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ABSTRACT

CLIP has become a cornerstone of multimodal representation learning, yet im-
proving its performance typically requires a prohibitively costly process of train-
ing from scratch on billions of samples. We ask a different question: Can we im-
prove the performance of open-weight CLIP models across various downstream
tasks using only existing self-supervised datasets? Unlike supervised fine-tuning,
which adapts a pretrained model to a single downstream task, our setting seeks to
improve general performance across various tasks. However, as both our experi-
ments and prior studies reveal, simply applying standard training protocols start-
ing from an open-weight CLIP model often fails, leading to performance degrada-
tion. In this paper, we introduce TuneCLIP, a self-supervised fine-tuning frame-
work that overcomes the performance degradation. TuneCLIP has two key com-
ponents: (1) a warm-up stage of recovering optimization statistics to reduce cold-
start bias, inspired by theoretical analysis, and (2) a fine-tuning stage of optimiz-
ing a new contrastive loss to mitigate the penalization on false negative pairs. Our
extensive experiments show that TuneCLIP consistently improves performance
across model architectures and scales. Notably, it elevates leading open-weight
models like SigLIP (ViT-B/16), achieving gains of up to +2.5% on ImageNet and
related out-of-distribution benchmarks, and +1.2% on the highly competitive Dat-
aComp benchmark, setting a new strong baseline for efficient post-pretraining
adaptation.

1 INTRODUCTION

(+0.96%,+0.28%)

(+1.69%,+2.36%)

(+2.46%,+1.15%)

Figure 1: Improvements delivered by
TuneCLIP (⋆) over baseline models
on complementary evaluation suites:
large-scale DataComp Benchmark (38
datasets) & ImageNet’s 7 distributional
variants.

Contrastive vision-language models such as CLIP which
learn joint image-text representations at scale by training
on hundreds of millions of large scale image-text pairs
(Radford et al., 2021; Cherti et al., 2023) show broad
utility across downstream tasks spanning classification,
cross-modal retrieval, multimodal reasoning (Shen et al.,
2021; Zhao et al., 2023) and generation (Ao et al., 2023).
Recent efforts to improve CLIP have primarily focused
on pretraining by constructing ever larger datasets (Fang
et al., 2023), designing novel objective functions (Qiu
et al., 2023; 2024), or developing refined optimization al-
gorithms (Qiu et al., 2024; Wei et al., 2024). While these
directions have advanced the state of the art, they come at
staggering cost due to billions of image-text pairs, mas-
sive GPU clusters, and days or weeks of computation. In
this work, we ask a complementary but equally impor-
tant question “How can we unlock more from the CLIP
we already have?”, shifting from “How can we pretrain a
better CLIP from scratch?”, which leads to a path that is
cheaper, faster, and far more compute-efficient.

1
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A very common way to improve the model is supervised fine-tuning, which is performed on spe-
cific datasets of a target domain (Nguyen et al., 2024; Srinivasan et al., 2023; Goyal et al., 2023).
These prior works leverage class labels or captions to steer the embedding space. An issue with
these methods is that strong adaptation to the target domain can harm generalization contributing
to reduced robustness to distribution shifts (Ding et al., 2022; Jha et al., 2024). Thus, supervised
fine-tuning cannot be regarded as a procedure to improve a CLIP model in general, rather, it is a
domain adaptation for a specific distribution, often at the expense of transferability.

These limitations motivate an alternative paradigm that we propose, namely self-supervised fine-
tuning (SSFT), which we define as the process of improving a pretrained CLIP model’s overall
representational quality and general-purpose performance, rather than tailoring it to a specific down-
stream task. What makes SSFT actually “self-supervised”? Traditionally, supervised fine-tuning is
carried out on datasets such as ImageNet, CIFAR, or Flickr (Yang et al., 2023; Krizhevsky et al.,
2017; Van Zwol, 2007; Wortsman et al., 2022; Dong et al., 2022; Fahes et al., 2024; Goyal et al.,
2023; Liu et al., 2025), which were constructed through human annotation or domain-specific fil-
tering and are thereby inherently biased models toward a particular domain. By contrast, we use
large-scale web corpora that was constructed for pretraining CLIP models, e.g., (Fang et al., 2023).
The result is task-agnostic corpora, positioning SSFT on them as representation refinement rather
than task adaptation.

At first glance, SSFT resembles pretraining, yet key nuances render its optimization and learning
process substantially more difficult. From the optimization perspective, the contrastive losses in
CLIP training lack unbiased stochastic gradient estimators (Yuan et al., 2022). Consequently, the
optimization error is heavily influenced by the accuracy of the gradient estimates at initialization.
Standard strategies such as zero-initializing the first-order moment in Adam (Kingma & Ba, 2014)
can induce large estimation errors, negating the benefits of a good initial model and causing signif-
icant performance drops at the start of training (cf. Figure 2). We refer to this issue as cold-start
bias.

From the learning perspective, self-supervised contrastive learning suffers the issue of false negative
data, i.e., those that are semantically similar to the anchor data are mistakenly treated as negatives.
This issue becomes more pronounced as models improve. Fine-tuning further amplifies the gap
between positive-pair and negative-pair similarities, allowing false negatives to distort embeddings
of semantically similar data. Consequently, retrieval performance degrades, since it relies on ranking
within a set of highly similar examples.

To address these challenges, we introduce TuneCLIP, a novel self-supervised optimization frame-
work designed to enhance state-of-the-art pretrained open-weight CLIP models. Our contributions
directly address the challenges outlined above:

• We provide a theoretical analysis quantifying the cold-start bias, showing how the initial gradient
estimation error in contrastive loss optimization influences convergence. To mitigate this issue,
we propose Optimizer Statistics Recovery (OSR), which restores accurate first and second-order
moment estimates, along with other useful statistics of the initial model, through a warm-up stage.

• To reduce the impact of false negatives, we introduce a simple yet effective remedy: the hinged
global contrastive loss (HGCL). This loss penalizes positive and negative pairs only when their
similarity gap exceeds a margin, thereby avoiding excessive penalization of false negatives. This
improves retrieval performance while preserving strong zero-shot classification accuracy.

• We conduct extensive experiments on SSFT across multiple pretrained models and data scales.
Our results show consistent improvements over base models and demonstrate superiority to exist-
ing standard pretraining approaches that can be used for SSFT.

2 RELATED WORK

Contrastive Language-Image Pretraining (CLIP) has emerged as a powerful paradigm for learn-
ing joint image-text representations. Following CLIP, several variants have been proposed, including
(Zhai et al., 2023; Sun et al., 2023; Yu et al., 2022; Koleilat et al., 2025). CLIP models are trained
with image encoders, such as Vision Transformers (ViTs) (Dosovitskiy et al., 2020), ResNets (He
et al., 2016), ConvNexts (Woo et al., 2023) and text encoders, including Transformer-based archi-
tectures (Vaswani et al., 2017) and BERT (Devlin et al., 2019).

2
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Improving CLIP. Numerous efforts have sought to enhance the efficiency and effectiveness of CLIP
pretraining. Several works explore variants of mini-batch contrastive losses to improve representa-
tion quality (Li et al., 2023; Chen et al., 2023; Zhai et al., 2023; Shi et al., 2024), while others
approximate global contrastive objectives to achieve similar gains (Yuan et al., 2022; Qiu et al.,
2023; 2024). In parallel, system-level optimizations focusing on distributed frameworks, memory
efficiency, and mixed-precision training have been proposed to further accelerate large-scale CLIP
pretraining (Sun et al., 2023; Rasley et al., 2020; Cherti et al., 2023; Wei et al., 2023). While these
advances improve the scalability of CLIP training, the high cost of pretraining from scratch contin-
ues to motivate methods that adapt and fine-tune existing pretrained CLIPs for downstream tasks.

Improving pretrained CLIP spans several directions, with supervised fine-tuning being the most
prominent. Numerous studies focus on improving in-distribution retrieval and, by relying on labeled
data, are inherently supervision-based (Peleg et al., 2025; Meng et al., 2025; Schall et al., 2024;
Mo et al., 2023). Fine-tuning like pretraining has emerged in methods that optimize contrastive
objectives with positive and negative pairs defined by labels, for instance by converting class names
into textual prompts (Goyal et al., 2023; Wang et al., 2025). The textual prompts for downstream
class labels could also be learned to improve the downstream performance (Zhou et al., 2022b;a;
Khattak et al., 2023). Such label-dependent adaptation frameworks are designed to fit target do-
mains, which is of no use for the general-purpose robustness (Wortsman et al., 2022; Li et al.,
2024). Fine-tuning based on Low-Rank Adaptation (LoRA) (Al Rahhal et al., 2025; Hu et al., 2022)
keep the backbone frozen and learn a small low-rank adapter matrix on downstream data, focusing
on parameter-efficient adaptation rather than improving the base encoder representations. Others
employ curriculum strategies to gradually increase task difficulty (Xiao et al., 2023; Khan et al.,
2023). In contrast, our work advances a paradigm of pure self-supervised fine-tuning (SSFT), which
uses no labels, pseudo-labels, or teacher models, aiming instead to enhance CLIP’s generality while
preserving its robust pretrained representations.

Performance degradation in fine-tuning pretrained CLIP is commonly observed. In constrained
settings, even modest departures from effective optimization configurations can undermine repre-
sentation learning and lead to severe degradation (Wortsman et al., 2022; Wei et al., 2023; Mosbach
et al., 2020; Wortsman et al., 2023). Furthermore, even when stable training is achieved, multiple
studies report a consistent degradation in retrieval performance on other datasets after adaptation on
downstream data (Kumar et al., 2022; Peleg et al., 2025; Bafghi et al., 2025), a phenomenon we also
observe in our experiments. Consequently, the key problem and the primary motivation for our work
is to develop a SSFT strategy that not only avoids these failure modes but also delivers concurrent
gains across benchmarks.

It is crucial to distinguish SSFT from continual learning. The latter involves training a model on a
sequence of tasks over time, with the primary objective of acquiring new knowledge while avoiding
catastrophic forgetting of previous tasks Ding et al. (2022); Jha et al. (2024); Xiao et al. (2023); Jiao
et al. (2024). In contrast, SSFT aims to improve a pre-trained model through a single adaptation step
on a static dataset, enhancing its general capabilities without a sequential task structure.

3 PRELIMINARIES

Notations: Let D = {(xi, zi)}ni=1 be a dataset of n image–text pairs, where xi denotes the i-th
image and zi denotes its corresponding text description. Given CLIP modelM (with |M| parame-
ters), we learn two separate encoders. We define f(·) and g(·) as the encoders for images and texts,
parameterized by θ1 and θ2, respectively. For ease, we define the joint parameter of the image
and text encoders as ω = [θ1,θ2]. To ensure that cosine similarity can be consistent with the inner
product, both encoders output ℓ2 normalized vector representations in Rd. Thus the cosine similarity
between an image xi and a text zj is si,j = f(xi;ω)⊤g(zj ;ω). To discuss algorithms later, we need
the notations for a mini-batch, so let us consider B ⊂ D having B = |B| samples to be a mini-batch
sampled from the full dataset D.

Mini-batch Contrastive Loss (MBCL). The standard mini-batch based contrastive loss for a batch
B is given by (Radford et al., 2021):

LMBCL(ω) = − 1

|B|

|B|∑
i=1

[
log

exp(si,i/τ)∑|B|
j=1 exp(si,j/τ)

+ log
exp(si,i/τ)∑|B|
j=1 exp(sj,i/τ)

]
. (1)

3
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which encourages high similarity for positive image–text pairs and low similarity for negative pairs
in the shared Rd space. Here τ > 0 is the temperature parameter. Cherti et al. (2023) used this loss
to train OpenCLIP models.

Global Contrastive Loss (GCL). One limitation of optimizing MBCL is that it requires a large
batch size in order to achieve competitive performance. To address this issue, we follow previous
works (Yuan et al., 2022) and use a Global Contrastive Loss (GCL). Without loss of generality, let us
introduce a pairwise loss ℓ(sj,i−si,i), which measures the loss on the difference between a negative
data pair and a positive data pair. Then we define two functions Φ1(·),Φ2(·) for image-anchor data
and text-anchor data, respectively, i.e.,

Φ1(ω, i,D) = 1

n

∑
zj∈D\{zi}

exp

(
ℓ(si,j − si,i)

τ

)
, Φ2(ω, i,D) = 1

n

∑
xj∈D\{xi}

exp

(
ℓ(sj,i − si,i)

τ

)
,

Then GCL can be defined as:

LGCL(ω) =
τ

n

n∑
i=1

[
log
(
ε+Φ1(ω, i,D)

)
+ log

(
ε+Φ2(ω, i,D)

)]
, (2)

where ε > 0 is a small constant that increases numerical stability. Without explicitly mentioned, we
consider ℓ(·) = · for GCL as used in (Wei et al., 2024) for CLIP training from scratch.

Optimization Algorithms. A fundamental challenge of optimizing GCL is that it lacks unbiased
stochastic gradient estimator. To see this, the gradient of LGCL(ω) is given by

∇LGCL(ω) =
τ

n

n∑
i=1

[
1

ε+Φ1(ω, i,D)
∇Φ1(ω, i,D) + 1

ε+Φ2(ω, i,D)
∇Φ2(ω, i,D)

]
Since Φ∗(ω, i,D) is the denominator, simply using their mini-batch estimator will yield a biased
gradient estimator. To address this issue, Yuan et al. (2022) propose an algorithm SogCLR, which
maintains and updates an estimator ui,x, ui,z for each Φ1(ω, i,D) and Φ2(ω, i,D) along the opti-
mization trajectory. At the t-iteration with a mini-batch Bt, they are updated by

u
(t)
i,x = (1− γt)u

(t−1)
i,x + γt Φ1(ωt−1, i,Bt), u

(t)
i,z = (1− γt)u

(t−1)
i,z + γt Φ2(ωt−1, i,Bt), (3)

Then a stochastic gradient estimator of LGCL w.r.t. the shared parameters ω at iteration t is:

G(ωt−1,Bt) =
τ

|Bt|
∑
i∈Bt

[
1

ε+ u
(t)
i,x

∇ωΦ1(ωt−1, i,Bt) +
1

ε+ u
(t)
i,z

∇ωΦ2(ωt−1, i,Bt)

]
. (4)

Then the first-order moment is updated followed by a model parameter update:

mt = β1mt−1 + (1− β1)G(ωt−1,Bt)
ωt = ωt−1 − ηtmt.

(5)

Wei et al. (2024) has designed a distributed optimization framework FastCLIP based on the above
algorithm for large-scale CLIP training.

4 TUNECLIP: A SELF-SUPERVISED OPTIMIZATION FRAMEWORK

As outlined in the problem statement, our goal is to adapt pretrained parameters ω0 to obtain refined
weights ω⋆ that improve performance across diverse domains. In the following two subsections, we
will discuss the challenges and present our solutions. We will mainly compare with two approaches,
OpenCLIP and FastCLIP equipped with an Adam-style optimizer with an initialization ω0.

4.1 STAGE I: OPTIMIZER STATISTICS RECOVERY (OSR)

A naive approach for SSFT with a pretrained modelM with weights ω0 is to just run OpenCLIP
(Cherti et al., 2023) or FastCLIP (Wei et al., 2024) algorithms on an existing self-supervised learning
dataset D with an initialization of ω0. Our hypothesis is that an open-weight pretrained model ω0

(e.g., OpenAI’s ViT-B/16) is usually not an optimal model. However, we observe a performance

4
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Algorithm 1 Optimizer Statistics Recovery (OSR)

Init: ω0 (Pretrained), m0 ← [0]|M|, v0 ← [0]|M|, u(0)
x ← [0]|D|, u

(0)
z ← [0]|D|

for iteration t = 1 to T do
Sample Bt ⊂ D // mini-batch sampling

u
(t)
i,x ← (1− γt)u

(t−1)
i,x + γt Φ1(ω0, i,Bt),∀i ∈ Bt // refer equation 3

u
(t)
i,z ← (1− γt)u

(t−1)
i,z + γt Φ2(ω0, i,Bt),∀i ∈ Bt

Compute gt = G(ω0,Bt) // frozen ω0

Update mt ← β1mt−1 + (1− β1)gt // first moment
Update vt ← β2vt−1 + (1− β2)(gt ⊙ gt) // second moment

Return: m⋆ ← mT , v
⋆ ← vT , u

⋆ ← {u(T )
i,x , u

(T )
i,z }i∈D // Transfer to next stage

Figure 2: Zero-shot classification (%) performance on ImageNet-1k over 5 fine-tuning epochs for
two OpenAI CLIP models (left: ViT-B/16, right: ViT-B/32). While FastCLIP and OpenCLIP show
initial degradation and slow recovery, TuneCLIP maintains superior performance throughout fine-
tuning.

degradation in the first epoch of fine-tuning, see Figure 2, with the details of training deferred to
Section 5. This phenomenon is common regardless of the model structure and datasets used for
fine-tuning.

To understand this phenomenon, we provide a theoretical analysis of optimization error. We
consider the optimization algorithm SogCLR used by FastCLIP, and note that analysis of Open-
CLIP’s optimization algorithm suffer from the same issue. To run FastCLIP algorithm, we
need to initialize several statistics, including m0 and u

(0)
i,x , u

(0)
i,z ,∀i. These statistics are usu-

ally initialized to zeros in standard pretraining from scratch. Below, we show that their esti-
mation error has a great impact on the convergence. To simplify the presentation, we intro-
duce the following notations: u

(t)
x = [u

(t)
1,x, · · · , u

(t)
n,x], u

(t)
z = [u

(t)
1,z, · · · , u

(t)
n,z], Φ1(ω0,D) =

[Φ1(ω0, 1,D), · · · ,Φ1(ω0, n,D)],Φ2(ω0,D) = [Φ2(ω0, 1,D), · · · ,Φ2(ω0, n,D)]. Due to space
limitations, all necessary assumptions and theorem proofs in this subsection are deferred to Ap-
pendix A.

Theorem 4.1. Let us consider the updates in (5) with initializations u
(0)
x , u

(0)
z , and m0. Under

appropriate assumptions, with 1 − β1 = O(Bϵ2), γ = O(Bϵ2) and η = O(B
2ϵ2

n ), we can find an
ϵ-stationary point ω such that E[∥∇LGCL(ω)∥] ≤ ϵ in

T = O

(
n

B2ϵ4

(
∆0 +

B

n
M0 + Ux,0 + Uz,0

))
iterations, where ∆0 = LGCL(ω0) − minω LGCL(ω), M0 = ∥m0 −∇ωLGCL(ω0)∥2, Ux,0 =

1
2n

∥∥∥u(0)
x − Φ1(ω0,D)

∥∥∥2, Uz,0 = 1
2n

∥∥∥u(0)
x − Φ2(ω0,D)

∥∥∥2.

Remark: The above theorem exhibits how the initial estimation errors of u(0)
x , u

(0)
z , and m0 affects

the iteration complexity for finding an ϵ-stationary solution. Since a pretrained model ω0 is already

5
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(a) Supervised finetuning (b) Self-Supervised finetuning

Figure 3: In supervised fine-tuning (red), OSR+GCL outperforms OSR+HGCL (TuneCLIP) be-
cause true negative labels justify separating negatives. In contrast, under self-supervised fine-tuning
(blue), the absence of such labels makes OSR+HGCL more suitable, leading to improved retrieval
performance on Flickr when fine-tuned with SSFT (see Appendix E for OpenAI CLIP & details).

well trained, we expect ∆0 to be small. However, the initial estimation errors of u(0)
x , u

(0)
z , and m0

could be very large if they are initialized to zeros. It is these errors that cause the breaks convergence
and hence the performance degradation at the beginning of training. We refer to this issue caused by
the initial estimation errors of statistics Φ1(ω0,D),Φ2(ω0,D),∇ωLGCL as cold-start bias.

To address the cold-start bias, we propose a simple method that aims to compute a better estimation
of statistics Φ1(ω0,D),Φ2(ω0,D),∇ωLGCL for updating ω0. The idea is just run the update (5)
with the model parameter fixed at ω0. We present the details in Algorithm 1, which is referred to as
optimizer statistics recovery (OSR). The following theorem provides a guarantee that the estimation
errors of returned statistics of OSR would be much reduced. In practice, we also compute a second
moment estimator for using Adam optimizer, which improves performance in our experiments.
Theorem 4.2. Let Algorithm 1 run for E epochs (equivalently T = E · nB iterations) with 1−β1 =

O(
√

B
E ), γ = O(

√
B
E ), we have that:

E
[
1

2n

∥∥∥u(τ)
x − Φ1(ω0,D)

∥∥∥2 + 1

2n

∥∥∥u(τ)
z − Φ2(ω0,D)

∥∥∥2 ] ≤ O

(
Ux,0 + Uz,0√

BE
+

1√
BE

)
, (6)

E
[
∥mτ −∇ωLGCL(ω0)∥2

]
≤ O

(
B
NM0 + Ux,0 + Uz,0√

BE
+

1√
BE

)
(7)

where τ ∈ {0, . . . , T − 1} is randomly sampled.

We observe that E = 5 epochs for OSR is good enough to ensure stable training in the second stage
of updating the model parameters.

4.2 STAGE II: HINGED GLOBAL CONTRASTIVE LOSS

With accurate initializations of m0 and u
(0)
i,x , u

(0)
i,z ,∀i found by OSR, we continue fine-tuning ω0

with the SogCLR algorithm. This brings evident improvement across a variety of tasks. However,
one issue is that the retrieval performance could still decline as fine-tuning progresses. We illustrate
a result of the fine-tuning of SigLIP ViT-B/16 on the DFN dataset (see Figure 3b), where the retrieval
performance on the fine-tuning dataset keeps increasing but the retrieval performance on testing data
such as Flickr decreases. This phenomenon is also prevalent regardless of the pretrained models;
see Figure 7 (Appendix E).

We attribute this generalization gap to the prevalence of false negatives in web-scale datasets. By
optimizing GCL with ℓ(·) = ·, we keep decreasing the similarity gap sij − sii and sji − sii across
interations. If (xi, zj) are semantically similar, e.g., zj is the caption of an image xj that is seman-
tically similar to xi, then minimizing sij − sii would distort well learnt embeddings of xi, zj . This
strict separation on training data will undermine the testing performance due to distributional shift.
This is the reason that leads to the retrieval performance drop.

To mitigate this over-penalization of false negatives, we introduce a simple yet effective remedy by
using a hinge-based pairwise surrogate loss ℓ(sij−sii) = max(sij−sii+m, 0)2 with m > 0 being
a margin hyperparameter constant. It means that as long as sii > sij +m, its gradient will become

6
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Algorithm 2 TuneCLIP Algorithm
Given: ω0 (Pretrained), dataset D, batch size |B|, epochs E′, τ , margin m, γt, Adam (β1, β2)
(m⋆, v⋆, {u⋆

i,x, u
⋆
i,z}i∈D)← OSR(ω0,D) // refer Alg. 1

Init: ω ← ω0; m0 ← m⋆; v0 ← v⋆; u(0)
i,x ← u⋆

i,x, u
(0)
i,z ← u⋆

i,z for all i ∈ D
for iteration t = 1 to T ′ do

Sample Bt ⊂ D // mini-batch sampling
for each i ∈ Bt do

Φm
1 (ω, i,Bt)← 1

|Bt|
∑

zj∈Bt\{zi} exp
(

ℓ(si,j−si,i)
τ

)
// equation 8

Φm
2 (ω, i,Bt)← 1

|Bt|
∑

xj∈Bt\{xi} exp
(

ℓ(sj,i−si,i)
τ

)
// equation 8

u
(t)
i,x ← (1− γt)u

(t−1)
i,x + γt Φ

m
1 (ω, i,Bt)

u
(t)
i,z ← (1− γt)u

(t−1)
i,z + γt Φ

m
2 (ω, i,Bt)

g̃t ←
τ

|Bt|
∑

i∈Bt

[
1

ε+ u
(t)
i,x

∇ωΦ
m
1 (ω, i,Bt) +

1

ε+ u
(t)
i,z

∇ωΦ
m
2 (ω, i,Bt)

]
Update mt, vt, and ω using Adam-style optimizer with gradient g̃t

Return: ω⋆ ← ω // Best parameters after last iteration

zero and hence will not affect the model updates anymore. Illustrative examples of this phenomenon
are provided in Table 21 (Appendix K). Accordingly, we define new Φm

1 (.) (image-anchored) and
Φm

2 (.) (text-anchored) as:

Φm
1 (ω, i,D) = 1

|D|
∑

j∈D\{i}

exp

(
ℓ(si,j − si,i)

τ

)
, ℓ(si,j − si,i) = [ si,j − si,i +m ]2+,

Φm
2 (ω, i,D) = 1

|D|
∑

j∈D\{i}

exp

(
ℓ(sj,i − si,i)

τ

)
, ℓ(sj,i − si,i) = [ sj,i − si,i +m ]2+.

(8)

Equation 8 leads to the Hinged Global Contrastive Loss (HGCL), defined below.

LHGCL(ω) =
τ

|D|
∑
i∈D

[
log
(
ε+Φm

1 (ω, i,D)
)
+ log

(
ε+Φm

2 (ω, i,D)
)]

. (9)

We optimize LHGCL using the SogCLR algorithm with OSR. Algorithm 2 presents the details of
our final algorithm named TuneCLIP, combining OSR with HGCL.

Finally, we note that the margin m is a hyperparameter that controls how aggressively negatives are
separated from the positive. A larger m enforces stricter separation, pushing more false negatives
downward until their similarity (si,j or sj,i) lies at least m below the positive score (si,i), even when
they start with relatively high similarity. Conversely, a smaller m relaxes this constraint, allowing
higher-scoring false negatives to be retained but at the risk of insufficient separation of true negatives.
Choosing m therefore presents a tradeoff between alleviating the over-suppression of semantically
related false negatives and preventing true negatives from remaining too close to the anchor.

5 EXPERIMENTS

Open-Weight CLIP models. We explore a range of pretrained CLIP models at different scales, in-
cluding OpenAI’s CLIP ViT-B/32, OpenAI’s CLIP ViT-B/16, LAION’s CLIP ViT-B/32 and SigLIP
ViT-B/16, where ViT-B/X refers to the ViT based image encoder. We report results for fine-tuning
OpenAI’s ViT-B/16 and SigLIP ViT-B/16 in the main paper, and provide results of fine-tuning other
models in Appendix G. We additionally evaluated our method for fine-tuning the state-of-the-art
CLIP ViT-H/14 pretrained on DFN-5B (Fang et al., 2023).

Fine-tuning datasets. To study how performance scales with data under fixed training conditions,
we fine-tune on two subsets of the DFN datasets (Fang et al., 2023) containing 12 million (DFN-
12M) and 60 million (DFN-60M) samples. DFN datasets are generated by applying Data Filtering
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Table 1: Summary of mean zero-shot performance across ImageNet variants, retrieval benchmarks,
and the DataComp benchmark, together with wall-clock training time (WCT) per GPU. While
TuneCLIP delivers consistent improvements across both models, stronger baseline models like
SigLIP ViT-B/16 show more modest retrieval gains compared to OpenAI ViT-B/16.

Base Model Method WCT. (hrs) IN & Variants Retrieval DataComp

OpenAI
ViT-B/16

Baseline N/A 57.67 57.46 56.26
FastCLIP 4.21 54.57 (↓) 51.88 (↓) 53.53 (↓)
OpenCLIP 5.46 54.99 (↓) 57.81 (↓) 55.11 (↓)
TuneCLIP 8.62 59.36 (+1.69) 64.12 (+6.66) 58.62 (+2.36)

SigLIP
ViT-B/16

Baseline N/A 63.12 69.32 62.32
FastCLIP 4.28 39.22 (↓) 43.37 (↓) 45.80 (↓)
OpenCLIP 7.55 40.21 (↓) 51.54 (↓) 48.10 (↓)
TuneCLIP 9.27 65.58 (+2.46) 69.44 (+0.11) 63.47 (+1.15)

Networks, which uses a trained model to filter massive uncurated web data into high-quality, task-
agnostic corpora. While varying the datasets, the model architecture, optimizer, and schedule are
kept fixed.

Training hyperparameters & algorithms. We run OSR for E = 5 epochs, and another E
′
= 5

epochs for fine-tuning. Optimizer used is AdamW (Kingma & Ba, 2014) (β1=0.9, β2=0.98). The
CLIP temperature τ remains fixed as provided with checkpoint (no scheduling). We sweep learning
rates {10−4, 10−5, 10−6}. Batch sizes are 256× 8 GPUs for ViT-B/16 and 512× 8 GPUs for ViT-
B/32 CLIPs. The margin m is swept from 0.5 down to 0.01, with values around 0.1 proving to be the
most effective across the majority of architectures. More details are provided in Appendices B & C
with ablation study on m in Appendix C.1. To ensure consistency and reproducibility, we implement
our algorithm using FastCLIP codebase.

Evaluation protocol and metrics. We follow the DataComp protocol (Gadre et al., 2023) and use
38 benchmark datasets. Our main results are reported in three evaluation groups: (1) ImageNet-1k
and six robustness variants (Krizhevsky et al., 2017) for assessing zero-shot classification accuracy,
(2) MSCOCO or COCO (Vinyals et al., 2016) and Flickr30k (Van Zwol, 2007) for measuring multi
as well as single-object retrieval performance, and (3) the full DataComp (Gadre et al., 2023) bench-
mark. Best model selection is primarily guided by performance on ImageNet-1k.

Main Results. We present results on three evaluation suites for fine-tuning various models on DFN-
12M in Table 1. We also plot the curves of zero-shot classification performance on ImageNet-1k dur-
ing training for different checkpoints of TuneCLIP in Figures 2 and in Figures 9, 10 (Appendix F).
Additional detailed results of of zero-shot classification on ImageNet and its variants are shown in
Tables 12, 13, and of other tasks are provided in Tables 11, 14, 15. Table 10 summarizes the overall
DataComp performance. We observe that TuneCLIP delivers substantial gains over the base model,
most notably for OpenAI ViT-B/16 with 6.7% improvement on retrieval and 1.7% improvement on
zero-shot classification, while improvements for SigLIP are smaller given its stronger baseline. In
contrast, the baseline methods OpenCLIP and FastCLIP not only fail to improve the performance
over the base model but also suffer significant performance drop in retrieval and zero-shot classifi-
cation.

Finally, TuneCLIP for fine-tuning the state-of-the-art model ViT-H/14-quickgelu (Fang et al., 2023)
achieves new SOTA accuracy on ImageNet and its variants (Appendix J), surpassing ViT-H/14 at
224×224 image resolution by about 1.5% (from 71.80% to 73.23%), while maintaining comparable
performance on Retrieval and DataComp. Compared to the improvements on weaker models, e.g.,
+1.69% (from 57.67% to 59.36%) on OpenAI ViT-B/16 and +2.46% over SigLIP ViT-B/16 (from
63.12% to 65.58%), the improvement of 1.5% (from 71.80% to 73.23%) is still significant.

Computational Cost & Analysis. We also provide a compute cost analysis for all the algorithms
in Appendix H, reporting wall-clock time and GPU-hours across all backbones (Tables 1, 16, 17 &
18). While TuneCLIP incurs higher compute due to its two-stage framework, the overhead remains
modest and is consistently accompanied by improved performance across metrics. In contrast, base-
line methods cannot even achieve any major improvements even with the same computational costs
as ours (refer Figure 10 for extended run of baseline methods).
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Table 2: Ablation study on the impact of transferring optimizer statistics from OSR to HGCL fine-
tuning using OpenAI ViT-B/16 CLIP. Starting from the baseline without any transferred states, per-
formance is limited across all benchmarks. Introducing (mt, vt) transfer yields a substantial jump.
Adding ut on top provides a further boost, resulting in the strongest overall score.

(mt, vt) ut IN & Variants Retrieval DataComp Mean
(×, ×) × 54.91 58.64 54.49 56.01
(✓, ✓) × 59.48 63.70 58.56 60.58
(✓, ✓) ✓ 59.36 64.12 58.62 60.70 (+4.69)

5.1 ABLATION & SCALING OF TUNECLIP

We begin with an ablation study on the effect of OSR, comparing TuneCLIP with full statistics re-
covery, partial recovery of mt and vt, and no recovery at all. The results are reported in Table 2,
which shows that using the full recovered statistics from OSR achieves the best, and the recover of
first and second-order moments is more important than the recover of ut (i.e., ux, uz). TuneCLIP
reaches a +4.7% DataComp gain when all (mt, vt, ut) are used. Beyond the ablations conducted
within OSR itself, we also compare against simple cold-start mitigation heuristics that practitioners
might reasonably try to stabilize fine-tuning, as presented in Appendix I (Table 19). These alterna-
tives offer only limited stability and smaller gains, reinforcing that OSR provides a more effective
and reliable solution to cold-start bias.

We also conduct an ablation study comparing GCL with HGCL, both with OSR for supervised fine-
tuning and SSFT. For supervised fine-tuning, we fine-tune a pretrained model on the training set of
Flickr30k data and evaluate on a testing set of Flickr1k. For SSFT, we finetune the same pretrained
model on DFN-12M and evaluate on the same testing set of Flickr1k. The results are shown in
Figure 3 for fine-tuning SigLIP ViT-B/16 and in Figure 7(Appendix E) for fine-tuning OpenAI’s
CLIP ViT-B/16. The results indicate that for supervised fine-tuning, optimizing GCL with OSR
delivers better retrieval performance on the training as well as testing set, while for SSFT, optimiz-
ing HGCL with OSR delivers better retrieval performance. This confirms the difference between
SSFT and supervised fine-tuning due to the presence of false negatives in SSFT, and corroborates
the effectiveness of optimizing HGCL in improving the retrieval performance in case of SSFT. In
Figure 11 (Appendix K), we further show that optimizing HGCL achieves smaller variance of sim-
ilarities scores for false negatives (Top 5 retrieved negative samples). We also observe that the true
positive (Top-1) distribution becomes closer to the false negative distribution in the fine-tuning data.

HGCL: (+0.95, +0.22)

GCL: (+0.77, - 1.52)

HGCL: (+2.46, +0.11)

GCL: (+2.74, - 1.98)

SigLIP
ViT-B/16

LAION
ViT-B/32

Figure 4: GCL improves classifica-
tion but can degrades retrieval, whereas
HGCL stabilizes retrieval while pre-
serving overall classification gains.

As discussed earlier, standard GCL (without margin-
based thresholding) tends to improve classification but si-
multaneously reduces retrieval scores, with some models
such as SigLIP ViT-B/16 and LAION ViT-B/32, falling
below their pretrained retrieval baselines due to false-
negative over-penalization. As shown in Fig. 4, HGCL
mitigates this degradation, preserving classification per-
formance at a comparable level while maintaining re-
trieval accuracy at or above the original baseline.

Finally, we analyze how TuneCLIP scales with increas-
ing amounts of fine-tuning data while keeping the model
size fixed. As shown in Figure 5, the method maintains
stable performance even with a fivefold increase in data
on DFN-60M. Although scaling from 12M to 60M sam-
ples provides further gains, the improvement is modest
because fine-tuning operates on already well-structured
pretrained representations. Most generalizable features
are retained from pretraining, so additional data primarily
reinforces existing alignments rather than discovering new ones.

The DFN datasets are constructed by filtering web image-text pairs using a learned filter, and thus
form a relatively clean source of self-supervised training data. To examine how TuneCLIP behaves
on noisier corpora, we also fine-tune on the CC12M dataset (Changpinyo et al., 2021), which is a
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Table 3: Comparison of TuneCLIP performance with OpenAI CLIP ViT-B/16 when fine-tuned on
two different training corpora, the noisier CC12M dataset and the filtered DFN-12M subset.

Method Data IN & Variants Retrieval DataComp
Base (OpenAI) × 57.67 57.46 56.26
TuneCLIP CC12M 57.68 (+0.01) 65.83 (+8.37) 56.47 (+0.21)
TuneCLIP DFN12M 59.36 (+1.69) 64.12 (+6.66) 58.62 (+2.36)

(a) OpenAI ViT-B/16 (b) SigLIP ViT-B/16

Figure 5: Effect of data scaling on TuneCLIP performance across models.

web corpus with weaker caption-image alignments or less precise texts for an image. As shown in
Table 3, TuneCLIP fine-tuned on CC12M still yields a clear improvement and consistent positive
gains across the three metrics, while DFN-12M produces even larger average improvements. Over-
all, these results indicate that TuneCLIP remains effective on both cleaner filtered data and noisier,
unfiltered web corpora, rather than relying on any specific property of a dataset.

6 CONCLUSION

TuneCLIP solves a core problem in model adaptation by showing how to fine-tune a pre-trained
model into a superior version with broad, multi-domain improvements. Our two-stage approach,
combining optimizer statistics recovery with a hinge-based contrastive loss, provides the mecha-
nism, delivering consistent and dissectible gains across classification, retrieval, and diverse bench-
marks. This work thus does more than just propose a new method, it opens a concrete and promising
new direction for self-supervised fine-tuning, moving us beyond the limitations of prior art toward
truly general-purpose foundation model enhancement.

7 LIMITATIONS AND FUTURE WORKS

One limitation of this work is that we use all data for self-supervised fine-tuning without data selec-
tion or filtering. As a future direction, we consider how to select the most informative data given the
knowledge of the pretrained model to accelerate the fine-tuning. Extending our framework beyond
CLIP models to other self-supervised architectures (e.g. DINO) is also an interesting direction.
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A PROOF FOR THEOREMS IN SUBSECTION 4.1

In this part we consider a general FCCO problem:

min
ω

1

N

N−1∑
i=1

f(gi(ω))

and the corresponding SOX algorithm Wang & Yang (2022). As discussed in preliminary, by speci-
fying N = 2n, f(·) = log(ϵ+ ·), gi(·) = gi(·,D) = Φ1(·, i,D) if i ≤ n otherwise Φ2(·, i− n,D),
we recover the GCL loss and the SogCLR algorithm. We also set |B1| = |B2| = B in SOX when
presenting its convergence analysis to simplify notation. Before starting our proofs, we make the
following standard, commonly used assumptions as in Wang & Yang (2022) under which theorems
in subsection 4.1 hold:
Assumption A.1. We assume that:
• f(·) and∇f(·) are Cf and Lf -Lipschitz continuous, respectively.
• gi(·) and∇gi(·) are Cg and Lg-Lipschitz continuous, respectively.
Assumption A.2. There exist constants σ0 ≥ 0 and σ1 ≥ 0 such that the following statements
hold for gi(ω) and gi(ω, ξi) for i = 1, . . . , N for any ω ∈ Rd E∥gi(ω, ξi) − gi(ω)∥2 ≤ σ2

0 ,
E ∥∇gi(ω, ξi)−∇gi(ω)∥2 ≤ σ2

1 .

A.1 TECHNICAL LEMMA

We cite the technical lemma from Wang & Yang (2022) here with slightly changes.
Lemma A.3 (Lemma 8 from Wang & Yang (2022)). Consider a sequence ωt+1 = ωt− ηmt+1 and
the LF -smooth function F and the step size ηLF ≤ 1/2.

F (ωt+1) ≤ F (ωt) +
η

2
Mt −

η

2
∥∇F (ωt)∥2 −

η

4
∥mt+1∥2 , (10)

where Mt := ∥mt+1 −∇F (ωt)∥2.

We build a recursion for the gradient variance Mt by proving the following lemma.
Lemma A.4. If β ≤ 2

7 , the gradient variance Mt can be bounded as

E [Mt+1] ≤ (1− β)E [Mt] +
2L2

F η
2

β
E
[
∥mt+1∥2

]
+

2β2C2
f (σ

2
1 + C2

g )

B
+ 5βL2

fC
2
1E [Ut+1]

(11)

where Ut = 1
N ∥ut+1 − g(ωt;D)∥2, ut = [u

(t)
1 , . . . , u

(t)
N ]⊤, g(ωt;D) =

[g1(ωt;D1), . . . , gN (ωt;DN )]⊤ and C2
1 = C2

g +
σ2
1

B . Also note that we follow the tradition
usage of β in Wang & Yang (2022) so β = 1− β1 where β1 is used in algorithm 1.

Remark: We point out that the lemma is similar to lemma 9 in Wang & Yang (2022) without a term
corresponding to ∥ut+1 − ut∥2, the gap is caused by the different usage of u when constructing the
overall gradient estimator G(ωt−1,Bt): instead of using old ut−1 as in SOX we use a newer version
ut in this paper. This would require sampling one more iid minibatch per iteration to derive a bound
as shown in the lemma. However in practice we typically sample only a single minibatch.
Lemma A.5. If γ ≤ 1/5, function value variance Ut can be bounded as

E [Ut+1] ≤
(
1− γB

4N

)
E [Ut] +

5Nη2C2
g

γB
E
[
∥mt+1∥2

]
+

2γ2σ2
0

N
(12)

Remark:We directly drop the negative term in lemma 2 in Wang & Yang (2022).

A.2 PROOF OF THEOREM

proof of theorem 4.1. The proof is almost the same as theorem 3 in Wang & Yang (2022) so we only

make necessary clarifications. Summing equation 10, η
β×equation 11, and

20L2
fC

2
1Nη

γB ×equation 12
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leads to

E

[
F (ωt+1)− F ∗ +

η

β
Mt+1 +

20L2
fC

2
1Nη

γB

(
1− γB

4N

)
Ut+1

]

≤ E

[
F (ωt)− F ∗ +

η

β

(
1− β

2

)
Mt +

20L2
fC

2
1Nη

γB

(
1− γB

4N

)
Ut

]
− η

2
E
[
∥∇F (ωt)∥2

]
− η

(
1

4
− 2L2

F η
2

β2
−

100L2
fN

2C2
1η

2C2
g

γ2

)
E
[
∥mt+1∥2

]
+

2βηC2
f (σ

2
1 + C2

g )

B
+

40ηγL2
fC

2
1σ

2
0

B
.

Set β = min{ Bϵ2

12C2
f (σ

2
1+C2

g)
, 2
7}, γ = min

{
Bϵ2

240L2
fC

2
1σ

2
0
, 1
5

}
, and η = min

{
β

4LF
, γB
30LfNC1Cg

}
.

Define the Lyapunov function as Γt := F (ωt)− F ∗ + η
βMt +

20L2
fC

2
1N

B
η
γ

(
1− γB

4N

)
Ut. Then,

1

T

T−1∑
t=0

E
[
∥∇F (ωt)∥2

]
≤ 2Γ0

ηT
+

4βC2
f (σ

2
1 + C2

g )

B
+

80γL2
fC

2
1σ

2
0

B
, (13)

discarding the non-dominant terms and unimportant constants, to guarantee
1
T

∑T−1
t=0 E

[
∥∇F (ωt)∥2

]
≤ ϵ2 we need at most

T = O

(
nΓ0

B2ϵ4

)
= O

(
n

B2ϵ4
(∆0 +

B

n
M0 + U0)

)
iterations, which leads to conclusion by noting that U0 = 1

N ∥u0 − g(ω0;D)∥2 =

1
2n

∥∥∥u(0)
x − Φ1(ω0,D)

∥∥∥2 + 1
2n

∥∥∥u(0)
z − Φ2(ω0,D)

∥∥∥2.

proof of theorem 4.2. Note that algorithm 1 is essentially SOX Wang & Yang (2022) without updat-
ing the model parameters ω(i.e. learning rate η = 0), we can still leverage lemma A.4 and A.5 by
plugging η = 0 into them and have the following bound:

E [Mt+1] ≤ (1− β)E [Mt] +
2β2C2

f (σ
2
1 + C2

g )

B
+ 5βL2

fC
2
1E [Ut+1] (14)

E [Ut+1] ≤
(
1− γB

4N

)
E [Ut] +

2γ2σ2
0

N
(15)

Note that now we are not updating ω so Mt = ∥mt+1 −∇ωLGCL(ω0)∥2, Ut =
1
N ∥ut+1 − g(ω0;D)∥2. Rearranging terms and divide both side for equation 14, equation 15 by β

and γB
4N , respectively, then we have:

E [Mt] ≤
1

β
E [Mt −Mt+1] +

2βC2
f (σ

2
1 + C2

g )

B
+ 5L2

fC
2
1E [Ut+1] (16)

E [Ut] ≤
4N

γB
E [Ut − Ut+1] +

8γσ2
0

B
(17)

combining the above two inequalities we have

E [Mt] ≤
1

β
E [Mt −Mt+1] +

2βC2
f (σ

2
1 + C2

g )

B
+ 5L2

fC
2
1

(
(
4N

γB
− 1)E [Ut − Ut+1] +

8γσ2
0

B

)
≤ E [Ψt −Ψt+1] +

2βC2
f (σ

2
1 + C2

g )

B
+

40γσ2
0L

2
fC

2
1

B
(18)

where Ψt =
1
βMt +

20NL2
fC

2
1

γB

(
1− γB

4N

)
Ut. Sum over t = 0, 1, · · · , T − 1 and divide both side by

T then we have

1

T

T−1∑
t=0

E[Mt] ≤
Ψ0

T
+

2βC2
f (σ

2
1 + C2

g )

B
+

40γσ2
0L

2
fC

2
1

B
(19)
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Convergence of Ut can be easily derived from equation 17 by summing over t = 0, 1, · · · , T − 1
and divide both side by T :

1

T

T−1∑
t=0

E[Ut] ≤
4NU0

γBT
+

8γσ2
0

B
(20)

By setting β = O(
√

N
T ), γ = O(

√
N
T ) and omitting unimportant constants, we have

Eτ [E[Mτ ]] =
1

T

T−1∑
t=0

E[Mt] ≤ O

(
M0√
NT

+
U0√
BE

+
1√
BE

)
(21)

Eτ [E[Uτ ]] =
1

T

T−1∑
t=0

E[Ut] ≤ O

(
U0√
BE

+
1√
BE

)
(22)

which directly leads to the conclusion by noting that N = 2n, T = nE
B and U0 = Ux,0 + Uz,0.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B ADDITIONAL DETAILS ON CLIP MODELS

The CLIP models (ViT-B/32 and ViT-B/16) use an embedding dimension of 512 for contrastive
learning. In contrast, SigLIP employs a larger embedding dimension of 768. Moreover, SigLIP text
encoders are configured with no causal mask, meaning tokens can attend bidirectionally, which
differs from the causal masking used in standard CLIP-style transformers. Tables 4 and 5 summarize
the configurations of the vision and text encoders, respectively. Table 6 further reports the overall
model specifications, including parameter counts and developers. These model configurations are
taken from open source implementations of these models.

Table 4: Vision tower configurations of CLIP models.

Model Image Size Layers Width Patch Size
CLIP ViT-B/32 224 12 768 32
CLIP ViT-B/16 224 12 768 16
SigLIP ViT-B/16 224 12 768 16

Table 5: Text tower configurations of CLIP models.

Model Context Length Vocab Size Width Heads Layers
CLIP ViT-B/32 77 49408 512 8 12
CLIP ViT-B/16 77 49408 512 8 12
SigLIP ViT-B/16 64 32000 768 12 12

Table 6: Model specifications of different CLIP variants.

Model Vision Encoder Text Encoder Parameters (M) Developer
CLIP ViT-B/32 ViT Transformer 151.28 OpenAI
CLIP ViT-B/16 ViT Transformer 149.62 OpenAI
CLIP ViT-B/32 ViT Transformer 151.28 LAION
SigLIP ViT-B/16 ViT Transformer 203.16 Google

C HYPERPARAMETER DETAILS

A brief summary of the key hyperparameters is provided in Table 7. Owing to the availabil-
ity of 40GB A100s and 80GB H100s, we restricted all experiments to an image resolution of
224×224. Across models, the best-performing base learning rate was consistently around 1×10−5.
We used cosine scheduling on the learning rate in the second stage of fine-tuning. After ex-
perimenting with different values, we found m = 0.1 to be a reasonable hyperparameter for
most models, and thus adopt it as the default setting. Training was distributed using PyTorch’s
DistributedDataParallel (DDP) to parallelize computation across multiple GPUs and
nodes.

In addition to these choices, we adopted AdamW as the optimizer with momentum parameters
(β1, β2) = (0.9, 0.98), and a weight decay of 0.02 to improve generalization. A cosine learning
rate scheduler was used to provide smooth decay, with γ following a cosine schedule until the
4th epoch and fixed to 0.9 thereafter. We also applied mixed-precision training (AMP) to balance
performance and efficiency. For margin smoothing, we set the value to 2.0 to stabilize contrastive
updates. Each experiment used a world size of 8 for DDP and 6 data-loading workers per GPU to
optimize throughput.

C.1 ABLATION ON MARGIN m USED WITH HGCL
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Table 7: Key hyperparameters used for training the models.

Hyperparameter Value
Image size 224x224 (default)
Learning rate (lr) 1e-5
Optimizer AdamW
Beta1, Beta2 0.9, 0.98
Weight decay (wd) 0.02
Scheduler Cosine
Precision AMP (mixed precision)
Margin 0.1
Margin smoothing 2.0
Gamma 0.9
Gamma schedule Cosine (decay every 4 epochs)
World size 8 (DDP)
Workers 6

Figure 6: Effect of the HGCL margin hyperparameter m on ImageNet-1k score.

To study the impact of the margin m, we consider two different CLIP architectures, LAION
ViT-B/32 and OpenAI ViT-B/16, and sweep over a representative set of values m ∈
{0.01, 0.05, 0.10, 0.20, 0.40}. The resulting ImageNet-1k accuracies are plotted in Figure 6. Us-
ing it as a representative metric, we observe that margins around m = 0.1 work well for almost all
types of models. Based on this trend, we adopt m = 0.1 as the margin in all main experiments.
Moreover, in the self-supervised setting, there are no class labels or clear ground-truth similarity
scores to guide the learning of an adaptive margin. Having the flexibility of keeping truly adap-
tive margin relies on true reliable positive and negative pairs, which are not available in web-scale
datasets. We therefore treat m as a single global hyperparameter, selected using a validation score.

C.2 ABLATION ON DIFFERENT LEARNING RATES

Table 8: Effect of learning rate (lr) on ImageNet classification and MSCOCO Retrieval (Average
Recall@1) for TuneCLIP with OpenAI ViT-B/16 CLIP.

Learning Rate ImageNet-1k (%) MS COCO (Avg R@1) (%)
1e-4 69.66 48.98
1e-5 70.57 50.11
5e-6 70.23 49.30

After sweeping learning rates across {10−4, 10−5, 10−6}, we observe that performance drops
slightly above 10−4, while learning rates in the range of 10−6 to 10−5 remain comparably strong.
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For example, Table 8 shows that TuneCLIP achieves stable ImageNet-1k and MS COCO retrieval
performance around 1e–5 and 5e–6.

C.3 ADDITIONAL DETAILS ON THE DISTRIBUTED TRAINING FRAMEWORK

We build upon FastCLIP Wei et al. (2024) framework, designed for distributed training and opti-
mized through advanced compositional optimization techniques.

Importantly, all algorithms and proposed variants in this work are implemented within the FastCLIP
framework to ensure consistent handling of gradient computation, communication, and optimiza-
tion dynamics. This allows us to make controlled and fair comparisons, attributing performance
differences solely to the algorithmic changes.

D ALGORITHMS COMPARED IN THE EXPERIMENTATION

Table 9: Training configurations for compared methods.

Method Loss Optimization Strategy
FastCLIP Wei et al. (2024) GCL SogCLR + AdamW
OpenCLIP Cherti et al. (2023) MBCL AdamW
TuneCLIP (ours) HGCL (ours) OSR (ours) + SogCLR + AdamW

Table 9 summarizes the training setups of the algorithms used in our comparison. FastCLIP (Wei
et al., 2024) employs the standard Global Contrastive Loss (GCL) with the SogCLR optimization al-
gorithm and AdamW. OpenCLIP (Cherti et al., 2023) relies on a minibatch contrastive loss (MBCL)
combined with AdamW. Our TuneCLIP introduces the proposed Hinged Global Contrastive Loss
(HGCL) loss and leverages Optimizer Statistics Recovery (OSR) alongside SogCLR and AdamW.
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E IMPACT OF HINGED GLOBAL CONTRASTIVE LOSS

The controlled study in Figures 3, 7 and 8 is set up as follows: supervised fine-tuning is performed
on Flickr30k, while SSFT uses DFN-12M. Train Retrieval trends are computed from 15,000 random
DFN samples (SSFT) and 1,000 Flickr30k samples (SFT). Both models are evaluated on the Flickr1k
test set.

(a) Supervised finetuning (b) Self-Supervised finetuning

Figure 7: Similar to Figure 3, supervised fine-tuning (red) shows stronger performance with
OSR+GCL than with OSR+HGCL (TuneCLIP), since true negative labels justify separating neg-
atives. By contrast, in self-supervised fine-tuning (blue), the absence of such labels makes
OSR+HGCL more effective, leading to improved retrieval performance on Flickr when trained with
SSFT.

(a) (b)

Figure 8: Retrieval trends on the Flickr1k test set under supervised fine-tuning. The left panel shows
results for OpenAI ViT-B/16, while the right panel corresponds to SigLIP ViT-B/16. In the super-
vised setting, explicit labels guide the separation of positives from negatives, making OSR+GCL
outperform OSR+HGCL. By contrast, as shown in Figures 3b and 7b, the absence of supervision
and margin regularization in SSFT reverses this trend, with OSR+HGCL (TuneCLIP) achieving su-
perior retrieval performance.
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F PERFORMANCE TRAJECTORIES DURING FINE-TUNING

Across all four models, we observe that OpenCLIP and FastCLIP exhibit a degraded start and fail
to recover within the first few epochs. In contrast, as shown in Figure 9, TuneCLIP consistently
outperforms the baseline curves, starting with a boosted score. For LAION ViT-B/32, the initial per-
formance is slightly below the baseline, but by the second epoch it surpasses the baseline, unlike the
other two algorithms. This experiment was conducted using ImageNet-1k zero-shot classification
accuracy as a representative metric.

(a) OpenAI ViT-B/16 (b) OpenAI ViT-B/32

(c) OpenAI models.

(d) SigLIP ViT-B/16 (e) LAION ViT-B/32

(f) SigLIP and LAION models.

Figure 9: Zero-shot classification performance on ImageNet-1k over 5 epochs of fine-tuning for four
ViT models. The dashed line indicates the original pretrained baseline. Across all cases, FastCLIP
and OpenCLIP start with degraded performance and recover only gradually, while TuneCLIP con-
sistently achieves higher scores.
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F.1 EXTENDED FINE-TUNING

Figure 10: Extended fine-tuning analysis of TuneCLIP and baselines on ImageNet-1k.

As shown in Fig. 10, extending fine-tuning beyond the used standard few (i.e. 5-epoch) schedule
provides only diminishing returns for both the algorithms. Even when trained for up to 15 epochs,
the performance curves plateau, indicating that additional compute does not meaningfully change
the relative ordering of methods. Importantly, TuneCLIP preserves a consistent improvement over
the baselines.
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G MORE COMPREHENSIVE RESULTS

We report the gains of TuneCLIP over the baselines, with improvements highlighted in (+). While
the majority of important metrics show consistent improvements, a few datasets exhibit small de-
clines (marked in (–)), likely due to task-specific variability. Nevertheless, the overall average per-
formance increases, underscoring the robustness of our approach.

Table 10: Performance of different CLIP models on DataComp Average. DataComp Gadre et al.
(2023) is a highly comprehensive benchmark that spans a diverse collection of datasets, tasks, and
distributional variants. Even small improvements on DataComp are particularly meaningful, as they
indicate stable gains across heterogeneous and challenging settings rather than isolated benefits on
individual datasets. In the next sections we show some group-wise results across all variants.

Base Model Method DataComp Average

OpenAI
ViT-B/32

Baseline 52.45
FastCLIP 49.78
OpenCLIP 51.02
TuneCLIP 54.34 (+1.89)

OpenAI
ViT-B/16

Baseline 56.26
FastCLIP 53.53
OpenCLIP 55.11
TuneCLIP 58.62 (+2.36)

SigLIP
ViT-B/16

Baseline 62.32
FastCLIP 45.80
OpenCLIP 48.10
TuneCLIP 63.47 (+1.15)

LAION
ViT-B/32

Baseline 56.94
FastCLIP 55.89
OpenCLIP 56.75
TuneCLIP 57.22 (+0.28)

Table 11: Performance of different CLIP models on small-scale classification benchmarks. STL-10
is inspired from CIFAR-10, but with higher resolution images.

Base Model Method CIFAR-10 CIFAR-100 STL-10

OpenAI
ViT-B/32

Baseline 89.83 64.23 97.13
FastCLIP 90.54 69.51 92.68
OpenCLIP 91.75 71.18 96.36
TuneCLIP 93.63 (+3.80) 73.87 (+9.64) 97.20 (+0.07)

OpenAI
ViT-B/16

Baseline 90.77 66.95 98.25
FastCLIP 92.67 71.33 96.58
OpenCLIP 92.76 70.99 97.87
TuneCLIP 94.40 (+3.63) 76.14 (+9.19) 98.26 (+0.01)

SigLIP
ViT-B/16

Baseline 92.34 72.23 98.21
FastCLIP 83.66 53.86 91.18
OpenCLIP 85.06 56.77 93.81
TuneCLIP 95.20 (+2.86) 79.91 (+7.68) 98.37 (+0.16)

LAION
ViT-B/32

Baseline 93.58 75.55 96.56
FastCLIP 92.38 75.95 91.73
OpenCLIP 94.13 76.10 95.16
TuneCLIP 94.22 (+0.64) 76.46 (+0.91) 96.47 (-0.09)
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Table 12: Performance of different CLIP models on ImageNet-1k, ImageNet-Sketch, and ImageNet-
V2. ImageNet-Sketch is a black-and-white sketch version of 1,000 ImageNet classes collected by
Google, while ImageNet-V2 is designed to evaluate robustness under domain shift and avoid adap-
tive overfitting.

Base Model Method 1K Sketch V2

OpenAI
ViT-B/32

Baseline 63.32 42.29 55.92
FastCLIP 59.59 41.26 52.25
OpenCLIP 61.11 41.86 53.84
TuneCLIP 65.29 (+1.97) 45.84 (+3.55) 57.45 (+1.53)

OpenAI
ViT-B/16

Baseline 68.34 48.24 61.88
FastCLIP 64.57 46.49 56.88
OpenCLIP 65.10 46.15 58.19
TuneCLIP 70.57 (+2.23) 51.16 (+2.92) 64.11 (+2.23)

SigLIP
ViT-B/16

Baseline 76.04 67.92 68.93
FastCLIP 57.52 12.56 49.04
OpenCLIP 59.50 10.42 51.00
TuneCLIP 76.41 (+0.37) 65.78 (-2.14) 69.02 (+0.09)

LAION
ViT-B/32

Baseline 66.56 53.65 58.15
FastCLIP 65.26 53.12 56.92
OpenCLIP 66.31 53.73 58.46
TuneCLIP 67.14 (+0.58) 54.46 (+0.81) 59.10 (+0.95)

Table 13: Performance of different CLIP models on ImageNet out-of-distribution variants Yang et al.
(2023) (A, O, R, ObjectNet). ImageNet-A contains adversarially filtered natural images, ImageNet-
O includes samples for open-set recognition, ImageNet-R features artistic renditions, and ObjectNet
Barbu et al. (2019) evaluates robustness under real-world viewpoint and background shifts.

Base Model Method A O R ObjectNet

OpenAI
ViT-B/32

Baseline 31.55 47.75 69.33 44.31
FastCLIP 24.84 47.20 65.21 44.32
OpenCLIP 27.10 48.85 67.13 46.02
TuneCLIP 30.72 (-0.83) 51.11 (+3.36) 70.67 (+1.34) 46.45 (+2.14)

OpenAI
ViT-B/16

Baseline 49.95 42.30 77.70 55.31
FastCLIP 41.37 43.30 75.41 55.37
OpenCLIP 41.57 44.05 73.23 56.67
TuneCLIP 48.10 (-1.85) 46.65 (+4.35) 77.86 (+0.16) 57.08 (+1.77)

SigLIP
ViT-B/16

Baseline 45.41 38.15 90.30 55.09
FastCLIP 21.80 35.85 59.08 38.72
OpenCLIP 22.73 39.50 58.27 40.08
TuneCLIP 50.10 (+4.69) 41.50 (+3.35) 88.33 (-1.97) 67.93 (+12.84)

LAION
ViT-B/32

Baseline 26.26 49.95 76.43 48.81
FastCLIP 24.84 48.00 76.04 51.72
OpenCLIP 26.92 50.40 76.05 51.01
TuneCLIP 27.04 (+0.78) 50.85 (+0.90) 76.45 (+0.02) 51.34 (+2.53)
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Table 14: Performance of different CLIP models on VTAB and Fairness. The Visual Task Adapta-
tion Benchmark (VTAB) Zhai et al. (2019) evaluates performance across 12 diverse tasks. We also
report performance on two fairness-oriented datasets, Dollar Street and GeoDE Ramaswamy et al.
(2023), which measure robustness to geographic and socioeconomic diversity.

Base Model Method VTAB Mean Fairness Mean

OpenAI
ViT-B/32

Baseline 51.81 68.02
FastCLIP 48.51 69.52
OpenCLIP 49.23 70.05
TuneCLIP 53.50 (+1.69) 70.73 (+2.71)

OpenAI
ViT-B/16

Baseline 53.80 72.45
FastCLIP 50.44 74.02
OpenCLIP 52.46 74.23
TuneCLIP 54.44 (+0.64) 74.96 (+2.51)

SigLIP
ViT-B/16

Baseline 60.39 78.48
FastCLIP 49.93 69.33
OpenCLIP 53.38 71.55
TuneCLIP 62.66 (+2.27) 78.44 (-0.04)

LAION
ViT-B/32

Baseline 55.08 71.05
FastCLIP 55.55 69.69
OpenCLIP 54.68 71.94
TuneCLIP 55.09 (+0.01) 71.03 (-0.02)

Table 15: Retrieval performance (Recall@1) on MSCOCO and Flickr datasets.

Base Model Method MSCOCO Flickr
IR@1 TR@1 IR@1 TR@1

OpenAI
ViT-B/32

Baseline 30.44 50.12 58.78 78.90
FastCLIP 28.75 43.23 51.49 68.19
OpenCLIP 33.33 49.79 60.92 76.10
TuneCLIP 36.74 (+6.30) 56.16 (+6.04) 64.71 (+5.93) 83.30 (+4.40)

OpenAI
ViT-B/16

Baseline 33.09 52.42 62.16 82.20
FastCLIP 31.25 45.80 56.45 74.00
OpenCLIP 36.46 50.77 65.11 78.90
TuneCLIP 40.45 (+7.36) 59.78 (+7.36) 69.66 (+7.50) 86.59 (+4.39)

SigLIP
ViT-B/16

Baseline 47.78 65.74 74.68 89.10
FastCLIP 26.91 36.46 48.33 61.79
OpenCLIP 34.34 44.58 57.12 70.10
TuneCLIP 47.64 (-0.14) 66.36 (+0.62) 74.44 (-0.24) 89.30 (+0.20)

LAION
ViT-B/32

Baseline 39.34 56.32 66.78 84.10
FastCLIP 33.37 49.34 58.66 76.99
OpenCLIP 38.34 54.42 65.03 81.30
TuneCLIP 39.55 (+0.21) 57.80 (+1.48) 66.82 (+0.04) 83.20 (-0.90)
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H COMPUTE COST ANALYSIS

Table 16: Unified comparison of training cost and performance across CLIP backbones.

Base Model Method Wall-Clock Time (hrs) GPU-hours DataComp

OpenAI
ViT-B/32

OpenCLIP 2.66 21.28 51.02
FastCLIP 2.22 17.76 49.78
TuneCLIP 5.05 40.40 54.34

OpenAI
ViT-B/16

OpenCLIP 5.46 43.68 55.11
FastCLIP 4.21 33.68 53.53
TuneCLIP 8.62 68.96 58.62

SigLIP
ViT-B/16

OpenCLIP 7.55 60.40 48.10
FastCLIP 4.28 34.24 45.80
TuneCLIP 9.27 74.16 63.47

LAION
ViT-B/32

OpenCLIP 3.10 24.80 56.75
FastCLIP 2.33 18.64 55.89
TuneCLIP 4.32 36.24 57.22

Table 17: Batch size specifications of different CLIP variants under our distributed data-parallel
training setup. We use torch.DDP over 8× GPUs.

Model Local Batch Size Global Batch Size
OpenAI CLIP ViT-B/32 512 4096
OpenAI CLIP ViT-B/16 256 2048
LAION CLIP ViT-B/32 512 4096
SigLIP ViT-B/16 256 2048

Table 17 summarizes the local and global batch sizes used for each backbone under our distributed
data-parallel (DDP) setup with 8 GPUs, where the global batch size is given by Bglobal = 8×Blocal.
Across all backbones, Table 16 additionally reports the wall-clock time (measured as the elapsed
time between the start and end of fine-tuning) and the corresponding GPU-hours for OpenCLIP,
FastCLIP, and TuneCLIP. We compute GPU-hours using the standard relation

GPU-hours = wall-clock time (hours)× #GPUs,

so that, in our case, GPU-hours directly reflect wall-clock time scaled by a factor of 8. Since
TuneCLIP uses a two-stage procedure (OSR followed by HGCL fine-tuning), it naturally incurs
higher compute than single-stage baselines, typically increasing the wall-clock time by about 1.5–
2× for a given backbone. However, this additional cost remains modest and is consistently mirrored
by improved performance across all evaluated models. Thus, TuneCLIP provides a favorable cost–
performance trade-off with relatively small extra computational overhead compared to baselines and
it reliably converts additional compute into gains on related benchmarks.

In addition to reporting the full TuneCLIP cost, we further dissect its two-stage schedule into OSR-
only and HGCL-only components in Table 18. Across all backbones, each stage incurs a wall-clock
time comparable to standard single-stage fine-tuning (OpenCLIP/FastCLIP), showing that OSR and
HGCL individually are not substantially more expensive than existing baselines.
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Table 18: Comparison of fine-tuning cost across four CLIP backbones and four finetuning regimes.
Rows show the isolated cost of OSR-only and HGCL-only stages inside TuneCLIP.

Base Model Method Wall-Clock (hrs) GPU-hours

OpenAI
ViT-B/32

OpenCLIP 2.66 21.28
FastCLIP 2.22 17.76
OSR only 2.50 20.00
HGCL only 2.55 20.40

OpenAI
ViT-B/16

OpenCLIP 5.46 43.68
FastCLIP 4.21 33.68
OSR only 4.27 34.16
HGCL only 4.35 34.80

SigLIP
ViT-B/16

OpenCLIP 7.55 60.40
FastCLIP 4.28 34.24
OSR only 4.52 36.16
HGCL only 4.75 38.00

LAION
ViT-B/32

OpenCLIP 3.10 24.80
FastCLIP 2.33 18.64
OSR only 2.20 17.60
HGCL only 2.12 16.96

Since all three methods use the same vision, text encoders, same GPUs and training configurations
at a given model scale, the FLOPs per training step are effectively the same. Thus, the reported
wall-clock time and GPU-hours can be viewed as a direct correlation for the relative total FLOPs
across methods.

I COMPARING OTHER COLD-START BIAS MITIGATION STRATEGIES

To evaluate simpler cold-start bias mitigations, we consider two realistic alternatives to OSR. First,
we apply a short learning-rate warm-up of 500 iterations using momentum SGD, gradually increas-
ing the learning rate from 1 × 10−6 to 1 × 10−5 before switching to the standard fine-tuning stage
with the same optimizer. Second, we simulate a large-batch warm-up by computing gradients with
a larger global batch size (e.g., increasing OpenAI CLIP ViT-B/16’s batch size from 2048 to 4096)
while keeping model weights frozen, allowing gradient moments to accumulate before perform-
ing normal fine-tuning in the second stage. Infact, this serves as a cheaper approximation to OSR.
As shown in Table 19, both strategies provide mild stabilization but yield noticeably smaller im-
provements than full OSR, indicating that OSR remains the most effective and reliable approach for
mitigating cold-start bias.

Table 19: Comparison of cold-start mitigation strategies for TuneCLIP on OpenAI CLIP ViT-B/16.

Cold-Start Bias Mitigation 2nd stage OSR IN & Variants Retrieval DataComp
Base Model N/A × 57.67 57.46 56.26
Momentum SGD Momentum SGD × 54.65 59.32 54.82
Larger Batch Gradients AdamW × 58.27 62.92 58.05
OSR Momentum SGD ✓ 57.99 62.08 57.82
OSR AdamW ✓ 59.36 64.12 58.62
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J TUNECLIP ON STATE-OF-THE-ART CLIP

TuneCLIP achieves state-of-the-art performance on ImageNet and its distributional variants, im-
proving accuracy from 71.8% to 73.23%. On retrieval and DataComp, the results are slightly lower,
but remain within a tolerable band of 1% relative to the baseline. While these results do not show
dramatic overall gains, they highlight that TuneCLIP scales to very large models and delivers mean-
ingful robustness improvements on ImageNet and variants, which we consider the key takeaway. We
report these findings modestly, acknowledging the limited improvements under heavy computational
constraints.

Table 20: Performance of TuneCLIP on SOTA ViT-H/14-quickgelu across evaluation suites.

Category Baseline TuneCLIP
IN & Variants 71.80 73.23
Retrieval 74.78 73.78
DataComp 69.61 69.23

K HGCL AND FALSE NEGATIVE MITIGATIONS

(a) OSR+GCL (TP vs FN)

(b) OSR+HGCL (TP vs FN) (c) OSR+HGCL (TP vs TN)

Figure 11: OSR+GCL shows higher variance among false negatives (std. dev. 0.030). While,
OSR+HGCL yields a substantially more compact distribution (std. dev. 0.0061), reducing false neg-
ative bias and at the same time ensuring a clear separation between true positives (µ = 0.28) and
true negatives (µ = 0.23).

As shown in Figures 11a and 11b, HGCL compresses the gap between true positives and false neg-
atives, producing distributions that are both more compact and overlapping than those under GCL.
This analysis, conducted on 15,000 randomly sampled pairs from DFN-12M, highlights HGCL’s
capacity to reduce variance and counteract false-negative bias. By preserving higher similarity for
semantically related negatives, HGCL prevents over-suppression and encourages the model to main-
tain only a fine-grained distinctions across closely related concepts (true positives and false nega-

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

tives). This in turn improves generalization, since the learned similarity space better reflects true
semantic structure rather than being distorted by aggressive penalization of false negatives. Table 21
shows qualitative examples from the above distributions. To approximate true negatives, we sam-
ple from the bottom-ranked retrievals (Top@[90-100]), as these examples are least likely to share
semantic overlap with the query and thus provide a reliable baseline for unrelated pairs.

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were only used to aid or polish writing.
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Table 21: Qualitative examples of false negatives (text captions) and their similarity scores with
the anchor image. Here, s1 denotes the similarity under OSR+GCL and s2 under OSR+HGCL.
These examples illustrate how OSR+HGCL mitigates excessive suppression of false negatives, al-
lowing them to retain higher similarity scores compared to OSR+GCL. Conversely, false negatives
that already exhibit reasonable similarity with the anchor tend to remain stable or slightly reduced,
compensating for cases where suppression was more severe. Overall, this yields a calibrated simi-
larity structure in which false negatives are assigned scores that better reflect semantic relatedness.

Anchor Image False Negative Captions (s1, s2) in Top-5 Retrieved texts

Caption: FABULOUS
PEARL NECKLACE

DIAMOND CLUSTER
14K GOLD CLASP —

eBay

• Women’s Chain Necklaces s1=0.2053, s2=0.2467

• necklace image New Arrivals s1=0.1720, s2=0.2429

Caption: Boys’ Soccer
Cleats 0026 Shoes.

Nike.com

• running shoes s1=0.1561, s2=0.2346

Caption: dress

• muslim wedding dresses 3d flower burgundy muslim wedding dresses 2018 arabic custom
plus s1=0.1713, s2=0.2238

• Evening Gowns For Mother Of The Bride In Singapore - Prom Dresses
s1=0.1913, s2=0.2333

Caption: Chicken noodle
soup

• top down view of bowl filled with white bean tomatillo soup with items surrounding.
s1=0.2061, s2=0.2047

• Butternut soup with sriracha. Made it. s1=0.2046, s2=0.2354

Caption: pallets chair

• B32 Office Chair by Armet 3 s1=0.0747, s2=0.2189

• Burlap Ruffle Chair #burlap #ruffle #furniture s1=0.3096, s2=0.2583

Caption: 2017 Audi S6
4.0T quattro Premium Plus

• gebraucht Audi S8 plus V8 4.0TFSI tiptr. UPE 154.100,- HeadUp/SD
s1=0.2358, s2=0.2272

• Audi Q3 und Audi RS Q3: Facelift und mehr Leistung. s1=0.1056, s2=0.2174

Caption: Men’s Crew
Neck Jersey T-Shirt -
Support With Style

Collection for Novak
Djokovic

• Unique Scoop Collar Printed T Shirt s1=0.1978, s2=0.2433

• T-shirt z nadrukiem - white s1=0.1707, s2=0.2407

• HX Hot Sale Colorful Skull 3D Print Harajuku T Shirt Grim Reaper Skull Casual T Shirt
Men/women Streetwear T Shirt Tops HX768 1 s1=0.1560, s2=0.2301
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