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Abstract

Linear attention Transformers and their gated variants, celebrated for enabling
parallel training and efficient recurrent inference, still fall short in recall-intensive
tasks compared to traditional Transformers and demand significant resources for
training from scratch. This paper introduces Gated Slot Attention (GSA), which
enhances Attention with Bounded-memory-Control (ABC [64]) by incorporating
a gating mechanism inspired by Gated Linear Attention (GLA [97]). Essentially,
GSA comprises a two-layer GLA linked via softmax, utilizing context-aware mem-
ory reading and adaptive forgetting to improve memory capacity while maintaining
compact recurrent state size. This design greatly enhances both training and infer-
ence efficiency through GLA’s hardware-efficient training algorithm and reduced
state size. Additionally, retaining the softmax operation is particularly beneficial
in “finetuning pretrained Transformers to RNNs” (T2R [42]) settings, reducing the
need for extensive training from scratch. Extensive experiments confirm GSA’s
superior performance in scenarios requiring in-context recall and in T2R settings.

1 Introduction

Transformers [89] have emerged as the predominant architecture for most, if not all, sequence
modeling tasks. Nevertheless, the quadratic complexity of softmax-based standard attention (SA)
poses significant challenges for long sequence modeling (e.g., video understanding and biological
sequence modeling). In the context of language modeling, where sequence lengths are moderate,
training efficiency is generally not a primary concern. However, during inference, the Key-Value (KV)
cache [35, 65] grows linearly with the generation length, resulting in substantial memory burdens
and throughput bottlenecks due to high I/O costs.

Linear (kernelized) attention [43] and its gated variants [97, 82, 69, 62, 17, 70] have received interest
as promising alternatives to softmax attention. These models demonstrate strong performance in
language modeling and understanding tasks. Notably, they can be reframed as RNNs during inference,
achieving constant memory complexity and thereby significantly enhancing inference efficiency.

However, two key issues persist with these models: (i) Performance-wise, recent research indicates
that linear recurrent models still struggle with tasks requiring in-context retrieval or learning [3, 2, 38,
∗Equal contributions. Work was conducted during Yu Zhang’s internship at Tencent AI Lab.
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29], and there is a fundamental recall-memory trade-off [4, 92] where all inference-time-constant-
memory models face inherent limitations. (ii) In terms of training efficiency, while linear attention
supports hardware-efficient chunkwise training [97] as implemented in FlashLinearAttention (FLA
[96]), training from scratch on trillions of tokens remains prohibitively expensive. A paradigm,
“finetuning pretrained Transformers to RNNs” (short for T2R [42]), has recently gained great attention
[102, 11, 55, 14, 8, 91]. This approach circumvents the high cost of training from scratch by requiring
only a few billion tokens for finetuning—about 1–3% of the total cost. However, linear attention
uses a different kernel method from softmax, leading to performance discrepancies when finetuning
pretrained softmax attention models to linear attention [102].

To address these issues, we revisit the Attention with Bounded-Memory Control (ABC) model [64],
which retains the softmax operation, thereby reducing training-finetuning discrepancies between
standard and linear attention, making it ideal for T2R settings. Additionally, ABC enables more
effective state utilization, requiring less state size to achieve similar performance, as observed in Peng
et al. [64]. This results in more efficient inference and potentially expands the Pareto frontier of the
recall-memory tradeoff [4]. However, ABC has not gained significant attention due to its mediocre
language modeling performance and slow training speed.

In this work, we first reformulate ABC as two-pass linear attention linked via softmax, allowing us to
leverage the hardware-efficient chunkwise implementation from FLA [96] for more efficient training.
We then identify several limitations of ABC and propose a new model, dubbed Gated Slot Attention
(GSA), which is essentially a gated version of ABC, following the recent trend of enhancing linear
attention with gating mechanisms [97, 70, 62, 17, 7, 63, 53, 66].

Our extensive evaluation shows that GSA not only matches performance in language modeling
and understanding tasks but also significantly outperforms other linear models in in-context recall-
intensive tasks [4, 5], without requiring a large state size like RetNet [82] or GLA [97]. In the
T2R finetuning setting, we found that finetuning Mistral-7B [40] to GSA surpasses large recurrent
language models (e.g., RWKV6-7B, Mamba-7B) and also outperforms finetuning Mistral-7B to other
linear models (e.g., RetNet, GLA) and other T2R methods like SUPRA [55], verifying the importance
of retaining the softmax operator. Finally, we remark that GSA achieves similar training speeds to
GLA while offering an inference speedup due to its smaller state size.

2 Background and Preliminary

2.1 Transformers as Unbounded Key-Value Memories

Given X = [x1, . . . ,xT ]
⊤ ∈ RT×d, where T is the sequence length and xi ∈ Rd is the i-th input

vector with d dimensions, SA with causal masking computes the output matrix:

O = f((QK⊤)⊙M)V, (1)

where Q,K,V ∈ RT×d are linear mappings of the input X via learnable weights Wq,Wk,Wv ∈
Rd×d, M = {Mij = 1 if i ≥ j o.w. −∞} is the causal mask to prevent future information leakage,
⊙ denotes element-wise production, and f(·) is softmax (·).

Generally, K,V can be viewed as neural key-value memories K̃t, Ṽt ∈ Rm×d, respectively [81, 25],
where m is the number of memory slots. At step t, the query qt = Wqxt ∈ Rd first attends to the
key memories K̃t to retrieve relevant information, which is then summarized into ot by computing
a weighted sum of the value memories Ṽt [105], where the weights are the normalized attention
scores:

ot = Ṽ⊤
t f(K̃tqt). (2)

From this perspective, Transformers are equipped with an unbounded number of memory slots,
which grow linearly with respect to the sequence length [58] (i.e., m = t for step t)—a new key
kt = Wkxt ∈ Rd is assigned with a unique memory slot upon its introduction. This leads to a simple
memory updating rule: K̃t = K̃t−1 ∪ {kt}. The value memories Ṽt are updated in a similar way.
This mechanism, however, comes at the cost of quadratic time complexity in terms of the sequence
length for training and O(Td) time/memory complexity for inference [65], posing challenges for
large-scale models.
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2.2 ABC [64]: Linearizing Attention with Bounded Memory Control

From a key-value memory perspective, the training and inference complexity of self-attention (SA)
can be reduced by fixing the number of memory slots to a constant size m≪ T [28, 52, 64]. One
straightforward way to achieve this is by employing a first-in-first-out memory management strategy,
commonly known as sliding window attention (SWA). However, SWA is inefficient because it discards
all information outside the window, leading to poor performance in balancing the recall-memory
tradeoff [4]. To achieve acceptable performance, SWA often requires a large window size (e.g., 4,096
tokens in Mistral [40]), which diminishes its advantage over to global attention.

When the number of tokens in a sequence exceeds the number of memory slots, it becomes necessary
to store information from multiple tokens in a single slot. To address this challenge, Peng et al. [64]
propose the Attention-with-Bounded-memory-Control (ABC) mechanism, which allows multiple
tokens to be written into a single slot:

K̃t = K̃t−1+ϕt⊗kt ∈ Rm×d, Ṽt = Ṽt−1+ϕt⊗vt ∈ Rm×d, ot = ṼT f(K̃T
t qt) ∈ Rd. (3)

where
αi = exp (Wϕxi) ∈ Rm, ϕi =

αi∑i
j=1 αj

∈ (0, 1)m (4)

Here, (ϕi)j represents the writing intensity of the ith token to the jth slot, obtained using a cumulative
softmax function (cf. [64, footnote 5]), which can be computed with a prefix sum.

ABC as two-pass linear attention. The outer-product-based additive memory update rule in Eq. 3
bears a resemblance to linear attention [43], which involves the following recurrence3:

St = St−1 + kt ⊗ vt ∈ Rd×d, ot = ST
t qt ∈ Rd (5)

We denote this linear attention operator that computes oi from qi,ki and vi (Eq. 5) by {oi}Ti=1 =
LA({qi,ki,vi}Ti=1). We show that the ABC operations can be written as

{o′
i}Ti=1 = LA({qi,ki,ϕi}Ti=1),

{oi}Ti=1 = LA({softmax(o′
i),ϕi,vi}Ti=1),

where o′
i ∈ Rm,oi ∈ Rd. Therefore, ABC can enjoy hardware-efficient linear-time chunkwise

training [97], as implemented in the FLA library [96].

Remarks on state size. Peng et al. [64] empirically demonstrated that ABC requires a smaller
state size to achieve comparable performance to other linear attention models, resulting in improved
inference efficiency. We offer the following intuitive explanation: the new query o′ aggregates the
entire history through the initial pass of linear attention, making it more context-aware and better at
locating desired items for retrieval. The subsequent softmax operator helps mitigate the attention
dilution issue [67]. From the perspective of Hopfield networks, softmax can exponentially increase
the memory size [46]. Together, these factors suggest that ABC may possess an implicit large memory
capacity, even with a small actual recurrent state size.

2.3 GLA [97]: Linear Attention with Gating Mechanism

linear attentions underperform softmax-attention Transformers in language modeling by a notable
margin. RetNet [82] and TransnormerLLM [69] incorporate a data-independent exponential decay
factor for memory update as

St = γSt−1 + kt ⊗ vt ∈ Rd×d,

where γ ∈ (0, 1) is a scalar data-independent decaying factor; that is, the decay rate is fixed across
time steps and hidden channels (under the same head), disrespect to the input tokens. RetNet has
shown better language modeling performance compared to vanilla linear attentions thanks to the
decaying mechanism.

3For simplicity, we omit the normalization term, which has been shown to be unnecessary [75, 67, 53, 82, 97].
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However, research in recurrent neural networks (RNNs) has shown that data-dependent decay (or
forget gates) is crucial for selectively retaining and forgetting information [23, 27], thus better
leveraging the fixed recurrent hidden state. This selective mechanism has been revisited in recent
state-space models [30, 17]. Inspired by LSTMs, Gated Linear Attention (GLA) [53, 97] introduces
data-dependent decay parameters Gt ∈ (0, 1)d×d to gate the hidden state as follows,

St = Gt ⊙ St−1 + kt ⊗ vt ∈ Rd×d, ot = ST
t qt ∈ Rd.

[97] show that if gates are parameterized in an outer product form Gt = αt⊗βi, and αt,βt ∈ [0, 1]d

depend solely on input xt, such recurrence can be rewritten as matrix multiplication, allowing for
hardware-efficient training with a chunkwise parallel form. In what follows, we will use the following
notation GLA({qi,ki,vi,αi,βi}Ti=1) = {oi}Ti=1 to denote this computation. It is common to set
βi = 1 as in [97, 70, 62], which is also often written in the following equivalent form:

St = Diag(αt)St−1 + kt ⊗ vt.

Here kt can be viewed as the input gate, and αt can be viewed as the forget gate. In gated RNN
literature, it is common to couple these two gates via kt = 1−αt [13, 107, 68]. In particular, Qin
et al. [70] proposed HGRN2, which uses this strategy as an improved parameterization of GLA,
showing better performance in language modeling.

3 Method

3.1 Motivation: Issues with ABC

We identify two primary limitations in ABC’s memory update rule. Firstly, it lacks a forgetting
mechanism, resulting in indefinite retention of items once written into memory slots. This prevents
efficient memory reuse by impeding the prompt clearance of slots for new information.

Secondly, the rule introduces an unwarranted inductive bias favoring tokens at the sentence’s begin-
ning. This contradicts the recency bias in natural language, where more recent information is often
more relevant. Prioritizing initial tokens over the recent ones conflicts with this inherent tendency in
natural language processing.

Specifically, for the first token, the writing strength to all slots is maximized (i.e., ϕ1 = 1 ∈ Rm),
causing every memory slot to retain a copy of the first token’s representation. The absence of a
forgetting mechanism exacerbates this issue. For subsequent tokens, the writing strength diminishes
due to the influence of earlier tokens, as a result of the cumulative softmax in Eq. 4. This makes it
challenging for the model to retain later tokens without learning a significantly large αi, potentially
leading to instability in long-context settings, as observed by Zhang et al. [101].

3.2 Gated Slot Attention (GSA): ABC with gating mechanism

To address these limitations, we propose Gated Slot Attention (GSA), which incorporates a gat-
ing mechanism to simultaneously resolve both issues by: (i) enabling the forgetting of historical
information, and (ii) introducing a recency inductive bias, as detailed below.

For each memory slot, the update rule is a simple gated RNN with a scalar data-dependent gating
value αi ∈ [0, 1],

(K̃t)i = αi(K̃t−1)i + (1− αi)kt ∈ Rd, (Ṽt)i = αi(Ṽt−1)i + (1− αi)vt ∈ Rd

and these can be written in matrix form, which is reminiscent of HGRN2 [70].
K̃t = Diag(αt) · K̃t−1 + (1−αt)⊗ kt ∈ Rm×d

Ṽt = Diag(αt) · Ṽt−1 + (1−αt)⊗ vt ∈ Rm×d

ot = ṼT softmax(K̃T
t qt) ∈ Rd

(6)

GSA as two-pass GLA. It is straightforward to see that we can write GSA as a two-pass GLA as
shown below:

{o′
t}Tt=1 = GLA

(
{qt,kt, 1−αt,αt,1}Tt=1

)
{ot}Tt=1 = GLA

(
{softmax(o′

t), 1−αt,vt,1,αt}Tt=1

) (7)

Therefore, we can adapt GLA’s hardware-efficient chunkwise training algorithm for GSA training, as
shown in § A and § B. We illustrate the recurrent representation of GSA in Figure 1.
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3.3 Neural Architecture
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Figure 1: The recurrent representation of Gated
Slot Attention. means taking xt as input.
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Figure 2: The backbone of our proposed GSA models.

The overall architecture of our proposed model, GSA, is shown in Figure 2. Following the Llama
architecture [87], we use a stack of L GSA blocks, each comprising a GSA token mixing layer
followed by a Gated Linear Unit (GLU) channel mixing layer [20, 34].

We utilize the multi-head attention mechanism [89] to capture different aspects of the input. For each
head h, the input to GSA token mixing is defined as

qh
i ,k

h
i ,v

h
i = ϕ(Wh

qxi), ϕ(W
h
kxi), ϕ(W

h
vxi) (8)

where ϕ is the Swish activation following [69]. The forget gate is obtained by a linear transformation
followed by a sigmoid activation σ with a damping factor τ [97, 83]: αh

i = σ(Wh
αxi)

1/τ , 4 where
the damping factor is to regulate the forget gate value to one, which has been shown to be crucial
for long-term dependency modeling [31, 68]. We feed them into a GSA layer to obtain outputs as
described in Eq. 7:

{oh
i }Ti=1 = GSA({qh

i ,k
h
i ,v

h
i ,α

h
i }Ti=1)

Finally, we obtain output via

yi = Wo

(
RMSNorm

(
Swish

(
Concat

(
o1
i , · · · ,oH

i

))))
(9)

The total number of parameters for Wq,Wk,Wv, and Wo is already 4d2, which is the same as in a
single standard softmax-attention layer. To control the overall parameter count, we aim to keep the
parameters for Wα, which amount to dHm, relatively small. In practice, we set m = 64 to achieve a
balance between efficiency and effectiveness (§ 4.1.4). One way to further manage the total parameter
count is by reducing the number of heads. In practice, we set H = 4, ensuring that Hm≪ d. This
keeps the total number of parameters approximately equal to 4d2. 5

4 Experiments

4.1 Language Modeling

We perform moderate-scale language modeling experiments with 1.3B and 2.7B parameters on
Slimpajama corpus [79] for 100B tokens each.

We compare the performance of GSA against Llama Transformer architecture (i.e., Xfmr++ [87] and
recent subquadratic architectures including: Mamba [30], RetNet [82], GLA [97] and HGRN2 [70].
We refer readers to § C for more details on baselines and other experimental setups.

4In practice we set τ = 8.
5For instance, in a 1.3B model with H ×m = 64× 4 = 256 and d = 2, 048, the total number of parameters

amount to 4.125d2, introducing only a 0.125d2 overhead.
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4.1.1 Results on commonsense reasoning tasks

Following [30, 97], we report the perplexities and zero-shot performance of commonsense reasoning
tasks including ARCe & ARCc (ARC-easy, ARC-challenge) [15]; Hella. (Hellaswag) [100], Lamb.
(Lambada) [60], PIQA [9], Wiki. (Wikitext) [56], and Wino. (Winograde) [1]. We note that these
tasks are typically short in length and do not require in-context learning capabilities, thus they do not
adequately reflect long-context modeling or in-context learning retrieval abilities. Nevertheless, as
shown in Table 1, we found that GSA performs comparably to the recent strong model HGRN2 with
an equally sized hidden state, while outperforming GLA and RetNet even with a smaller state size.

Table 1: The zero-shot results of 1.3B and 2.7B models evaluated by lm-evaluation-harness [22].
L denotes number of layer while d denotes the model dimension.

State size Lamb. Wiki. ARCe ARCc Hella. Lamb. PIQA Wino. Avg.
ppl↓ ppl↓ acc accn accn acc acc acc

1.3B parameters with 100B training tokens, L=24, d=2,048
Xfmr++ N/A 15.3 17.1 54.1 27.1 49.3 47.0 70.3 54.9 50.5
Mamba 64× Ld 16.5 18.2 57.3 26.6 48.1 43.4 69.5 53.7 49.8
RetNet 512× Ld 15.4 17.3 57.4 27.9 50.3 44.6 71.7 51.8 50.6
GLA 256× Ld 15.4 17.6 55.4 27.7 49.0 46.4 69.9 54.0 50.4
HGRN2 128× Ld 11.8 16.9 58.1 28.1 51.8 49.4 71.4 52.3 51.9
GSA 128× Ld 12.6 16.7 58.1 28.2 51.0 47.4 72.0 53.4 51.7

2.7B parameters with 100B training tokens, L=32, d=2,560
Xfmr++ N/A 10.7 15.2 59.8 27.5 54.2 52.3 72.7 56.2 53.8
Mamba 64× Ld 13.6 15.9 60.7 29.8 53.9 46.4 72.8 53.9 52.9
RetNet 512× Ld 11.9 15.8 59.6 28.1 54.0 49.6 72.3 53.8 52.9
GLA 256× Ld 12.4 15.5 59.2 29.9 54.0 50.4 71.7 55.7 53.5
HGRN2 128× Ld 8.8 14.6 60.8 30.3 58.7 55.4 73.0 54.2 55.4
GSA 128× Ld 9.8 14.8 61.9 30.7 57.0 52.7 73.5 56.0 55.3

4.1.2 Results on in-context recall-intensive tasks

While subquadratic models can achieve comparable performance to (softmax-based) Transformers in
language modeling and understanding tasks, their performance on recall-intensive tasks significantly
lags behind Transformers and varies greatly across different subquadratic models, as observed in
many recent studies [4, 5, 97, 98]. Therefore, it is crucial to improve linear models on in-context
recall-intensive tasks.

64 128 256 512
0

25

50

75

100

Model dimension

A
cc

ur
ac

y
(%

)

GSA
Mamba
GLA
RetNet
HGRN2

(a) Results on the synthetic MQAR
task. We adopt the most challeng-
ing settings in [3], utilizing a se-
quence length of 512 and 64 key-
value pairs. Xfmr++ with standard at-
tention achieves near-perfect results
in this settings and is thus omitted for
brevity.

(b) Results on the recall-intensive tasks used in [5]. We truncate the
input to a maximum of 2K tokens.

State size FDA SWDE SQuAD NQ TriviaQA Drop Avg.

1.3B params / 100B tokens, L=24, d=2048
Xfmr++ N/A 46.0 29.2 41.0 24.8 58.8 21.3 36.9
Mamba 64× Ld 13.9 25.4 33.2 18.5 53.5 21.7 27.7
RetNet 512× Ld 21.2 27.2 34.0 15.5 52.7 20.0 28.4
GLA 256× Ld 26.7 30.6 34.8 21.5 56.0 19.1 31.4
HGRN2 128× Ld 09.9 23.1 32.0 16.4 55.2 19.1 25.9
GSA 128× Ld 23.6 29.8 36.0 23.2 57.0 20.9 31.8

2.7B params / 100B tokens, L=32, d=2560
Xfmr++ N/A 62.3 30.9 44.3 29.3 61.8 21.4 41.7
Mamba 64× Ld 21.5 26.7 34.2 21.2 57.0 22.2 30.5
RetNet 512× Ld 24.1 26.1 36.4 20.4 57.3 21.8 31.0
GLA 256× Ld 30.3 35.5 36.8 23.3 58.2 21.8 34.3
HGRN2 128× Ld 15.0 29.9 35.1 17.0 59.8 20.0 29.5
GSA 128× Ld 39.1 33.5 39.0 26.9 60.8 19.9 36.5
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MQAR. We first present the results on the multi-query associative recall (MQAR) task [3], a
diagnostic synthetic task that requires models to retrieve multiple associative key-value pairs from
the context. This task has been shown to strongly correlate with language modeling performance [3].
The results in Table 3a validate the effectiveness of GSA.

Table 2: Ablation study results for 340M
models trained on 10B Slimpajama tokens.

PPL (↓)

GSA w/ 64 slots 13.51

Ablations on gating mechanism
w/o decay (i.e., ABC) 16.94
w/ data-independent decay 15.83

Ablations on non-linearity
− softmax 14.03
− softmax+Swish 13.71
− softmax+ReLU 13.69
− softmax+ReLU2 13.95

Ablations on slot size
w/ 32 slots 13.74
w/ 128 slots 13.46

Real-world tasks. Next, we evaluate the zero-shot in-
context learning performance on recall-intensive tasks, as
used in Arora et al. [5].6 Specifically, we assess infor-
mation retrieval on FDA [94] and SWDE [50], which are
designed to evaluate retrieval from in-context passages
scraped from HTML/PDFs. We also evaluate question
answering on SQuAD [71], NQ [47], TriviaQA [41], and
Drop [21], where models must ground their answers in
in-context documents.

As shown in Table 3b, Xfmr++ achieves the best average
performance, as expected. Meanwhile, GSA outperforms
all other subquadratic baseline models by a notable mar-
gin without requiring a larger state size. We believe this
advantage stems from GSA’s context-aware memory read-
out mechanism (as discussed in §2.2) and its forgetting
mechanism (i.e., the gating mechanism), enabling it to
manipulate finite-sized memory more effectively.

4.1.3 Ablation

Table 2 presents the results of our ablation studies. Our findings indicate that: (i) the inclusion of
the gating mechanism in GSA is crucial for improving language modeling perplexity; (ii) applying
softmax non-linearities after the first recurrent pass is beneficial; and (iii) using 64 slots strikes an
optimal balance between performance and efficiency. 7

4.1.4 Efficiency

Fig. 4a illustrates the training throughput for four models on a single H800 GPU8. To optimize
memory usage, we employ the technique of recomputing the recurrent hidden state during the
backward pass, as done in FLA [96] and Mamba2 [17]. This approach results in reduced memory
consumption (Fig. 4b) at the cost of slightly lower training throughputs (Fig. 4a).

Despite requiring two GLA passes, GSA maintains comparable training throughputs to GLA due to
its reduced state size. Since inference is primarily memory-bound, inference speed highly correlates
with state size. As a result, GSA, with its smaller state size compared to RetNet and GLA, achieves
faster inference speeds, as shown in Figure 4c.

4.2 Finetuning Pretrained Transformers to RNNs

The concept of finetuning pretrained Transformers to linear Transformers for recurrent inference was
first introduced in T2R [42]. This approach uses pretrained language model weights to initialize all
parameters, leveraging the similarity between linear attention and softmax attention, and finetunes
all parameters, significantly reducing the total training time compared to training from scratch. Kasai
et al. [42] also introduced a parametric feature map, implemented as a learnable MLP layer followed
by ReLU, applied after the query/key projections. SUPRA, a follow-up to T2R, found that the
original T2R approach did not perform well in the era of LLMs, and highlighted the importance of

6Since our pretrained models are neither instruction-tuned nor instruction-aligned, following Arora et al. [5],
we use their Cloze Completion Formatting prompts for evaluation. It is noteworthy that results for certain tasks
may differ significantly from those obtained using lm-evaluation-harness [22] due to variations in prompt
templates.

7Empirically, we found that 32, 64, and 128 slots result in training throughputs of 46.7K, 44.1K, and 37.1K
tokens/s, respectively, under the settings described in the next section. Given the marginal improvement when
increasing the slot size from 64 to 128, along with the significant slowdown in training, we chose 64 slots.

8We utilize the training throughput benchmark scripts provided by FLA [96] for our measurements.
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Figure 4: (a) Training throughput of various 1.3B models on a single H800 GPU, with a fixed batch
size containing 16K tokens. “GSA w/o recomp.” indicates the use of the GSA kernel without hidden
state recomputation during the backward pass. (b) Memory footprint (in GiB) of each 1.3B model
during training with a batch size containing 16K tokens. (c) Inference latency (in seconds) of each
1.3B model on a single H800 GPU with 2K prefix tokens and a batch size of 1.

Table 3: Performance comparison across various 7B models. ♣ denotes models using softmax-attention. †

denotes our results.

Size Tokens ARCe ARCc Hella. PIQA Wino. NQ TriviaQA BBH MMLU Avg.
Shot(s) 0 0 0 0 0 5 5 3 5

Models trained from scratch (for reference)
RWKV6 7B 1.4T 73.6 44.0 75.2 78.4 68.5 20.9 59.5 23.4 43.9 54.1
Mamba 7B 1.2T 77.6 46.8 77.8 81.0 72.3 25.4 66.2 21.5 33.2 55.7
Llama2♣ 7B 2T 76.4 46.2 76.0 78.0 69.2 26.0 64.2 39.1 45.5 57.8
Gemma♣ 7B 6T 81.5 53.2 80.5 79.8 74.0 24.3 63.7 58.9 63.2 64.3
Mistral♣ 7B ? 80.8 54.0 81.1 80.6 74.0 29.7 70.3 56.5 62.4 65.5
Models finetuned from Mistral 7B
SUPRA 7B +20B 74.6 42.3 74.8 80.1 67.4 - - - 28.0 -
RetNet† 7B +20B 73.3 39.9 72.9 77.8 66.1 16.2 43.0 08.7 26.1 47.1
GLA† 7B +20B 74.6 44.0 75.9 79.2 69.5 22.2 57.8 20.8 28.4 52.5
GSA† 7B +20B 75.9 43.9 76.5 78.7 70.1 23.4 60.7 23.5 32.4 53.9
SUPRA 7B +100B 76.0 45.7 77.1 79.9 70.3 24.7 60.4 19.8 34.1 54.2
GSA† 7B +100B 76.0 46.9 77.9 78.9 72.6 26.9 65.8 29.3 38.1 56.9

output normalization and a decay mechanism—adopted from RetNet [82]—as critical for finetuning
performance. As a result, SUPRA essentially combines T2R and RetNet by finetuning pretrained
Transformers into a RetNet architecture, though it excludes the Swish output gate.

Settings. In our preliminary experiments, we found that the learnable MLP layer was unnecessary
and could be merged into the query and key projections, similar to the approach in Peng et al. [64].
We finetuned the pretrained Transformer Mistral 7B [40] to RetNet, as well as to GLA and GSA
models. Following SUPRA, we add ReLU as the feature map activation for RetNet and GLA, which
originally used an identity feature map without activation 9, and also excluded the Swish output gate.
For RetNet, there were no additional parameters; for GLA, the low-rank forget gate, and for GSA,
the Wα matrix are trainable parameters, though both are small in parameter count and negligible
in terms of the total model size. We set the peak learning rate to 3× 10−5 with 1K steps of linear
warmup following SUPRA. The training length was set to 2K tokens, with a batch size of 2M tokens.
For convenience, we trained on the SlimPajama corpus, while SUPRA used RefineWeb [61], a
higher-quality corpus. We leave the use of RefineWeb for future work.

9However, SUPRA reported poor performance with this strategy due to a significant discrepancy between
training and finetuning, where an identity map can lead to negative attention scores, a pattern unseen in pretrained
Transformers due to the nonnegativity of softmax.
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Main results. Following Jiang et al. [40], Touvron et al. [88], we evaluated the models on common-
sense reasoning tasks: ARCe and ARCc [15], Hellaswag [100], PIQA [9], and Winogrande [1]; world
knowledge tasks: NQ [47] and TriviaQA [41]; and popular aggregated benchmarks: MMLU [32]
and BBH [86]. Results are shown in Table 3. We observed a clear advantage in finetuning Mistral to
GSA compared to GLA or RetNet, confirming our intuition that preserving softmax is beneficial in
T2R settings. When trained with 100B tokens, Mistral-to-GSA outperforms RWKV6 and Mamba on
average, even though those models were trained on over 1T tokens, thereby reducing the required
training data size.

Table 4: Long-context performance comparison.

Qasper NarrativeQA QuALITY QMSum

Models trained from scratch (for reference)
RWKV6 09.2 14.4 30.8 01.1
Mamba 05.6 27.9 27.5 00.8
Mistral♣ 25.8 25.1 38.0 05.0
Models finetuned from Mistral 7B on 20B tokens
RetNet 11.1 00.0 26.2 00.0
GLA 18.4 17.2 30.9 09.0
GSA 18.8 19.2 32.0 10.0

Long-context ability evaluation. Following
Xiong et al. [95], we evaluated the models on
long-sequence tasks, including Qasper [19], Nar-
rativeQA [45], QuALITY [59], and QMSum
[106]. For each task, the input was truncated to
16K tokens, which is 8× the training length.

The results are shown in Table 4. Notably, GSA
consistently outperforms other subquadratic
models across all four tasks. We attribute this to
the same factors observed in in-context recall-
intensive task settings. Interestingly, Mistral-
to-GSA also demonstrates overall better perfor-
mance compared to RWKV6 and Mamba, which were trained from scratch on >1T token.

5 Related works

Matrix-valued linear RNNs with hardware-efficient training. Traditional RNNs (e.g., LSTM
[33], GRU [13]) maintain 1-dimensional hidden states, which are often too small to capture sufficient
information. Recent work emphasizes the importance of expanding the size of recurrent states
[30, 70, 97, 82, 62, 17]. However, naive state expansion dramatically increases FLOPs and I/O costs,
making training impractical. To address this, Mamba introduces an I/O-aware approach, reducing
I/O costs by materializing parameters and hidden states only on SRAM (instead of HBM). However,
Mamba’s recurrence cannot be expressed in matmul form, leading to two key issues: (i) high FLOP
count cannot be optimized via tensor cores (the GPU’s fast matmul unit), resulting in slower runtimes;
and (ii) the recurrent hidden states cannot be compactly represented and must be materialized on
SRAM during backpropagation, limiting the recurrent state size due to SRAM constraints.

Mamba2 [17] addresses these limitations by adopting a linear attention [43]-like approach that
enables hardware-efficient training. Linear attention expands the state using outer products, allowing
for both parallel attention-style computation and recurrent inference (also known as state-space
duality in Mamba2). The chunkwise algorithm interpolates between parallel and recurrent forms,
enabling hardware-efficient, linear-time training [34, 82, 97]. However, vanilla linear attention
underperforms softmax attention in various tasks. Recent research has explored incorporating various
decay or gating mechanisms to enhance model expressiveness and performance while maintaining
matmul-based parallelism and chunkwise training. These include head-wise data-independent decay
[82, 69]; head-wise data-dependent decay [63, 17, 7, 84]; and channel-wise data-dependent decay
[97, 53, 44, 70, 62]. GSA leverages two-pass gated linear attention to further enhance capacity while
allowing hardware-efficient training.

Fast weight RNNs. Fast weight programming [77], a classical concept intensively investigated in
deep learning [6, 104, 74, 76, 57, 75, 36, 37, 53], has been shown to be closely related to (linear)
Transformers [75]. The core idea involves using a slow network to produce rapid context-dependent
weight modifications for the fast network. In linear attention, the fast network is a single-layer FFN
with weight matrix St (Eq. 5), while the slow networks are the query/key/value projections.

Linear attention is known to suffer from limited memory capacity [75], potentially due to the
constraints of a single-layer FFN without a large representation. In contrast, ABC and GSA can be
viewed as implementing a two-layer fast FFN with either additive update rule or gated update rule
[74, 53], where the weight matrices are K̃t and Ṽt connected by the softmax activation function
(Eq. 3 and Eq. 3). This structure resembles DeltaMLP [36], which uses a delta update rule [93, 75, 99]
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and a multi-layer (potentially beyond two layers) fast FFN. The greater capacity of a two-layer FFN
compared to a similarly sized single-layer FFN could explain why GSA requires a smaller state size
to achieve similar or even better performance, especially in long sequence and recall-intensive tasks.

Finetuning Transformers to RNNs. As discussed, this paradigm could significantly reduce the
training cost for large-scale recurrent language models. The idea of distilling Transformers to RNNs
to improve inference efficiency can be traced back to Gerstenberger et al. [24]. In the following,
we briefly introduce some recent works that complement those already mentioned in §4.2 . Zhang
et al. [102] highlight the desirable properties of softmax, such as attention spikiness and dot-product
monotonicity, and employ a learnable MLP layer to approximate softmax behavior using logit
distillation loss (while freezing other parameters). Chen et al. [11] introduce DiJiang, an effective
method for approximating attention distributions using the Discrete Cosine Transform (DCT) to
enable frequency-domain kernelization, leading to faster feature mapping. Bick et al. [8] propose a
multi-stage distillation approach, aligning attention distributions (similar to Hedgehog [102]), hidden
states, and output logits to transfer knowledge from a pretrained Transformer teacher to a student
Mamba model. Wang et al. [91] distill Transformer-based LLMs into hybrid Mamba-Attention
architectures in the spirit of Ren et al. [72], Lieber et al. [48], Waleffe et al. [90]. However, they
freeze the FFN weights, while Choi [14] suggest that it might be more effective to unfreeze them. In
this work, we highlight the importance of the softmax operator, as discussed in Zhang et al. [102],
except that GSA directly incorporates softmax, while Zhang et al. [102] learns a feature map to
mimic softmax, without actually including any softmax operator in the resulting model.

6 Limitations and future work

Due to the relatively small scale of our pretrained models (compared to large-scale models trained
on trillions of tokens), we did not report any results on long-context tasks, as the performance
would all be poor. However, we believe Table 4 provides positive indications of GSA’s long-context
capabilities, and training on a larger token horizon and with larger models would address this. For
copy-oriented tasks, we observed negative results on the Phonebook Lookup [39] and Needle-In-
Haystack evaluations compared to Transformers, revealing the fundamental limitations of linear
recurrent models in handling “precise local token shifts and comparison”, as discussed in Arora et al.
[4]. Nonetheless, we expect this limitation could be significantly mitigated by pretraining a hybrid
GSA-attention model, as recently explored [4, 72, 90, 48, 99], or by distilling pretrained Transformers
into hybrid GSA-attention models, as in Wang et al. [91], or using different training objectives with
JRT prompts, as in Arora et al. [5], or combining with YOCO [84, 26].

GSA follows GLA in using a gated update rule, although we acknowledge recent work on Parallel
DeltaNet [99], which parallelizes the delta update rule computations in DeltaNet [75] over sequence
length, significantly enhancing training efficiency. The delta rule is known to improve in-context
retrieval ability [75, 99], aligning with one of the objectives of this work. We did not explore the
analogous two-pass DeltaNet, but we leave this for future investigation, which would bring the
approach closer to the original DeltaMLP [36], as discussed earlier. It would also be beneficial to
compare GSA with more recent strong RNN models, such as xLSTM [7], Mamba2 [17], TTT [85],
and Longhorn [49].

7 Conclusions

This work introduces Gated Slot Attention (GSA), which enhances ABC [64] with a gating mech-
anism inspired by Gated Linear Attention (GLA [97]). By framing GSA as a two-pass GLA, we
can leverage hardware-efficient implementations of GLA [96] to train GSA. As such, GSA benefits
from context-aware memory reading and forgetting, implicitly increasing the model’s capacity de-
spite a small actual state size, which improves training and inference efficiency. Through extensive
experiments, we demonstrate the advantages of GSA in in-context recall-intensive tasks [5] and in
“finetuning pretrained Transformers to RNNs” [42] scenarios.
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N. Muennighoff, F. Obeid, A. Saito, G. Song, H. Tu, S. Woźniak, R. Zhang, B. Zhao, Q. Zhao,
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A Linear Attention and its Chunkwise Form

Linear Attention (LA) [43, 67, 69] emerges as an alternative to resolve the quadratic complexity
of self-attention (SA). The key idea is to use the kernel trick, which replaces softmax with a
decomposable kernel function, resulting the following parallel form:10

O = ((ϕ(Q)ϕ(K)⊤)⊙M)V. (10)

where ϕ : Rd → Rm functions as feature mapping applied to each input. Unfolding Eq. 10, we have
qt,kt,vt = Wqxt,Wkxt,Wvxt ∈ Rd,

ot =

t∑
i=1

vif(k
⊤
i qt) =

t∑
i=1

viϕ(ki)
⊤ϕ(qt) =

[
St ≡

t∑
i=1

ϕ(ki)⊗ vi

]⊤

ϕ(qt).
(11)

⊗ means outer product operation. It is clear that by leveraging the associativity, LA admits simple
recurrent updating rules with matrix-valued hidden states St ∈ Rm×d:

ot = S⊤
t ϕ(qt); St = St−1 + ϕ(kt)⊗ vt. (12)

By reserving bounded m memory slots only, the overall computation complexity is reduced from
O(T 2d) to O(Tmd). When the sequence length is T ≫ m, d, the md factor has a minor impact on
the complexity, and LA can be much more efficient than its counterpart with quadratic complexity.

During inference, LA enjoys the merits of RNNs, which only need to maintain O(md) hidden
memories, helping avoid the memory-cost KV cache management in SA mechanisms. However,
Eq. 12 employs a simple additive updating rule and can be hard to “forget” unrelated information if
necessary [63], making the limited memory states vulnerable to be chaotic.

Gating mechanism has played a key role in classical RNNs [33, 23, 13], which serves as a
mechanism to control the information flows in the network and help read and write from the memory
selectively. [82] propose to apply a data-independent gate to LA, significantly narrowing the gap
between LA and SA: St = λSt−1 + ϕ(kt) ⊗ vt, λ ∈ [0, 1] is a non-learnable scalar. Recent
work [97, 44] further imposes a finer-grained data-dependent gate:

St = Diag(αt)St−1 + ϕ(kt)⊗ vt, (13)
where each αt ∈ [0, 1]m from A := {αi}Ti=1 ∈ [0, 1]T×m is dependent on the input. Alternatively,
we can couple the key values with the forget gates by allowing ϕ(kt) = 1−αt in spirit of [13, 107]
and [70], which reduces the number of parameters and improves efficiency accordingly.

A.1 Hardware-Efficient Training

Despite the theoretical advantages of linear complexity, the recurrent form of Eq. 12 is still inefficient
during training. Such recurrent computation prevents the full utilization of modern GPU parallelism
over sequence lengths [54, 73]. On the other hand, the parallel form (Eq. 10) can be parallelized in
similar vein as in flash attention [18, 16]. However, due to the existence of the casual mask M, we
can not rearrange its computation order by KV first, so that the parallel form still adheres to the
quadratic complexity, which can hardly be scaled to very-long training context (e.g., sequences with
more than 8K tokens).

Chunkwise form recurrences have been carried forward by [82], and achieve a good trade-off
between the recurrent and parallel forms. [97] further disclose that the element-wise gating of Eq. 13
also satisfies the associative property required by parallel scan [10] and derive a parallelized chunkwise
gated linear attention in a similar vein. The key idea is to partition the sequence into N = ⌈TC ⌉ chunks
of size C with Q[t] = qtC , qtC+1, . . . , qtC+C , and so forth for K[t],V[t] ∈ RC×d,A[t] ∈ RC×m.
Firstly, unrolling the i-th hidden state in the t-th chunk in Eq. 13, we get

S[t],i = Diag
(
A[t],i

)
S[t],i−1 + ϕ

(
K[t],i

)
⊗V[t],i = · · ·

= Diag

 i∏
j=1

A[t],j

S[t−1],C +

i∑
k=1

ϕ(K[t],k)⊙
i∏

j=k+1

A[t],j

⊗V[t],k

(14)

10There is a normalization term in vanilla LA similar to softmax, [67] reveal that removing it could avoid
potential gradient explosions.
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We write the last hidden in the chunk S[t],C as S[t] interchangeably for simplicity. Define
−→
A [t],i =∏i

j=1 A[t],j ∈ [0, 1]d as the cumulative decay from the start of chunk to i, and likewise
←−
A [t],i =∏C

j=i+1 A[t],j ∈ [0, 1]d from i+ 1 to the end of the chunk, then

S[t] = Diag(
−→
A [t],C)S[t−1] + (K[t] ⊙

←−
A [t])

⊤V[t] (15)
−→
A ,
←−
A can be absorbed into Q,K first : Q[t] = ϕ(Q[t]) ⊙

−→
A [t], K[t] = ϕ(K[t]) ⊙ (

←−
A [t]/

−→
A [t],C).

Combining them with Eq. 10 and Eq. 14, we derive the following vectorized updating rules

O[t] = Q[t]S[t−1] +
(
Q[t]K

⊤
[t] ⊙M[t]

)
V[t] (16)

The first term is referred to as the inter chunk part and the second term is the intra chunk part. The
process to get this intra part is a little more involved as the cumulative productions of

←−
A [t]/

−→
A [t],C

is greater than 1, which can lead to numerical instability. [97] deal with this issue by proposing a
secondary-chunking strategy, and we refer readers to their paper for more details.

Hardward considerations Modern GPU architectures, such as the NVIDIA A100, offer highly
optimized matrix multiplication (matmul) operations through specialized Tensor Cores, achieving
up to 16× higher throughput than non-matmul operations [18]. However, this incurs IO overheads
due to data transfer from slower, off-chip global high bandwidth memory (HBM) to on-chip shared
memory (SRAM). The chunkwise form balances I/O and computation complexity tradeoffs. As
shown in Eq.16, it improves parallelism over the sequence dimension while reducing non-matmul
FLOPs greatly. Also, the chunk recurrent updating conducts the query and hidden states reduction
in an online manner, requiring only O(Ndm) hidden states materialized into HBMs, so that it can
significantly reduce the memory/IO overheads. While LA enjoys much lower overall running FLOPs
than SA, the chunkwise form displays a practical significant wall-clock speedup against SA, due to
its hardware-efficient implementations [96].

B Algorithm Details for GSA

Q̄[1] K[1]; I[1] Q̄[2] K[2]; I[2]

Sk
[0] Sk

[1] Sk
[2]

Ok
[1]

I[1]; V̄[1] Ok
[2]

I[2]; V̄[2]

Sv
[0] Sv

[1] Sv
[2]

O[1] O[2]

Figure 5: Diagrams of the recurrence and updating rules in
Gated Slot Attention. The outputs of the first pass is taken as
queries of the second pass.

: query nodes : key/value nodes
: output nodes : recurrent hidden states

Beyond the recurrent GSA form pro-
vided in Figure. 1, we give de-
tailed, hardware-efficient procedures for
the forward and backward passes of
Gated Slot Attention (GSA) in Algo-
rithm 1. For simplicity, we define
A = {αi}Ti=1 ∈ [0, 1]T×m, and I =
{1 − αi}Ti=1 ∈ [0, 1]T×m. The algo-
rithm demonstrates that GSA can be
modeled as a two-pass GLA, as illus-
trated in Fig. 5.

In the preprocessing step, we pre-
compute the chunkwise cumulative sum
of the forget gate, resulting in

−→
A . Subse-

quently,
−→
A along with the queries, keys,

and values are passed to engage in two
GLA passes. For each chunk of size C, we define

←−
A [i] :=

−→
A [i],C/

−→
A [i] as in Eq. 15 and Eq. 16.

In the first pass,
−→
A ,
←−
A is absorbed into Q,K : Q̄[i] = Q[i] ⊙

−→
A [i], K̄[i] = K[i] ⊙ (

←−
A [i]/

−→
A [i],C),

then Q̄ and K̄ function as usual queries and keys, and the slot representations I serve as the value
vectors.

Ok
[i] = Q̄k

[i] Sk
[i−1]︸ ︷︷ ︸

Ointer
[i]

+(( Q̄k
[i] K̄⊤

[i])⊙M)I[i]︸ ︷︷ ︸
Ointra

[i]

∈ RC×m

We use different notations from those presented in Eq.6 to enhance clarity in the chunkwise updating
rules. The output Ok is decomposed into the inter-chunk recurrence and intra-chunk parallel
computations [97].
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Algorithm 1 Hardware-Efficient Gated Slot Attention

Define FORWARDPASS(Q,K,V, I,A)
Divide Q,K,V ∈ RT×d, I,A ∈ RT×m

into N =
⌈

T
C

⌉
blocks ▷ C is chunk size

function chunk_cumsum(A)
parfor n← 1, N do

Load A[n] to SRAM

Store
−→
A[n] ← cumsum(A[n]) to HBM

return
−→
A ←

−→
A[0], . . . ,

−→
A [N]

function gsa_fwd(Q,K,V,
−→
A, GATE_K)

On chip: construct causal mask M ∈ RC×C

for n← 1, N do
Store S to HBM as S[n] ▷ Initialize S = 0

Load K[n] , V[n],
−→
A [n],C

←−
A[n] to SRAM

On chip:
←−
A[n] ←

−→
A[n],C/

−→
A [n]

if GATE_K then
S← Diag(

−→
A[n],C)S + (K[n] ⊙

←−
A [n])

⊤V[n]

else
S← SDiag(

−→
A[n],C) + K⊤

[n](V[n] ⊙
←−
A[n])

parfor n← 1, N do
Load Q[n],K[n],V[n],S[n],

←−
A [n],

−→
A [n] to SRAM

On chip:
if GATE_K then

Q̄[n] ← Q[n] ⊙
−→
A [n]

K̄[n] ← K[n] ⊙ (
←−
A[n]/

−→
A [n],C)

O[n] ← Q̄[n]S[n−1]+
(
P ≡ Q̄[n]K̄

⊤
[n] ⊙M

)
V[n]

else
V̄[n] ← V[n] ⊙ (

←−
A [n]/

−→
A[n],C)

O[n] ← Q[n]S[n−1]+
(
P ≡ Q[n]K

⊤
[n] ⊙M

)
V̄[n]

O[n] ← O[n] ⊙
−→
A [n]

Store O to HBM as O[n] .

return O[1,...,N],S[1,...,N]

−→
A ← chunk_cumsum(A) ▷ preprocessing
Ok,Sk ← gsa_fwd(Q,K, I,

−→
A, False)

Qv ← softmax(Ok)

O,Sv ← gsa_fwd(Qv, I,V,
−→
A, True)

return O

Define BACKWARDPASS(Q,K,V, I,A,Ok, dO)
Divide Q,K,V,O, dO ∈ RT×d, I,A ∈ RT×m

into N =
⌈

T
C

⌉
blocks ▷ C is chunk size

function gsa_bwd(Q,K,V,S,
−→
A, dO, GATE_K)

On chip: construct causal mask M ∈ RC×C

for n← N, 1 do ▷ in reverse order
Store dS in HBM as dS[n] ▷ Initialize dS = 0

Load Q[n],
−→
A [n], dO[n] to SRAM

On chip:
if GATE_K then
dS← Diag(

−→
A [i],C)dS + (Q[n] ⊙

−→
A[n])

⊤dO[n]

else
dS← dSDiag(

−→
A[i],C) + Q⊤

[n](dO[n] ⊙
−→
A[n])

parfor n← 1, N do
Load Q[n],K[n],V[n], dO[n] ∈ RC×d

S[n] , dS[n] ∈ Rd×d to SRAM

On chip: ▷ Recompute
←−
A[n], Q̄[n], K̄[n], V̄[n],P

if GATE_K then
dP← (dO[n]V

⊤
[n])⊙M

dQ← (dO[n]S + dPK̄⊤
[n])⊙

−→
A [n]

dK← (V[n]dS
⊤ + dP⊤Q̄[n])⊙

←−
A[n]

dV ← K̄[n]dS[n] + P⊤dO[n]

else
dP← (dO[n]V̄

⊤
[n])⊙M

dQ← dO[n]S
⊤ + dPK[n]

dK← V̄[n]dS
⊤ + dP⊤Q[n]

dV ← (K[n]dS[n] + P⊤dO[n])⊙
←−
A [n]

Write dQ, dK, dV to HBM as dQ[n], dK[n], dV[n]

return dQ[1,...,N], dK[1,...,N], dV[1,...,N]

Recompute
−→
A,Sk,Sv

dQv, dIv, dV ← gsa_bwd(Q, I,V,Sv,
−→
A, dO, False)

dOk ← d softmax(Ok, dQv) ▷ softmax gradients
dQ, dK, dIk ← gsa_bwd(Q,K, I,Sk,

−→
A, dOk, True)

dI← dIk + dIv

dA← reversed_cumsum(Q⊙ dQ−K⊙ dK+
O⊙ dO−V ⊙ dV)

return dQ, dK, dV, dI, dA

In the second pass, the output Ok from the first pass, after the application of the softmax function,
serves as the queries Qv ,

Qv
i = softmax( Ok

i
)

and I/V are used as the key/value vectors, respectively. The final GSA output O is obtained as
follows:

Ov
[i] = Qv

[i] Sv
[i−1] + (( Qv

[i] I⊤[i])⊙M)V̄
[i]
∈ RC×d

Unlike in the first pass,
−→
A ,
←−
A is absorbed into V,O rather than Q,K.

During the backward pass, computing the gradients of Q,K,V, I,A involves variables already com-
puted in the forward pass. However, directly saving all intermediate results can pose severe challenges
for memory management. To address this issue, we adopt gradient checkpointing [12] to trade off
memory consumption for recomputation. In addition to the input Q,K,V, I,A, we selectively save
only the output of the first GLA pass, which significantly reduces memory consumption (Figure 4b).

Similar to the forward pass, the backward pass involves two GLA backward passes as well, but in the
reverse order. The final gradient dI is obtained by combining the gradients from these computations,
i.e., dI = dIk+dIv . The forget gate gradient can be decomposed into two parts: Q⊙dQ−K⊙dK
and O ⊙ dO − V ⊙ dV (cf. §C in [97]). The reversed cumulative sum in the backward pass
corresponds to the cumulative sum computed in the preprocessing step of the forward pass.
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C Experimental Setup

C.1 Language Modeling

We compare GSA with the following strong Transformers with modern architectural recipes as well
as other recent subquadratic architectures:

• Xfmr++ [87]: Llama-like architectures that enhance the vanilla Transformer by using Rotary
position embeddings [80] and GLU [78].

• Mamba [30]: State-space models with data-dependent decay.
• RetNet [82]: Linear attention with non-learnable, data-independent head-wise decay and rotary

embedding.
• GLA [97]: Linear attention with elementwise data-dependent decay.
• HGRN2 [70]: Gated Linear RNN with state expansion, or GLA with improved parameterization.

Setup. For a fair comparison, all models are trained from scratch with the same training recipes.
We utilize a subset of 100B tokens picked from the Slimpajama dataset [79]. The input tokens are
processed using the Mistral tokenizer [40] 11. We use AdamW [51] with a weight decay 0.01 as the
optimizer. During training, the learning rate is first warmed up to 3× 10−4 in the first 1B tokens, and
then decayed to 3× 10−5 gradually with a cosine schedule. The number of attention heads is set to 4
and 5 for 1.3B and 2.7B models, respectively. The number of memory slots is uniformly set to 64 for
all models. We utilize the open-sourced Triton-based library FLA [96] to run all compared models.

We ran all models on 32 Nvidia H800 GPUs. To facilitate distributed training and accelerate the
process, we utilized the DeepSpeed framework and fused all necessary modules, including ROPE,
cross-entropy, and LayerNorm, following the practice of [103]. The training of a GSA model with
2.7B parameters took approximately 2 days, while the 1.3B model required 1 day to complete training.

Remark on state size. Let the model dimension be denoted as d. Mamba expands the value
projection to 2d and uses a state expansion ratio of 16, resulting in a state size of 32d per layer.
Since Mamba also replaces the FFN with a Mamba layer, this effectively doubles both the number of
recurrent layers and the state size, leading to a total recurrent state size of 64Ld.

Similarly, RetNet expands the value projection to 2d and sets the head dimension of queries/keys to
be half that of the value head dimension. RetNet also reduces the number of heads to increase the
head dimensions of queries and keys. We fix the query/key head dimension to 256 and adjust the
number of heads accordingly, resulting in a recurrent state size of 512d per layer and 512Ld in total.

GLA does not expand the value projection but reduces the head dimensions of queries and keys to
half of the value head dimension to save parameters for the Swish output gate, ensuring each layer
contains 4d2 parameters. We fix the query/key head dimension to 256 and adjust the number of heads
accordingly, resulting in a recurrent state size of 256d per layer and 256Ld in total.

HGRN2 follows a similar approach to GLA but without the Swish output gate, keeping the head
dimensions of queries/keys and values equal, as in standard softmax attention, while still retaining
4d2 total parameters per recurrent layer. We set the head dimension to 128, resulting in a recurrent
state size of 128d per layer and 128Ld in total.

GSA maintains hidden states for both keys and values, so each layer contains a recurrent state size of
2× 64× d. We fix the state expansion (i.e., number of slots) to 6412, resulting in a total recurrent
state size of 128Ld.

11https://huggingface.co/mistralai/Mistral-7B-v0.1
12Note that in this case, the number of heads is independent of the state expansion ratio
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