples.

086 To address these challenges, we introduce *TuneCLIP*, a novel self-supervised optimization frame-
 087 work designed to enhance state-of-the-art pretrained open-weight CLIP models. **Our contributions**
 088 directly address the challenges outlined above:

- 089 • We provide a theoretical analysis quantifying the cold-start bias, showing how the initial gradient
 090 estimation error in contrastive loss optimization influences convergence. To mitigate this issue,
 091 we propose *Optimizer Statistics Recovery (OSR)*, which restores accurate first and second-order
 092 moment estimates, along with other useful statistics of the initial model, through a warm-up stage.
- 093 • To reduce the impact of false negatives, we introduce a simple yet effective remedy: the *hinged*
 094 *global contrastive loss (HGCL)*. This loss penalizes positive and negative pairs only when their
 095 similarity gap exceeds a margin, thereby avoiding excessive penalization of false negatives. This
 096 improves retrieval performance while preserving strong zero-shot classification accuracy.
- 097 • We conduct extensive experiments on SSFT across multiple pretrained models and data scales.
 098 Our results show consistent improvements over base models and demonstrate superiority to exist-
 099 ing standard pretraining approaches that can be used for SSFT.

100 2 RELATED WORK

101 **Contrastive Language-Image Pretraining (CLIP)** has emerged as a powerful paradigm for learn-
 102 ing joint image-text representations. Following CLIP, several variants have been proposed, including
 103 (Zhai et al., 2023; Sun et al., 2023; Yu et al., 2022; Koleilat et al., 2025). CLIP models are trained
 104 with image encoders, such as Vision Transformers (ViTs) (Dosovitskiy et al., 2020), ResNets (He
 105 et al., 2016), ConvNets (Woo et al., 2023) and text encoders, including Transformer-based archi-
 106 tectures (Vaswani et al., 2017) and BERT (Devlin et al., 2019).

108 **Improving CLIP.** Numerous efforts have sought to enhance the efficiency and effectiveness of CLIP
 109 pretraining. Several works explore variants of mini-batch contrastive losses to improve representa-
 110 tion quality (Li et al., 2023; Chen et al., 2023; Zhai et al., 2023; Shi et al., 2024), while others
 111 approximate global contrastive objectives to achieve similar gains (Yuan et al., 2022; Qiu et al.,
 112 2023; 2024). In parallel, system-level optimizations focusing on distributed frameworks, memory
 113 efficiency, and mixed-precision training have been proposed to further accelerate large-scale CLIP
 114 pretraining (Sun et al., 2023; Rasley et al., 2020; Cherti et al., 2023; Wei et al., 2023). While these
 115 advances improve the scalability of CLIP training, the high cost of pretraining from scratch contin-
 116 ues to motivate methods that adapt and fine-tune existing pretrained CLIPs for downstream tasks.
 117

118 **Improving pretrained CLIP** spans several directions, with *supervised fine-tuning* being the most
 119 prominent. Numerous studies focus on improving in-distribution retrieval and, by relying on labeled
 120 data, are inherently supervision-based (Peleg et al., 2025; Meng et al., 2025; Schall et al., 2024;
 121 Mo et al., 2023). Fine-tuning like pretraining has emerged in methods that optimize contrastive
 122 objectives with positive and negative pairs defined by labels, for instance by converting class names
 123 into textual prompts (Goyal et al., 2023; Wang et al., 2025). [The textual prompts for downstream](#)
 124 [class labels could also be learned to improve the downstream performance](#) (Zhou et al., 2022b;a;
 125 Khattak et al., 2023). Such label-dependent adaptation frameworks are designed to fit target do-
 126 mains, which is of no use for the general-purpose robustness (Wortsman et al., 2022; Li et al.,
 127 2024). [Fine-tuning based on Low-Rank Adaptation \(LoRA\)](#) (Al Rahhal et al., 2025; Hu et al., 2022)
 128 [keep the backbone frozen and learn a small low-rank adapter matrix on downstream data, focusing](#)
 129 [on parameter-efficient adaptation rather than improving the base encoder representations](#). Others
 130 employ curriculum strategies to gradually increase task difficulty (Xiao et al., 2023; Khan et al.,
 131 2023). In contrast, our work advances a paradigm of pure self-supervised fine-tuning (SSFT), which
 132 uses no labels, pseudo-labels, or teacher models, aiming instead to enhance CLIP’s generality while
 133 preserving its robust pretrained representations.
 134

135 **Performance degradation** in fine-tuning pretrained CLIP is commonly observed. In constrained
 136 settings, even modest departures from effective optimization configurations can undermine repre-
 137 sentation learning and lead to severe degradation (Wortsman et al., 2022; Wei et al., 2023; Mosbach
 138 et al., 2020; Wortsman et al., 2023). Furthermore, even when stable training is achieved, multiple
 139 studies report a consistent degradation in retrieval performance on other datasets after adaptation on
 140 downstream data (Kumar et al., 2022; Peleg et al., 2025; Bafghi et al., 2025), a phenomenon we also
 141 observe in our experiments. Consequently, the key problem and the primary motivation for our work
 142 is to develop a SSFT strategy that not only avoids these failure modes but also delivers concurrent
 143 gains across benchmarks.
 144

145 It is crucial to distinguish SSFT from *continual learning*. The latter involves training a model on a
 146 sequence of tasks over time, with the primary objective of acquiring new knowledge while avoiding
 147 catastrophic forgetting of previous tasks Ding et al. (2022); Jha et al. (2024); Xiao et al. (2023); Jiao
 148 et al. (2024). In contrast, SSFT aims to improve a pre-trained model through a single adaptation step
 149 on a static dataset, enhancing its general capabilities without a sequential task structure.
 150

3 PRELIMINARIES

151 **Notations:** Let $\mathcal{D} = \{(x_i, z_i)\}_{i=1}^n$ be a dataset of n image–text pairs, where x_i denotes the i -th
 152 image and z_i denotes its corresponding text description. Given CLIP model \mathcal{M} (with $|\mathcal{M}|$ parame-
 153 ters), we learn two separate encoders. We define $\mathbf{f}(\cdot)$ and $\mathbf{g}(\cdot)$ as the encoders for images and texts,
 154 parameterized by $\boldsymbol{\theta}_1$ and $\boldsymbol{\theta}_2$, respectively. For ease, we define the joint parameter of the image
 155 and text encoders as $\boldsymbol{\omega} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2]$. To ensure that cosine similarity can be consistent with the inner
 156 product, both encoders output ℓ_2 normalized vector representations in \mathbb{R}^d . Thus the cosine similarity
 157 between an image x_i and a text z_j is $\mathbf{s}_{i,j} = \mathbf{f}(x_i; \boldsymbol{\omega})^\top \mathbf{g}(z_j; \boldsymbol{\omega})$. To discuss algorithms later, we need
 158 the notations for a mini-batch, so let us consider $\mathcal{B} \subset \mathcal{D}$ having $B = |\mathcal{B}|$ samples to be a mini-batch
 159 sampled from the full dataset \mathcal{D} .
 160

161 **Mini-batch Contrastive Loss (MBCL).** The standard mini-batch based contrastive loss for a batch
 162 \mathcal{B} is given by (Radford et al., 2021):
 163

$$\mathcal{L}_{\text{MBCL}}(\boldsymbol{\omega}) = -\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \left[\log \frac{\exp(\mathbf{s}_{i,i}/\tau)}{\sum_{j=1}^{|\mathcal{B}|} \exp(\mathbf{s}_{i,j}/\tau)} + \log \frac{\exp(\mathbf{s}_{i,i}/\tau)}{\sum_{j=1}^{|\mathcal{B}|} \exp(\mathbf{s}_{j,i}/\tau)} \right]. \quad (1)$$

162 which encourages high similarity for positive image–text pairs and low similarity for negative pairs
 163 in the shared \mathbb{R}^d space. Here $\tau > 0$ is the temperature parameter. Cherti et al. (2023) used this loss
 164 to train OpenCLIP models.

165 **Global Contrastive Loss (GCL).** One limitation of optimizing MBCL is that it requires a large
 166 batch size in order to achieve competitive performance. To address this issue, we follow previous
 167 works (Yuan et al., 2022) and use a Global Contrastive Loss (GCL). Without loss of generality, let us
 168 introduce a pairwise loss $\ell(\mathbf{s}_{j,i} - \mathbf{s}_{i,i})$, which measures the loss on the difference between a negative
 169 data pair and a positive data pair. Then we define two functions $\Phi_1(\cdot), \Phi_2(\cdot)$ for image-anchor data
 170 and text-anchor data, respectively, i.e.,

$$\Phi_1(\boldsymbol{\omega}, i, \mathcal{D}) = \frac{1}{n} \sum_{z_j \in \mathcal{D} \setminus \{z_i\}} \exp\left(\frac{\ell(\mathbf{s}_{i,j} - \mathbf{s}_{i,i})}{\tau}\right), \quad \Phi_2(\boldsymbol{\omega}, i, \mathcal{D}) = \frac{1}{n} \sum_{x_j \in \mathcal{D} \setminus \{x_i\}} \exp\left(\frac{\ell(\mathbf{s}_{j,i} - \mathbf{s}_{i,i})}{\tau}\right),$$

171 Then GCL can be defined as:

$$\mathcal{L}_{\text{GCL}}(\boldsymbol{\omega}) = \frac{\tau}{n} \sum_{i=1}^n [\log(\varepsilon + \Phi_1(\boldsymbol{\omega}, i, \mathcal{D})) + \log(\varepsilon + \Phi_2(\boldsymbol{\omega}, i, \mathcal{D}))], \quad (2)$$

172 where $\varepsilon > 0$ is a small constant that increases numerical stability. Without explicitly mentioned, we
 173 consider $\ell(\cdot) = \cdot$ for GCL as used in (Wei et al., 2024) for CLIP training from scratch.

174 **Optimization Algorithms.** A fundamental challenge of optimizing GCL is that it lacks unbiased
 175 stochastic gradient estimator. To see this, the gradient of $\mathcal{L}_{\text{GCL}}(\boldsymbol{\omega})$ is given by

$$\nabla \mathcal{L}_{\text{GCL}}(\boldsymbol{\omega}) = \frac{\tau}{n} \sum_{i=1}^n \left[\frac{1}{\varepsilon + \Phi_1(\boldsymbol{\omega}, i, \mathcal{D})} \nabla \Phi_1(\boldsymbol{\omega}, i, \mathcal{D}) + \frac{1}{\varepsilon + \Phi_2(\boldsymbol{\omega}, i, \mathcal{D})} \nabla \Phi_2(\boldsymbol{\omega}, i, \mathcal{D}) \right]$$

176 Since $\Phi_*(\boldsymbol{\omega}, i, \mathcal{D})$ is the denominator, simply using their mini-batch estimator will yield a biased
 177 gradient estimator. To address this issue, Yuan et al. (2022) propose an algorithm SogCLR, which
 178 maintains and updates an estimator $u_{i,x}, u_{i,z}$ for each $\Phi_1(\boldsymbol{\omega}, i, \mathcal{D})$ and $\Phi_2(\boldsymbol{\omega}, i, \mathcal{D})$ along the optimi-
 179 zation trajectory. At the t -iteration with a mini-batch \mathcal{B}_t , they are updated by

$$u_{i,x}^{(t)} = (1 - \gamma_t)u_{i,x}^{(t-1)} + \gamma_t \Phi_1(\boldsymbol{\omega}_{t-1}, i, \mathcal{B}_t), \quad u_{i,z}^{(t)} = (1 - \gamma_t)u_{i,z}^{(t-1)} + \gamma_t \Phi_2(\boldsymbol{\omega}_{t-1}, i, \mathcal{B}_t), \quad (3)$$

180 Then a stochastic gradient estimator of \mathcal{L}_{GCL} w.r.t. the shared parameters $\boldsymbol{\omega}$ at iteration t is:

$$G(\boldsymbol{\omega}_{t-1}, \mathcal{B}_t) = \frac{\tau}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \left[\frac{1}{\varepsilon + u_{i,x}^{(t)}} \nabla_{\boldsymbol{\omega}} \Phi_1(\boldsymbol{\omega}_{t-1}, i, \mathcal{B}_t) + \frac{1}{\varepsilon + u_{i,z}^{(t)}} \nabla_{\boldsymbol{\omega}} \Phi_2(\boldsymbol{\omega}_{t-1}, i, \mathcal{B}_t) \right]. \quad (4)$$

181 Then the first-order moment is updated followed by a model parameter update:

$$\begin{aligned} m_t &= \beta_1 m_{t-1} + (1 - \beta_1) G(\boldsymbol{\omega}_{t-1}, \mathcal{B}_t) \\ \boldsymbol{\omega}_t &= \boldsymbol{\omega}_{t-1} - \eta_t m_t. \end{aligned} \quad (5)$$

182 Wei et al. (2024) has designed a distributed optimization framework FastCLIP based on the above
 183 algorithm for large-scale CLIP training.

204 4 TUNECLIP: A SELF-SUPERVISED OPTIMIZATION FRAMEWORK

205 As outlined in the problem statement, our goal is to adapt pretrained parameters $\boldsymbol{\omega}_0$ to obtain refined
 206 weights $\boldsymbol{\omega}^*$ that improve performance across diverse domains. In the following two subsections, we
 207 will discuss the challenges and present our solutions. We will mainly compare with two approaches,
 208 OpenCLIP and FastCLIP equipped with an Adam-style optimizer with an initialization $\boldsymbol{\omega}_0$.

211 4.1 STAGE I: OPTIMIZER STATISTICS RECOVERY (OSR)

212 A naive approach for SSFT with a pretrained model \mathcal{M} with weights $\boldsymbol{\omega}_0$ is to just run OpenCLIP
 213 (Cherti et al., 2023) or FastCLIP (Wei et al., 2024) algorithms on an existing self-supervised learning
 214 dataset \mathcal{D} with an initialization of $\boldsymbol{\omega}_0$. Our hypothesis is that an open-weight pretrained model $\boldsymbol{\omega}_0$
 215 (e.g., OpenAI’s ViT-B/16) is usually not an optimal model. However, we observe a performance

216 **Algorithm 1** Optimizer Statistics Recovery (OSR)

217 **Init:** ω_0 (Pretrained), $m_0 \leftarrow [0]^{|\mathcal{M}|}$, $v_0 \leftarrow [0]^{|\mathcal{M}|}$, $u_x^{(0)} \leftarrow [0]^{|\mathcal{D}|}$, $u_z^{(0)} \leftarrow [0]^{|\mathcal{D}|}$

218 **for iteration** $t = 1$ **to** T **do**

219 Sample $\mathcal{B}_t \subset \mathcal{D}$ // mini-batch sampling

220 $u_{i,x}^{(t)} \leftarrow (1 - \gamma_t)u_{i,x}^{(t-1)} + \gamma_t \Phi_1(\omega_0, i, \mathcal{B}_t)$, $\forall i \in \mathcal{B}_t$ // refer equation 3

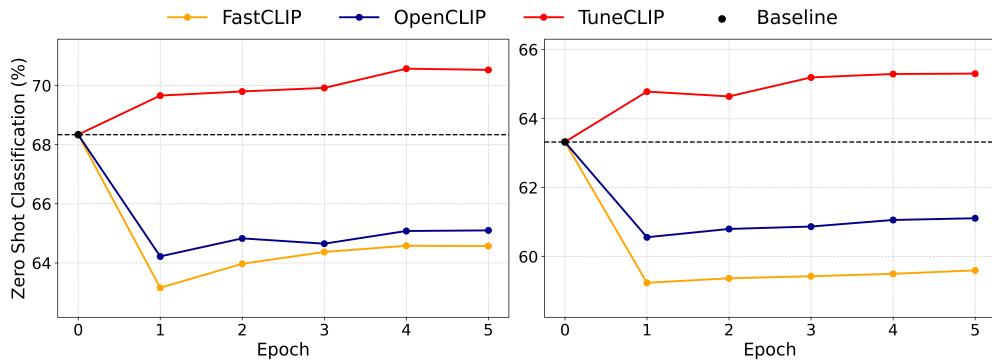
221 $u_{i,z}^{(t)} \leftarrow (1 - \gamma_t)u_{i,z}^{(t-1)} + \gamma_t \Phi_2(\omega_0, i, \mathcal{B}_t)$, $\forall i \in \mathcal{B}_t$

222 Compute $g_t = G(\omega_0, \mathcal{B}_t)$ // frozen ω_0

223 Update $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1)g_t$ // first moment

224 Update $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2)(g_t \odot g_t)$ // second moment

225 **Return:** $m^* \leftarrow m_T$, $v^* \leftarrow v_T$, $u^* \leftarrow \{u_{i,x}^{(T)}, u_{i,z}^{(T)}\}_{i \in \mathcal{D}}$ // Transfer to next stage



241 Figure 2: Zero-shot classification (%) performance on ImageNet-1k over 5 fine-tuning epochs for

242 two OpenAI CLIP models (left: ViT-B/16, right: ViT-B/32). While FastCLIP and OpenCLIP show

243 initial degradation and slow recovery, TuneCLIP maintains superior performance throughout fine-

244 tuning.

245 degradation in the first epoch of fine-tuning, see Figure 2, with the details of training deferred to

246 Section 5. This phenomenon is common regardless of the model structure and datasets used for

247 fine-tuning.

248 To understand this phenomenon, we provide a theoretical analysis of optimization error. We

249 consider the optimization algorithm SogCLR used by FastCLIP, and note that analysis of Open-

250 CLIP’s optimization algorithm suffer from the same issue. To run FastCLIP algorithm, we

251 need to initialize several statistics, including m_0 and $u_{i,x}^{(0)}, u_{i,z}^{(0)}, \forall i$. These statistics are usu-

252 ally initialized to zeros in standard pretraining from scratch. Below, we show that their esti-

253 mation error has a great impact on the convergence. To simplify the presentation, we intro-

254 duce the following notations: $u_x^{(t)} = [u_{1,x}^{(t)}, \dots, u_{n,x}^{(t)}]$, $u_z^{(t)} = [u_{1,z}^{(t)}, \dots, u_{n,z}^{(t)}]$, $\Phi_1(\omega_0, \mathcal{D}) =$

255 $[\Phi_1(\omega_0, 1, \mathcal{D}), \dots, \Phi_1(\omega_0, n, \mathcal{D})]$, $\Phi_2(\omega_0, \mathcal{D}) = [\Phi_2(\omega_0, 1, \mathcal{D}), \dots, \Phi_2(\omega_0, n, \mathcal{D})]$. Due to space

256 limitations, all necessary assumptions and theorem proofs in this subsection are deferred to Ap-

257 pendix A.

258

259 **Theorem 4.1.** *Let us consider the updates in (5) with initializations $u_x^{(0)}, u_z^{(0)}$, and m_0 . Under*

260 *appropriate assumptions, with $1 - \beta_1 = O(B\epsilon^2)$, $\gamma = O(B\epsilon^2)$ and $\eta = O(\frac{B^2\epsilon^2}{n})$, we can find an*

261 *ϵ -stationary point ω such that $\mathbb{E}[\|\nabla \mathcal{L}_{\text{GCL}}(\omega)\|] \leq \epsilon$ in*

$$262 \quad T = O\left(\frac{n}{B^2\epsilon^4} \left(\Delta_0 + \frac{B}{n}M_0 + U_{x,0} + U_{z,0}\right)\right)$$

263 iterations, where $\Delta_0 = \mathcal{L}_{\text{GCL}}(\omega_0) - \min_{\omega} \mathcal{L}_{\text{GCL}}(\omega)$, $M_0 = \|m_0 - \nabla_{\omega} \mathcal{L}_{\text{GCL}}(\omega_0)\|^2$, $U_{x,0} =$

264 $\frac{1}{2n} \|u_x^{(0)} - \Phi_1(\omega_0, \mathcal{D})\|^2$, $U_{z,0} = \frac{1}{2n} \|u_z^{(0)} - \Phi_2(\omega_0, \mathcal{D})\|^2$.

265 **Remark:** The above theorem exhibits how the initial estimation errors of $u_x^{(0)}, u_z^{(0)}$, and m_0 affects

266 the iteration complexity for finding an ϵ -stationary solution. Since a pretrained model ω_0 is already

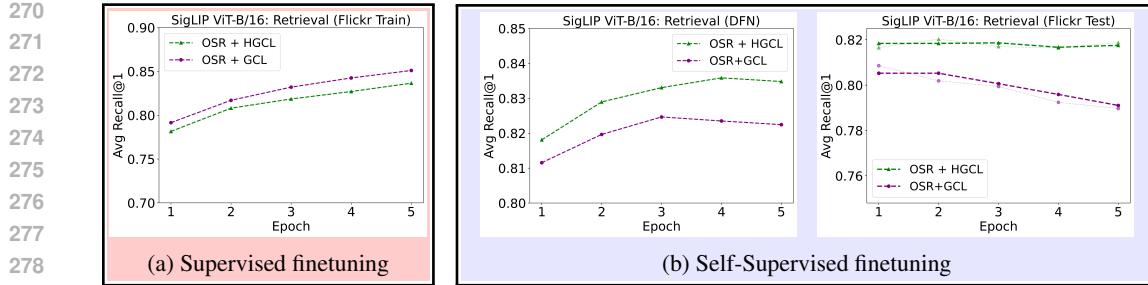


Figure 3: In supervised fine-tuning (red), OSR+GCL outperforms OSR+HGCL (TuneCLIP) because true negative labels justify separating negatives. In contrast, under self-supervised fine-tuning (blue), the absence of such labels makes OSR+HGCL more suitable, leading to improved retrieval performance on Flickr when fine-tuned with SSFT (see Appendix E for OpenAI CLIP & details).

well trained, we expect Δ_0 to be small. However, the initial estimation errors of $u_x^{(0)}, u_z^{(0)}$, and m_0 could be very large if they are initialized to zeros. It is these errors that cause the breaks convergence and hence the performance degradation at the beginning of training. We refer to this issue caused by the initial estimation errors of statistics $\Phi_1(\omega_0, \mathcal{D}), \Phi_2(\omega_0, \mathcal{D}), \nabla_\omega \mathcal{L}_{\text{GCL}}$ as cold-start bias.

To address the cold-start bias, we propose a simple method that aims to compute a better estimation of statistics $\Phi_1(\omega_0, \mathcal{D}), \Phi_2(\omega_0, \mathcal{D}), \nabla_\omega \mathcal{L}_{\text{GCL}}$ for updating ω_0 . The idea is just run the update (5) with the model parameter fixed at ω_0 . We present the details in Algorithm 1, which is referred to as optimizer statistics recovery (OSR). The following theorem provides a guarantee that the estimation errors of returned statistics of OSR would be much reduced. In practice, we also compute a second moment estimator for using Adam optimizer, which improves performance in our experiments.

Theorem 4.2. *Let Algorithm 1 run for E epochs (equivalently $T = E \cdot \frac{n}{B}$ iterations) with $1 - \beta_1 = O(\sqrt{\frac{B}{E}})$, $\gamma = O(\sqrt{\frac{B}{E}})$, we have that:*

$$\mathbb{E} \left[\frac{1}{2n} \left\| u_x^{(\tau)} - \Phi_1(\omega_0, \mathcal{D}) \right\|^2 + \frac{1}{2n} \left\| u_z^{(\tau)} - \Phi_2(\omega_0, \mathcal{D}) \right\|^2 \right] \leq O \left(\frac{U_{x,0} + U_{z,0}}{\sqrt{BE}} + \frac{1}{\sqrt{BE}} \right), \quad (6)$$

$$\mathbb{E} \left[\|m_\tau - \nabla_\omega \mathcal{L}_{\text{GCL}}(\omega_0)\|^2 \right] \leq O \left(\frac{\frac{B}{N} M_0 + U_{x,0} + U_{z,0}}{\sqrt{BE}} + \frac{1}{\sqrt{BE}} \right) \quad (7)$$

where $\tau \in \{0, \dots, T-1\}$ is randomly sampled.

We observe that $E = 5$ epochs for OSR is good enough to ensure stable training in the second stage of updating the model parameters.

4.2 STAGE II: HINGED GLOBAL CONTRASTIVE LOSS

With accurate initializations of m_0 and $u_{i,x}^{(0)}, u_{i,z}^{(0)}, \forall i$ found by OSR, we continue fine-tuning ω_0 with the SogCLR algorithm. This brings evident improvement across a variety of tasks. However, one issue is that the retrieval performance could still decline as fine-tuning progresses. We illustrate a result of the fine-tuning of SigLIP ViT-B/16 on the DFN dataset (see Figure 3b), where the retrieval performance on the fine-tuning dataset keeps increasing but the retrieval performance on testing data such as Flickr decreases. This phenomenon is also prevalent regardless of the pretrained models; see Figure 7 (Appendix E).

We attribute this generalization gap to the prevalence of false negatives in web-scale datasets. By optimizing GCL with $\ell(\cdot) = \cdot$, we keep decreasing the similarity gap $s_{ij} - s_{ii}$ and $s_{ji} - s_{ii}$ across iterations. If (x_i, z_j) are semantically similar, e.g., z_j is the caption of an image x_j that is semantically similar to x_i , then minimizing $s_{ij} - s_{ii}$ would distort well learnt embeddings of x_i, z_j . This strict separation on training data will undermine the testing performance due to distributional shift. This is the reason that leads to the retrieval performance drop.

To mitigate this over-penalization of false negatives, we introduce a simple yet effective remedy by using a hinge-based pairwise surrogate loss $\ell(s_{ij} - s_{ii}) = \max(s_{ij} - s_{ii} + m, 0)^2$ with $m > 0$ being a margin hyperparameter constant. It means that as long as $s_{ii} > s_{ij} + m$, its gradient will become

324 **Algorithm 2** TuneCLIP Algorithm

325 **Given:** ω_0 (Pretrained), dataset \mathcal{D} , batch size $|\mathcal{B}|$, epochs E' , τ , margin m , γ_t , Adam (β_1, β_2)

326 $(m^*, v^*, \{u_{i,x}^*, u_{i,z}^*\}_{i \in \mathcal{D}}) \leftarrow \text{OSR}(\omega_0, \mathcal{D})$ // refer Alg. 1

327 **Init:** $\omega \leftarrow \omega_0$; $m_0 \leftarrow m^*$; $v_0 \leftarrow v^*$; $u_{i,x}^{(0)} \leftarrow u_{i,x}^*$, $u_{i,z}^{(0)} \leftarrow u_{i,z}^*$ for all $i \in \mathcal{D}$

328 **for** iteration $t = 1$ to T' **do**

329 Sample $\mathcal{B}_t \subset \mathcal{D}$ // mini-batch sampling

330 **for** each $i \in \mathcal{B}_t$ **do**

331 $\Phi_1^m(\omega, i, \mathcal{B}_t) \leftarrow \frac{1}{|\mathcal{B}_t|} \sum_{z_j \in \mathcal{B}_t \setminus \{z_i\}} \exp\left(\frac{\ell(\mathbf{s}_{i,j} - \mathbf{s}_{i,i})}{\tau}\right)$ // equation 8

332 $\Phi_2^m(\omega, i, \mathcal{B}_t) \leftarrow \frac{1}{|\mathcal{B}_t|} \sum_{x_j \in \mathcal{B}_t \setminus \{x_i\}} \exp\left(\frac{\ell(\mathbf{s}_{j,i} - \mathbf{s}_{i,i})}{\tau}\right)$ // equation 8

333 $u_{i,x}^{(t)} \leftarrow (1 - \gamma_t)u_{i,x}^{(t-1)} + \gamma_t \Phi_1^m(\omega, i, \mathcal{B}_t)$

334 $u_{i,z}^{(t)} \leftarrow (1 - \gamma_t)u_{i,z}^{(t-1)} + \gamma_t \Phi_2^m(\omega, i, \mathcal{B}_t)$

335 $\tilde{g}_t \leftarrow \frac{\tau}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \left[\frac{1}{\varepsilon + u_{i,x}^{(t)}} \nabla_{\omega} \Phi_1^m(\omega, i, \mathcal{B}_t) + \frac{1}{\varepsilon + u_{i,z}^{(t)}} \nabla_{\omega} \Phi_2^m(\omega, i, \mathcal{B}_t) \right]$

336 Update m_t , v_t , and ω using Adam-style optimizer with gradient \tilde{g}_t

337 **Return:** $\omega^* \leftarrow \omega$ // Best parameters after last iteration

342 zero and hence will not affect the model updates anymore. Illustrative examples of this phenomenon
 343 are provided in Table 21 (Appendix K). Accordingly, we define new $\Phi_1^m(\cdot)$ (image-anchored) and
 344 $\Phi_2^m(\cdot)$ (text-anchored) as:

345
$$\Phi_1^m(\omega, i, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D} \setminus \{i\}} \exp\left(\frac{\ell(\mathbf{s}_{i,j} - \mathbf{s}_{i,i})}{\tau}\right), \quad \ell(\mathbf{s}_{i,j} - \mathbf{s}_{i,i}) = [\mathbf{s}_{i,j} - \mathbf{s}_{i,i} + m]_+^2, \quad (8)$$

346
$$\Phi_2^m(\omega, i, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{j \in \mathcal{D} \setminus \{i\}} \exp\left(\frac{\ell(\mathbf{s}_{j,i} - \mathbf{s}_{i,i})}{\tau}\right), \quad \ell(\mathbf{s}_{j,i} - \mathbf{s}_{i,i}) = [\mathbf{s}_{j,i} - \mathbf{s}_{i,i} + m]_+^2.$$

352 Equation 8 leads to the Hinged Global Contrastive Loss (HGCL), defined below.

353
$$\mathcal{L}_{\text{HGCL}}(\omega) = \frac{\tau}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} [\log(\varepsilon + \Phi_1^m(\omega, i, \mathcal{D})) + \log(\varepsilon + \Phi_2^m(\omega, i, \mathcal{D}))]. \quad (9)$$

354 We optimize $\mathcal{L}_{\text{HGCL}}$ using the SogCLR algorithm with OSR. Algorithm 2 presents the details of
 355 our final algorithm named TuneCLIP, combining OSR with HGCL.

356 Finally, we note that the margin m is a hyperparameter that controls how aggressively negatives are
 357 separated from the positive. A larger m enforces stricter separation, pushing more false negatives
 358 downward until their similarity ($s_{i,j}$ or $s_{j,i}$) lies at least m below the positive score ($s_{i,i}$), even when
 359 they start with relatively high similarity. Conversely, a smaller m relaxes this constraint, allowing
 360 higher-scoring false negatives to be retained but at the risk of insufficient separation of true negatives.
 361 Choosing m therefore presents a *tradeoff* between alleviating the over-suppression of semantically
 362 related false negatives and preventing true negatives from remaining too close to the anchor.

367 5 EXPERIMENTS

368 **Open-Weight CLIP models.** We explore a range of pretrained CLIP models at different scales, in-
 369 cluding OpenAI’s CLIP ViT-B/32, OpenAI’s CLIP ViT-B/16, LAION’s CLIP ViT-B/32 and SigLIP
 370 ViT-B/16, where ViT-B/X refers to the ViT based image encoder. We report results for fine-tuning
 371 OpenAI’s ViT-B/16 and SigLIP ViT-B/16 in the main paper, and provide results of fine-tuning other
 372 models in Appendix G. We additionally evaluated our method for fine-tuning the state-of-the-art
 373 CLIP ViT-H/14 pretrained on DFN-5B (Fang et al., 2023).

374 **Fine-tuning datasets.** To study how performance scales with data under fixed training conditions,
 375 we fine-tune on two subsets of the DFN datasets (Fang et al., 2023) containing 12 million (DFN-
 376 12M) and 60 million (DFN-60M) samples. DFN datasets are generated by applying *Data Filtering*

378 Table 1: Summary of mean zero-shot performance across ImageNet variants, retrieval benchmarks,
 379 and the DataComp benchmark, **together with wall-clock training time (WCT) per GPU**. While
 380 TuneCLIP delivers consistent improvements across both models, stronger baseline models like
 381 SigLIP ViT-B/16 show more modest retrieval gains compared to OpenAI ViT-B/16.

Base Model	Method	WCT. (hrs)	IN & Variants	Retrieval	DataComp
OpenAI ViT-B/16	Baseline	N/A	57.67	57.46	56.26
	FastCLIP	4.21	54.57 (↓)	51.88 (↓)	53.53 (↓)
	OpenCLIP	5.46	54.99 (↓)	57.81 (↓)	55.11 (↓)
	TuneCLIP	8.62	59.36 (+1.69)	64.12 (+6.66)	58.62 (+2.36)
SigLIP ViT-B/16	Baseline	N/A	63.12	69.32	62.32
	FastCLIP	4.28	39.22 (↓)	43.37 (↓)	45.80 (↓)
	OpenCLIP	7.55	40.21 (↓)	51.54 (↓)	48.10 (↓)
	TuneCLIP	9.27	65.58 (+2.46)	69.44 (+0.11)	63.47 (+1.15)

393 *Networks*, which uses a trained model to filter massive uncurated web data into high-quality, task-
 394 agnostic corpora. While varying the datasets, the model architecture, optimizer, and schedule are
 395 kept fixed.

396 **Training hyperparameters & algorithms.** We run OSR for $E = 5$ epochs, and another $E' = 5$
 397 epochs for fine-tuning. Optimizer used is AdamW (Kingma & Ba, 2014) ($\beta_1=0.9$, $\beta_2=0.98$). The
 398 CLIP temperature τ remains fixed as provided with checkpoint (no scheduling). We sweep learning
 399 rates $\{10^{-4}, 10^{-5}, 10^{-6}\}$. Batch sizes are 256×8 GPUs for ViT-B/16 and 512×8 GPUs for ViT-
 400 B/32 CLIPs. The margin m is swept from 0.5 down to 0.01, with values around 0.1 proving to be the
 401 most effective across the majority of architectures. More details are provided in Appendices B & C
 402 with ablation study on m in Appendix C.1. To ensure consistency and reproducibility, we implement
 403 our algorithm using FastCLIP codebase.

404 **Evaluation protocol and metrics.** We follow the DataComp protocol (Gadre et al., 2023) and use
 405 38 benchmark datasets. Our main results are reported in three evaluation groups: (1) ImageNet-1k
 406 and six robustness variants (Krizhevsky et al., 2017) for assessing zero-shot classification accuracy,
 407 (2) MSCOCO or COCO (Vinyals et al., 2016) and Flickr30k (Van Zwol, 2007) for measuring multi-
 408 as well as single-object retrieval performance, and (3) the full DataComp (Gadre et al., 2023) bench-
 409 mark. Best model selection is primarily guided by performance on ImageNet-1k.

410 **Main Results.** We present results on three evaluation suites for fine-tuning various models on DFN-
 411 12M in Table 1. We also plot the curves of zero-shot classification performance on ImageNet-1k dur-
 412 ing training for different checkpoints of TuneCLIP in Figures 2 and in Figures 9, 10 (Appendix F).
 413 Additional detailed results of zero-shot classification on ImageNet and its variants are shown in
 414 Tables 12, 13, and of other tasks are provided in Tables 11, 14, 15. Table 10 summarizes the overall
 415 DataComp performance. We observe that TuneCLIP delivers substantial gains over the base model,
 416 most notably for OpenAI ViT-B/16 with 6.7% improvement on retrieval and 1.7% improvement on
 417 zero-shot classification, while improvements for SigLIP are smaller given its stronger baseline. In
 418 contrast, the baseline methods OpenCLIP and FastCLIP not only fail to improve the performance
 419 over the base model but also suffer significant performance drop in retrieval and zero-shot classifi-
 420 cation.

421 Finally, TuneCLIP for fine-tuning the state-of-the-art model ViT-H/14-quickgelu (Fang et al., 2023)
 422 achieves new SOTA accuracy on ImageNet and its variants (Appendix J), surpassing ViT-H/14 at
 423 224×224 image resolution by about 1.5% (from 71.80% to 73.23%), while maintaining comparable
 424 performance on Retrieval and DataComp. Compared to the improvements on weaker models, e.g.,
 425 +1.69% (from 57.67% to 59.36%) on OpenAI ViT-B/16 and +2.46% over SigLIP ViT-B/16 (from
 426 63.12% to 65.58%), the improvement of 1.5% (from 71.80% to 73.23%) is still significant.

427 **Computational Cost & Analysis.** We also provide a compute cost analysis for all the algorithms
 428 in Appendix H, reporting wall-clock time and GPU-hours across all backbones (Tables 1, 16, 17 &
 429 18). While TuneCLIP incurs higher compute due to its two-stage framework, the overhead remains
 430 modest and is consistently accompanied by improved performance across metrics. In contrast, base-
 431 line methods cannot even achieve any major improvements even with the same computational costs
 432 as ours (refer Figure 10 for extended run of baseline methods).

432
 433 Table 2: Ablation study on the impact of transferring optimizer statistics from OSR to HGCL fine-
 434 tuning using OpenAI ViT-B/16 CLIP. Starting from the baseline without any transferred states, per-
 435 formance is limited across all benchmarks. Introducing (m_t, v_t) transfer yields a substantial jump.
 436 Adding u_t on top provides a further boost, resulting in the strongest overall score.
 437

(m_t, v_t) u_t	IN & Variants	Retrieval	DataComp	Mean
$(\times, \times) \times$	54.91	58.64	54.49	56.01
$(\checkmark, \checkmark) \times$	59.48	63.70	58.56	60.58
$(\checkmark, \checkmark) \checkmark$	59.36	64.12	58.62	60.70 (+4.69)

441 5.1 ABLATION & SCALING OF TUNECLIP

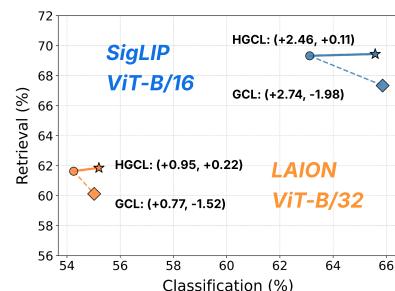
442
 443 We begin with an ablation study on the effect of OSR, comparing TuneCLIP with full statistics re-
 444 covery, partial recovery of m_t and v_t , and no recovery at all. The results are reported in Table 2,
 445 which shows that using the full recovered statistics from OSR achieves the best, and the recover of
 446 first and second-order moments is more important than the recover of u_t (i.e., u_x, u_z). TuneCLIP
 447 reaches a +4.7% DataComp gain when all (m_t, v_t, u_t) are used. **Beyond the ablations conducted**
 448 **within OSR itself, we also compare against simple cold-start mitigation heuristics that practitioners**
 449 **might reasonably try to stabilize fine-tuning, as presented in Appendix I (Table 19).** These alterna-
 450 **tives offer only limited stability and smaller gains, reinforcing that OSR provides a more effective**
 451 **and reliable solution to cold-start bias.**

452
 453 We also conduct an ablation study comparing GCL with HGCL, both with OSR for supervised fine-
 454 tuning and SSFT. For supervised fine-tuning, we fine-tune a pretrained model on the training set of
 455 Flickr30k data and evaluate on a testing set of Flickr1k. For SSFT, we finetune the same pretrained
 456 model on DFN-12M and evaluate on the same testing set of Flickr1k. The results are shown in
 457 Figure 3 for fine-tuning SigLIP ViT-B/16 and in Figure 7(Appendix E) for fine-tuning OpenAI’s
 458 CLIP ViT-B/16. The results indicate that for supervised fine-tuning, optimizing GCL with OSR
 459 delivers better retrieval performance on the training as well as testing set, while for SSFT, optimiz-
 460 ing HGCL with OSR delivers better retrieval performance. This confirms the difference between
 461 SSFT and supervised fine-tuning due to the presence of false negatives in SSFT, and corroborates
 462 the effectiveness of optimizing HGCL in improving the retrieval performance in case of SSFT. In
 463 Figure 11 (Appendix K), we further show that optimizing HGCL achieves smaller variance of sim-
 464 ilarities scores for false negatives (Top 5 retrieved negative samples). We also observe that the true
 465 positive (Top-1) distribution becomes closer to the false negative distribution in the fine-tuning data.

466 As discussed earlier, standard GCL (without margin-
 467 based thresholding) tends to improve classification but si-
 468 multaneously reduces retrieval scores, with some models
 469 such as SigLIP ViT-B/16 and LAION ViT-B/32, falling
 470 below their pretrained retrieval baselines due to false-
 471 negative over-penalization. As shown in Fig. 4, HGCL
 472 mitigates this degradation, preserving classification per-
 473 formance at a comparable level while maintaining re-
 trieval accuracy at or above the original baseline.

474 Finally, we analyze how TuneCLIP scales with increas-
 475 ing amounts of fine-tuning data while keeping the model
 476 size fixed. As shown in Figure 5, the method maintains
 477 stable performance even with a fivefold increase in data
 478 on DFN-60M. Although scaling from 12M to 60M sam-
 479 ples provides further gains, the improvement is modest
 480 because fine-tuning operates on already well-structured
 481 pretrained representations. Most generalizable features
 482 are retained from pretraining, so additional data primarily
 483 reinforces existing alignments rather than discovering new ones.

484 The DFN datasets are constructed by filtering web image-text pairs using a learned filter, and thus
 485 form a relatively clean source of self-supervised training data. To examine how TuneCLIP behaves
 on noisier corpora, we also fine-tune on the CC12M dataset (Changpinyo et al., 2021), which is a



486 Figure 4: **GCL improves classification but can degrades retrieval, whereas**
 487 **HGCL stabilizes retrieval while preserving overall classification gains.**

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 3: Comparison of TuneCLIP performance with OpenAI CLIP ViT-B/16 when fine-tuned on two different training corpora, the noisier CC12M dataset and the filtered DFN-12M subset.

Method	Data	IN & Variants	Retrieval	DataComp
Base (OpenAI)	×	57.67	57.46	56.26
TuneCLIP	CC12M	57.68 (+0.01)	65.83 (+8.37)	56.47 (+0.21)
TuneCLIP	DFN12M	59.36 (+1.69)	64.12 (+6.66)	58.62 (+2.36)

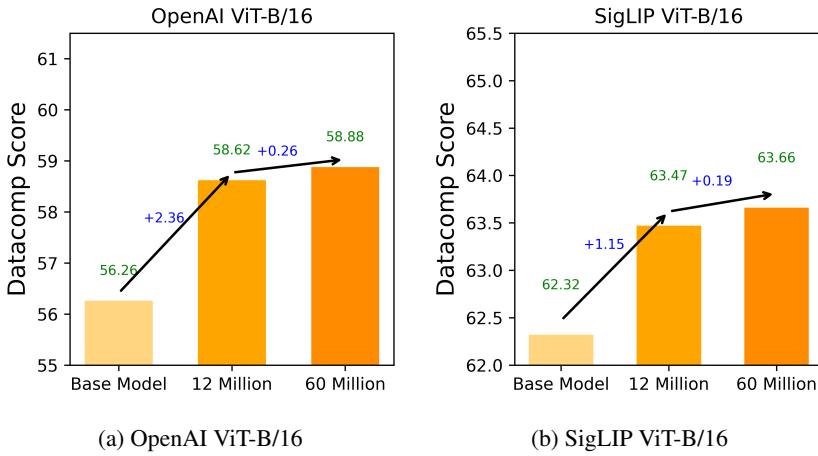


Figure 5: Effect of data scaling on TuneCLIP performance across models.

web corpus with weaker caption-image alignments or less precise texts for an image. As shown in Table 3, TuneCLIP fine-tuned on CC12M still yields a clear improvement and consistent positive gains across the three metrics, while DFN-12M produces even larger average improvements. Overall, these results indicate that TuneCLIP remains effective on both cleaner filtered data and noisier, unfiltered web corpora, rather than relying on any specific property of a dataset.

6 CONCLUSION

TuneCLIP solves a core problem in model adaptation by showing how to fine-tune a pre-trained model into a superior version with broad, multi-domain improvements. Our two-stage approach, combining optimizer statistics recovery with a hinge-based contrastive loss, provides the mechanism, delivering consistent and dissectible gains across classification, retrieval, and diverse benchmarks. This work thus does more than just propose a new method, it opens a concrete and promising new direction for self-supervised fine-tuning, moving us beyond the limitations of prior art toward truly general-purpose foundation model enhancement.

7 LIMITATIONS AND FUTURE WORKS

One limitation of this work is that we use all data for self-supervised fine-tuning without data selection or filtering. As a future direction, we consider how to select the most informative data given the knowledge of the pretrained model to accelerate the fine-tuning. [Extending our framework beyond CLIP models to other self-supervised architectures \(e.g. DINO\)](#) is also an interesting direction.

REFERENCES

Mohamad Mahmoud Al Rahhal, Yakoub Bazi, and Mansour Zuair. Lora-clip: Efficient low-rank adaptation of large clip foundation model for scene classification. *Authorea Preprints*, 2025.

Tenglong Ao, Zeyi Zhang, and Libin Liu. Gesturediffuclip: Gesture diffusion model with clip latents. *ACM Transactions on Graphics (TOG)*, 42(4):1–18, 2023.

540 Reza Akbarian Bafghi, Carden Bagwell, Avinash Ravichandran, Ashish Shrivastava, and Maziar
 541 Raissi. Fine tuning without catastrophic forgetting via selective low rank adaptation. *arXiv*
 542 *preprint arXiv:2501.15377*, 2025.

543 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
 544 Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the
 545 limits of object recognition models. *Advances in neural information processing systems*, 32,
 546 2019.

547 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing
 548 web-scale image-text pre-training to recognize long-tail visual concepts. In *Proceedings of the*
 549 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 3558–3568, 2021.

550 Yihao Chen, Xianbiao Qi, Jianan Wang, and Lei Zhang. Disco-clip: A distributed contrastive loss
 551 for memory efficient clip training. In *Proceedings of the IEEE/CVF Conference on Computer*
 552 *Vision and Pattern Recognition*, pp. 22648–22657, 2023.

553 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
 554 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
 555 contrastive language-image learning. In *Proceedings of the IEEE/CVF conference on computer*
 556 *vision and pattern recognition*, pp. 2818–2829, 2023.

557 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 558 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 559 *the North American chapter of the association for computational linguistics: human language*
 560 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

561 Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don’t stop learning:
 562 Towards continual learning for the clip model. *arXiv preprint arXiv:2207.09248*, 2022.

563 Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Shuyang Gu, Weiming Zhang, Lu Yuan,
 564 Dong Chen, Fang Wen, and Nenghai Yu. Clip itself is a strong fine-tuner: Achieving 85.7% and
 565 88.0% top-1 accuracy with vit-b and vit-l on imagenet. *arXiv preprint arXiv:2212.06138*, 2022.

566 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 567 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 568 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 569 *arXiv:2010.11929*, 2020.

570 Mohammad Fahes, Tuan-Hung Vu, Andrei Bursuc, Patrick Pérez, and Raoul de Charette. *Fine-*
 571 *tuning clip’s last visual projector: A few-shot cornucopia*. PhD thesis, Inria, 2024.

572 Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal
 573 Shankar. Data filtering networks. *arXiv preprint arXiv:2309.17425*, 2023.

574 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
 575 Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In
 576 search of the next generation of multimodal datasets. *Advances in Neural Information Processing*
 577 *Systems*, 36:27092–27112, 2023.

578 Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Finetune like
 579 you pretrain: Improved finetuning of zero-shot vision models. In *Proceedings of the IEEE/CVF*
 580 *Conference on Computer Vision and Pattern Recognition*, pp. 19338–19347, 2023.

581 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
 582 networks. In *European conference on computer vision*, pp. 630–645. Springer, 2016.

583 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 584 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

585 Saurav Jha, Dong Gong, and Lina Yao. Clap4clip: Continual learning with probabilistic finetuning
 586 for vision-language models. *Advances in neural information processing systems*, 37:129146–
 587 129186, 2024.

594 Li Jiao, Lihong Cao, and Tian Wang. Prompt-based continual learning for extending pretrained clip
 595 models' knowledge. In *Proceedings of the 6th ACM International Conference on Multimedia in*
 596 *Asia*, pp. 1–8, 2024.

597 Muhammad Asif Khan, Ridha Hamila, and Hamid Menouar. Clip: Train faster with less data. In
 598 *2023 IEEE international conference on big data and smart computing (BigComp)*, pp. 34–39.
 599 IEEE, 2023.

600 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
 601 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on*
 602 *computer vision and pattern recognition*, pp. 19113–19122, 2023.

603 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 604 *arXiv:1412.6980*, 2014.

605 Taha Koleilat, Hojat Asgarianehkordi, Hassan Rivaz, and Yiming Xiao. Medclip-samv2: Towards
 606 universal text-driven medical image segmentation. *Medical Image Analysis*, pp. 103749, 2025.

607 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 608 lutional neural networks. *Communications of the ACM*, 60(6):84–90, 2017.

609 Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
 610 tuning can distort pretrained features and underperform out-of-distribution. *arXiv preprint*
 611 *arXiv:2202.10054*, 2022.

612 Kaican Li, Weiyan Xie, Yongxiang Huang, Didan Deng, Lanqing Hong, Zhenguo Li, Ricardo Silva,
 613 and Nevin L Zhang. Dual risk minimization: Towards next-level robustness in fine-tuning zero-
 614 shot models. *Advances in Neural Information Processing Systems*, 37:66025–66057, 2024.

615 Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling
 616 language-image pre-training via masking. In *Proceedings of the IEEE/CVF conference on com-
 617 puter vision and pattern recognition*, pp. 23390–23400, 2023.

618 Tian Liu, Huixin Zhang, Shubham Parashar, and Shu Kong. Few-shot recognition via stage-wise
 619 retrieval-augmented finetuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 620 and Pattern Recognition (CVPR)*, pp. 15086–15097, June 2025.

621 GuangHao Meng, Sunan He, Jinpeng Wang, Tao Dai, Letian Zhang, Jieming Zhu, Qing Li, Gang
 622 Wang, Rui Zhang, and Yong Jiang. Evdclip: Improving vision-language retrieval with entity
 623 visual descriptions from large language models. In *Proceedings of the AAAI Conference on Arti-
 624 ficial Intelligence*, volume 39, pp. 6126–6134, 2025.

625 Sangwoo Mo, Minkyu Kim, Kyungmin Lee, and Jinwoo Shin. S-clip: Semi-supervised vision-
 626 language learning using few specialist captions. *Advances in Neural Information Processing
 627 Systems*, 36:61187–61212, 2023.

628 Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-tuning
 629 bert: Misconceptions, explanations, and strong baselines. *arXiv preprint arXiv:2006.04884*, 2020.

630 Bac Nguyen, Stefan Uhlich, Fabien Cardinaux, Lukas Mauch, Marzieh Edraki, and Aaron Courville.
 631 Saft: Towards out-of-distribution generalization in fine-tuning. In *European Conference on Com-
 632 puter Vision*, pp. 138–154. Springer, 2024.

633 Amit Peleg, Naman Deep Singh, and Matthias Hein. Advancing compositional awareness in clip
 634 with efficient fine-tuning. *arXiv preprint arXiv:2505.24424*, 2025.

635 Zi-Hao Qiu, Quanqi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, and Tianbao Yang. Not all
 636 semantics are created equal: Contrastive self-supervised learning with automatic temperature in-
 637 dividualization. *arXiv preprint arXiv:2305.11965*, 2023.

638 Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, and Tianbao Yang. To cool or not to cool?
 639 temperature network meets large foundation models via dro. *arXiv preprint arXiv:2404.04575*,
 640 2024.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 649 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 650 models from natural language supervision. In *International conference on machine learning*, pp.
 651 8748–8763. PMLR, 2021.

652

653 Vikram V Ramaswamy, Sing Yu Lin, Dora Zhao, Aaron Adcock, Laurens van der Maaten, Deepti
 654 Ghadiyaram, and Olga Russakovsky. Geode: a geographically diverse evaluation dataset for
 655 object recognition. *Advances in Neural Information Processing Systems*, 36:66127–66137, 2023.

656

657 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 658 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings*
 659 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
 3505–3506, 2020.

660

661 Konstantin Schall, Kai Uwe Barthel, Nico Hezel, and Klaus Jung. Optimizing clip models for image
 662 retrieval with maintained joint-embedding alignment. In *International Conference on Similarity
 663 Search and Applications*, pp. 97–110. Springer, 2024.

664

665 Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei
 666 Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? *arXiv preprint
 667 arXiv:2107.06383*, 2021.

668

669 Liangliang Shi, Jack Fan, and Junchi Yan. Ot-clip: Understanding and generalizing clip via optimal
 670 transport. In *Forty-first International Conference on Machine Learning*, 2024.

671

672 Tejas Srinivasan, Xiang Ren, and Jesse Thomason. Curriculum learning for data-efficient vision-
 673 language alignment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
 674 tern Recognition*, pp. 5619–5624, 2023.

675

676 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
 677 techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

678

679 Roelof Van Zwol. Flickr: Who is looking? In *IEEE/WIC/ACM International Conference on Web
 680 Intelligence (WI'07)*, pp. 184–190. IEEE, 2007.

681

682 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 683 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 684 tion processing systems*, 30, 2017.

685

686 Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: Lessons learned
 687 from the 2015 mscoco image captioning challenge. *IEEE transactions on pattern analysis and
 688 machine intelligence*, 39(4):652–663, 2016.

689

690 Bokun Wang and Tianbao Yang. Finite-sum coupled compositional stochastic optimization: Theory
 691 and applications. *arXiv preprint arXiv:2202.12396*, 2022.

692

693 Ziteng Wang, Siqi Yang, Limeng Qiao, and Lin Ma. Clip-in: Enhancing fine-grained visual under-
 694 standing in clip via instruction editing data and long captions. *arXiv preprint arXiv:2508.02329*,
 2025.

695

696 Xiyuan Wei, Fanjiang Ye, Ori Yonay, Xingyu Chen, Baixi Sun, Dingwen Tao, and Tianbao Yang.
 697 Fastclip: A suite of optimization techniques to accelerate clip training with limited resources.
 698 *arXiv preprint arXiv:2407.01445*, 2024.

699

700 Yixuan Wei, Han Hu, Zhenda Xie, Ze Liu, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen,
 701 and Baining Guo. Improving clip fine-tuning performance. In *Proceedings of the IEEE/CVF
 702 International Conference on Computer Vision*, pp. 5439–5449, 2023.

703

704 Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
 705 Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
 706 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16133–
 16142, 2023.

702 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
 703 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
 704 fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF conference on computer vision*
 705 and pattern recognition, pp. 7959–7971, 2022.

706 Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
 707 Schmidt. Stable and low-precision training for large-scale vision-language models. *Advances*
 708 in *Neural Information Processing Systems*, 36:10271–10298, 2023.

709 Linhui Xiao, Xiaoshan Yang, Fang Peng, Ming Yan, Yaowei Wang, and Changsheng Xu. Clip-vg:
 710 Self-paced curriculum adapting of clip for visual grounding. *IEEE Transactions on Multimedia*,
 711 26:4334–4347, 2023.

712 William Yang, Byron Zhang, and Olga Russakovsky. Imagenet-ood: Deciphering modern out-of-
 713 distribution detection algorithms. *arXiv preprint arXiv:2310.01755*, 2023.

714 Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
 715 Wu. Coca: Contrastive captioners are image-text foundation models. *arXiv preprint*
 716 *arXiv:2205.01917*, 2022.

717 Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
 718 Yang. Provable stochastic optimization for global contrastive learning: Small batch does not
 719 harm performance. In *International Conference on Machine Learning*, pp. 25760–25782. PMLR,
 720 2022.

721 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
 722 Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. The
 723 visual task adaptation benchmark. 2019.

724 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 725 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 726 pp. 11975–11986, 2023.

727 Zihao Zhao, Yuxiao Liu, Han Wu, Mei Wang, Yonghao Li, Sheng Wang, Lin Teng, Disheng Liu,
 728 Zhiming Cui, Qian Wang, et al. Clip in medical imaging: A comprehensive survey. *arXiv preprint*
 729 *arXiv:2312.07353*, 2023.

730 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 731 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 732 *pattern recognition*, pp. 16816–16825, 2022a.

733 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 734 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022b.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A PROOF FOR THEOREMS IN SUBSECTION 4.1
757758 In this part we consider a general FCCO problem:
759

760
$$\min_{\omega} \frac{1}{N} \sum_{i=1}^{N-1} f(g_i(\omega))$$

761

762 and the corresponding SOX algorithm Wang & Yang (2022). As discussed in preliminary, by specifying $N = 2n$, $f(\cdot) = \log(\epsilon + \cdot)$, $g_i(\cdot) = g_i(\cdot, \mathcal{D}) = \Phi_1(\cdot, i, \mathcal{D})$ if $i \leq n$ otherwise $\Phi_2(\cdot, i - n, \mathcal{D})$, we recover the GCL loss and the SogCLR algorithm. We also set $|\mathcal{B}_1| = |\mathcal{B}_2| = B$ in SOX when presenting its convergence analysis to simplify notation. Before starting our proofs, we make the following standard, commonly used assumptions as in Wang & Yang (2022) under which theorems in subsection 4.1 hold:763 **Assumption A.1.** We assume that:
764765

- $f(\cdot)$ and $\nabla f(\cdot)$ are C_f and L_f -Lipschitz continuous, respectively.
- $g_i(\cdot)$ and $\nabla g_i(\cdot)$ are C_g and L_g -Lipschitz continuous, respectively.

766767 **Assumption A.2.** There exist constants $\sigma_0 \geq 0$ and $\sigma_1 \geq 0$ such that the following statements hold for $g_i(\omega)$ and $g_i(\omega, \xi_i)$ for $i = 1, \dots, N$ for any $\omega \in \mathbb{R}^d$ $\mathbb{E}\|g_i(\omega, \xi_i) - g_i(\omega)\|^2 \leq \sigma_0^2$, $\mathbb{E}\|\nabla g_i(\omega, \xi_i) - \nabla g_i(\omega)\|^2 \leq \sigma_1^2$.
768769 A.1 TECHNICAL LEMMA
770771 We cite the technical lemma from Wang & Yang (2022) here with slightly changes.
772773 **Lemma A.3** (Lemma 8 from Wang & Yang (2022)). Consider a sequence $\omega_{t+1} = \omega_t - \eta m_{t+1}$ and
774 the L_F -smooth function F and the step size $\eta L_F \leq 1/2$.
775

776
$$F(\omega_{t+1}) \leq F(\omega_t) + \frac{\eta}{2} M_t - \frac{\eta}{2} \|\nabla F(\omega_t)\|^2 - \frac{\eta}{4} \|m_{t+1}\|^2, \quad (10)$$

777

778 where $M_t := \|m_{t+1} - \nabla F(\omega_t)\|^2$.
779780 We build a recursion for the gradient variance M_t by proving the following lemma.
781782 **Lemma A.4.** If $\beta \leq \frac{2}{7}$, the gradient variance M_t can be bounded as
783

784
$$\mathbb{E}[M_{t+1}] \leq (1 - \beta)\mathbb{E}[M_t] + \frac{2L_F^2\eta^2}{\beta} \mathbb{E}[\|m_{t+1}\|^2] + \frac{2\beta^2C_f^2(\sigma_1^2 + C_g^2)}{B} + 5\beta L_F^2 C_1^2 \mathbb{E}[U_{t+1}] \quad (11)$$

785

786 where $U_t = \frac{1}{N} \|u_{t+1} - g(\omega_t; \mathcal{D})\|^2$, $u_t = [u_1^{(t)}, \dots, u_N^{(t)}]^\top$, $g(\omega_t; \mathcal{D}) = [g_1(\omega_t; \mathcal{D}_1), \dots, g_N(\omega_t; \mathcal{D}_N)]^\top$ and $C_1^2 = C_g^2 + \frac{\sigma_1^2}{B}$. Also note that we follow the tradition usage of β in Wang & Yang (2022) so $\beta = 1 - \beta_1$ where β_1 is used in algorithm 1.
787788 **Remark:** We point out that the lemma is similar to lemma 9 in Wang & Yang (2022) without a term corresponding to $\|u_{t+1} - u_t\|^2$, the gap is caused by the different usage of u when constructing the overall gradient estimator $G(\omega_{t-1}, \mathcal{B}_t)$: instead of using old u_{t-1} as in SOX we use a newer version u_t in this paper. This would require sampling one more iid minibatch per iteration to derive a bound as shown in the lemma. However in practice we typically sample only a single minibatch.
789790 **Lemma A.5.** If $\gamma \leq 1/5$, function value variance U_t can be bounded as
791

792
$$\mathbb{E}[U_{t+1}] \leq \left(1 - \frac{\gamma B}{4N}\right) \mathbb{E}[U_t] + \frac{5N\eta^2C_g^2}{\gamma B} \mathbb{E}[\|m_{t+1}\|^2] + \frac{2\gamma^2\sigma_0^2}{N} \quad (12)$$

793

794 **Remark:** We directly drop the negative term in lemma 2 in Wang & Yang (2022).
795796 A.2 PROOF OF THEOREM
797798 *proof of theorem 4.1.* The proof is almost the same as theorem 3 in Wang & Yang (2022) so we only
799 make necessary clarifications. Summing equation 10, $\frac{\eta}{\beta} \times$ equation 11, and $\frac{20L_F^2C_1^2N\eta}{\gamma B} \times$ equation 12

leads to

$$\begin{aligned} & \mathbb{E} \left[F(\omega_{t+1}) - F^* + \frac{\eta}{\beta} M_{t+1} + \frac{20L_f^2 C_1^2 N \eta}{\gamma B} \left(1 - \frac{\gamma B}{4N} \right) U_{t+1} \right] \\ & \leq \mathbb{E} \left[F(\omega_t) - F^* + \frac{\eta}{\beta} \left(1 - \frac{\beta}{2} \right) M_t + \frac{20L_f^2 C_1^2 N \eta}{\gamma B} \left(1 - \frac{\gamma B}{4N} \right) U_t \right] - \frac{\eta}{2} \mathbb{E} \left[\|\nabla F(\omega_t)\|^2 \right] \\ & \quad - \eta \left(\frac{1}{4} - \frac{2L_f^2 \eta^2}{\beta^2} - \frac{100L_f^2 N^2 C_1^2 \eta^2 C_g^2}{\gamma^2} \right) \mathbb{E} \left[\|m_{t+1}\|^2 \right] + \frac{2\beta\eta C_f^2 (\sigma_1^2 + C_g^2)}{B} + \frac{40\eta\gamma L_f^2 C_1^2 \sigma_0^2}{B}. \end{aligned}$$

Set $\beta = \min\left\{\frac{B\epsilon^2}{12C_f^2(\sigma_1^2 + C_g^2)}, \frac{2}{7}\right\}$, $\gamma = \min\left\{\frac{B\epsilon^2}{240L_f^2 C_1^2 \sigma_0^2}, \frac{1}{5}\right\}$, and $\eta = \min\left\{\frac{\beta}{4L_f}, \frac{\gamma B}{30L_f N C_1 C_g}\right\}$.

Define the Lyapunov function as $\Gamma_t := F(\omega_t) - F^* + \frac{\eta}{\beta} M_t + \frac{20L_f^2 C_1^2 N}{B} \frac{\eta}{\gamma} \left(1 - \frac{\gamma B}{4N} \right) U_t$. Then,

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla F(\omega_t)\|^2 \right] \leq \frac{2\Gamma_0}{\eta T} + \frac{4\beta C_f^2 (\sigma_1^2 + C_g^2)}{B} + \frac{80\gamma L_f^2 C_1^2 \sigma_0^2}{B}, \quad (13)$$

discarding the non-dominant terms and unimportant constants, to guarantee $\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla F(\omega_t)\|^2 \right] \leq \epsilon^2$ we need at most

$$T = O \left(\frac{n\Gamma_0}{B^2 \epsilon^4} \right) = O \left(\frac{n}{B^2 \epsilon^4} (\Delta_0 + \frac{B}{n} M_0 + U_0) \right)$$

iterations, which leads to conclusion by noting that $U_0 = \frac{1}{N} \|u_0 - g(\omega_0; \mathcal{D})\|^2 = \frac{1}{2n} \|u_x^{(0)} - \Phi_1(\omega_0, \mathcal{D})\|^2 + \frac{1}{2n} \|u_z^{(0)} - \Phi_2(\omega_0, \mathcal{D})\|^2$. \square

proof of theorem 4.2. Note that algorithm 1 is essentially SOX Wang & Yang (2022) without updating the model parameters ω (i.e. learning rate $\eta = 0$), we can still leverage lemma A.4 and A.5 by plugging $\eta = 0$ into them and have the following bound:

$$\mathbb{E} [M_{t+1}] \leq (1 - \beta) \mathbb{E} [M_t] + \frac{2\beta^2 C_f^2 (\sigma_1^2 + C_g^2)}{B} + 5\beta L_f^2 C_1^2 \mathbb{E} [U_{t+1}] \quad (14)$$

$$\mathbb{E} [U_{t+1}] \leq \left(1 - \frac{\gamma B}{4N} \right) \mathbb{E} [U_t] + \frac{2\gamma^2 \sigma_0^2}{N} \quad (15)$$

Note that now we are not updating ω so $M_t = \|m_{t+1} - \nabla_\omega \mathcal{L}_{\text{GCL}}(\omega_0)\|^2$, $U_t = \frac{1}{N} \|u_{t+1} - g(\omega_0; \mathcal{D})\|^2$. Rearranging terms and divide both side for equation 14, equation 15 by β and $\frac{\gamma B}{4N}$, respectively, then we have:

$$\mathbb{E} [M_t] \leq \frac{1}{\beta} \mathbb{E} [M_t - M_{t+1}] + \frac{2\beta C_f^2 (\sigma_1^2 + C_g^2)}{B} + 5L_f^2 C_1^2 \mathbb{E} [U_{t+1}] \quad (16)$$

$$\mathbb{E} [U_t] \leq \frac{4N}{\gamma B} \mathbb{E} [U_t - U_{t+1}] + \frac{8\gamma \sigma_0^2}{B} \quad (17)$$

combining the above two inequalities we have

$$\begin{aligned} \mathbb{E} [M_t] & \leq \frac{1}{\beta} \mathbb{E} [M_t - M_{t+1}] + \frac{2\beta C_f^2 (\sigma_1^2 + C_g^2)}{B} + 5L_f^2 C_1^2 \left(\left(\frac{4N}{\gamma B} - 1 \right) \mathbb{E} [U_t - U_{t+1}] + \frac{8\gamma \sigma_0^2}{B} \right) \\ & \leq \mathbb{E} [\Psi_t - \Psi_{t+1}] + \frac{2\beta C_f^2 (\sigma_1^2 + C_g^2)}{B} + \frac{40\gamma \sigma_0^2 L_f^2 C_1^2}{B} \end{aligned} \quad (18)$$

where $\Psi_t = \frac{1}{\beta} M_t + \frac{20N L_f^2 C_1^2}{\gamma B} \left(1 - \frac{\gamma B}{4N} \right) U_t$. Sum over $t = 0, 1, \dots, T-1$ and divide both side by T then we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} [M_t] \leq \frac{\Psi_0}{T} + \frac{2\beta C_f^2 (\sigma_1^2 + C_g^2)}{B} + \frac{40\gamma \sigma_0^2 L_f^2 C_1^2}{B} \quad (19)$$

864 Convergence of U_t can be easily derived from equation 17 by summing over $t = 0, 1, \dots, T - 1$
 865 and divide both side by T :

$$867 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[U_t] \leq \frac{4NU_0}{\gamma BT} + \frac{8\gamma\sigma_0^2}{B} \quad (20)$$

870 By setting $\beta = O(\sqrt{\frac{N}{T}})$, $\gamma = O(\sqrt{\frac{N}{T}})$ and omitting unimportant constants, we have
 871

$$872 \quad \mathbb{E}_\tau [\mathbb{E}[M_\tau]] = \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[M_t] \leq O\left(\frac{M_0}{\sqrt{NT}} + \frac{U_0}{\sqrt{BE}} + \frac{1}{\sqrt{BE}}\right) \quad (21)$$

$$875 \quad \mathbb{E}_\tau [\mathbb{E}[U_\tau]] = \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[U_t] \leq O\left(\frac{U_0}{\sqrt{BE}} + \frac{1}{\sqrt{BE}}\right) \quad (22)$$

878 which directly leads to the conclusion by noting that $N = 2n$, $T = \frac{nE}{B}$ and $U_0 = U_{x,0} + U_{z,0}$. \square
 879

880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **B ADDITIONAL DETAILS ON CLIP MODELS**
919

920 The CLIP models (ViT-B/32 and ViT-B/16) use an embedding dimension of 512 for contrastive
921 learning. In contrast, SigLIP employs a larger embedding dimension of 768. Moreover, SigLIP text
922 encoders are configured with `no_causal_mask`, meaning tokens can attend bidirectionally, which
923 differs from the causal masking used in standard CLIP-style transformers. Tables 4 and 5 summarize
924 the configurations of the vision and text encoders, respectively. Table 6 further reports the overall
925 model specifications, including parameter counts and developers. These model configurations are
926 taken from open source implementations of these models.

927
928 Table 4: Vision tower configurations of CLIP models.
929

930 Model	Image Size	Layers	Width	Patch Size
931 CLIP ViT-B/32	224	12	768	32
932 CLIP ViT-B/16	224	12	768	16
933 SigLIP ViT-B/16	224	12	768	16

934
935 Table 5: Text tower configurations of CLIP models.
936

938 Model	Context Length	Vocab Size	Width	Heads	Layers
939 CLIP ViT-B/32	77	49408	512	8	12
940 CLIP ViT-B/16	77	49408	512	8	12
941 SigLIP ViT-B/16	64	32000	768	12	12

942
943 Table 6: Model specifications of different CLIP variants.
944

946 Model	Vision Encoder	Text Encoder	Parameters (M)	Developer
948 CLIP ViT-B/32	ViT	Transformer	151.28	OpenAI
949 CLIP ViT-B/16	ViT	Transformer	149.62	OpenAI
950 CLIP ViT-B/32	ViT	Transformer	151.28	LAION
951 SigLIP ViT-B/16	ViT	Transformer	203.16	Google

952
953 **C HYPERPARAMETER DETAILS**
954

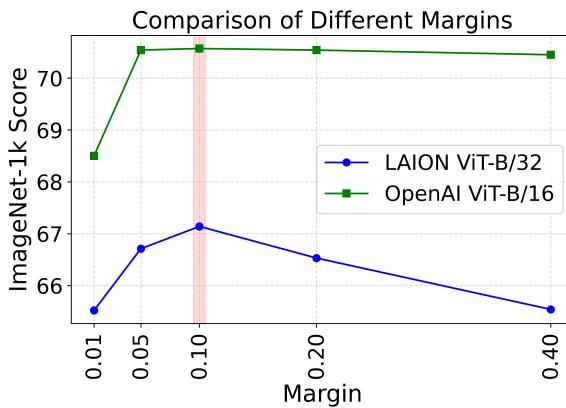
955 A brief summary of the key hyperparameters is provided in Table 7. Owing to the availability
956 of 40GB A100s and 80GB H100s, we restricted all experiments to an image resolution of
957 224×224 . Across models, the best-performing base learning rate was consistently around 1×10^{-5} .
958 We used cosine scheduling on the learning rate in the second stage of fine-tuning. After ex-
959 perimenting with different values, we found $m = 0.1$ to be a reasonable hyperparameter for
960 most models, and thus adopt it as the default setting. Training was distributed using PyTorch’s
961 `DistributedDataParallel` (DDP) to parallelize computation across multiple GPUs and
962 nodes.

963 In addition to these choices, we adopted AdamW as the optimizer with momentum parameters
964 $(\beta_1, \beta_2) = (0.9, 0.98)$, and a weight decay of 0.02 to improve generalization. A cosine learning
965 rate scheduler was used to provide smooth decay, with γ following a cosine schedule until the
966 4th epoch and fixed to 0.9 thereafter. We also applied mixed-precision training (AMP) to balance
967 performance and efficiency. For margin smoothing, we set the value to 2.0 to stabilize contrastive
968 updates. Each experiment used a world size of 8 for DDP and 6 data-loading workers per GPU to
969 optimize throughput.

970
971 **C.1 ABLATION ON MARGIN m USED WITH HGCL**

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 7: Key hyperparameters used for training the models.

Hyperparameter	Value
Image size	224x224 (default)
Learning rate (lr)	1e-5
Optimizer	AdamW
Beta1, Beta2	0.9, 0.98
Weight decay (wd)	0.02
Scheduler	Cosine
Precision	AMP (mixed precision)
Margin	0.1
Margin smoothing	2.0
Gamma	0.9
Gamma schedule	Cosine (decay every 4 epochs)
World size	8 (DDP)
Workers	6

Figure 6: Effect of the HGCL margin hyperparameter m on ImageNet-1k score.

To study the impact of the margin m , we consider two different CLIP architectures, LAION ViT-B/32 and OpenAI ViT-B/16, and sweep over a representative set of values $m \in \{0.01, 0.05, 0.10, 0.20, 0.40\}$. The resulting ImageNet-1k accuracies are plotted in Figure 6. Using it as a representative metric, we observe that margins around $m = 0.1$ work well for almost all types of models. Based on this trend, we adopt $m = 0.1$ as the margin in all main experiments. Moreover, in the self-supervised setting, there are no class labels or clear ground-truth similarity scores to guide the learning of an adaptive margin. Having the flexibility of keeping truly adaptive margin relies on true reliable positive and negative pairs, which are not available in web-scale datasets. We therefore treat m as a single global hyperparameter, selected using a validation score.

C.2 ABLATION ON DIFFERENT LEARNING RATES

Table 8: Effect of learning rate (lr) on ImageNet classification and MSCOCO Retrieval (Average Recall@1) for TuneCLIP with OpenAI ViT-B/16 CLIP.

Learning Rate	ImageNet-1k (%)	MS COCO (Avg R@1) (%)
1e-4	69.66	48.98
1e-5	70.57	50.11
5e-6	70.23	49.30

After sweeping learning rates across $\{10^{-4}, 10^{-5}, 10^{-6}\}$, we observe that performance drops slightly above 10^{-4} , while learning rates in the range of 10^{-6} to 10^{-5} remain comparably strong.

1026 For example, Table 8 shows that TuneCLIP achieves stable ImageNet-1k and MS COCO retrieval
 1027 performance around $1e-5$ and $5e-6$.
 1028

1029 **C.3 ADDITIONAL DETAILS ON THE DISTRIBUTED TRAINING FRAMEWORK**
 1030

1031 We build upon FastCLIP Wei et al. (2024) framework, designed for distributed training and opti-
 1032 mized through advanced compositional optimization techniques.
 1033

1034 Importantly, all algorithms and proposed variants in this work are implemented within the FastCLIP
 1035 framework to ensure consistent handling of gradient computation, communication, and optimiza-
 1036 tion dynamics. This allows us to make controlled and fair comparisons, attributing performance
 1037 differences solely to the algorithmic changes.
 1038

1039 **D ALGORITHMS COMPARED IN THE EXPERIMENTATION**
 1040

1041 Table 9: Training configurations for compared methods.
 1042

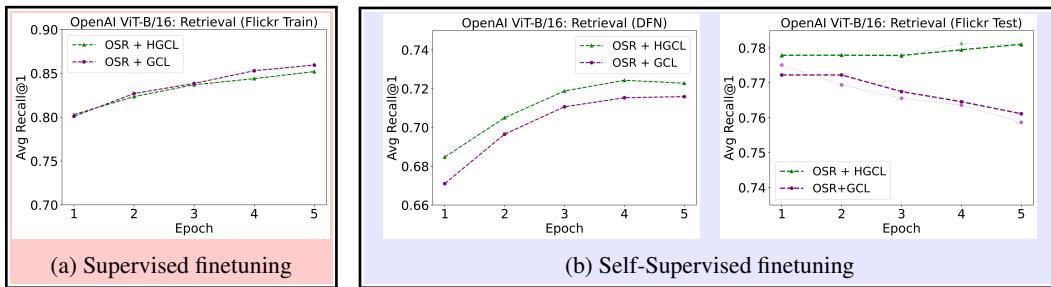
Method	Loss	Optimization Strategy
FastCLIP Wei et al. (2024)	GCL	SogCLR + AdamW
OpenCLIP Cherti et al. (2023)	MBCL	AdamW
TuneCLIP (ours)	HGCL (ours)	OSR (ours) + SogCLR + AdamW

1043 Table 9 summarizes the training setups of the algorithms used in our comparison. FastCLIP (Wei
 1044 et al., 2024) employs the standard Global Contrastive Loss (GCL) with the SogCLR optimization al-
 1045 gorithm and AdamW. OpenCLIP (Cherti et al., 2023) relies on a minibatch contrastive loss (MBCL)
 1046 combined with AdamW. Our TuneCLIP introduces the proposed Hinged Global Contrastive Loss
 1047 (HGCL) loss and leverages Optimizer Statistics Recovery (OSR) alongside SogCLR and AdamW.
 1048

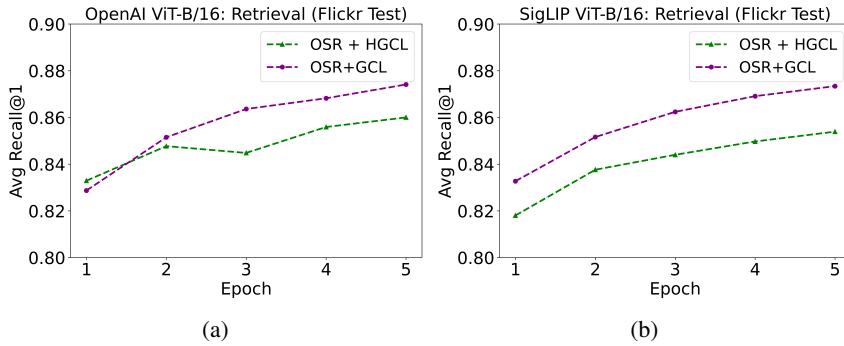
1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 E IMPACT OF HINGED GLOBAL CONTRASTIVE LOSS
1081

1082 The controlled study in Figures 3, 7 and 8 is set up as follows: supervised fine-tuning is performed
1083 on Flickr30k, while SSFT uses DFN-12M. Train Retrieval trends are computed from 15,000 random
1084 DFN samples (SSFT) and 1,000 Flickr30k samples (SFT). Both models are evaluated on the Flickr1k
1085 test set.



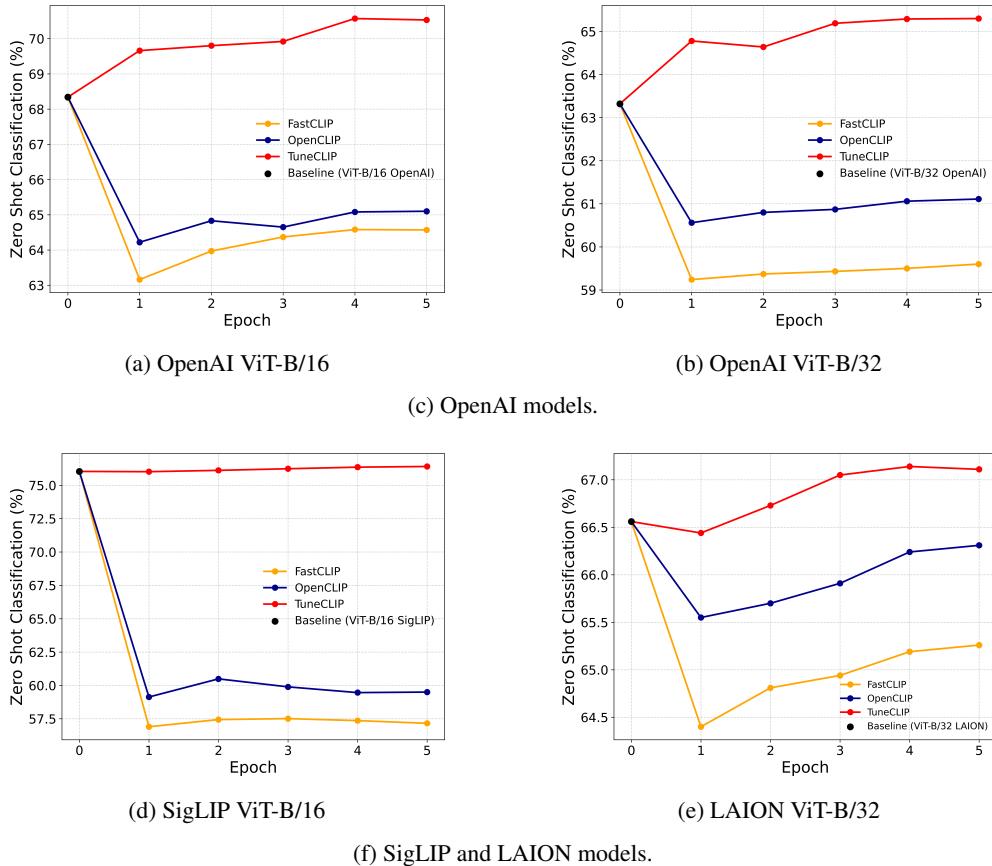
1096 Figure 7: Similar to Figure 3, supervised fine-tuning (red) shows stronger performance with
1097 OSR+GCL than with OSR+HGCL (TuneCLIP), since true negative labels justify separating
1098 negatives. By contrast, in self-supervised fine-tuning (blue), the absence of such labels makes
1099 OSR+HGCL more effective, leading to improved retrieval performance on Flickr when trained with
1100 SSFT.



1114 Figure 8: Retrieval trends on the Flickr1k test set under supervised fine-tuning. The left panel shows
1115 results for OpenAI ViT-B/16, while the right panel corresponds to SigLIP ViT-B/16. In the super-
1116 vised setting, explicit labels guide the separation of positives from negatives, making OSR+GCL
1117 outperform OSR+HGCL. By contrast, as shown in Figures 3b and 7b, the absence of supervision
1118 and margin regularization in SSFT reverses this trend, with OSR+HGCL (TuneCLIP) achieving su-
1119 perior retrieval performance.

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **F PERFORMANCE TRAJECTORIES DURING FINE-TUNING**
1135

1136 Across all four models, we observe that OpenCLIP and FastCLIP exhibit a degraded start and fail
1137 to recover within the first few epochs. In contrast, as shown in Figure 9, TuneCLIP consistently
1138 outperforms the baseline curves, starting with a boosted score. For LAION ViT-B/32, the initial per-
1139 formance is slightly below the baseline, but by the second epoch it surpasses the baseline, unlike the
1140 other two algorithms. This experiment was conducted using ImageNet-1k zero-shot classification
1141 accuracy as a representative metric.

1157 Figure 9: Zero-shot classification performance on ImageNet-1k over 5 epochs of fine-tuning for four
1158 ViT models. The dashed line indicates the original pretrained baseline. Across all cases, FastCLIP
1159 and OpenCLIP start with degraded performance and recover only gradually, while TuneCLIP con-
1160 sistently achieves higher scores.

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189

F.1 EXTENDED FINE-TUNING

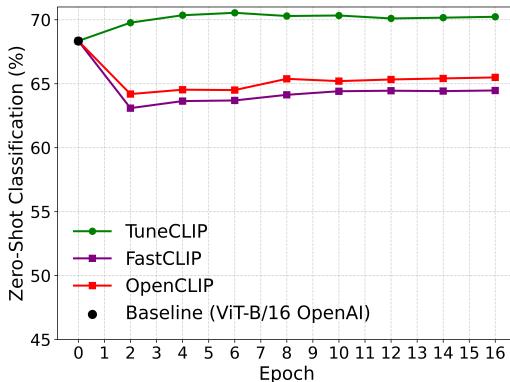
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
12021203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 10: Extended fine-tuning analysis of TuneCLIP and baselines on ImageNet-1k.

As shown in Fig. 10, extending fine-tuning beyond the used standard few (i.e. 5-epoch) schedule provides only diminishing returns for both the algorithms. Even when trained for up to 15 epochs, the performance curves plateau, indicating that additional compute does not meaningfully change the relative ordering of methods. Importantly, TuneCLIP preserves a consistent improvement over the baselines.

1242 G MORE COMPREHENSIVE RESULTS

1244 We report the gains of TuneCLIP over the baselines, with improvements highlighted in $(+)$. While
 1245 the majority of important metrics show consistent improvements, a few datasets exhibit small de-
 1246 clines (marked in $(-)$), likely due to task-specific variability. Nevertheless, the overall average per-
 1247 formance increases, underscoring the robustness of our approach.

1249
 1250 Table 10: Performance of different CLIP models on DataComp Average. DataComp Gadre et al.
 1251 (2023) is a highly comprehensive benchmark that spans a diverse collection of datasets, tasks, and
 1252 distributional variants. Even small improvements on DataComp are particularly meaningful, as they
 1253 indicate stable gains across heterogeneous and challenging settings rather than isolated benefits on
 1254 individual datasets. In the next sections we show some group-wise results across all variants.

1255	1256	Base Model	Method	DataComp Average
1257	1258	OpenAI ViT-B/32	Baseline	52.45
1259	1260		FastCLIP	49.78
1261	1262		OpenCLIP	51.02
1263	1264		TuneCLIP	54.34 $(+1.89)$
1265	1266	SigLIP ViT-B/16	Baseline	56.26
1267	1268		FastCLIP	53.53
1269	1270		OpenCLIP	55.11
1271	1272		TuneCLIP	58.62 $(+2.36)$
1273	1274	LAION ViT-B/32	Baseline	62.32
1275	1276		SigLIP	45.80
1277	1278		ViT-B/16	48.10
1279	1280		TuneCLIP	63.47 $(+1.15)$
1281	1282	LAION ViT-B/32	Baseline	56.94
1283	1284		FastCLIP	55.89
1285	1286		OpenCLIP	56.75
1287	1288		TuneCLIP	57.22 $(+0.28)$

1276 Table 11: Performance of different CLIP models on small-scale classification benchmarks. STL-10
 1277 is inspired from CIFAR-10, but with higher resolution images.

1278	1279	Base Model	Method	CIFAR-10	CIFAR-100	STL-10
1280	1281	OpenAI ViT-B/32	Baseline	89.83	64.23	97.13
1282	1283		FastCLIP	90.54	69.51	92.68
1284	1285		OpenCLIP	91.75	71.18	96.36
1286	1287		TuneCLIP	93.63 $(+3.80)$	73.87 $(+9.64)$	97.20 $(+0.07)$
1288	1289	OpenAI ViT-B/16	Baseline	90.77	66.95	98.25
1290	1291		FastCLIP	92.67	71.33	96.58
1292	1293		OpenCLIP	92.76	70.99	97.87
1294	1295		TuneCLIP	94.40 $(+3.63)$	76.14 $(+9.19)$	98.26 $(+0.01)$
1296	1297	SigLIP ViT-B/16	Baseline	92.34	72.23	98.21
1298	1299		FastCLIP	83.66	53.86	91.18
1300	1301		OpenCLIP	85.06	56.77	93.81
1302	1303		TuneCLIP	95.20 $(+2.86)$	79.91 $(+7.68)$	98.37 $(+0.16)$
1304	1305	LAION ViT-B/32	Baseline	93.58	75.55	96.56
1306	1307		FastCLIP	92.38	75.95	91.73
1308	1309		OpenCLIP	94.13	76.10	95.16
1310	1311		TuneCLIP	94.22 $(+0.64)$	76.46 $(+0.91)$	96.47 (-0.09)

1296 Table 12: Performance of different CLIP models on ImageNet-1k, ImageNet-Sketch, and ImageNet-
 1297 V2. ImageNet-Sketch is a black-and-white sketch version of 1,000 ImageNet classes collected by
 1298 Google, while ImageNet-V2 is designed to evaluate robustness under domain shift and avoid adaptive
 1299 overfitting.

Base Model	Method	1K	Sketch	V2
OpenAI ViT-B/32	Baseline	63.32	42.29	55.92
	FastCLIP	59.59	41.26	52.25
	OpenCLIP	61.11	41.86	53.84
	TuneCLIP	65.29 (+1.97)	45.84 (+3.55)	57.45 (+1.53)
OpenAI ViT-B/16	Baseline	68.34	48.24	61.88
	FastCLIP	64.57	46.49	56.88
	OpenCLIP	65.10	46.15	58.19
	TuneCLIP	70.57 (+2.23)	51.16 (+2.92)	64.11 (+2.23)
SigLIP ViT-B/16	Baseline	76.04	67.92	68.93
	FastCLIP	57.52	12.56	49.04
	OpenCLIP	59.50	10.42	51.00
	TuneCLIP	76.41 (+0.37)	65.78 (-2.14)	69.02 (+0.09)
LAION ViT-B/32	Baseline	66.56	53.65	58.15
	FastCLIP	65.26	53.12	56.92
	OpenCLIP	66.31	53.73	58.46
	TuneCLIP	67.14 (+0.58)	54.46 (+0.81)	59.10 (+0.95)

1328 Table 13: Performance of different CLIP models on ImageNet out-of-distribution variants Yang et al.
 1329 (2023) (A, O, R, ObjectNet). ImageNet-A contains adversarially filtered natural images, ImageNet-
 1330 O includes samples for open-set recognition, ImageNet-R features artistic renditions, and ObjectNet
 1331 Barbu et al. (2019) evaluates robustness under real-world viewpoint and background shifts.

Base Model	Method	A	O	R	ObjectNet
OpenAI ViT-B/32	Baseline	31.55	47.75	69.33	44.31
	FastCLIP	24.84	47.20	65.21	44.32
	OpenCLIP	27.10	48.85	67.13	46.02
	TuneCLIP	30.72 (-0.83)	51.11 (+3.36)	70.67 (+1.34)	46.45 (+2.14)
OpenAI ViT-B/16	Baseline	49.95	42.30	77.70	55.31
	FastCLIP	41.37	43.30	75.41	55.37
	OpenCLIP	41.57	44.05	73.23	56.67
	TuneCLIP	48.10 (-1.85)	46.65 (+4.35)	77.86 (+0.16)	57.08 (+1.77)
SigLIP ViT-B/16	Baseline	45.41	38.15	90.30	55.09
	FastCLIP	21.80	35.85	59.08	38.72
	OpenCLIP	22.73	39.50	58.27	40.08
	TuneCLIP	50.10 (+4.69)	41.50 (+3.35)	88.33 (-1.97)	67.93 (+12.84)
LAION ViT-B/32	Baseline	26.26	49.95	76.43	48.81
	FastCLIP	24.84	48.00	76.04	51.72
	OpenCLIP	26.92	50.40	76.05	51.01
	TuneCLIP	27.04 (+0.78)	50.85 (+0.90)	76.45 (+0.02)	51.34 (+2.53)

1350
 1351 Table 14: Performance of different CLIP models on VTAB and Fairness. The Visual Task Adapta-
 1352 tion Benchmark (VTAB) Zhai et al. (2019) evaluates performance across 12 diverse tasks. We also
 1353 report performance on two fairness-oriented datasets, Dollar Street and GeoDE Ramaswamy et al.
 1354 (2023), which measure robustness to geographic and socioeconomic diversity.

Base Model	Method	VTAB Mean	Fairness Mean
OpenAI ViT-B/32	Baseline	51.81	68.02
	FastCLIP	48.51	69.52
	OpenCLIP	49.23	70.05
	TuneCLIP	53.50 (+1.69)	70.73 (+2.71)
OpenAI ViT-B/16	Baseline	53.80	72.45
	FastCLIP	50.44	74.02
	OpenCLIP	52.46	74.23
	TuneCLIP	54.44 (+0.64)	74.96 (+2.51)
SigLIP ViT-B/16	Baseline	60.39	78.48
	FastCLIP	49.93	69.33
	OpenCLIP	53.38	71.55
	TuneCLIP	62.66 (+2.27)	78.44 (-0.04)
LAION ViT-B/32	Baseline	55.08	71.05
	FastCLIP	55.55	69.69
	OpenCLIP	54.68	71.94
	TuneCLIP	55.09 (+0.01)	71.03 (-0.02)

1374 Table 15: Retrieval performance (Recall@1) on MSCOCO and Flickr datasets.
 1375

Base Model	Method	MSCOCO		Flickr	
		IR@1	TR@1	IR@1	TR@1
OpenAI ViT-B/32	Baseline	30.44	50.12	58.78	78.90
	FastCLIP	28.75	43.23	51.49	68.19
	OpenCLIP	33.33	49.79	60.92	76.10
	TuneCLIP	36.74 (+6.30)	56.16 (+6.04)	64.71 (+5.93)	83.30 (+4.40)
OpenAI ViT-B/16	Baseline	33.09	52.42	62.16	82.20
	FastCLIP	31.25	45.80	56.45	74.00
	OpenCLIP	36.46	50.77	65.11	78.90
	TuneCLIP	40.45 (+7.36)	59.78 (+7.36)	69.66 (+7.50)	86.59 (+4.39)
SigLIP ViT-B/16	Baseline	47.78	65.74	74.68	89.10
	FastCLIP	26.91	36.46	48.33	61.79
	OpenCLIP	34.34	44.58	57.12	70.10
	TuneCLIP	47.64 (-0.14)	66.36 (+0.62)	74.44 (-0.24)	89.30 (+0.20)
LAION ViT-B/32	Baseline	39.34	56.32	66.78	84.10
	FastCLIP	33.37	49.34	58.66	76.99
	OpenCLIP	38.34	54.42	65.03	81.30
	TuneCLIP	39.55 (+0.21)	57.80 (+1.48)	66.82 (+0.04)	83.20 (-0.90)

1404 H COMPUTE COST ANALYSIS

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
Table 16: Unified comparison of training cost and performance across CLIP backbones.

1412 Base Model	1413 Method	1414 Wall-Clock Time (hrs)	1415 GPU-hours	1416 DataComp
1412 OpenAI 1413 ViT-B/32	1413 OpenCLIP	1414 2.66	1415 21.28	1416 51.02
	1413 FastCLIP	1414 2.22	1415 17.76	1416 49.78
	1413 TuneCLIP	1414 5.05	1415 40.40	1416 54.34
1412 OpenAI 1413 ViT-B/16	1413 OpenCLIP	1414 5.46	1415 43.68	1416 55.11
	1413 FastCLIP	1414 4.21	1415 33.68	1416 53.53
	1413 TuneCLIP	1414 8.62	1415 68.96	1416 58.62
1412 SigLIP 1413 ViT-B/16	1413 OpenCLIP	1414 7.55	1415 60.40	1416 48.10
	1413 FastCLIP	1414 4.28	1415 34.24	1416 45.80
	1413 TuneCLIP	1414 9.27	1415 74.16	1416 63.47
1412 LAION 1413 ViT-B/32	1413 OpenCLIP	1414 3.10	1415 24.80	1416 56.75
	1413 FastCLIP	1414 2.33	1415 18.64	1416 55.89
	1413 TuneCLIP	1414 4.32	1415 36.24	1416 57.22

Table 17: Batch size specifications of different CLIP variants under our distributed data-parallel training setup. We use `torch.DDP` over 8× GPUs.

1432 Model	1433 Local Batch Size	1434 Global Batch Size
1433 OpenAI CLIP ViT-B/32	1434 512	1435 4096
1433 OpenAI CLIP ViT-B/16	1434 256	1435 2048
1433 LAION CLIP ViT-B/32	1434 512	1435 4096
1433 SigLIP ViT-B/16	1434 256	1435 2048

Table 17 summarizes the local and global batch sizes used for each backbone under our distributed data-parallel (DDP) setup with 8 GPUs, where the global batch size is given by $B_{\text{global}} = 8 \times B_{\text{local}}$. Across all backbones, Table 16 additionally reports the wall-clock time (measured as the elapsed time between the start and end of fine-tuning) and the corresponding GPU-hours for OpenCLIP, FastCLIP, and TuneCLIP. We compute GPU-hours using the standard relation

$$1445 \quad \text{GPU-hours} = \text{wall-clock time (hours)} \times \# \text{GPUs},$$

so that, in our case, GPU-hours directly reflect wall-clock time scaled by a factor of 8. Since TuneCLIP uses a two-stage procedure (OSR followed by HGCL fine-tuning), it naturally incurs higher compute than single-stage baselines, typically increasing the wall-clock time by about 1.5–2× for a given backbone. However, this additional cost remains modest and is consistently mirrored by improved performance across all evaluated models. Thus, TuneCLIP provides a favorable cost-performance trade-off with relatively small extra computational overhead compared to baselines and it reliably converts additional compute into gains on related benchmarks.

In addition to reporting the full TuneCLIP cost, we further dissect its two-stage schedule into OSR-only and HGCL-only components in Table 18. Across all backbones, each stage incurs a wall-clock time comparable to standard single-stage fine-tuning (OpenCLIP/FastCLIP), showing that OSR and HGCL individually are not substantially more expensive than existing baselines.

1458 Table 18: Comparison of fine-tuning cost across four CLIP backbones and four finetuning regimes.
 1459 Rows show the isolated cost of OSR-only and HGCL-only stages inside TuneCLIP.

1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478
	1461	Base Model	Method		1461	Wall-Clock (hrs)	1461	GPU-hours		1461	1461	1461		1461	1461	1461	
1463	1464	ViT-B/32	OpenCLIP		1465	2.66		21.28	1466	1467	1468	1469	1470	1471	1472	1473	1474
			FastCLIP			2.22		17.76									
			OSR only			2.50		20.00									
			HGCL only			2.55		20.40									
1467	1468	ViT-B/16	OpenCLIP		1469	5.46		43.68									
			FastCLIP			4.21		33.68									
			OSR only			4.27		34.16									
			HGCL only			4.35		34.80									
1471	1472	SigLIP	OpenCLIP		1473	7.55		60.40	1474	1475	1476	1477	1478	1479	1480	1481	1482
			FastCLIP			4.28		34.24									
			OSR only			4.52		36.16									
			HGCL only			4.75		38.00									
1475	1476	LAION	OpenCLIP		1477	3.10		24.80									
			FastCLIP			2.33		18.64									
			OSR only			2.20		17.60									
			HGCL only			2.12		16.96									

1480 Since all three methods use the same vision, text encoders, same GPUs and training configurations
 1481 at a given model scale, the FLOPs per training step are effectively the same. Thus, the reported
 1482 wall-clock time and GPU-hours can be viewed as a direct correlation for the relative total FLOPs
 1483 across methods.

I COMPARING OTHER COLD-START BIAS MITIGATION STRATEGIES

1487 To evaluate simpler cold-start bias mitigations, we consider two realistic alternatives to OSR. First,
 1488 we apply a short learning-rate warm-up of 500 iterations using momentum SGD, gradually increasing
 1489 the learning rate from 1×10^{-6} to 1×10^{-5} before switching to the standard fine-tuning stage
 1490 with the same optimizer. Second, we simulate a large-batch warm-up by computing gradients with
 1491 a larger global batch size (e.g., increasing OpenAI CLIP ViT-B/16’s batch size from 2048 to 4096)
 1492 while keeping model weights frozen, allowing gradient moments to accumulate before performing
 1493 normal fine-tuning in the second stage. Infact, this serves as a cheaper approximation to OSR.
 1494 As shown in Table 19, both strategies provide mild stabilization but yield noticeably smaller im-
 1495 provements than full OSR, indicating that OSR remains the most effective and reliable approach for
 1496 mitigating cold-start bias.

1497 Table 19: Comparison of cold-start mitigation strategies for TuneCLIP on OpenAI CLIP ViT-B/16.

1499	1500	Cold-Start Bias Mitigation	2nd stage	OSR	IN & Variants	Retrieval	DataComp
1501	1502	Base Model	N/A	✗	57.67	57.46	56.26
1502	1503	Momentum SGD	Momentum SGD	✗	54.65	59.32	54.82
1503	1504	Larger Batch Gradients	AdamW	✗	58.27	62.92	58.05
1504	1505	OSR	Momentum SGD	✓	57.99	62.08	57.82
1505	1506	OSR	AdamW	✓	59.36	64.12	58.62

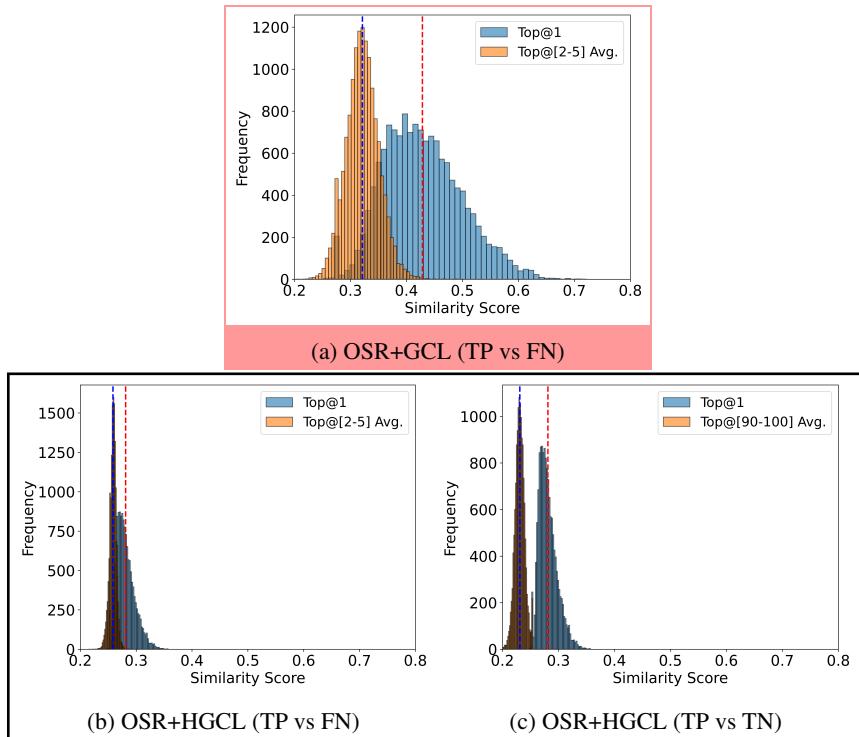
1507
 1508
 1509
 1510
 1511

1512 **J TUNECLIP ON STATE-OF-THE-ART CLIP**
1513

1514 TuneCLIP achieves state-of-the-art performance on ImageNet and its distributional variants, im-
 1515 proving accuracy from 71.8% to 73.23%. On retrieval and DataComp, the results are slightly lower,
 1516 but remain within a tolerable band of 1% relative to the baseline. While these results do not show
 1517 dramatic overall gains, they highlight that TuneCLIP scales to very large models and delivers mean-
 1518 ingful robustness improvements on ImageNet and variants, which we consider the key takeaway. We
 1519 report these findings modestly, acknowledging the limited improvements under heavy computational
 1520 constraints.

1521 Table 20: Performance of TuneCLIP on SOTA ViT-H/14-quickgelu across evaluation suites.
1522

Category	Baseline	TuneCLIP
IN & Variants	71.80	73.23
Retrieval	74.78	73.78
DataComp	69.61	69.23

1523 **K HGCL AND FALSE NEGATIVE MITIGATIONS**
1524

1525 Figure 11: OSR+GCL shows higher variance among false negatives (std. dev. 0.030). While,
 1526 OSR+HGCL yields a substantially more compact distribution (std. dev. 0.0061), reducing false neg-
 1527 ative bias and at the same time ensuring a clear separation between true positives ($\mu = 0.28$) and
 1528 true negatives ($\mu = 0.23$).

1529 As shown in Figures 11a and 11b, HGCL compresses the gap between true positives and false neg-
 1530 atives, producing distributions that are both more compact and overlapping than those under GCL.
 1531 This analysis, conducted on 15,000 randomly sampled pairs from DFN-12M, highlights HGCL's
 1532 capacity to reduce variance and counteract false-negative bias. By preserving higher similarity for
 1533 semantically related negatives, HGCL prevents over-suppression and encourages the model to main-
 1534 tain only a fine-grained distinctions across closely related concepts (true positives and false nega-
 1535 tives).

1566 tives). This in turn improves generalization, since the learned similarity space better reflects true
1567 semantic structure rather than being distorted by aggressive penalization of false negatives. Table 21
1568 shows qualitative examples from the above distributions. To approximate true negatives, we sam-
1569 ple from the bottom-ranked retrievals (Top@[90-100]), as these examples are least likely to share
1570 semantic overlap with the query and thus provide a reliable baseline for unrelated pairs.
1571

1572 L THE USE OF LARGE LANGUAGE MODELS (LLMs)

1573

1574 LLMs were only used to aid or polish writing.
1575

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
 1621 Table 21: Qualitative examples of false negatives (text captions) and their similarity scores with
 1622 the anchor image. Here, s_1 denotes the similarity under OSR+GCL and s_2 under OSR+HGCL.
 1623 These examples illustrate how OSR+HGCL mitigates excessive suppression of false negatives, al-
 1624 lowing them to retain higher similarity scores compared to OSR+GCL. Conversely, false negatives
 1625 that already exhibit reasonable similarity with the anchor tend to remain stable or slightly reduced,
 1626 compensating for cases where suppression was more severe. Overall, this yields a calibrated simi-
 1627 larity structure in which false negatives are assigned scores that better reflect semantic relatedness.

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 Anchor Image	1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 False Negative Captions (s_1, s_2) in Top-5 Retrieved texts
	<ul style="list-style-type: none"> • Women's Chain Necklaces $s_1=0.2053, s_2=0.2467$ • necklace image New Arrivals $s_1=0.1720, s_2=0.2429$
	<ul style="list-style-type: none"> • running shoes $s_1=0.1561, s_2=0.2346$
	<ul style="list-style-type: none"> • muslim wedding dresses 3d flower burgundy muslim wedding dresses 2018 arabic custom plus $s_1=0.1713, s_2=0.2238$ • Evening Gowns For Mother Of The Bride In Singapore - Prom Dresses $s_1=0.1913, s_2=0.2333$
	<ul style="list-style-type: none"> • top down view of bowl filled with white bean tomatillo soup with items surrounding. $s_1=0.2061, s_2=0.2047$ • Butternut soup with sriracha. Made it. $s_1=0.2046, s_2=0.2354$
	<ul style="list-style-type: none"> • B32 Office Chair by Armet 3 $s_1=0.0747, s_2=0.2189$ • Burlap Ruffle Chair #burlap #ruffle #furniture $s_1=0.3096, s_2=0.2583$
	<ul style="list-style-type: none"> • gebraucht Audi S8 plus V8 4.0TFSI tiptr. UPE 154.100,- HeadUp/SD $s_1=0.2358, s_2=0.2272$ • Audi Q3 und Audi RS Q3: Facelift und mehr Leistung. $s_1=0.1056, s_2=0.2174$
	<ul style="list-style-type: none"> • Unique Scoop Collar Printed T Shirt $s_1=0.1978, s_2=0.2433$ • T-shirt z nadrukiem - white $s_1=0.1707, s_2=0.2407$ • HX Hot Sale Colorful Skull 3D Print Harajuku T Shirt Grim Reaper Skull Casual T Shirt Men/women Streetwear T Shirt Tops HX768 1 $s_1=0.1560, s_2=0.2301$