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Abstract

While existing query-based 3D end-to-end visual trackers integrate detection and
tracking via the tracking-by-attention paradigm, these two chicken-and-egg tasks
encounter optimization difficulties when sharing the same parameters. Our findings
reveal that these difficulties arise due to two inherent constraints on the self-
attention mechanism, i.e., over-deduplication for object queries and self-centric
attention for track queries. In contrast, removing the self-attention mechanism
not only minimally impacts regression predictions of the tracker, but also tends
to generate more latent candidate boxes. Based on these analyses, we present
SynCL, a novel plug-and-play synergistic training strategy designed to co-facilitate
multi-task learning for detection and tracking. Specifically, we propose a Task-
specific Hybrid Matching module for a weight-shared cross-attention-based decoder
that matches the targets of track queries with multiple object queries to exploit
promising candidates overlooked by the self-attention mechanism and the bipartite
matching. To flexibly select optimal candidates for the one-to-many matching,
we also design a Dynamic Query Filtering module controlled by model training
status. Moreover, we introduce Instance-aware Contrastive Learning to break
through the barrier of self-centric attention for track queries, effectively bridging
the gap between detection and tracking. Without additional inference costs, SynCL
consistently delivers improvements in various benchmarks and achieves state-of-
the-art performance with 58.9% AMOTA on the nuScenes dataset. Code and raw
results are available at https://github.com/shubolin028/SynCL.

1 Introduction

The perception system is an indispensable component in autonomous driving. Within the system,
accurate 3D multi-object tracking (MOT) provides reliable observations for planning. Camera-based
tracking algorithms have raised significant attention due to their cost-effectiveness [1]. Traditional
trackers following the tracking-by-detection paradigm often suffer from tedious and unstable post-
processing in new scenarios [2, 3]. To achieve cross-domain adaptability, the prevailing methods [4–8]
adopt the tracking-by-attention paradigm, which integrates single-frame detection and inter-temporal
tracking by encoding new-born and persistent targets as object queries and track queries respectively

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/shubolin028/SynCL


(b) Our proposed training strategy (SynCL)(a) Tracking-by-attention paradigm (TBA)

Multi-View 

BEV Features

Standard 

Decoder

Parallel

Decoder

Parallel

Decoder

Share

Contrastive LearningHybrid Matching

Filtering

1

2

3

4

Training-only

Dynamically 1 2

3

4

Self-attention

Cross-attention

Multi-View 

BEV Features

Track QueriesObject Queries

Standard decoder

New-born Tracklets

Persistent Tracklets
Update

Figure 1: Comparisons between the tracking-by-attention paradigm and our proposed plug-and-play training
strategy, SynCL. SynCL consists of Task-specific Hybrid Matching, Instance-aware Contrastive Learning
powered by a Dynamic Query Filtering moudle.
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Figure 2: We compare results from the standard decoder in Fig. 2b with those from the decoder without
self-attention in Fig. 2c in inference stage. The self-attention mechanism exhibits over-deduplication for object
queries and self-centric attention for track queries. Results are from the model trained without utilizing SynCL.

(Fig. 1a). However, the optimization of detection and tracking, two interdependent yet distinctly
characterized tasks, remains an open question due to the sharing of the same model parameters within
the end-to-end training pipeline [9, 10]. Previous works attribute the optimization difficulties to
conflicts in representation [6] and gradient flows across distinct queries [8]. DQTrack [11] attempts
to train detection and learning-based association separately, but this two-stage training pipeline
fails to enable synergistic representation learning. ADATrack [6] introduces an additional attention-
based association module to strengthen inter-query connections, yet consequently increases model
complexity. OneTrack [8] groups object queries and blocks conflicting gradient flows, but its design
is confined to a specific detector, thus lacking generalizability. A question is: Is there a universal
training strategy that can effectively address the optimization difficulties of detection and tracking
under shared model parameters through a joint training paradigm without affecting inference speed?

To seek the answer, we first conduct a comprehensive analysis of attention mechanisms in the
tracking-by-attention paradigm. We find that the self-attention mechanism exhibits two inconspicuous
characteristics for object queries and track queries, respectively:

• Over-deduplication for object queries: Referring to the purple dashed box in Fig. 2a, the self-
attention mechanism in the decoder assigns high attention scores from object queries to similar
track queries. Compared to the prediction results before and after removing the self-attention
mechanism (see purple circles in Fig. 2b and Fig. 2c), we observe that these high attention scores
effectively suppress duplicate predictions (e.g., ID 0, ID 1 and ID 4). Although this de-duplication
plays a similar role of Non-Maximum Suppression (NMS) to some extent, it inadvertently results
in information loss, potentially eliminating some high-quality candidates (e.g., ID 2).

• Self-centric attention for track queries: Referring to the green dashed box in Fig. 2a, track queries
exhibit high attention scores towards themselves, lacking interaction with object queries. As
illustrated in the green circles of Fig. 2b and Fig. 2c, the imprecise predictions of track queries
(e.g., ID 6, ID 8, etc.) change little before and after the removal of the self-attention mechanism.

Despite the above issues, directly replacing the self-attention mechanism with NMS will lead to
the collapse of joint detection and tracking training. In another way, optimization difficulties may
be mitigated by a weight-shared cross-attention-based parallel decoder, following [12]. However,
simultaneously addressing the over-deduplication of object queries and the self-centric issues of track
queries within a parallel decoder remains non-trivial (see Appendix B.3 for more details).

To thoroughly tackle these challenges, we propose a novel synergistic training strategy for the
two tasks based on the tracking-by-attention paradigm, which we term SynCL. As presented in
Fig. 1b, SynCL introduces a weight-shared parallel decoder during training, which removes the
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self-attention mechanism. Concretely, we propose a Task-specific Hybrid Matching module that
additionally employs one-to-many assignment for object queries to uncover and preserve promising
candidates overlooked by the self-attention mechanism in the parallel decoder. With more diverse
and refined candidate representations from one-to-many label supervision, predictions from object
queries are robust to over-deduplication. Additionally, we design a Dynamic Query Filtering module
based on the Gaussian Mixture Model (GMM) that flexibly selects reliable object queries for the
one-to-many assignment according to the prediction quality and optimization state of the model.
Moreover, to get rid of constraints from self-centric attention on track queries and establish cross-task
connections, we introduce Instance-aware Contrastive Learning that aligns joint object and track
queries corresponding to identical ground truth targets while separating irrelevant queries in the latent
space and thus provides synergistic learning with richer and quality features.

In summary, our main contributions are as follows: (1) We reveal that the optimization difficulties of
joint detection and tracking training lie in the imperceptible effect of the self-attention mechanism
across different queries. (2) We propose SynCL, a synergistic training strategy compatible with any
tracking-by-attention paradigm tracker to address multi-task learning challenges. SynCL implements
dynamic filtering-based hybrid matching and instance-aware contrastive learning to improve the
performance of both detection and tracking. (3) We empirically show that SynCL brings remarkable
improvements over various tracking-by-attention baselines with acceptable extra training cost and
establishes new state-of-the-art performance on the camera-based nuScenes MOT benchmark.

2 Related Work

Tracking-by-detection. Traditional tracking methods in 2D or 3D [2, 3, 13, 14] follow the
Tracking-by-detection paradigm, which decouples detection and tracking, regarding tracking as
a post-processing step. Early works associate targets with existing trajectories by handcrafted features
such as appearance similarity [1], geometric distance [15–18]. Tracking-by-detection paradigm
achieves further advancements when combined with learning-based association methods. Specif-
ically, learning modules such as GNN [19, 20] and Transformers [21, 11] are employed to merge
multifaceted information. However, detection and tracking are complementary yet non-independent
tasks. This partitioned paradigm design does not effectively optimize both tasks simultaneously.

Multi-task learning in MOT. Building upon DETR [22] of encoding detection targets as object
queries, MOTR [23] utilizes the track queries, enriched with prior features of object queries, to
propagate across frames, enabling an end-to-end tracking framework. MUTR3D [4] and PF-Track [5]
extend the end-to-end framework to multi-camera 3D MOT. However, sharing the same model param-
eters for detection and tracking within an end-to-end framework introduces optimization difficulties in
multi-task learning. Subsequent works [9–11] attempt to address these difficulties. STAR-Track [24]
introduces a Latent Motion Model (LMM) to account for changes in query appearance features across
frames and ADA-Track [6] integrates the appearance and geometric clues of the track queries to
refine object queries. Both of them increase inference time. TQDTrack [25] introduces temporal
query denoising to enhance the modeling of track queries. OneTrack [8] utilizes attention mask to
block conflicting gradient flows, but its design is confined to [26]. Despite these efforts, a general
strategy for optimization difficulties in joint detection and tracking training remains unsolved.

3 Methodology

This section elaborates on our proposed method, SynCL, for multi-view 3D object tracking. We start
with an overview of tracking-by-attention paradigm trackers in Sec. 3.1 and an analysis to validate
the constraints on the self-attention mechanism in Sec. 3.2. Then, we provide a detailed construction
of hybrid matching for the parallel decoder in Sec. 3.3 and introduce the filtering module design for
one-to-many assignment in Sec. 3.4. To achieve synergistic end-to-end learning for detection and
tracking, we further propose instance-aware learning in Sec. 3.5.

3.1 Preliminaries

SynCL is designed to be integrated into any tracking-by-attention paradigm multi-view 3D tracker.
These trackers typically consist of a convolutional network-based feature encoder (e.g., ResNet [27],
VoVNet [28]), a transformer-based decoder, and a predictor head for object classes and boxes. The
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goal of 3D MOT is to generate detection boxes of the instances in the perceptual scene with consistent
IDs. Given N images It = {Iit, i = 1, 2, . . . , N} captured by surrounding cameras at timestamp
t, the encoder first extracts image features Ft = {Fi

t, i = 1, 2, . . . , N} with 3D point position
embeddings [29, 30]. A crucial aspect of realizing end-to-end tracking is to allow the prior latent
encoding from the previous frame, track queries Qtrk

t−1, to be updated iteratively by the decoder
interacting with the current frame image features. To detect new-born targets, object queries Qobj

with a fixed number of Nobj are merged together and fed into the decoder:

Qtrk
t = Decoder(Ft,Q

trk
t−1 ∪Qobj) (1)

Each query q ∈ {Qtrk,Qobj} includes an embedding vector e, assigned with a unique 3D reference c,
i.e., q = {e, c}. In the center-point anchor-free predictor, the reference points are actively involved in
the parsing of the bounding box:

Bt = Box(et, ct), Pt = Classification(et) (2)

where Bt = {b1, b2, ..., bn} is the set of prediction 3D boxes and Pt = {p1, p2, ..., pn} is the set of
classification scores for all categories (Nc). Each box (b) consists of 3D center point (c̃ ∈ R3), 3D
box size (s ∈ R3), yaw angle (θ ∈ R1), and BEV velocity (v ∈ R2).

Considering the heterogeneity of the two tasks, object queries and track queries are supervised with
different label assignment strategies. Object queries are precisely matched with new-born targets
via the Hungarian algorithm and assigned unique IDs, while track queries are directly mapped to
persistent targets with consistent IDs.

However, matching object queries to new-born objects contradicts the detection pre-training, substan-
tially weakening the supervision signals for object queries. Consequently, when track queries are
initialized with object queries from the previous frame, these low-quality priors inevitably exacerbate
the optimization difficulties in inter-temporal tracking. We find that this suboptimal assignment stems
from the inconspicuous nature of the self-attention mechanism and the bipartite matching, preventing
synergistic training for both identity-agnostic detection and identity-aware tracking.

3.2 Analysis
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Figure 3: Analysis of self-attention heatmap in the stan-
dard decoder. The annotation numbers of the heatmap
are aligned with the ID numbers in Fig. 2.

To further validate our findings in Fig. 2, we vi-
sualize the self-attention distributions from shal-
low to deep decoder layers. As shown in Fig. 3,
over-deduplication stems from the attention of
object queries to track queries, which evolves
from global non-differentiated responses to lo-
cal similarity responses. For track queries, self-
centric attention prevents them from collabora-
tive learning with object queries. To this end,
we separate the self-attention mechanism and re-
solve these issues through a divide-and-conquer
method in the weight-shared parallel decoder.

3.3 Task-specific Hybrid Matching

Based on the regression characteristics of cross-attention, we first construct a weight-shared parallel
decoder with the removal of the self-attention mechanism. To further enhance the inter-temporal
modeling capability and exploit promising candidates, we implement one-to-one and one-to-many
label assignment for track queries and object queries, respectively.

Parallel Decoders. We design two parallel decoders: a standard decoder (S-decoder) and a cross-
attention-based decoder (C-decoder). A block in the standard decoder consists of a self-attention layer,
a cross-attention layer and a feed-forward network (FFN). The embeddings of both object and track
queries are concatenated and fed into the two decoders, denoted as els and elc, where el = elobj ∪ eltrk.
The superscript l = {0, 1, ..., 5} indicates the index of the decoder block and we omit the notation of
the frame index t for simplicity. The initial inputs to both decoders are identical, i.e., e0s = e0c . In the
lth block of the S-decoder, the state of both queries is first updated through the self-attention layer
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Figure 4: Overview of SynCL. SynCL is based on tracking-by-attention paradigm trackers, with two weight-
shared parallel decoders: a S-decoder (standard decoder) and a C-decoder (devoid of self-attention layers). In
C-decoder, hybrid matching with one-to-many and one-to-one assignment is applied for object queries and
track queries, respectively. Besides, a dynamic filtering module is designed to flexibly select reliable object
queries for the one-to-many assignment. With identical ground-truth matching, contrastive learning unifies the
representations between object and track queries, co-facilitating multi-task learning for detection and tracking.

bidirectionally, which is formulated as:

êls = els +Attentionself(Query = Key = V alue = els) (3)

where Attentionself(·) indicates the self-attention layer. Next, the two types of queries are interacted
with multi-view image features, where object queries generate potential candidates through the
positional priors, and track queries locate persistent targets utilizing representation prior:

el+1
s = FFN(êls +Attentioncross(Query = êls, Key = V alue = F)) (4)

where Attentioncross(·) indicates the cross-attention layer. The C-decoder retains the cross-attention
layers and FFNs, sharing parameters with the S-decoder. In this setup, the cross-attention layers take
image features as the sole source set (key and value), dynamically aggregating and updating both
queries in the stacked decoder blocks:

el+1
c = FFN(elc +Attentioncross(Query = elc, Key = V alue = F)) (5)

Due to the absence of mutual interaction between object and track queries, it is challenging for
the C-decoder to remove duplicate candidates with proximal or occluded targets. Thus, we design
distinct label assignment tailored to the characteristics of the two parallel decoders and the specific
requirements of their respective tasks.

Hybrid Matching. End-to-end tracking-by-attention paradigm trackers rely on one-to-one assign-
ment for both object and track queries. In the S-decoder, assignment of object queries σobj

s can be
obtained by performing the Hungarian algorithm between predictions and new-born targets, while
assignment of track queries σtrk

s is consistent with the assigned IDs, which is formulated as:

σobj
s = argmin

σ

M∑
i=1

Cmatch

(
bobjσ(i), p

obj
σ(i), g

i
new

)
(6)

σtrk
s =

{
σ | IDtrk

σ(i) =
ˆIDi, ˆID ∈ gpst, i = 1, 2, . . . , N

}
(7)

where the gnew and gpst are M new-born and N persistent ground truths (GTs). Cmatch is the
matching cost between predictions and GTs. σ(·) is the optimal permutation of M or N indices,
where kth ground truth target is assigned to σ(k)th prediction. Each query corresponds to a ground-
truth target and vice versa. The track queries corresponding to disappearing targets are not assigned
labels. Following [30, 31], we utilize a combination of the classification score and the 3D box as the
matching cost metric, which is formulated as:

Cmatch(b, p, g) = FocalLoss(p, p̂) + L1(b, b̂) (8)
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In the C-decoder, we maintain the identity-guided principle for track queries to avoid ambiguity.
However, lacking the NMS effect of self-attention, object queries in C-decoder tend to output multiple
similarity predictions. To improve the quality of candidate boxes and boost the detection of lost
targets, we perform the one-to-many assignment for object queries in C-decoder with persistent GTs,
i.e., one ground-truth target corresponds to multiple object queries:

σobj
c =

argmin
σ

K∑
j=1

Cmatch

(
bobjσi(j)

, pobjσi(j)
, gipst

)
N

i=1

(9)

where the K is the maximum assignment constraint per GT for object queries. In order to obtain more
positive sample pairs for contrastive learning, we do not match object queries with all ground-truth
targets. In Sec. 4.3, we explore the impact of different matching variants in detail.

3.4 Dynamic Query Filtering

To effectively explore more high-quality candidate samples for the identity-agnostic matching in
Hybrid Matching, we propose a cost-based filtering module with a dynamic threshold δ, which filters
out unreliable matching pairs whose cost exceeds δ. Specifically, we use Gaussian Mixture Model
(GMM) to unsupervisedly cluster matching sample pairs into reliable/unreliable clusters based on
their matching cost z, which is formulated as:

π,µ,Σ = argmin
∑
z

− log

Nc∑
i=1

πiN (z|µi,Σi) (10)

where N (z|µi,Σi) is the Gaussian probability density function with mean µi and covariance Σi,
and πi is the weight for the i-th component, satisfying

∑2
i=1 πi = 1. The cluster with lower µi is

considered as the reliable cluster and we use its mean µreliable = mini µi as the dynamic threshold δ.
Notably, this dynamic design intelligently constructs a progressive learning schedule ranging from
simple to complex depending on the optimization status of the model.

3.5 Instance-aware Contrastive Learning

To further transfer object queries’ knowledge of persistent targets learned by one-to-many assignment
in Hybrid Matching to track queries, we employ contrastive learning for object queries and their
corresponding track queries with identical ground-truth matching. As shown in Fig. 4, contrastive
learning pulls representations of object queries closer to those of track queries assigned to the same
instance, while pushing them further apart from representations of distinct instances in the latent
space. Unlike self-supervised learning methods [32, 33], which involve a large number of sample
pairs (e.g., 4096), there are typically fewer than 100 track queries propagated from the previous frame
to serve as samples pairs. To alleviate this issue of insufficient sample pairs, we draw on [34] and
utilize kernel-based contrastive learning, which is formulated as:

LCL(K; τ) = − log
exp(K[eobji , etrkj ]/τ)∑N

k=1,k ̸=j exp(K[eobji , etrkk ]/τ)
(11)

where eobj and etrk are the embeddings of object and track queries in the C-decoder. τ is a temperature
hyper-parameter [35]. K[·] refers to the kernel function mapping with ϕ(·) and gθ(·):

K[eobj , etrk] =
〈
ϕ(gθobj (e

obj)), ϕ(gθtrk(e
trk))

〉
(12)

where ⟨·, ·⟩ is the inner product. When ϕ(·) is a linear mapping function, K[·] can be converted to:

K[eobj , etrk] =
∑〈

ϕ(gθobj (e
obj), gθtrk(e

trk))
〉
H

(13)

where ⟨·, ·⟩H is the Hadamard product. In practice, we employ ϕ(·) and gθobj (·) as a multi-layer
perceptron (MLP) and a FFN. We do not utilize any projection for track queries for simplicity:

K[eobj , etrk] = MLP
(〈

(FFN(eobj), etrk)
〉
H

)
(14)

We apply Instance-aware Contrastive Learning only in the training stage. During inference, the
additional model parameters used for contrastive learning from Eq. 14 are discarded.
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Table 1: Comparison results of adopting SynCL with tracking-by-attention (TBA) baselines on nuScenes val
set. We divide the experiment into four groups based on the detector settings. * denotes results from [6]

Method Backbone Detector Resolution
Tracking Detection

AMOTA AMOTP↓ Recall MOTA IDS↓ FP↓ FN↓ NDS mAP

MUTR3D* [4] R101 DETR3D 900 × 1600 32.1% 1.448 45.2% 28.3% 474 15269 43828 - -
SynCL (ours) R101 DETR3D 900 × 1600 35.8% 1.391 49.2% 32.9% 588 14311 40740 - -

PF-Track [5] V2-99 PETR 320 × 800 40.8% 1.343 50.7% 37.6% 166 15288 40398 47.7% 37.8%
SynCL (ours) V2-99 PETR 320 × 800 44.7% 1.262 56.5% 40.8% 203 15344 36801 49.7% 39.6%

Baseline#1 [5] V2-99 PETRv2 320 × 800 43.2% 1.272 55.0% 40.6% 173 14106 37065 50.4% 41.0%
SynCL (ours) V2-99 PETRv2 320 × 800 45.7% 1.260 56.8% 43.0% 170 13411 36756 51.1% 42.0%

Baseline#2 [4] V2-99 Stream 320 × 800 49.6% 1.164 57.3% 42.9% 411 13962 33526 57.6% 48.5%
SynCL (ours) V2-99 Stream 320 × 800 51.8% 1.149 58.8% 45.2% 540 13639 33368 58.7% 49.2%

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate the proposed SynCL on nuScenes [36], a large-scale
benchmark for autonomous driving, which contains 700, 150, and 150 scenes for training, validation,
and testing, respectively. The dataset covers 10 types of common objects on the road. For the
tracking task, nuScenes selects a subset of 7 movable categories, excluding static objects such as
traffic cones. Consistent with official evaluation metrics for 3D MOT, we primarily report AMOTA
(average multi-object tracking accuracy) and AMOTP (average multi-object tracking precision) [37].
We also report metrics of NDS (nuScenes detection score) and mAP (mean Average Precision) for
detection to fully evaluate multi-task performance.

Baseline and Implementation Details. To assess the generality of our proposed synergistic training
strategy, we integrate SynCL within PF-Track [5] and MUTR3D [4] frameworks using different de-
tectors. Specifically, our experiments involve four query-based detectors: DETR3D [30], PETR [29],
PETRv2 [31] and StreamPETR [26]. For DETR3D and PETR, we follow the experimental setups
in ADA-Track [6] and PF-Track, respectively. Regarding PETRv2, we establish the baseline by
substituting only the detector in the PF-Track framework referred to as Baseline#1. Unlike One-
track [8], our experiments with the StreamPETR detector in MUTR3D framework are initialized
from pre-trained detector weights and we then train the tracker in the sliding window mode to ensure
the temporal gradient flow, denoted as Baseline#2. Following common practice, we set the training
epoch to 24 for experiments with resolution of 900/640× 1600, while we set it to 12 for experiments
with resolution of 320× 800. All methods are trained using the AdamW [38] optimizer with a weight
decay of 1.0× 10−2. The learning rate is initially set to 2.0× 10−4 and following a cosine annealing
schedule. We conduct all experiments on eight A100 GPUs with a batch size of 1 and each training
batch consists of a clip of three consecutive frames from different timestamps. For the ablation
studies, configurations of PF-Track with a small resolution 320× 800 are employed as the default.

Inference. We claim that SynCL does not employ the weight-shared parallel decoder during the
inference stage and does not modify the inference procedures of any baseline, thus having no impact
on inference speed. For more details on the runtime analysis, please refer to Appendix B.1.

4.2 Main results

Generality of SynCL. We first evaluate SynCL on the nuScenes validation set. Tab. 1 presents the
comparative results after integrating SynCL into various trackers, with each baseline shown at the
top of each detector group. The experimental results lead to four key observations: 1) SynCL can be
adapted to various tracking-by-attention paradigm methods. Specifically, SynCL improves MUTR3D
and PF-Track by +3.7% and +3.9% AMOTA, respectively. 2) SynCL exhibits compatibility with
various detectors utilizing different attention variants, indicating that the issues associated with the
self-attention mechanism are widespread. Building upon our Baseline#1 and Baseline#2, SynCL
achieves additional +2.5% and 2.2% boosts in AMOTA. 3) SynCL does not significantly increase
the number of false positives while consistently improving the rate of recall. This indicates that our
dynamic query filtering can select more high-quality candidates. 4) As a synergistic training strategy,
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Table 2: Comparison with leading camera-based methods on the nuScenes val set. The FPS is measured on a
single NVIDIA A100 GPU, from the input images to the final tracking results. * denotes results from [25]

Method Backbone Detector Resolution AMOTA AMOTP↓ Recall MOTA IDS↓ FP↓ FN↓ FPS

CC-3DT [39] R101 BEVFormer 900 × 1600 42.9% 1.257 53.4% 38.5% 2219 - - -
DQTrack [11] V2-99 PETRv2 320 × 800 44.6% 1.251 - - 1193 - - 8.6
MUTR3D* [4] V2-99 PETR 640 × 1600 44.3% 1.299 55.2% 41.6% 175 11943 36861 6.1
PF-Track [5] V2-99 PETR 640 × 1600 47.9% 1.227 59.0% 43.5% 181 16149 32778 5.2

ADATrack++ [7] V2-99 PETR 640 × 1600 50.4% 1.197 60.8% 44.5% 613 14839 30616 3.2
OneTrack [8] V2-99 Stream 640 × 1600 54.8% 1.088 61.8% 47.9% 389 - - -

SynCL (ours) V2-99 PETR 640 × 1600 50.7% 1.183 61.3% 46.2% 248 14506 30577 5.2
SynCL (ours) V2-99 Stream 640 × 1600 58.9% 1.016 64.0% 51.5% 652 13946 27330 5.7

SynCL uniquely enhances both detection and tracking performance, providing a novel solution for
end-to-end tracking. Notably, SynCL delivers 2% NDS improvements compared to the PF-Track.

Table 3: Comparison on nuScenes test set. ’E2E’ stands
for the end-to-end detection and tracking model.

Method E2E AMOTA AMOTP↓ Recall MOTA

CC-3DT [39] ✗ 41.0% 1.274 53.4% 38.5%
PF-Track [5] ✓ 43.4% 1.252 53.8% 37.8%

STAR-Track [24] ✓ 43.9% 1.256 56.2% 40.6%
ADATrack++ [7] ✓ 50.0% 1.144 59.5% 45.6%

DQTrack [11] ✓ 52.3% 1.096 62.2% 44.4%
OneTrack [8] ✓ 55.4% 1.021 60.8% 46.1%
DORT [18] ✗ 57.6% 0.951 63.4% 48.4%

SynCL (ours) ✓ 58.8% 0.976 67.1% 50.4%

State-of-the-art Comparison. In Tab. 2, we
first compare SynCL with leading camera-based
3D MOT methods on the nuScenes validation
set. With the PETR detector configuration,
SynCL achieves the highest performance in
both AMOTA and AMOTP. Remarkably, SynCL
does not use the additional association module,
resulting in lower inference latency compared to
the current leader, ADA-Track++ [7]. With the
StreamPETR detector configuration, SynCL sig-
nificantly outperforms the previous state-of-the-
art OneTrack by a margin of 4.1% in AMOTA.

Moreover, we present comparison results on nuScenes test set in Tab. 3. SynCL achieves leading
performance with 58.8% AMOTA and excels over the state-of-the-art camera-based methods. Notably,
SynCL surpasses the dominant two-stage tracker [18] by 1.2% in AMOTA.

Computation and memory complexity. We evaluate the training costs of the models in Tab. 1. We
implement the parallel decoder in an efficient way following [40]. As a result, SynCL only takes an
acceptable increase in training cost including GPU memory and training time as shown in Fig. 5. For
example, with Baseline#1 and MUTR3D, training time is increased by 0.3 and 0.4 hours per epoch.
The memory increases are just 4G and 1G, respectively. Thus, the weight-shared decoder design
slightly increases the computational cache.

PF-Track+4

13

Basel#1+5

16

Basel#2
15

MUTR3D+7

32

PF-Track

Basel#1

Basel#2

MUTR3D
6

+1

16

+3

24

+4

19

Training Time (h) GPU Memory (G)
Baseline Baseline SynCL

0 0

+3+6

Figure 5: Analysis of training time (h) and GPU
memory (G). The inference speed remains unchanged.

Reliable Boxes Unreliable Boxes

Figure 6: Illustration of our Dynamic Query Filtering
with Gaussian Mixture Modeling.

4.3 Ablations and Analysis

Component effectiveness. In Tab. 4a, we analyze the importance of each proposed component in
SynCL for the model performance. According to the specific task, we decompose hybrid matching
into one-to-many learning for detection and one-to-one learning for tracking. In general, our pro-
posed components enjoy consistent performance improvements. Specifically, by introducing hybrid
matching, it outperforms the baseline by 1.8% AMOTA. Further integrating the instance-aware con-
trastive learning brings an extra 2.1% improvement in AMOTA. Together, our proposed components
complement each other to effectively address multi-task learning challenges.

Variants of query filtering. To our knowledge, one-to-many matching has received limited attention
in 3D perception. Therefore, we compare our GMM-based filtering module with methods [41–43]
from 2D tasks. Concretely, we divide these methods into IoU-based group and cost-based group. As
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Table 4: Ablation study on components and query filtering methods. The terms "Det" and "Trk" denote the
matching for detection and tracking in Task-specific Hybrid Matching module, respectively. "CL" denotes the
Instance-aware Contrastive Learning for object and track queries in C-decoder.

(a) Evaluation of component effectiveness.

# Det Trk CL
Tracking Detection

AMOTA AMOTP↓ NDS mAP

① 40.8% 1.343 47.7% 37.8%
② ✓ 42.2% 1.327 49.8% 38.9%
③ ✓ 40.9% 1.339 48.1% 37.9%
④ ✓ ✓ 42.6% 1.286 49.9% 39.9%
⑤ ✓ ✓ ✓ 44.7% 1.262 49.7% 39.6%

(b) Comparison of query filtering methods.

Method
Tracking Detection

AMOTA AMOTP↓ Recall NDS mAP

IoU-based
ATSS [41] 39.3% 1.367 49.9% 47.0% 37.3%

SimOTA [42] 42.8% 1.323 52.5% 49.2% 38.8%

Cost-based
DETA [43] 43.1% 1.320 54.2% 49.4% 38.6%

GMM (ours) 44.7% 1.262 56.5% 49.7% 39.6%

Table 5: Comparision results of matching variants for object queries in Task-specific Hybrid Matching module.

# Decoder Type Matching Range Strategy
Tracking Detection

AMOTA AMOTP↓ Recall FP↓ FN↓ NDS mAP

① S-decoder New-born GTs one-to-one 40.8% 1.343 50.7% 15288 40398 47.7% 37.8%
② S-decoder New-born GTs one-to-many 38.8% 1.357 52.4% 15461 39930 46.5% 37.1%

③ C-decoder New-born GTs one-to-many 41.1% 1.339 52.4% 14265 40231 47.8% 38.3%
④ C-decoder All GTs one-to-many 42.6% 1.300 53.3% 14683 37666 49.1% 38.6%
⑤ C-decoder Persistent GTs one-to-many 44.7% 1.262 56.5% 15344 36801 49.7% 39.6%

Table 6: Ablation of maximum assignment constraint K.

K

Tracking Detection

AMOTA AMOTP↓ Recall NDS mAP

4 44.3% 1.286 54.9% 50.1% 39.5%
5 44.7% 1.262 56.5% 49.7% 39.6%
6 42.8% 1.298 53.4% 49.7% 39.2%

Table 7: Ablation of training sample length T .

T

Tracking Detection

AMOTA AMOTP↓ Recall NDS mAP

2 43.1% 1.320 54.2% 49.4% 38.6%
3 44.7% 1.262 56.5% 49.7% 39.6%
4 44.2% 1.282 54.1% 50.1% 39.3%

shown in Tab. 4b, IoU-based methods fail to surpass even the fixed-threshold method, DETA [43].
We infer that the object queries cannot ensure sufficient IoU overlap with GT boxes. Compared to our
dynamic method, DETA proves inadequate for mining potential high-quality candidates. We further
demonstrate the candidate selection effect of our GMM-based filtering module in Fig. 6.

Variants of matching. In Tab. 5, we analyze the impact of different matching variants for object
queries in hybrid matching module. We consider from the perspectives of decoder type, matching
range, and matching strategy, compared to our baseline (highlighted in gray). Based on the ex-
perimental results we draw the following two conclusions: 1) The one-to-many assignment is not
applicable to the standard decoder due to the NMS effect of the self-attention mechanism (①vs.②). 2)
Object queries in the C-decoder cannot benefit from a broader matching range with all ground-truth
targets (④vs.⑤). We attribute this to the reduction of positive sample proportion in contrastive
learning, which may diminish the effectiveness of synergistic learning. Moreover, matching solely
with New-born GTs offers limited improvement due to the reduction in positive supervision (③vs.⑤).

Hyperparameters. We study two types of hyperparameters, the maximum assignment constraint K
per GT in Eq. 9 and the training sample length T . For K, according to Tab. 6, the best performance is
achieved when K = 5. Possibly, a smaller matching number could lack supervision signals, while a
larger matching number could introduce noisy and unreliable candidates. For T in Tab. 7, we observe
that when the frame number is increased from 2 to 3, SynCL obtains a boost of +1.6% AMOTA.
However, when T > 3, SynCL cannot improve the model further. We infer that more consecutive
frames lead to more optimization targets and temporal gradients, affecting the training stability. We
thus use K = 5 and T = 3 as the default setting for all our main results and other ablation studies.

Comparison to OneTrack. While both OneTrack [8] and SynCL aim to optimize the joint training of
detection and tracking, we summarize the core differences between SynCL and OneTrack as follows:
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Table 8: Comparison of adopting SynCL with Onetrack on nuScenes val set. * denotes our reproduced results.

# Methods Backbone Detector
Tracking Detection

#Epochs
AMOTA AMOTP↓ NDS mAP

① Baseline V2-99 PETR 36.5% 1.411 46.2% 36.9% 24
② OneTrack* [8] V2-99 PETR 37.8% 1.380 47.3% 37.7% 24
③ SynCL V2-99 PETR 42.4% 1.347 48.9% 38.4% 24

④ Baseline V2-99 StreamPETR 43.8% 1.265 53.6% 45.1% 24
⑤ OneTrack* [8] V2-99 StreamPETR 45.3% 1.237 55.9% 46.4% 24
⑥ SynCL V2-99 StreamPETR 48.1% 1.204 56.8% 47.0% 24

(1) Research perspective. OneTrack mainly attributes the joint optimization problem to the conflicting
gradient flow within the classification heads, whereas we analyze this problem from the perspective
of the attention mechanism and the bipartite matching strategy.

(2) Orthogonality. We speculate that the multi-task learning conflict studied by both OneTrack and
ourselves is orthogonal. To validate this, we reproduce the one-stage training based on PF-Track-S and
our Baseline#2 (① and ④). We then reproduce OneTrack (② and ⑤) with two classification heads for
gradient coordination and we do not use dynamic mask and high-cost assignment suppression. Finally,
we apply our method to the reproduced OneTrack framework. As shown in Tab. 8, the consistent
improvements (②vs.③, ⑤vs.⑥) prove our speculation and thus highlight our work’s novelty.

(3) Training cost and performance. The training epochs of the one-stage training equal the total
epochs of the two-stage training. Therefore, with comparable training cost, the models integrated
with SynCL outperform OneTrack under the same configurations as shown in Tab. 2.

5 Conclusion

In this paper, we have delved into the optimization difficulties of joint detection and tracking training
in end-to-end 3D trackers. We reveal that the self-attention mechanism in the transformer-based
decoder hinders multi-task learning through over-deduplicating object queries and introducing self-
centric attention to track queries. Based on these analyses, we have proposed to synergistically
optimize multi-task learning through hybrid matching for both queries with dynamic filtering and
contrastive learning within a weight-shared parallel decoder without self-attention. Both quantitative
and qualitative results on the nuScenes dataset demonstrate the superiority of SynCL with consistent
gains, achieving new state-of-the-art performance for the multi-camera 3D MOT task.

Limitations and broader impacts. The parallel decoder’s construction with SynCL components
leads to higher training costs, including increased training time and memory usage. Future work could
investigate decoupled incremental training methods, e.g., LoRA, to further reduce these additional
training expenses. Moreover, we have preliminarily validated SynCL’s effectiveness under the
one-stage training setting. However, the multi-task learning conflicts may not be fully resolved, as
evidenced by the decreased performance compared to our two-stage training. Future work could
explore more fine-grained training strategies designed for this long-term one-stage training.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Sec. 4.1 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It would be too computationally expensive to report Error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sec. 4.1 and Sec. 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and we confirm that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Sec. 5 and Appendix C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Please refer to Appendix C.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Sec. 4.1 and reference.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Code and raw results will be publicly available upon acceptance and we will
include details about training, license, limitations, etc.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have reviewed the LLM policy and we confirm that the core method
development in this research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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