
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

HaSa: Hardness and Structure-Aware Contrastive Knowledge
Graph Embedding

Anonymous Author(s)

ABSTRACT
We consider a contrastive learning approach to knowledge graph

embedding (KGE) via InfoNCE. For KGE, efficient learning relies on

augmenting the training data with negative triples. However, most

KGE works overlook the bias from generating the negative triples—

false negative triples (factual triples missing from the knowledge

graph). We argue that the generation of high-quality (i.e., hard) neg-

ative triples might lead to an increase in false negative triples. To

mitigate the impact of false negative triples during the generation of

hard negative triples, we propose the Hardness and Structure-aware

(HaSa) contrastive KGE method, which alleviate the effect of false

negative triples while generating the hard negative triples. Experi-

ments show that HaSa improves the performance of InfoNCE-based

KGE approaches and achieves state-of-the-art results in several met-

rics for WN18RR datasets and competitive results for FB15k-237

datasets compared to both classic and pre-trained LM-based KGE

methods.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Feature selection.

KEYWORDS
Knowledge Graph Embedding, Contrastive Learning, Negative Sam-

pling

ACM Reference Format:
Anonymous Author(s). 2024. HaSa: Hardness and Structure-Aware Con-

trastive Knowledge Graph Embedding. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation email (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 10 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION
A knowledge graph (KG) is a structured representation of factual

descriptions consisting of entities and relationships. Formally, a

knowledge graph is defined as a triple database G = (E,R,T)
where E and R are the entity set and relationship set, and T =

{(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R} is the triple set, where ℎ is the head entity,

𝑡 is the tail entity and 𝑟 is the relationship. Each triple (ℎ, 𝑟, 𝑡)
captures a fact, for example (Obama, born in, Honolulu).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, XX–XX, 2024, XX, XX
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Knowledge graph embedding (KGE), also known as knowledge

representation learning (KRL), aims to learn a deterministic embed-

ding function 𝑓 (·) that maps the ℎ, 𝑟 , and 𝑡 to a lower dimensional

space 𝑓 (ℎ) = eℎ ∈ R𝑑 , 𝑓 (𝑟) = e𝑟 ∈ R𝑑 , and 𝑓 (𝑡) = e𝑡 ∈ R𝑑 [14, 33];

some KGE methods may map 𝑟 to a separate space from the entities.

KGE can be used in many applications such as question-answering

[19, 21] and drug discovery [17]. An important downstream appli-

cation is knowledge graph completion (also called link prediction

problem): given a query, ℎ𝑟 , by combining a head entity ℎ and rela-

tionship 𝑟 , the goal is to infer the corresponding tail entity 𝑡 from

a set of candidate entities. For example, given the query (Obama,
born in), link prediction algorithms are trained to correctly predict

the corresponding tail entity Honolulu.
Recently, contrastive learning, a self-supervised learningmethod,

has shown good performance for embedding problems in computer

vision [5, 12] and natural language processing [9], knowledge graph

embedding [27, 31, 32]. Contrastive learning augments the training

data by creating new data samples. How new data are generated

depends on what kind of data we want to embed. In KGE, a given

positive triple from the knowledge graph, (ℎ, 𝑟, 𝑡) ∈ T , can be aug-

mented by replacing the original tail 𝑡 with another tail entity 𝑡−

such that the new triple (ℎ, 𝑟, 𝑡−) ∉ T . This creates a negative triple.
For each positive triple in T , we need to generate multiple nega-

tive triples. InfoNCE[22] is a popular loss function in contrastive

learning.

Exhaustively generating all possible negative triples for training

is expensive (i.e., replace 𝑡 by all other entities in E). Instead, we
only generate 𝐾 negative tails. Simple InfoNCE[22] samples nega-

tive tails from a distribution that is independent of the query. While

this approach is simple to implement, it was shown that higher-

quality negative samples, called self-adversarial or hard negative

samples, lead to better performance [13, 15]. Hard InfoNCE samples

negative tails from a distribution that depends (semantically and

lexicographically) on the query embedding. For example, (New
York, location adjoining, New Caledonia) and (New York, lo-
cation adjoining, Avatar Movie) are both negative triples in a

knowledge graph. However, (New York, location adjoining, New
Caledonia) is more useful than (New York, location adjoining,
Avatar Movie) for learning a meaningful embedding. Thus, we

expect that the former triple would be harder than the latter one

with respect to the majority of standard metrics used in natural

language processing.

Empirical studies show that hard negative triples need to be

generated carefully since they tend to be false negative triples, which
are negative triples that are factual. False negative triples should

be in T but are not due to the incompleteness of the knowledge

graph. False negative triples will cause the augmented training set

to be biased and have a negative effect on learning the embedding

function.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, XX–XX, 2024, XX, XX Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In this paper, we modify InfoNCE loss for KGE to alleviate the

effect of false negative triples while still keeping the advantage of

hard negatives. For a particular query (ℎ, 𝑡), we generate a hard
negative tail, 𝑡− , using the same sampling distribution as Hard

InfoNCE (this accounts for the query embedding). We weigh the

resultant hard negative triple, (ℎ, 𝑟, 𝑡−), by the probability that it

is not a false negative triple. We utilize the shortest path length

between ℎ and 𝑡− in the knowledge graph structure to approximate

this probability. We call our method Hardness and Structure-aware

(HaSa) contrastive KGE. Furthermore, we also boost the HaSa by

considering the bi-directional loss (HaSa+). Our experiments using

Wn18RR and FB15k-237 datasets show that HaSa is better than the

InfoNCE-based method without considering false negative triples.

More broadly, HaSa and HaSa+ methods perform on par with the

wide range of comparable state-of-the-art solutions for KGE. In

summary, our contributions are as follows:

(1) Experimentally using WN18RR and FB15k-237, Hard In-

foNCE, which samples, 𝑡− , from a distribution that depends

on the query embedding, generates much more false neg-

ative triples than Simple InfoNCE. We discover that hard

negative triples with smaller shortest path lengths (between

ℎ and 𝑡− in the knowledge graph structure) are more likely

to be false negative triples.

(2) We proposeHaSa, whichweighs hard negative triples by the

probability that they are false negative triples. This reduces

the effect of false negative triples on the loss calculation.

Experiments show that HaSa has enhanced link prediction

results compared to Simple InfoNCE and Hard InfoNCE.

(3) We performed our method HaSa and HaSa+ methods on

the WN18RR and FB15k-237 datasets. The experimental

results on par in link prediction tasks with comparable

state-of-the-art KGE methods on both classic methods such

as RotatE [26], ComplexE [29] and pre-trained language-

based methods such as StAR [30], LASS [25].

2 RELATEDWORK
Knowledge graph embedding is often used for knowledge graph

completion. KGE methods need to be trained on the negative triples

to differentiate from the original positive triples. Early works such

as Bordes et al. [3], Lin et al. [18], Yang et al. [36] used triplet loss,

by assigning higher scores to positive triples than negative triples.

Trouillon et al. [29], Xu and Li [35] used negative log-likelihood

while Dettmers et al. [8], Yao et al. [38] used cross-entropy loss.

More recent works such as Shen et al. [25], Sun et al. [26] used

negative sampling loss proposed by [20], which is similar to noise

contrastive estimation (NCE) [11]. More recently, InfoNCE loss

[22] has shown significant improvements in contrastive learning,

leading to the proposal of several KGE methods based on InfoNCE

loss[27, 31, 32, 37].

Apart from such model-based loss functions, Some KGEmethods

use various heuristics to investigate the loss function by consider-

ing the data-driven loss function to generate useful negative triples

for efficient training. For instance, Cai and Wang [4], Sun et al. [26]

assigned a probability to each negative triple based on its plausibil-

ity in the current embedding space. Yao et al. [38] leveraged textual

information from the knowledge graph to propose KG-BERT. Shen

et al. [25], Wang et al. [30] combined structural information with

pre-trained language models (LMs). Recently, Wang et al. [32] pro-

posed concatenating the head entity and relationship and feeding

them into a pre-trained model. In addition to the embedding space,

Ahrabian et al. [1], Wang et al. [30] explored building negative

triples based on graph topology. Wang et al. [31] introduced a tem-

perature constant in the contrastive loss to control the hardness

of negative triples. However, previous research did not analyze

the effectiveness of hard negatives and neglected the issue of false

negative triples.

Our work is also related to the role of negatives in contrastive
learning, a self-supervised learningmethod that has shown impres-

sive results in many different applications. The quality of negative

samples plays a crucial role in the effectiveness of contrastive learn-

ing. Previous studies [15, 24, 34] have demonstrated that using

hard negatives can enhance contrastive learning results. Other ap-

proaches [7, 16] have modified the InfoNCE loss to address the

issue of false negative samples in image classification. More re-

cently, some methods [6, 10] replaced negative samples by using

momentum update or stop-gradient.

3 BACKGROUND: SIMPLE INFONCE LOSS
InfoNCE loss [22] was used to learn optimal embedding for audio,

images, and natural language tasks. It has since been adopted for

KGE [27, 31].

In the KG, for a given triple (ℎ, 𝑟, 𝑡) ∈ T , we will sample 𝐾 in-

dependent and identically distributed negative tails, 𝑡−
𝑗
, 𝑗 = 1, . . . 𝐾

from the negative sample distribution 𝑝– (𝑡) which independent

to the ℎ and 𝑡 . This will make 𝐾 negative triples: (ℎ, 𝑟, 𝑡−
𝑗
). Let

𝑓 (𝑡−
𝑗
) = e−𝑡 𝑗 denote the embedding of the negative tail 𝑡−

𝑗
.

The InfoNCE loss adopted to KGE is

L𝐼𝑛𝑓 𝑜 =
∑︁

(ℎ,𝑟,𝑡) ∈T

[
− log

(
exp(e𝑇

ℎ𝑟
e𝑡)

exp(e𝑇
ℎ𝑟
e𝑡) +

∑𝐾
𝑗=1 exp(e𝑇ℎ𝑟 e

−
𝑡)

)]
, (1)

where eℎ𝑟 is the query embedding obtained with an aggregation

function𝑔(·, ·) : R𝑑×R𝑑 → R𝑑 such that𝑔(𝑓 (ℎ), 𝑓 (𝑟)) = 𝑔(eℎ, e𝑟) =
eℎ𝑟 ∈ R𝑑 . We follow the setting of InfoNCE[22] to use the gated

recurrent unit (GRU) neural network to model the aggregation

function 𝑔(·, ·).
By minimizing L𝐼𝑛𝑓 𝑜 , we aim to learn 𝑓 (·) and 𝑔(·) such that

the query and the corresponding positive tail are mapped to vectors

(in the embedding space) that are close together, while the query

and the negative tails are mapped to vectors that are far apart.

Assuming that the joint distribution of eℎ𝑟 , e𝑡 , e−𝑡1 , . . . e
−
𝑡𝐾

can be

factored as 𝑝 (eℎ𝑟 , e𝑡)
∏𝐾
𝑗=1 𝑝

– (e−𝑡 𝑗), [22] showed that the InfoNCE

loss gives a lower bound on the mutual information between eℎ𝑟 , e𝑡 .
That is, by minimizing InfoNCE loss in KGE, we are maximizing

the mutual information between query and corresponding tail em-

bedding, 𝐼 (eℎ𝑟 ; e𝑡). Aitchison [2] also showed that the infoNCE

objective is equal (up to a constant) to the log Bayesian model

evidence.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding Conference acronym ’XX, XX–XX, 2024, XX, XX

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

To explicitly account for the negative sample distribution, we

can formulate the InfoNCE loss as

L𝑆𝑖𝑚𝑝𝑙𝑒_𝐼𝑛𝑓 𝑜 =∑︁
(ℎ,𝑟,𝑡) ∈T

[
− log

(
exp(e𝑇

ℎ𝑟
e𝑡)

exp(e𝑇
ℎ𝑟

e𝑡) +𝐾 · E𝑡−∼𝑝– (𝑡) [exp(e𝑇ℎ𝑟 e
−
𝑡)]

)]
, (2)

where 𝑝– (𝑡) is the negative sample distribution. We can assume

that

𝑝– (𝑡) = #(𝑡)∑
𝑡 ′∈E𝑏𝑎𝑡𝑐ℎ #(𝑡 ′)

, (3)

where E𝑏𝑎𝑡𝑐ℎ ⊆ E is the subset consisting of entities in the training

batch and #(𝑡) is the number of times 𝑡 occurs as a tail entity in train-

ing triple batch T𝑏𝑎𝑡𝑐ℎ ⊆ T . The negative tails sampled from 𝑝– (𝑡)
are considered simple because they are generated independently

from the query.

To see the relationship between (1) and the original InfoNCE loss

(2) proposed in [22], it is enough to consider 𝐾 samples of negative

tails {𝑡−
𝑗
} from 𝑝– (𝑡) and the approximation

E𝑡−∼𝑝– (𝑡) [exp(e𝑇ℎ𝑟 e
−
𝑡)] ≈

1

𝐾

𝐾∑︁
𝑗=1

exp(e𝑇
ℎ𝑟
e−𝑡).

Figure 1: Number of false negative triples generated using
Simple 𝑝– (𝑡) and Hard 𝑝– (𝑡 |eℎ𝑟) methods.

4 INFONCE LOSS WITH HARD NEGATIVE
TRIPLES

In practice, KGE algorithms often use heuristics to generate hard

negative triples to maximize performance. Hard negative triples

are harder to distinguish from the triples in the KG than arbitrarily

generated negative samples[13, 15]. One way to generate hard

negative triples is to sample the tail entity from a negative sample

distribution that also considers the query phrase. That is, we sample

the negative tail from the negative sample distribution 𝑝– (𝑡 |eℎ𝑟).

InfoNCE loss function with hard negative triples becomes

L𝐻𝑎𝑟𝑑_𝐼𝑛𝑓 𝑜 =∑︁
(ℎ,𝑟,𝑡) ∈T

[
− log

(
exp(e𝑇

ℎ𝑟
e𝑡)

exp(e𝑇
ℎ𝑟

e𝑡) +𝐾E𝑡−∼𝑝– (𝑡 |eℎ𝑟) [exp(e
𝑇
ℎ𝑟

e−𝑡)]

)]
. (4)

Similar to RotatE [26] and KBGAN [4], we use the following

negative sample distribution:

𝑝– (𝑡 |eℎ𝑟) =
exp(e𝑇

ℎ𝑟
e𝑡)∑

𝑡 ′∈E𝑏𝑎𝑡𝑐ℎ exp(e
𝑇
ℎ𝑟
e𝑡 ′)

, (5)

which gives preference to tail entities whose embedding is close to

the query embedding.

At the beginning of the learning process, we do not know the

embedding (𝑓 (·)) and aggregation (𝑔(·)) functions. Therefore, we
initialize eℎ𝑟 , e𝑡 , e−𝑡 using representations from a pre-trained LMs.

4.1 Hard Negative Triples may be False Negative
Triples

Reference [7] discussed the possibility of false negative samples,

which are negative samples that (inadvertently) share the same

class label as the original data. It was argued that they would hurt

the downstream task.

In KGE, false negative triples will hurt embedding. The false

negative tail embedding should be close to the query embedding

(since the triple is factually true) but it’s instead, pulled away from

the query embedding by the gradient update during the training

process (See the rigorous analysis in Remark 1 A.1).

First, we will see that using (5) to generate negative tails results

in more false negative triples than using (3). We considered two

benchmark knowledge graph datasets: WN18RR[8] and FB15k-

237[28]. We randomly removed 30% of the triples in the training.

We call the set of removed triples Tmissing and the set of triples that

we retain Tretain.
For every triple (ℎ, 𝑟, 𝑡) in Tretain, we will generate 𝐾 negative

triples by sampling the negative tail, 𝑡− , from 1) 𝑝– (𝑡), as defined
in (3), 2) 𝑝– (𝑡 |eℎ𝑟), as defined in (5). If the negative triple, (ℎ, 𝑟, 𝑡−),
can be found in Tmissing, then it is factual and is a false negative
triple. Otherwise, it is considered a true negative triple. This is a
weak assumption since we have no way to know if this is correct.

Note that the number of negative triples,𝐾 , depends on the batch

size. For each triple (ℎ, 𝑟, 𝑡) ∈ T𝑏𝑎𝑡𝑐ℎ , we generate𝐾 = 2(|T𝑏𝑎𝑡𝑐ℎ |) −
1 negative triples.

Figure 1 shows the total number of false negative triples we

obtained for WN18RR and FB15K-237 when we consider the dif-

ferent numbers of 𝐾 . We can see that the hard negative sample

distribution 𝑝– (𝑡 |eℎ𝑟) produces far more false negatives than the

simple negative sample distribution 𝑝– (𝑡).

4.2 Shortest Path Length Distinguishes True
and False Negative Triples

Unless we consult an external source, we do not know with cer-

tainty if a negative triple (ℎ, 𝑟, 𝑡−) is factual (true negative tripe) or
not (false negative triple). However, we found that we can (approx-

imately) differentiate between true and false negative triples using

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, XX–XX, 2024, XX, XX Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the knowledge graph structure. Several KGE methods have utilized

the structural information of G [1, 30].

Consider an unweighted, undirected graph G induced by the

triples in the knowledge graph. The nodes of G represent the enti-

ties, and the edges represent relations. Let𝑑 (ℎ, 𝑡) denote the shortest
path length from a node representing the head entity, ℎ, to another

node representing the tail entity, 𝑡 , in G.
Figure 2 shows the histogram of𝑑 (ℎ, 𝑡) for true and false negative

triples generated by hard negative sampling from 𝑝– (𝑡 |eℎ𝑟). We

can see that in both WN18RR and FB15k-237, the false negative

triples tend to have smaller𝑑 (ℎ, 𝑡) than true negative triples.Wewill

leverage this observation to mitigate the impact of false negative

triples.

WN18RR FB15k-237

Figure 2: Histogram of shortest path length 𝑑 (ℎ, 𝑡) between
head entity 𝑡 and tail entity 𝑡 for true and false hard negative
triples

5 HARDNESS AND STRUCTURE-AWARE
(HASA) CONTRASTIVE KGE

As we showed in the previous section, hard negative triples may

be false negative triples, which degrades embedding performance.

Chuang et al. [7] proposed the debiased contrastive loss, which

accounts for false negative samples.

We can similarly modify the InfoNCE loss with hard negatives

by considering a latent variable ℓ labeling triples as factual or non-

factual: ℓ ∈ {fact, nonfact}. The ideal hard negative sample distri-

bution should be 𝑝– (𝑡 |eℎ𝑟 , ℓ = nonfact) instead of 𝑝– (𝑡 |eℎ𝑟).
We use the graph structure information of the knowledge graph

to filter the false negative triples out of the hard negative triples

obtained with (5). We call it hardness and structure-aware (HaSa)

loss function

L𝐻𝑎𝑆𝑎 =∑︁
(ℎ,𝑟,𝑡)T

− log

(
exp(e𝑇

ℎ𝑟
e𝑡)

exp(e𝑇
ℎ𝑟

e𝑡) +𝐾E𝑡−∼𝑝– (𝑡 |eℎ𝑟 ,ℓ=nonfact) [exp(e
𝑇
ℎ𝑟

e−𝑡)]

)
.

(6)

Since we can not know if a negative triple is factual, we can not

directly sample the negative sample distribution as before. Using

the Law of Total Expectation, we see that

E𝑡−∼𝑝– (𝑡 |eℎ𝑟 ,ℓ=nonfact) [exp(e
𝑇
ℎ𝑟

e−𝑡)] =
1

1 − 𝜏 E𝑡
−∼𝑝– (𝑡 |eℎ𝑟) [exp(e

𝑇
ℎ𝑟

e−𝑡)] −
𝜏

1 − 𝜏 E𝑡−∼𝑝– (𝑡 |eℎ𝑟 ,ℓ=fact) [exp(e
𝑇
ℎ𝑟

e−𝑡)],
(7)

where 𝜏 = 𝑝 (ℓ = fact|eℎ𝑟) and 1 − 𝜏 = 𝑝 (ℓ = nonfact|eℎ𝑟) are
hyperparameters that we will learn set via ablation study (see Sec-

tion 7.4). The distribution of false negative tails 𝑝– (𝑡 |eℎ𝑟 , ℓ = fact)
is remarkable and concentrate on the 𝑑 (ℎ, 𝑡) region. Approximating

the 𝑝– (𝑡 |eℎ𝑟 , ℓ = fact) is easier and it has much smaller sample

space than 𝑝– (𝑡 |eℎ𝑟 , ℓ = nonfact). Thus, instead of estimating the

expectation in terms of the true negative triples, we estimate the

expectation in terms of the false negative triples.

Note that we can approximate the expectation in the first term

on the right-hand side of (7) based on the hard negative sample

distribution (5). The second term of equation 7 requires samples

from 𝑝– (𝑡 |eℎ𝑟 , ℓ = fact), which we approximate with

𝑝– (𝑡 |eℎ𝑟 , ℓ = fact) ∝ exp(e𝑇
ℎ𝑟
e𝑡)𝛼 (𝑡 |eℎ𝑟), (8)

where 𝛼 (𝑡 |eℎ𝑟) depend on the shortest path 𝑑 (ℎ, 𝑟) in G.

Let N1 (ℎ) be the set of nodes in G whose shortest path length

from a head node ℎ is one. By definition, these nodes would be the

set of tail nodes of ℎ. Let N2 (ℎ) be the set of nodes whose shortest
path length from a head node ℎ is two, these nodes may be heads

or tails nodes. We construct 𝛼 to be

𝛼 (𝑡 |eℎ𝑟) =
{

1

|N1 (ℎ) |+|N2 (ℎ) | , if 𝑑 (ℎ, 𝑡) ≤ 2

0, otherwise.
(9)

As we showed in Section 4.2, the shortest path length can distin-

guish between true and false negative triples. The second expecta-

tion can be approximated via importance sampling.

E𝑡−∼𝑝– (𝑡 |eℎ𝑟 ,ℓ=fact) [exp(e
𝑇
ℎ𝑟
e−𝑡)] (10)

= E𝑡−∼𝛼 (𝑡 |eℎ𝑟)

[
exp(e𝑇

ℎ𝑟
e−𝑡)

𝑝– (𝑡 |eℎ𝑟 , ℓ = fact)
𝛼 (𝑡 |eℎ𝑟)

]
(11)

/ E𝑠−∼𝛼 (𝑡 |eℎ𝑟)
[
𝑝– (𝑡 |eℎ𝑟 , ℓ = fact)

𝛼 (𝑡 |eℎ𝑟)

]
(12)

≈
𝑀∑︁
𝑚=1

exp(2e𝑇
ℎ𝑟
e−𝑡𝑚)∑𝑀

𝑚=1 exp(e𝑇ℎ𝑟 e
−
𝑡𝑚

)
(13)

where e−𝑡𝑚 are the embedding of the 𝑀 Monte Carlo samples, 𝑠𝑚

from 𝛼 (𝑡 |eℎ𝑟).
With𝐾 samples {𝑡−

𝑗
} from (5) and𝑀 samples {𝑠−𝑚} from𝛼 (𝑡 |eℎ𝑟),

E𝑡−
𝑗
∼𝑝– (𝑡 |eℎ𝑟 ,ℓ=nonfact) [exp(e

𝑇
ℎ𝑟
e−𝑡)] ≈

1

1 − 𝜏

𝐾∑︁
𝑗=1

exp(2e𝑇
ℎ𝑟
𝑓 (𝑡−

𝑗
))∑𝐾

𝑗=1 exp(e𝑇ℎ𝑟 𝑓 (𝑡
−
𝑗
))

− 𝜏

1 − 𝜏

𝑀∑︁
𝑚=1

exp(2e𝑇
ℎ𝑟
𝑓 (𝑠−𝑚))∑𝑀

𝑚=1 exp(e𝑇ℎ𝑟 𝑓 (𝑠
−
𝑚))

.

(14)

The formal steps of HaSa are presented as Algorithm 1.

6 IMPROVED HASA: HASA+
We can make one additional modification to the HaSa loss to im-

prove performance. Thus far, for a given query (head & relationship)

from triple (ℎ, 𝑟, 𝑡) ∈ T , we have discussed different methods to

generate 𝐾 negative tails 𝑡−, so that the generated negative triples

(ℎ, 𝑟, 𝑡−) are useful for learning a good knowledge graph embedding.

Similarly, we can consider keeping the tail entity, 𝑡 , and generating

𝐾 negative contexts, ℎ−, 𝑟− , so the the negative triples (ℎ−, 𝑟−, 𝑡)
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding Conference acronym ’XX, XX–XX, 2024, XX, XX

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: An algorithm of HaSa

Input :Batch of triple T𝑏𝑎𝑡𝑐ℎ , 𝜏 , graph structure G,current

encoder 𝑓 .

Output :The loss L𝐻𝑎𝑆𝑎 .
1 Extract entity batch E𝑏𝑎𝑡𝑐ℎ from T𝑏𝑎𝑡𝑐ℎ ;
for (ℎ, 𝑟, 𝑡) in T𝑏𝑎𝑡𝑐ℎ do

2 eℎ = 𝑓 (ℎ);
e𝑟 = 𝑓 (𝑟);
e𝑡 = 𝑓 (𝑡);
eℎ𝑡 = 𝑔(eℎ, e𝑟);
Eℎ𝑎𝑟𝑑 = HardNegative (eℎ𝑡 , E, 𝑓);
{𝑡−
𝑗
} = E𝑏𝑎𝑡𝑐ℎ ∪ Eℎ𝑎𝑟𝑑/{𝑡} ;

{𝑠−
𝑖
} = Sampling neighbour nodes based on the

distribution 𝛼 (·|eℎ𝑡) (equation 9);

Pos = exp(e𝑇
ℎ𝑡
e𝑡);

Neg =
1

|𝐾 |
∑
𝑡−
𝑗
exp(e𝑇

ℎ𝑡
e−𝑡 𝑗);

FalseNeg =
1

|𝑀 |
∑
𝑠−
𝑖
exp (e𝑇

ℎ𝑡
e−𝑠𝑖) ;

NegHasa = 𝐾 (1

(1−𝜏)Neg − 𝜏FalseNeg) ;
Calculate L𝐻𝑎𝑆𝑎 (ℎ, 𝑟, 𝑡) for each triple

L𝐻𝑎𝑆𝑎 (ℎ, 𝑟, 𝑡) = Pos/(Pos + NegHasa);
end

3 L𝐻𝑎𝑆𝑎 =
∑

(ℎ,𝑟,𝑡) ∈T𝑏𝑎𝑡𝑐ℎ L𝐻𝑎𝑆𝑎 (ℎ, 𝑟, 𝑡);

Algorithm 2: HardNegative
Input :Entity set E, eℎ𝑡 , current encoder 𝑓
Output :Eℎ𝑎𝑟𝑑

1 Filter the E to get rid of positive tails corresponding ℎ based

on training dataset;

2 for 𝑒 in E do
𝜙 (eℎ𝑡 , 𝑒) = e𝑇

ℎ𝑡
𝑓 (𝑒)

end
3 Sorted the 𝑒 based on the value of 𝜙 (eℎ𝑡 , 𝑒) and extract

Eℎ𝑎𝑟𝑑 ;

can be also be used. This sort of bi-directional contrasting has been

done in computer vision literature [5].

A disadvantage of considering negative contexts is that the sup-

port of the negative sample distribution 𝑝– (ℎ, 𝑟) is |E | × |R|, which
can be prohibitively large. Therefore, we only consider simple neg-

ative sample distribution for the context.

The final modification to the InfoNCE loss is

L𝐻𝑎𝑆𝑎+ =∑︁
(ℎ,𝑟,𝑡) ∈T

− log
©«

exp(e𝑇
ℎ𝑟

e𝑡)
exp(e𝑇

ℎ𝑟
e𝑡) +

∑𝐾
𝑗=1 E𝑡−

𝑗
∼𝑝– (𝑡 |eℎ𝑟 ,ℓ=nonfact) [exp(e

𝑇
ℎ𝑟

e−𝑡)]
ª®¬

− log
©«

exp(e𝑇
ℎ𝑟

e𝑡)
exp(e𝑇

ℎ𝑟
e𝑡) +

∑𝐾
𝑗=1 Eℎ− ,𝑟−∼𝑝– (ℎ,𝑟) [exp(e𝑇𝑡 e−(ℎ𝑟) 𝑗)]

ª®¬ .
(15)

The algorithm for HaSa+ can be found in Appendix A.2.

7 EXPERIMENTS
Dataset:We considered on two dataset FB15k-237[28] andWN18RR[8].

FB15k-237 has a larger average node degree than WN18RR, as

shown in Table 1. Following [8, 32], we augment the triples each

every triple (ℎ, 𝑟, 𝑡) with reverse_relation (𝑟−) as (𝑡, 𝑟−, ℎ) so we can
predict ℎ given (𝑡, 𝑟−).

Table 1: Dataset

|E | |R| |Ttraining | |T
valid

| |Ttest | avg degree

WN18RR 40,943 11 86,835 3034 3134 3.2

FB15k-237 14,541 237 272,115 17,535 20,466 81

7.1 Comparing HaSa and HaSa+ to
State-of-the-Art KGE models

Metric: To evaluate the effectiveness of our method in KGE, we

apply it to the link prediction task, which involves predicting the

true tails or true head entities in a KG. We use the Mean Rank (MR)

of correct entities, Mean Reciprocal Rank (MRR), and Hits at N

(Hit@N) which means the proportion of correct entities in top N

as metrics to evaluate link prediction results.

Training process: 1) We built the embedding function, 𝑓 (·),
using pre-trained LMs with an additional neural network (a linear

layer, a Layer normalization, and a dropout layer with probability

0.1 of an element to be zeroed) to reduce the embedding dimension

to𝑑 = {100, 500} for low dimension and high dimension. For the pre-

trained LMs, we use BERT-base and sentence-BERT [23](both pre-

trained LMs have embedding space 768). BERT-base is commonly

used in the knowledge graph embedding [25, 32]. Sentence-BERT

[23] has the advantage on sentence prediction and phrase similarity

tasks. Our loss function focus on the similarity between query and

tail entity so we use sentence-BERT which has a better ability to

calculate sentence similarly.

2) We follow the setting of InfoNCE loss [22] to make the aggre-

gation function 𝑔(·) as a gated recurrent unit (GRU) neural network.
3) Optimization is done using PyTorch AdamW with learning

rate 2 × 10
−5

and parameter penalty 1 × 10
−4
. The training batch

size is |T𝑏𝑎𝑡𝑐ℎ | = {64, 128, 256}. The number, 𝐾 , of negative triples

per each input triple (ℎ, 𝑟, 𝑡) depends on the batch size |T𝑏𝑎𝑡𝑐ℎ |. We

regard both head entities and tail entities in one batch as negatives

excluding the positive tail itself. For each input triple, we also

selected the top 3 hardest negatives by computing e𝑇
ℎ𝑟
e𝑡 . Therefore,

𝐾 = 5(|T𝑏𝑎𝑡𝑐ℎ |) − 1. All experiments are performed on 2 NVIDIA

Tesla v100 GPUs and are implemented in Python using the PyTorch

framework.

7.2 Comparing HaSa with Simple InfoNCE and
Hard InfoNCE

We compared our method HaSa (6) performance with the perfor-

mance of the Simple InfoNCE (2) and Hard InfoNCE (4) onWN18RR

and FB15K-237. Table 2 shows the link prediction accuracy after 10

epochs for WN18RR and after 5 epochs for data FB15K-237.

1) Hard InfoNCE can significantly enhance the performance of

the Simple InfoNCE in terms of the Hit@1 metric, as it compels

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, XX–XX, 2024, XX, XX Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Experimental results onWN18RRand FB15K-237 test setwith different contrastive loss functions (𝑑 = 500, |T𝑏𝑎𝑡𝑐ℎ | = 256}).
All methods use the pre-trained LM sentence-BERT as the initialization. Boldface is the best performance and the second-best
score is underlined.

Loss function

WN18RR FB15k-237

MR↓ MRR↑ Hit@1↑ Hit@3↑ Hit@10↑ MR↓ MRR↑ Hit@1↑ Hit@3↑ Hit@10↑
L𝑆𝑖𝑚𝑝𝑙𝑒_𝐼𝑛𝑓 𝑜 (2) 100 0.424 0.303 0.487 0.656 151 0.277 0.186 0.306 0.466

L𝐻𝑎𝑟𝑑_𝐼𝑛𝑓 𝑜 (4) 123 0.447 0.341 0.497 0.656 165 0.290 0.209 0.309 0.465

L𝐻𝑎𝑆𝑎 (6) 123 0.452 0.351 0.501 0.650 163 0.300 0.220 0.317 0.468

Table 3: Experimental results on WN18RR and FB15K-237 test set (𝑑 = 500, |T𝑏𝑎𝑡𝑐ℎ | = 256}). Boldface is the best performance.

Methods

WN18RR FB15k-237

MR↓ MRR↑ Hit@1↑ Hit@3↑ Hit@10↑ MR↓ MRR↑ Hit@1↑ Hit@3↑ Hit@10↑
Classic KGE

TransE [3] 2,300 0.243 0.043 0.441 0.532 323 0.279 0.198 0.376 0.441

RotatE [26] 3,340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
DistMult [36] 7,000 0.444 0.412 0.470 0.504 512 0.281 0.199 0.301 0.446

ComplexE [29] 5542 0.468 0.427 0.485 0.554 546 0.278 0.194 0.297 0.450

KBGAN [4] - 0.277 - - 0.458 - 0.277 - - 0.458

Pre-trained LM based KGE

KGBERT [38] 97 0.216 0.041 0.302 0.524 153 - - - 0.420

StAR [30] 51 .401 0.243 0.491 0.709 117 0.296 0.205 0.322 0.482

LASS [25] 55 - - - 0.725 131 - - - 0.479

HaSa (ours) 135 0.489 0.400 0.535 0.666 146 0.316 0.233 0.340 0.477

HaSa+ (ours) 112 0.538 0.444 0.588 0.713 146 0.304 0.220 0.325 0.483

2 4 6 8 10
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

M
RR

Simple_Info

Hard_Info

HaSa

2 4 6 8 10
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

Hi
t@

1

Simple_Info

Hard_Info

HaSa

(a) MRR and Hit@1 for 10 epoch (WN18RR).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.24

0.26

0.28

0.30

M
RR

Simple_Info

Hard_Info

HaSa

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.16

0.18

0.20

0.22

Hi
t@

1

Simple_Info

Hard_Info

HaSa

(b) MRR and Hit@1 for 5 epoch (FB15k-237).

Figure 3: Comparing the Simple InfoNCE loss and the Hard
InfoNCE loss

the algorithm to select the negative triple that is easier to clas-

sify against the opponent. This observation is consistent with the

research that applies contrastive learning with hard negatives in

image processing.

2) By considering the false negative triple, HaSa can boost the

Hard InfoNCE to improve the performance via various metrics for

both data WN18RR and FB15k-237. In particular, concerning the

Hit@1 and MRR metric, HaSa demonstrates significant improve-

ments compared to the Simple InfoNCE.

Figures 3a and 3b show the changes in MRR and Hit@1 scores

over the training epochs. For WN18RR, we observe that the per-

formance of Hard InfoNCE and Simple InfoNCE initially appears

similar. However. As training progresses, the Hard InfoNCE loss

function (4) gradually outperforms the Simple InfoNCE loss func-

tion (2).

In the case of FB15K-237, Hard InfoNCE consistently exhibits

better performance compared to Simple InfoNCE. Although the

HaSa initially shows similar performance to the Hard InfoNCE

during the first training epoch, it outperforms Hard InfoNCE as the

training process continues.

We compared HaSa and HaSa+ methods to eight other KGE

methods: Five classic KGE methods that do not use pre-trained LMs

1) TransE [3], 2) RotateE [26], 3) DisMult [36], 4) ComplexE [29],

5) KBGAN [4], and three KGE methods that use pre-trained LMs

6) KG-BERT[38] with BERT-base, 7) StAR [30] with RoBERTa, 8)

LASS [25] with BERT-base. Table 3 shows the results for WN18RR

and FB15K-237. We have the following observations:

1) For the WN18RR dataset, HaSa+ achieved the best MRR, H@1,

H@3, and H@10 results compared to all KGE methods. Compared

to the classic KGE method, the pre-trained LM-based KGE method

has a much better result on MR and MRR metrics. However, pre-

trained LM-based methods have worse performance on the metric

Hit@1. From the significant improvement in metric MR of pre-

trained LM-based method, pre-trained LMs provide information to

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding Conference acronym ’XX, XX–XX, 2024, XX, XX

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

avoid extremely bad link prediction. However, the trade-off is the

ability to perfectly predict the right tails on the metric Hit@1.

2) Compared to the other pre-trained LM-based methods, HaSa

and HaSa+ make up for the accuracy on the Hit@1. While hurting

the performance on metric MR slightly, it improved the Hit@1 and

Hit@3 largely. HaSa+ boosts the HaSa by considering the additional

bi-directional loss which makes HaSa see more negative triples.

Without considering the bi-directional loss, HaSa also achieves a

competitive result. It indeed has the best performance on MRR than

other KGE methods.

3) For the FB15K-237 dataset, HaSa and HaSa+ are compara-

ble to state-of-the-art but are generally outperformed by RotateE.

However, among the pre-trained LM-based methods, our methods

achieve the best result. HaSa has the second-best result on the MRR

and Hit@1. HaSa+ only boosts the HaSa on metric Hit@10. It does

not improve HaSa largely. One possible explanation for the perfor-

mance difference is thatWN18RR and FB15K-237. If we consider the

induced graph structure G of WN18RR and FB15K-237, the average

degree of WN18RR is 3.2 while it is 81 for FB15K-237. Therefore,

different graph features may be of importance for the two KGs.

7.3 Visualizing Embedding Space
We projected the embedding of positive and negative tails into 2-

dimensional space using t-SNE, as shown in Figure 4. For WN18RR,

we have two queries: (urban, reverse of instance hypernym) and

(trade, member of domain usage). For FB15k-237, we have two
queries: (rock music, music genre artists) and (italian, reverse
of film language).

Given a query, we observed that the positive tail embeddings are

clustered together, and the negative tail embeddings are clustered

together. This is consistent with the goal of contrastive learning.

For WN18RR, we tend to see two dominant clusters, one for posi-

tive tails and one for negative tails. For FB15k-237, we see many

smaller clusters for both positive and negative tails scattered in

the embedding space. We see from Table 3 that the link prediction

result is better on WN18RR dataset than those on FB15k-237. We

reason that this is because HaSa is able to learn an embedding space

for WN18RR that has more regularity (i.e., less scattered clusters)

than FB15k-237

7.4 Effect of Hyperparameter 𝜏
As noted previously, for both HaSa and HaSa+, we considered

𝜏 = 𝑝 (ℓ = fact|eℎ𝑟) as a hyperparamter. When 𝜏 = 0, HaSa is the

same as the Hard InfoNCE loss (4). We tested various values of 𝜏 :

{1𝑒 − 06, 2𝑒 − 05, 1𝑒 − 04, 5𝑒 − 04, 1𝑒 − 03, 2𝑒 − 03} and {5𝑒 − 05, 1𝑒 −
04, 5𝑒 − 04, 1𝑒 − 03} for WN18RR and FB15K-237, respectively. For

WN18RR, as shown in Figure 5, the model has the best performance

on MRR and Hit@10 when 𝜏 = 2𝑒 − 05. For FB15K-237, as shown in

Figure 6, the model has a better performance on MRR and Hit@10

when 𝜏 = 1𝑒 − 04.

7.5 Effect of Pre-trained LMs
To assess the impact of different pre-trained LMs on HaSa, we

employed BERT-base and Sentence-BERT as initialization methods.

t-SNE visualization of WN18RR

t-SNE visualization of FB15k-237

Figure 4: The 2D visualization of positive and negative tails.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.30

0.35

0.40

0.45

0.50

M
RR

=1e-06
=2e-05
=1e-04
=5e-04
=1e-03
=2e-03

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.50

0.55

0.60

0.65

0.70

Hi
t@

10 =1e-06
=2e-05
=1e-04
=5e-04
=1e-03
=2e-03

Figure 5: MRR and Hit@10 for different 𝜏 (WN18RR).

1 2 3 4 5 6
Epoch

0.21

0.22

0.23

0.24

0.25

0.26

M
RR

=5e-05
=1e-04
=5e-04
=1e-03

1 2 3 4 5 6
Epoch

0.34

0.36

0.38

0.40

0.42

Hi
t@

10

=5e-05
=1e-04
=5e-04
=1e-03

Figure 6: MRR and Hit@10 for different 𝜏 (FB15K-237).

Table 4 presents the results for theWN18RR dataset. Utilizing BERT-

base yields superior link prediction performance, while Sentence-

BERT demonstrates better initialization for training. During the

early stages of the training process, Sentence-BERT outperforms

BERT-base, as illustrated in Figure 7.

For the FB15K-237 dataset, using Sentence-BERT as the initial-

ization method produces better results compared to the BERT-base,

as shown in Table 5. Sentence-BERT’s fine-tuning on sentence pre-

diction tasks enhances its performance relative to BERT-base when

tasked with calculating similarities between sentences or short

phrases

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, XX–XX, 2024, XX, XX Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

epoch 1 epoch 3 epoch 5 epoch 7 epoch 90.0

0.1

0.2

0.3

0.4

M
RR

0.013

0.228

0.331

0.405

0.45044

0.171

0.295

0.366

0.397

0.452
BERT Sentence-BERT

Dataset WN18RR

epoch 1 epoch 3 epoch 5 epoch 7 epoch 90.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Hi
t@

1

0.008

0.142

0.234

0.292

0.3421

0.096

0.195

0.27

0.297

0.351
BERT Sentence-BERT

Dataset FB15k-237

Figure 7: Using the BERT-base and Sentence BERT as the
embedding initialization of HaSa

Table 4: Experimental results onWN18RR with different pre-
trained LMs.

Pre-trained LMs

WN18RR

MRR↑ Hit@1↑ Hit@3↑ Hit@10↑
HaSa-Sentence-BERT 0.452 0.351 0.501 0.650

HaSa-BERT 0.463 0.357 0.518 0.666

Table 5: Experimental results FB15K-237 with different pre-
trained LMs.

Pre-trained LMs

FB15k-237

MRR↑ Hit@1↑ Hit@3↑ Hit@10↑
HaSa-Sentence-BERT 0.300 0.220 0.317 0.468

HaSa-BERT 0.2506 0.178 0.2757 0.383

7.6 Effect of 𝑑 and 𝐾
We considered a low embedding dimension (𝑑 = 100) and a high

embedding dimension (𝑑 = 500) to compare the link prediction

results on the WN18RR dataset. Each dimension had three dif-

ferent batch size settings (|T𝑏𝑎𝑡𝑐ℎ | = {64, 128, 256}). We trained

each model for only 10 epochs over 7 hours. As shown in Table

6, high-dimensional embeddings consistently outperformed low-

dimensional embeddings. We also observed that with more negative

triples, high-dimensional embeddings showed significant improve-

ments compared to low-dimensional embeddings.

Note that the number of negative triples depends on the batch

size: 𝐾 = 5(|T𝑏𝑎𝑡𝑐ℎ |) − 1. As shown in Table 6, the larger the batch

size, the better the link prediction results. There is a large improve-

ment from batch size 64 to 128. From batch size 128 to 256, the

improvement is also significant but less than the improvement

from batch size 64 to 128. This is easy to understand since there

are diminishing returns when increasing the number of negatives.

Thus, generating higher quality negatives is more important than

significantly increasing the number of negative triples.

Table 6: Experimental results on WN18RR with different
embedding dimensions and training batch sizes.

batch size MR↓ MRR↑ Hit@1↑ Hit@3↑ Hit@10↑
d=100

64 138 0.319 0.224 0.350 0.500

128 158 0.378 0.281 0.411 0.570

256 117 0.423 0.308 0.481 0.637

d=500
64 151 0.313 0.207 0.353 0.518

128 145 0.403 0.304 0.452 0.588

256 123 0.452 0.351 0.501 0.650

8 CONCLUSION AND FUTUREWORK
In this paper, we showed that we might obtain false negative triples

when we generate hard negative triples. We noticed that a false

negative triple has a smaller shortest path length between the head

entity and the tail entity in the knowledge graph. Thus, we pro-

posed the Hardness and Structure-aware (HaSa) contrastive KGE

method, which accounts for the false negative triples while gen-

erating the hard negative triples. We improved HaSa with HaSa+

by considering the bi-directional loss. Experiments show that they

achieve competitive results on WN18RR and FB15K-237 across sev-

eral metrics.

For future work, we aim to further explore the potential of the

bi-directional contrastive loss (the heuristic we used for HaSa+). In

terms of false negative tails, we will investigate graph metrics other

than the shortest path length. The distribution of false negative tails

can also be better approximated with additional information from

large language models (LLM). We also plan to study the theoretical

aspects of how false negative triplets affect embedding.

REFERENCES
[1] Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L Hamilton, and

Avishek Joey Bose. 2020. Structure aware negative sampling in knowledge

graphs. arXiv preprint arXiv:2009.11355 (2020).
[2] Laurence Aitchison. 2021. Infonce is a variational autoencoder. arXiv preprint

arXiv:2107.02495 (2021).
[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and

Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. Advances in neural information processing systems 26 (2013).
[4] Liwei Cai and William Yang Wang. 2017. Kbgan: Adversarial learning for knowl-

edge graph embeddings. arXiv preprint arXiv:1711.04071 (2017).
[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[6] Xinlei Chen and Kaiming He. 2021. Exploring simple siamese representation

learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 15750–15758.

[7] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Ste-

fanie Jegelka. 2020. Debiased contrastive learning. Advances in neural information
processing systems 33 (2020), 8765–8775.

[8] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.

Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 32.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding Conference acronym ’XX, XX–XX, 2024, XX, XX

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[9] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive

learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021).
[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan

Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new

approach to self-supervised learning. Advances in neural information processing
systems 33 (2020), 21271–21284.

[11] Michael U Gutmann and Aapo Hyvärinen. 2012. Noise-Contrastive Estimation of

Unnormalized Statistical Models, with Applications to Natural Image Statistics.

Journal of machine learning research 13, 2 (2012).

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-

mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[13] Chih-Hui Ho and Nuno Nvasconcelos. 2020. Contrastive learning with adver-

sarial examples. Advances in Neural Information Processing Systems 33 (2020),
17081–17093.

[14] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.

A survey on knowledge graphs: Representation, acquisition, and applications.

IEEE transactions on neural networks and learning systems 33, 2 (2021), 494–514.
[15] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and

Diane Larlus. 2020. Hard negative mixing for contrastive learning. Advances in
Neural Information Processing Systems 33 (2020), 21798–21809.

[16] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,

Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised

contrastive learning. Advances in neural information processing systems 33 (2020),
18661–18673.

[17] Xuan Lin, Zhe Quan, Zhi-Jie Wang, Tengfei Ma, and Xiangxiang Zeng. 2020.

KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction..

In IJCAI, Vol. 380. 2739–2745.
[18] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

entity and relation embeddings for knowledge graph completion. In Twenty-ninth
AAAI conference on artificial intelligence.

[19] Costas Mavromatis, Prasanna Lakkur Subramanyam, Vassilis N Ioannidis, Ades-

oji Adeshina, Phillip R Howard, Tetiana Grinberg, Nagib Hakim, and George

Karypis. 2022. Tempoqr: temporal question reasoning over knowledge graphs. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 5825–5833.
[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems. 3111–3119.
[21] Seungwhan Moon, Pararth Shah, Anuj Kumar, and Rajen Subba. 2019. Open-

dialkg: Explainable conversational reasoning with attention-based walks over

knowledge graphs. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. 845–854.

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[23] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings

using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).
[24] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. 2020.

Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592
(2020).

[25] Jianhao Shen, Chenguang Wang, Linyuan Gong, and Dawn Song. 2022. Joint

language semantic and structure embedding for knowledge graph completion.

arXiv preprint arXiv:2209.08721 (2022).
[26] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-

edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[27] Zhaoxuan Tan, Zilong Chen, Shangbin Feng, Qingyue Zhang, Qinghua Zheng,

Jundong Li, and Minnan Luo. 2023. KRACL: contrastive learning with graph

context modeling for sparse knowledge graph completion. In Proceedings of the
ACM Web Conference 2023. 2548–2559.

[28] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features

for knowledge base and text inference. In Proceedings of the 3rd workshop on
continuous vector space models and their compositionality. 57–66.

[29] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. 2016. Complex embeddings for simple link prediction. In International
conference on machine learning. PMLR, 2071–2080.

[30] Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang.

2021. Structure-augmented text representation learning for efficient knowledge

graph completion. In Proceedings of the Web Conference 2021. 1737–1748.
[31] Kai Wang, Yu Liu, and Quan Z Sheng. 2022. Swift and sure: Hardness-aware

contrastive learning for low-dimensional knowledge graph embeddings. In Pro-
ceedings of the ACM Web Conference 2022. 838–849.

[32] Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. 2022. SimKGC: Simple

contrastive knowledge graph completion with pre-trained language models.

arXiv preprint arXiv:2203.02167 (2022).

[33] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph

embedding: A survey of approaches and applications. IEEE Transactions on

Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[34] JunXia, LirongWu, GeWang, Jintao Chen, and Stan Z Li. 2022. Progcl: Rethinking

hard negative mining in graph contrastive learning. In International Conference
on Machine Learning. PMLR, 24332–24346.

[35] Canran Xu and Ruijiang Li. 2019. Relation embedding with dihedral group in

knowledge graph. arXiv preprint arXiv:1906.00687 (2019).

[36] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-

bedding entities and relations for learning and inference in knowledge bases.

arXiv preprint arXiv:1412.6575 (2014).
[37] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge

graph contrastive learning for recommendation. In Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 1434–1443.

[38] Liang Yao, ChengshengMao, and Yuan Luo. 2019. KG-BERT: BERT for knowledge

graph completion. arXiv preprint arXiv:1909.03193 (2019).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, XX–XX, 2024, XX, XX Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Algorithm 3: An algorithm of HaSa+

Input :Batch of triple T𝑏𝑎𝑡𝑐ℎ , 𝜏 , graph structure G,current

encoder 𝑓 .

Output :The loss L𝐻𝑎𝑆𝑎+.
1 Extract entity batch E𝑏𝑎𝑡𝑐ℎ from T𝑏𝑎𝑡𝑐ℎ ;
2 Extract query set {ℎ−, 𝑟−} from T𝑏𝑎𝑡𝑐ℎ ;
for (ℎ, 𝑟, 𝑡) in T𝑏𝑎𝑡𝑐ℎ do

3 eℎ = 𝑓 (ℎ);
e𝑟 = 𝑓 (𝑟);
e𝑡 = 𝑓 (𝑡);
eℎ𝑡 = 𝑔(eℎ, e𝑟);
Eℎ𝑎𝑟𝑑 = HardNegative (eℎ𝑡 , E, 𝑓);
{𝑡−
𝑗
} = E𝑏𝑎𝑡𝑐ℎ ∪ Eℎ𝑎𝑟𝑑/{𝑡} ;

{𝑠−
𝑖
} = Sampling neighbour nodes based on the

distribution 𝛼 (·|eℎ𝑡) (equation 9);

Pos = exp(e𝑇
ℎ𝑡
e𝑡);

Neg =
1

|𝐾 |
∑
𝑡−
𝑗
exp(e𝑇

ℎ𝑡
e−𝑡 𝑗);

FalseNeg =
1

|𝑀 |
∑
𝑠−
𝑖
exp (e𝑇

ℎ𝑡
e−𝑠𝑖) ;

NegHasa = 𝐾 (1

(1−𝜏)Neg − 𝜏FalseNeg) ;
NegHR =

∑
ℎ−,𝑟 − exp(e𝑇𝑡 e−ℎ𝑡);

Calculate L𝐻𝑎𝑆𝑎+ (ℎ, 𝑟, 𝑡) for each triple

L𝐻𝑎𝑆𝑎+ (ℎ, 𝑟, 𝑡) =
Pos/(Pos + NegHasa) + Pos/(Pos + NegHR) ;

end
4 L𝐻𝑎𝑆𝑎+ =

∑
(ℎ,𝑟,𝑡) ∈T𝑏𝑎𝑡𝑐ℎ L𝐻𝑎𝑆𝑎+ (ℎ, 𝑟, 𝑡);

A APPENDIX
A.1 Remark 1
Remark 1: For fix query embedding eℎ𝑟 , if we have a false negative
tail e−𝑡 𝑗 , the gradient of InfoNCE loss w.r.t the e−𝑡 𝑗 will have an

opposite direction of positive tails. i.e.

𝜕𝐿

𝜕e−𝑡 𝑗
= eℎ𝑟 −

𝜕𝐿

𝜕e𝑡
(16)

Proof. Considering Simple INfoNCE loss in practice for only

one triple,

𝐿 = − log
©«

exp(e𝑇
ℎ𝑟
e𝑡)

exp(e𝑇
ℎ𝑟
e𝑡) +

∑𝐾
𝑗=1 exp(e𝑇ℎ𝑟 e

−
𝑡 𝑗
)
ª®¬ . (17)

where e𝑡 and e−𝑡 𝑗 are the embeddings of positive tail and negative tail

respectively. Derivative the loss function in terms of the embedding,

𝜕𝐿

𝜕e𝑡
= −

∑𝐾
𝑗=1 exp(e−𝑡 𝑗

𝑇 eℎ𝑟)eℎ𝑟
exp(e𝑇𝑡 eℎ𝑟) +

∑
𝑖 exp(e−𝑡 𝑗

𝑇 eℎ𝑟)
(18)

𝜕𝐿

𝜕e−𝑡 𝑗
=

exp(𝒕𝑇
𝑗
eℎ𝑟)eℎ𝑟

exp(e𝑇𝑡 eℎ𝑟) +
∑
𝑖 exp(e−𝑡 𝑗

𝑇 eℎ𝑟)
(19)

Thus, we have

𝜕𝐿

𝜕e−𝑡 𝑗
− 𝜕𝐿

𝜕e𝑡
= eℎ𝑟 (20)

Based on the gradient decent optimizingmethod, gradient tells us

that the positive tail embedding e𝑡 will update by adding a weighted
of eℎ𝑟 to minimize the loss. On the contrary, for any negative e−𝑡 𝑗
including the false negative tails, it will be updated by subtracting

a weighted eℎ𝑟 to minimize the loss. Thus, contrastive learning

attracts similar data together and pushes dissimilar data forward in

the embedding space. However, the false negatives e−𝑡 𝑗 will conflict
with this goal. □

A.2 Algorithm of HaSa+
The algorithm for HaSa+ is shown in Algorithm 3.

10

	Abstract
	1 Introduction
	2 Related work
	3 Background: Simple InfoNCE Loss
	4 InfoNCE Loss with Hard Negative Triples
	4.1 Hard Negative Triples may be False Negative Triples
	4.2 Shortest Path Length Distinguishes True and False Negative Triples

	5 Hardness and Structure-aware (HaSa) contrastive KGE
	6 Improved HaSa: HaSa+
	7 Experiments
	7.1 Comparing HaSa and HaSa+ to State-of-the-Art KGE models
	7.2 Comparing HaSa with Simple InfoNCE and Hard InfoNCE
	7.3 Visualizing Embedding Space
	7.4 Effect of Hyperparameter
	7.5 Effect of Pre-trained LMs
	7.6 Effect of d and K

	8 Conclusion and Future work
	References
	A Appendix
	A.1 Remark 1
	A.2 Algorithm of HaSa+

