
2310 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Reconstructing Perceived Images From
Human Brain Activities With Bayesian

Deep Multiview Learning
Changde Du, Changying Du, Lijie Huang, and Huiguang He , Senior Member, IEEE

Abstract— Neural decoding, which aims to predict external
visual stimuli information from evoked brain activities, plays an
important role in understanding human visual system. Many
existing methods are based on linear models, and most of
them only focus on either the brain activity pattern classi-
fication or visual stimuli identification. Accurate reconstruc-
tion of the perceived images from the measured human brain
activities still remains challenging. In this paper, we propose a
novel deep generative multiview model for the accurate visual
image reconstruction from the human brain activities measured
by functional magnetic resonance imaging (fMRI). Specifically,
we model the statistical relationships between the two views
(i.e., the visual stimuli and the evoked fMRI) by using two view-
specific generators with a shared latent space. On the one hand,
we adopt a deep neural network architecture for visual image
generation, which mimics the stages of human visual processing.
On the other hand, we design a sparse Bayesian linear model for
fMRI activity generation, which can effectively capture voxel cor-
relations, suppress data noise, and avoid overfitting. Furthermore,
we devise an efficient mean-field variational inference method to
train the proposed model. The proposed method can accurately
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reconstruct visual images via Bayesian inference. In particular,
we exploit a posterior regularization technique in the Bayesian
inference to regularize the model posterior. The quantitative and
qualitative evaluations conducted on multiple fMRI data sets
demonstrate the proposed method can reconstruct visual images
more accurately than the state of the art.

Index Terms— Deep neural network (DNN), image reconstruc-
tion, multiview learning, neural decoding, variational Bayesian
inference.

I. INTRODUCTION

NEURAL encoding and decoding are two fundamen-
tal aspects to understand human visual processing

system [1], [2]. Encoding models aim to predict the brain
responses according to the presented external stimuli, e.g.,
visual images. In contrast, decoding models aim to predict the
external visual stimuli information by analyzing the evoked
brain signals [3]–[6]. Although significant progresses have
been made in this field [7]–[10], most of them are based
on linear models and only focus on either the brain activity
pattern classification [11]–[13] or visual stimuli identifica-
tion [4], [5], [14]. Accurately reconstructing the perceived
images from the human brain activities measured by functional
magnetic resonance imaging (fMRI) still remains challeng-
ing. The reasons are typically threefold: 1) linear mappings
between the visual images and the evoked brain activities have
limited representation power; 2) we only have a small number
of paired data (stimulus-response); and 3) the brain activities
recorded by fMRI are high-dimensional data often degraded
by complex noise.

Traditional visual image reconstruction appro-
aches [15]–[17] generally suffer from the above-mentioned
issues and hence yield unsatisfactory results. For example,
Fujiwara et al. [18] developed a Bayesian canonical
correlation analysis (BCCA) model for estimating reversible
mappings between the visual images and the evoked brain
activities. However, its linear architecture greatly limits its
ability to learn the hierarchical visual features from images.
In addition, its spherical covariance assumption cannot capture
the correlations among fMRI voxels, making it susceptible to
voxel noise.

In recent years, deep learning methods [19], [20], especially
the deep neural networks (DNNs), revolutionized several fields
of machine learning, ranging from computer vision [21], [22]
to speech recognition [23], [24]. The architectures of
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DNNs are loosely inspired by the computational principles
of the biological nervous system [25]. For example, the hier-
archical layers of DNNs can resemble feedforward visual
representations in the human brain visual system [26]. A num-
ber of studies [14], [27]–[29] have revealed that the neural
activations in human visual cortex show correspondence with
the outputs of DNN layers. Therefore, it is reasonable to
explore the DNNs’ capability in neural encoding and decoding.
Furthermore, Higgins et al. [30] demonstrated that the unsu-
pervised deep generative models such as variational autoen-
coders (VAEs) [31], [32] can learn the disentangled image
representations that correspond to distinct visual concepts.
This is critical to neural decoding, since the visual concepts
learned by these unsupervised deep generative models may
also be perceived by the human brain.

Motivated by the aforementioned discussions, we propose
a deep generative multiview model (DGMM) to reconstruct
perceived images from human brain activities. For modeling
the statistical relationships between the visual images and the
evoked fMRI activity patterns, we assume these two data views
can be generated from a shared latent space via two view-
specific generative models. Specifically, we apply a deep gen-
erative model to visual images, while a sparse linear generative
model to fMRI activity patterns. On the one hand, the DNN
architecture in the deep generative model can capture the
stages of human visual processing [14], [27], [28] and, hence,
provides better representations than the linear models. On the
other hand, as the brain activities are the high-dimensional
fMRI data and the sample size is usually small, using a
sparse linear model for brain activity generation can effectively
avoid overfitting. Furthermore, to capture the correlations
among fMRI voxels, we impose a full-covariance matrix on
the distribution of fMRI activity. But this assumption results
in severe computational issues. To reduce the computational
complexity, we further impose a low-rank assumption on this
full-covariance matrix by introducing a set of auxiliary latent
variables. Inspired by recent advances in scalable variational
methods [31], [32], we train the proposed model by using an
efficient mean-field variational inference method. After train-
ing, the proposed DGMM method can accurately reconstruct
the visual images via Bayesian inference. In particular, we reg-
ularize the model posterior via posterior regularization [33],
which is a technique for regularizing models by encoding
specific prior knowledge into the model posteriors. As a result,
the posterior regularization can force the latent representations
of the test samples to be close to that of their neighbors from
the training set.

Compared with the deterministic deep multiview learn-
ing methods [34], [35], the proposed Bayesian framework
enjoys the inherent advantage of avoiding overfitting. By har-
nessing the posterior regularization, DGMM is capable of
incorporating specific prior knowledge (e.g., the similarity
information between different brain activity patterns) into the
Bayesian inference of model posterior. We apply the proposed
DGMM method to three public fMRI data sets, including
binary contrast patterns [15], handwritten digits [16], and
handwritten characters [17]. The quantitative and qualita-
tive evaluations demonstrate that the proposed DGMM can

reconstruct visual images more accurately than the state of the
art. Our main contributions can be summarized as follows.

1) We describe a new deep generative multiview frame-
work for neural decoding by employing the fusion
of probabilistic modeling and DNNs. The genera-
tion and inference procedures in the deep generative
model naturally support the cognitive phenomena of
imagination [36].

2) We impose a full-covariance matrix on the distribution of
fMRI activity to capture the correlations among voxels.
To reduce the computational complexity, we further
impose a low-rank assumption on this full-covariance
matrix by introducing a set of auxiliary latent variables.

3) We derive a predictive distribution for perceived images,
which takes the uncertainty of data into account. In par-
ticular, we show that posterior regularization can be
introduced into neural decoding to improve the predic-
tion performance.

4) We devise a mean-field variational inference method to
train the proposed model efficiently.

5) The quantitative and qualitative evaluations demonstrate
that our approach can reconstruct visual images more
accurately than the state of the art.

Our study has strong connections to the research in DNNs
and related learning systems. First of all, the proposed deep
generative multiview architecture is a novel design of DNNs.
Furthermore, perceived image reconstruction from human
brain activities using the proposed DGMM is an effective
application of DNNs. Finally, we show that DNN models have
the potential capability to mimic human visual processing.
Researchers can utilize brain-inspired methods to design more
efficient neural networks and learning systems.

II. RELATED WORKS

A. Neural Decoding

Following the pioneering work in [37], a number of neural
decoding approaches [3]–[6], [11]–[14] have been proposed in
the past decade. It can be roughly divided into three categories,
depending on the decoding type: 1) brain activity pattern
classification determines which category of stimulus elicits
the observed brain signals; 2) visual stimuli identification
identifies a specific stimulus (from a candidate set) that best
explains the observed brain signals; and 3) visual stimuli
reconstruction reconstructs the corresponding visual stimuli
according to the observed brain signals.

Although previous studies have made significant progresses
in brain activity pattern classification [11]–[13], [37] and
visual stimuli identification [4], [5], [14], the performance
of accurate visual image reconstruction [6], [15], [18] still
needs to be improved. For example, Miyawaki et al. [15]
proposed a multiscale image bases method to reconstruct
the binary contrast patterns. However, its results are not
optimal because the image bases used in this method
have the predefined shapes. To overcome this limitation,
Fujiwara et al. [18] developed the BCCA model to learn the
image bases automatically. Nevertheless, BCCA still has two
critical drawbacks. First of all, its linear architecture has lim-
ited representation power in extracting the hierarchical visual
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features from images. In addition, its spherical covariance
assumption cannot effectively capture the correlations among
fMRI voxels. We argue that exploring the correlations among
voxels is critical to visual image reconstruction.

Different from previous works, we employ a DNN archi-
tecture to extract the hierarchical visual features from images.
Furthermore, we design a sparse linear model with a full-
covariance matrix assumption to fit the high-dimensional fMRI
data, thereby allowing us to capture the correlations among
voxels.

B. Deep Generative Models

There has been a surge of research interest in deep gen-
erative models in recent years. Two of the most commonly
used approaches are VAE [31] and generative adversarial
network (GAN) [38]. VAE aims at maximizing the variational
lower bound of the data likelihood and GAN aims at achieving
an equilibrium between a generator and a discriminator. The
most important use of deep generative models is to generate
high-quality images [39]–[41].

Recently, techniques for applying VAEs and GANs to neural
decoding have emerged [42]–[44]. For example, Du et al. [42]
proposed a neural decoding model based on the VAE frame-
work. However, the authors only took the visual images
into account in the posterior inference phase. Unlike [42],
we condition the posterior distribution of the latent variables
on both the visual images and the evoked brain activities.
Furthermore, Güçlütürk et al. [43] combined probabilistic
inference with the GAN idea and successfully reconstructed
face images from evoked brain activities. Nevertheless, its two-
stage design makes it difficult to converge to the global optima.

The proposed DGMM is motivated by the great success
of deep generative models in image generation [39]–[41].
To the best of author knowledge, this is the first to introduce
the Bayesian deep learning to neural decoding study.

III. PROPOSED APPROACH

Suppose that X ∈ R
Dx×N and Y ∈ R

Dy×N denote the
visual images and the evoked fMRI activity patterns, respec-
tively. Here, Dx and Dy denote the dimensions of X and Y,
respectively, and N denotes the size of the training set. The
training set consists of N paired samples, which can be
denoted by (x1, y1), . . . , (xN , yN ), where xi ∈ R

Dx and
yi ∈ R

Dy for i = 1, . . . , N . For modeling the statistical
relationships between the visual images and the evoked fMRI
activity patterns, we develop a DGMM, where the two data
views are assumed to be generated from a shared latent space
via two view-specific generative models. The illustration of
DGMM is shown in Fig. 1. Specifically, DGMM consists of
a bottom-up inference model and two top-down generative
models. In the inference model, a DNN is introduced to infer
the shared latent variables Z ∈ R

Dz×N from X and Y, where
Dz is the dimension of Z. Given the shared latent variables Z,
another DNN is adopted to generate the visual images, while
a sparse linear model is adopted to generate the fMRI activity
patterns. Overall, DGMM can be efficiently optimized within
the autoencoding variational Bayes framework [31], [32].

Fig. 1. Illustration of the proposed DGMM framework. (a) Training. X and Y
are fed into the inference model to obtain Z, which is used to reconstruct X and
Y via different generative models. (b) Prediction. By using Bayesian inference,
the testing brain activity y� is first decoded to the latent representation z�.
Given z�, we can reconstruct the visual image xpred through the pretrained
deep generative model. In particular, we regularize the posterior inference
of z� by utilizing the similarity information between the test instance y� and
the training instances Y.

In the prediction stage, the testing brain activity y� is first
decoded to the latent representation z�. Given z�, we can
reconstruct the visual image xpred through the pretrained deep
generative model. The details are described in the following.
For the sake of readability, we list the frequently used symbols
and their definitions in Table I.

A. Deep Generative Multiview Model

In deep generative model, we expect that each dimension
of the latent variable contains its own semantic information
independently, which makes the model more interpretable.
Therefore, the prior distribution over the shared latent variables
is assumed to be a product of isotropic Gaussian distributions

p(Z) =
N∏

i=1

NDz (zi |0, I) (1)

which is consistent with previous studies in image
generation [31], [32], [38].

Because the visual images X and the evoked fMRI activity
patterns Y are assumed to be generated from the same Z via
two view-specific generative models, we have two likelihood
functions. One is for X, and the other is for Y.

1) Deep Generative Model for Perceived Images: We
assume the image pixels follow a multivariate Gaussian dis-
tribution with zero-mean and diagonal covariance. Therefore,
the likelihood function can be written as

pθ(X|Z) =
N∏

i=1

NDx

(
xi |μx(zi ), diag

(
σ 2

x (zi )
))

(2)

where μx(zi ) and σ 2
x (zi ) denote the mean and covariance,

respectively. Note that μx(zi ) and σ 2
x (zi ) are obtained by
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TABLE I

DEFINITION OF FREQUENTLY USED SYMBOLS

different nonlinear transformations with respect to zi . In prac-
tice, we implement these nonlinear transformations using
DNNs, which we refer to as the generative network. Para-
meters in the generative network are denoted by θ . Compared
with the linear decoding model BCCA [18], our DNN architec-
ture can capture the hierarchical visual features from images,
which resembles the stages of human visual processing [14],
[27], [28], [45]. Although the diagonal covariance structure
does not take into account the relationships between image
pixels, previous studies in image generation [31], [46], [47]
have shown that it is a simple but effective assumption.1

2) Sparse Bayesian Linear Model for Brain Activities:
Although nonlinear transformations are more powerful than
linear transformations (in terms of the types of features they
can learn), they have the risk of overfitting when we only
have a small amount of high-dimensional fMRI data. Previous
multivoxel pattern analysis studies have shown that linear
models perform well in fMRI data analysis [48]. Therefore,
we assume the distribution of the observed fMRI voxels has

1Actually, we can set a full-covariance structure for pθ (X|Z), but this will
increase the amount of computation dramatically. Therefore, the independence
assumption for image pixels is just a tradeoff between precision and efficiency
and not a limitation of our method.

a linear form

p(Y|Z) =
N∏

i=1

NDy (yi |B�zi ,�) (3)

where B ∈ R
Dz×Dy is a projection matrix, and � ∈ R

Dy×Dy

is a full-covariance matrix. In general, the fMRI voxels are
not independent but affecting each other. The correlations
among fMRI voxels can naturally reflect the characteristics of
corresponding visual stimuli [49]. The full-covariance matrix
� in (3) is expected to capture these correlations. Therefore,
employing the full covariance will be benefit to suppress voxel
noise and improve model performance. Compared with our
method, most previous works simply used a spherical [18] or a
diagonal [17] covariance, thus ignoring the correlations among
fMRI voxels.

To avoid overfitting in the analysis of high-dimensional
fMRI data, we impose a sparseness constraint on the projection
matrix B. With the sparseness constraint, the model is expected
to automatically select a small number of voxels, which
are most relevant to the decoding prediction. Naively, one
can employ the automatic relevance determination (ARD)
prior [50] and Wishart distribution for B and �−1, respec-
tively, that is,

p(τ ) =
Dy∏

j=1

G(τ j |ατ , βτ )

p(B|τ ) =
Dy∏

j=1

NDz

(
b j |0, τ−1

j I
)

p(�−1) = W(�−1|V, n0) (4)

where G(·|α, β) denotes the gamma distribution with shape
parameter α and rate parameter β. In addition, V and n0 are
the hyperparameters in Wishart distribution.

The complexity of inferring high-dimensional covariance
matrix � is O(D3

y), thus resulting in severe computational
issues in practice. To address the computational issues, we pro-
pose to introduce the following auxiliary latent variables
R ∈ R

Dr ×N :

p(R) =
N∏

i=1

NDr (ri |0I) (5)

and rewrite the likelihood function in (3) as

p(Y|Z, R) =
N∏

i=1

NDy (yi |B�zi + H�ri , γ
−1I). (6)

Similarly, we impose the ARD prior on the extra projection
matrix H ∈ R

Dr ×Dy , and the gamma prior on the variance
parameter γ , that is,

p(η) =
Dy∏

j=1

G(η j |αη, βη)

p(H|η) =
Dy∏

j=1

NDr (h j |0, η−1
j I)

p(γ ) = G(γ |αγ , βγ ). (7)
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Fig. 2. Probabilistic graphical models of the proposed method. The gray
nodes x and y denote observable variables. All other nodes are unobservable
variables. (a) DGMM with the full-covariance matrix � . (b) DGMM with the
low-rank assumption on � .

where Dr is the dimension of the auxiliary latent variables.
The probabilistic graphical models of the proposed method
are shown in Fig. 2. It can be shown that (6) is equivalent to
imposing a low-rank assumption on the covariance matrix �

(i.e., � = H�H + γ −1I, see Appendix A for details). On the
one hand, this low-rank assumption effectively reduces the
computational complexity. On the other hand, the variations
in the fMRI activity patterns are factorized into two parts. One
part is the shared variables Z, and the other part is the private
variables R (e.g., the noisy component of brain activities).
The ability to learn these two different types of latent variables
makes our model more flexible than the existing methods. Note
that we impose sparsity-inducing priors on B and H under
the assumption that only a small number of fMRI voxels are
relevant to the decoding task. As a result, we can effectively
prune away the irrelevant projections in B and H by assigning
suitable values to the hyperparameters (ατ , βτ ) and (αη, βη).

In the following, � = {ατ , βτ , αη, βη, αγ , βγ } denotes
the hyperparameters, 	 = {τ , η, γ } denotes the priors, and

 = {B, H, Z, R} denotes the remaining variables. For clarity,
we have omitted the dependence on � in the following equa-
tions. Then, the joint posterior distribution can be obtained by
using Bayes’ rule

pθ (
,	|X, Y) = pθ (X|Z)p(Y|Z, R)p(
|	)p(	)

pθ (X, Y)
(8)

where pθ(X, Y) is a normalization constant.

B. Optimization

Given the above-mentioned multiview generative model,
the exact posterior inference is intractable. Alternatively,
we first introduce an explicit inference model for the
latent variables Z, and then we devise an efficient mean-
field variational inference method to optimize the proposed
DGMM algorithm.

1) Explicit Inference Model for Latent Variables Z: Due
to the nonlinear architecture in the deep generative model
of visual images, we cannot estimate the generative para-
meter θ directly. Inspired by the autoencoding variational
Bayes framework [31], [32], we define a fixed-form inference
model qϕ(Z|X, Y) for the latent variables Z, and optimize the

inference parameter ϕ as well as the generative parameter θ

jointly by maximizing the variational lower bound on the
marginal likelihood. Specifically, we define qϕ(Z|X, Y) as

qϕ(Z|X, Y) =
N∏

i=1
NDz

(
zi |μz(xi , yi ), diag

(
σ 2

z (xi , yi )
))

(9)

where the mean μz(xi , yi ) = [μzi1, . . . , μzi Dz
]� and the

covariance diag(σ 2
z (xi , yi )) = diag(σ 2

z i1, . . . , σ
2
z i Dz

) are the
outputs of DNN with parameters ϕ. We call this network the
inference network. In practice, we regard the concatenation
of xi and yi as the input of the inference network.

2) Objective Function: The mean-field variational inference
method is based on two basic assumptions: 1) the joint
variational distribution q(
,	) is fully factorable, that is,

q(
,	) = q(B)q(H)qϕ(Z|X, Y)q(R)q(τ )q(η)q(γ ) (10)

and 2) all factor distributions are free-form except for
qϕ(Z|X, Y). The objective function can obtained by mini-
mizing the Kullback–Leibler (KL) divergence between the
approximated posterior q(
,	) and the target posterior
pθ(
,	|X, Y), that is,

min
ϕ, θ, q(
,	)∈P

KL(q(
,	)‖pθ(
,	|X, Y)) (11)

where P denotes the space of probability distributions. The
above-mentioned objective function can be optimized via an
iterative strategy. Specifically, we first appropriately initialize
the moments of all factor distributions in q(
,	). Then,
we update each factor distribution, in turn, using the latest
estimates of other factor distributions. Because the KL diver-
gence is convex with respect to each factor distribution,
the convergence can be expected after enough iterations.

3) Learning θ , ϕ, and the Optimal Distribution qϕ(Z|X, Y):
We first fix the moments of q(B), q(H), q(R), q(τ ), q(η),
and q(γ ), and attempt to optimize qϕ(Z|X, Y). It can be
implemented by maximizing the variational lower bound on
the marginal likelihood

log pθ(X, Y)

≥ Eqϕ(Z|X,Y)

[
log

p(Z)

qϕ(Z|X, Y)
+ log pθ(X|Z) + log p(Y|Z)

]

= Eqϕ(Z|X,Y)[log pθ (X|Z)]
︸ ︷︷ ︸
likelihood term for visual images

+ Eqϕ(Z|X,Y)[log p(Y|Z)]
︸ ︷︷ ︸

likelihood term for fMRI patterns

− KL(qϕ(Z|X, Y) ‖ p(Z))
︸ ︷︷ ︸

KL divergence term

≡ L(X, Y). (12)

Intuitively, the first likelihood term reflects the recon-
struction error of the visual images and the second one
reflects the reconstruction error of the fMRI activity patterns.
Recent advances in variational training procedures such as
the stochastic backpropagation [32] and the reparametrization
trick [31] have made the optimization of DNN parameters θ

and ϕ feasible and efficient (see Appendix B for more details
about the optimization of L(X, Y)).
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4) Learning the Optimal Distributions of B, H, R, and 	:
In this section, we fix the moments of qϕ(Z|X, Y), and
optimize q(B), q(H), q(R), q(τ ), q(η), and q(γ ) in turn. For
any factor π (e.g., B), it can be shown that the optimal
variational distribution q∗(π) satisfies

q∗(π) ∝ exp{Eq({
,	}\π)[log p(Y,
,	)]}. (13)

Using the conjugacy between the likelihood and the prior,
we can iteratively perform fast Bayesian updating for each
factor. The updating rules are given in the following.

Update q(B) and q(H): The updating rules for the projec-
tion parameters B and H can be found as

q∗(B) =
Dy∏

j=1

NDz (b j |μb j , [〈τ j 〉I + 〈γ 〉〈ZZ�〉]−1) (14)

q∗(H) =
Dy∏

j=1

NDr (h j |μh j , [〈η j 〉I + 〈γ 〉〈RR�〉]−1) (15)

where 〈·〉 denotes the expectation over its current optimal
distribution, and

μb j = �b j

N∑

i=1

〈γ 〉(yi j − 〈
h�

j

〉〈ri 〉
)〈zi 〉 (16)

μh j = �h j

N∑

i=1

〈γ 〉(yi j − 〈
b�

j

〉〈zi 〉
)〈ri 〉 (17)

where �b j and �h j are the corresponding covariance in (14)
and (15), respectively.

Update q(R): Similarly, the updating rule for the auxiliary
latent variables R can be found as

q∗(R) =
N∏

i=1

NDr (ri |μri , [I + 〈γ 〉〈HH�〉]−1) (18)

where μri = �ri

∑Dy
j=1〈γ 〉(yi j −〈b�

j 〉〈zi 〉)〈h j 〉, and �ri is the
corresponding covariance in (18).

Update q(τ ), q(η), and q(γ ): Finally, the updating rules
for the precision parameters can be found as

q∗(τ ) =
Dy∏

j=1

G
(

τ j |ατ + Dz

2
, βτ + 1

2

〈
b�

j b j
〉)

q∗(η) =
Dy∏

j=1

G
(

η j |αη + Dr

2
, βη + 1

2

〈
h�

j h j
〉)

q∗(γ ) = G
⎛

⎝γ |αγ + N Dy

2
, βγ + 1

2

N∑

i=1

Dy∑

j=1

δ2
i j

⎞

⎠ (19)

where δi j = yi j − 〈b�
j 〉〈zi 〉 − 〈h�

j 〉〈ri 〉.
We sequentially update ϕ, θ , qϕ(Z|X, Y), q∗(B), q∗(H),

q∗(R), q∗(τ ), q∗(η), and q∗(γ ) until convergence. The
detailed training procedures are summarized in Algorithm 1.

Algorithm 1 DGMM
� Training
Input:

• Visual images X ∈ R
Dx ×N

• fMRI activity patterns Y ∈ R
Dy×N

1: Initialize ϕ, θ and the moments of all random variables
Z, R, B, H and 	

2: for number of training iterations do
3: Update θ , ϕ and the moments of Z by maximizing the

variational lower bound L(X, Y) (Eq. (12)).

max
θ,ϕ

L(X, Y)

4: Update the moments of B by using Eq. (14)
5: Update the moments of H by using Eq. (15)
6: Update the moments of R by using Eq. (18)
7: Update the moments of 	: by using Eq. (19)
8: end for

Output:
• Inference parameters: ϕ

• Generative parameters for visual image: θ

• Generative parameters for fMRI activity pattern: B, H
and 	

� Prediction
Input: fMRI activity pattern y� (not available in training)
1: Draw L samples {z(l)

� }L
l=1 from preg(z�|y�) according to

Eq. (28).
2: Reconstruct the visual image by xpred = 1

L

∑L
l=1 μx(z

(l)
� )

Output: The reconstructed image xpred

C. Prediction

Given a new fMRI pattern y� (not available in training),
we can derive a predictive distribution p(xpred|y�) for the
perceived image

p(xpred|y�) =
∫

pθ (xpred|z�)p(z�|y�)dz� (20)

where p(z�|y�) is the unnormalized posterior distribution,
which can be derived by

p(z�|y�) =
∫

p(y�|z�, r�, B, H, γ )p(z�)p(r�)

× q∗(B)q∗(H)q∗(γ )dr�dBdHdγ. (21)

In (21), we simply infer the latent representation z� from the
given fMRI pattern y�. Actually, we can further explore the
similarity information between y� and the training data Y to
obtain more expressive z�. In the following, we implement this
by using a posterior regularization technique [33].

1) Posterior Regularization: Posterior regularization [33] is
a technique for regularizing models by encoding specific prior
knowledge into model posteriors. Compared with the specially
designed priors, the posterior regularization technique can
more naturally integrate the prior knowledge into the Bayesian
model. The purpose of using the posterior regularization is to
restrict the space of p(z�|y�) so that the image reconstruction
results are more accurate.
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Fig. 3. Trajectories of posterior q(z�) are illustrated in a schematic
probability space P . Green line: trajectory of standard Bayesian inference
without the posterior regularization. Red line: trajectory of Bayesian inference
with the posterior regularization. By incorporating data-dependent constraints
into the Bayesian inference, our posterior regularization strategy guides the
model posterior toward the desired probability space.

Given (21), we can equivalently obtain p(z�|y�) by mini-
mizing the following KL divergence:

min
q(z�)∈P

KL(q(z�)‖p(z�|y�)). (22)

Expanding the KL divergence, (22) can be rewritten as

min
q(z�)∈P

KL (q(z�)‖p(z�)) − Eq(z�)[log p(y�|z�)]. (23)

Then, we add a regularization term to (23)

min
q(z�)∈P

KL (q(z�)‖p(z�))︸ ︷︷ ︸
KL divergence term

− Eq(z�)[log p(y�|z�)]︸ ︷︷ ︸
likelihood term

+ ρ R(q(z�))︸ ︷︷ ︸
regularization term

(24)

where R(q(z�)) is the introduced regularization term, and the
parameter ρ > 0 controls the expected scale. As illustrated
in Fig. 3, the regularization term can guide the model posterior
toward the desired probability space. Specifically, we define

R(q(z�)) = Eq(z�)

[
N∑

i=1

si‖z� − zi‖2

]
(25)

where si is a similarity measure between yi and y�, and
‖ · ‖ denotes the �2-norm. Here, we further define

si =
⎧
⎨

⎩
exp

(
−‖y� − yi‖2

2t2

)
, yi ∈ K(y�)

0, otherwise

where K(y�) denotes the k-nearest neighbors of y� and t is
a free parameter. In other word, si is calculated by a radial
basis function kernel function when yi is in the k-nearest
neighbor space of y�. Intuitively, si can capture the local
geometry structure of the fMRI pattern space. As a result,
the regularization term will force z� to be close to their nearest
neighbors from the training set.

Let h(z�|ρ, s) = exp{−ρ
∑N

i=1 si‖z� − zi‖2}, then (24) can
be rewritten as

min
q(z�)∈P

KL (q(z�)‖p(z�)) − Eq(z�)[log p(y�|z�)]
− Eq(z�)[log h(z�|ρ, s)] (26)

and hence the regularized posterior distribution satisfies

preg(z�|y�) =
∫

p(y�|z�, r�, B, H, γ )p(z�)h(z�|ρ, s)p(r�)

× q∗(B)q∗(H)q∗(γ )dr�dBdHdγ. (27)

Equation (27) is intractable due to the multiple integral
with respect to r�, B, H, and γ . To address this problem,
we replace the random variables B, H and γ with the mean
of q∗(B), q∗(H), and q∗(γ ), respectively. Now, we have

preg(z�|y�) =
∫

p(y�|z�, r�)p(z�)h(z�|ρ, s)p(r�)dr�

∼ NDz

(
z�|μz��z�

)
(28)

where μz� and �z� can be find in Appendix C.
2) Predictive Distribution: Substituting (28) into (20) yields

an expression for the predictive distribution

p(xpred|y�) =
∫

pθ (xpred|z�)preg(z�|y�)dz�. (29)

Because the likelihood function of visual image pθ (xpred|z�) is
characterized by the complex DNN, the integral with respect to
z� cannot be solved analytically. Alternatively, we use Monte
Carlo sampling method to approximately solve this integral.
Specifically, we assume z(l)

� is the lth sample randomly
sampled from preg(z�|y�), and μx(z

(l)
� ) is the output of the

pretrained generative network characterized by pθ (xpred|z�),
where l ∈ {1, 2, . . . , L}. Then, the reconstructed visual image
can be obtained by taking the average of all L predictions,
that is,

xpred = 1

L

L∑

l=1

x(l)
pred = 1

L

L∑

l=1

μx
(
z(l)
�

)
. (30)

The prediction procedures are summarized in Algorithm 1.

IV. EXPERIMENTS

A. Experimental Setup

1) Data Sets: We conduct the experiments on three publicly
available fMRI data sets, and we briefly describe them in the
following.

1) Binary Contrast Patterns2 [15]: The visual images in
this data set can be divided into two types. One type is
random images, which are used in the training phase.
The other type is the figure images including geometric
shapes and alphabetical letters, which are used for
testing (see Fig. 4). The resolution of the visual images
is 10 × 10. The corresponding fMRI data are given for
each visual image. In the experiments, we use voxels
from the V1 area of subject 1 (S1).

2Data are available at http://brainliner.jp/data/brainliner
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Fig. 4. Examples of the binary contrast patterns used in training and test.

TABLE II

PROPERTIES OF THE DATA SETS USED IN THE EXPERIMENTS

2) Handwritten Digits3 [16]: This data set contains
100 gray-scale handwritten digit images (equal number
of 6’s and 9’s). The image resolution is 28 × 28. The
corresponding fMRI data contain voxels from the V1,
V2, and V3 areas.

3) Handwritten Characters4 [17]: This data set con-
tains 360 gray-scale handwritten character images
(equal number of B’s, R’s, A’s, I’s, N’s, and S’s)
taken from [51]. The image resolution is 56 × 56.
In the experiments, the visual images are downsampled
to 28×28. The corresponding fMRI data contain voxels
from the V1 and V2 areas of all three subjects.

More descriptions about these three fMRI data sets can be
found in the original publications [15]–[17]. We briefly sum-
marize their main properties in Table II.

2) Compared Methods: The following methods are used as
baselines.

1) Miyawaki5: A specially designed multiscale image
reconstruction method proposed by Miyawaki et al. [15].
A fatal limitation of this method is that the shapes of
image bases are fixed, thereby losing the flexibility.

2) BCCA6: A multiview linear generative model designed
for neural encoding and decoding [18]. However, its
linear architecture and spherical covariance assumption
may greatly limit its performance.

3) Deep canonically correlated autoencoder (DCCAE)7:
DCCAE was originally proposed to learn the deep
representations from multiview data [34]. It consists
of two basic autoencoders. The objective function of
DCCAE is a combination of two components. The first
component is the canonical correlation between the two
learned bottleneck representations and the second one is
the reconstruction errors of both autoencoders. DCCAE
can be applied to cross-view reconstructions as well as
neural encoding and decoding. However, DCCAE only

3Data are available at http://www.ccnlab.net/data/
4Data are available at http://sciencesanne.com/research/
5Code are available at http://brainliner.jp/data/brainliner
6Code are available at https://github.com/KamitaniLab/VBCCA
7Code are available at http://ttic.uchicago.edu/%7Ewwang5/dccae.html

considers the intraview reconstruction errors and the
correlation between the bottleneck representations while
it ignores the interview reconstruction errors.

4) Deconvolutional Neural Network: It is a two-stage cas-
cade neural decoding method [29]. It first decodes the
fMRI activity pattern to the high-level feature maps
using the multivariate linear regression [52]. Then,
the predicted high-level feature maps are fed into the
pretrained deconvolution neural network, whose outputs
are the expected reconstructions. Such an approach is
limited in that it requires two stages and each stage
is optimized separately, making the whole decoding
pipeline often suboptimal.

3) Parameter Setting: To obtain sparse projection
matrices B and H, we set the hyperparameters (ατ , βτ ) =
(αη, βη) = (10−10, 10−10) and (αγ , βγ ) = (1, 1), which
are consistent with the previous sparse Bayesian method
[53]. Once the hyperparameters are fixed, the model
parameters can be learned automatically on the specific
data set. Furthermore, the regularization parameter ρ should
be tuned separately on different data sets. Specifically,
we conducted fivefold cross-validation on the training sets
to choose the best ρ from [0.05, 0.1, 0.5, 1, 5], where
DGMM8 achieves the experimental results. We empirically
set the free parameter t = 10 and the nearest neighbor
parameter k = 10 in constructing the nearest neighbor
graphs. This setting can ensure the values of si are evenly
distributed between 0 and 1, which is useful for selecting
the top-k nearest neighbors. Finally, we empirically find that
setting L = 100 is enough to get clear reconstructions. In
addition, we consider multiple layer perceptrons (MLPs) as
the type of the generative network and inference network.
Specifically, the architecture of the inference network was
set to “100-200,” “784-256-128-10,” and “784-256-128-6”
on the three data sets, respectively. The generative network
has a symmetrical architecture with the inference network.
In particular, we consider two different cases for DCCAE:
1) DCCAE-A has an asymmetric architecture (DNN for
visual images, while the single-layer neural network for
fMRI) and 2) DCCAE-S has a symmetric architecture
(i.e., DNNs for both data views), which can explore the
deep transformations of fMRI activity patterns. The Adam
optimizer [54] with learning rate 0.0003 is utilized for the
training of all DNN-based models.

4) fMRI Voxel Selection: The fMRI activity patterns are
high-dimensional data, in which a lot of voxels may not
respond to the visual stimuli. Therefore, it is necessary to
remove the unrelated voxels before the decoding experiments.
First, we randomly divide the training set into 10-folds, where
9-folds are used to train the proposed DGMM, and the rest
1-fold is used for evaluation. Then, we use the coefficient of
determination (R2) as a metric to evaluate the goodness of fit
between measured activations and model predictions for each
voxel. The final result of R2 is an average of 10 runs with
different data splits. We select the voxels with positive R2

from all voxels for downstream decoding study.

8Code are available at https://github.com/ChangdeDu/DGMM
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Fig. 5. Image reconstructions of distinct binary contrast patterns.

Fig. 6. Image reconstructions of distinct handwritten digits.

Fig. 7. Image reconstructions of distinct handwritten characters taken from
subject 3.

B. Experimental Results

1) Qualitative Analysis: The reconstructed results on three
different data sets are shown in Figs. 5–7, respectively. In each
figure, the top row shows the presented visual images, while
the following rows show the reconstructed results of all
compared methods.

As can be seen from Figs. 5–7, DGMM produces better
reconstructions than the compared methods, especially on
the handwritten digits and characters data sets. In Fig. 5,
the reconstructed images can roughly capture the presented
shapes. In Figs. 6 and 7, the reconstructed handwritten digits
and characters are very similar to the original images. The
subtle differences between the presented images and the recon-
structed ones may be caused by the posterior regularization.
Compared with our DGMM, the performances of Miyawaki
and BCCA are coarse on all three data sets. Their reconstruc-
tions are often polluted by noises. Furthermore, the results
of DCCAE-A and DCCAE-S are disappointing too. Their
reconstructions not only have a lot of noises but also lack
the basic features of the original images. This may be caused

Fig. 8. Quantitative comparisons between DGMM and the baselines on the
binary contrast patterns and handwritten digit data sets. Results are averaged
over 20 random seeds. Error bars represent standard error.

Fig. 9. Quantitative comparisons between DGMM and the baselines on the
handwritten characters data set. Results are averaged across three subjects.
Error bars represent standard error.

by the fact that the nonlinear transformations of fMRI data are
prone to overfitting. Although deconvolutional neural network
obtains the comparable results, there are slight ambiguity and
distortion in its reconstructions. Because the reconstructions
produced by our DGMM are based on Monte Carlo sampling
[see (30)], the noises in the results could be reduced through
the averaging operation.

2) Quantitative Analysis: For supporting quantitative eval-
uation, we use the following metrics to evaluate the similarity
between the presented images and the reconstructed ones.

1) Pearson’s correlation coefficient.
2) Mean squared error.
3) Structural Similarity Index (SSIM): The SSIM [55]

correlates well with human visual perception due to
taking image texture into account. Its values are between
[0, 1], higher is better.

4) Accuracy (ACC)–Support Vector Machine (SVM)/
Convolutional Neural Network (CNN): We train the
linear SVM and CNN on the presented visual images.
The pretrained models are regarded as gold-standard
classifiers to classify the reconstructed images. The
labels of test data are used as ground truth to calculate
the classification ACC.

The quantitative comparisons between DGMM and other
methods are shown in Figs. 8 and 9. From them, we can
find that DGMM consistently outperforms the baselines. For
example, our SSIM remarkably surpass the baselines on all
three data sets. Furthermore, the performance of BCCA is
greatly limited by its linear architecture and spherical covari-
ance assumption. The low performance of DCCAE-A and
DCCAE-S may be partly due to the fact that DCCAE method
only considers the intraview reconstruction errors and the
correlation between bottleneck representations, thus ignoring
the interview reconstruction errors. In addition, the deep
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Fig. 10. Reconstructions produced by DGMM for all three subjects. Reconstruction procedures are independently conducted for S1, S2, and S3. The mean
of three subjects’ reconstructions about the same character is shown in the bottom row.

Fig. 11. Correlation matrices for all three subjects (S1, S2, and S3) computed on the test set containing 30 characters (6 letter classes, 5 samples in each class).
(a) Elements indicate the self-correlations between the presented visual images. (b)–(d) Elements indicate the correlations between the presented images and
the reconstructed ones for S1, S2, and S3, respectively. Dark lines are used to separate different letter classes.

transformations of fMRI data make DCCAE-S easy to over-
fitting. Compared with DGMM, De-CNN cannot be trained in
an end-to-end manner. Therefore, its performance is moderate.
On the other hand, we see that DGMM achieves remarkably
higher classification ACC on the handwritten characters data
set. This evaluation metric demonstrates the superiority of the
proposed method again.

3) Individual Differences Between Subjects: By using
DGMM, the reconstructed handwritten characters for all three
subjects are shown in Fig. 10, where the top row is the
presented visual stimuli, and the following rows are the
reconstructed images obtained from the individual subject and
the mean results averaged across all three subjects.

In most cases, the obtained reconstructions are unique.
Also, the reconstructions obtained from different subjects
show subtle differences. The reason is that different people
have different brain responses, even for an identical stimulus.
Occasionally, some of the reconstructions are not accurate.
We attribute this to the fact that the synchronization between
presented stimuli and observed brain signals is not so good
due to data processing problems. Overall, the results of
DGMM are of high quality.

The correlation between the presented image and the recon-
structed one can provide a quantitative measure of the quality
of individual reconstructions. Here, we use the difference
between three correlation matrices as a metric to evaluate the
individual differences between the three subjects. For each
subject, we calculate the correlation matrix between the pre-
sented images and the reconstructed ones on the test set con-
taining 30 characters (6 letter classes, 5 samples in each class),
and illustrated in Fig. 11. Intuitively, elements in Fig. 11(a)
indicate the self-correlations between the presented visual
images, while elements in Fig. 11(b)–(d) indicate the

correlations between the presented image and reconstructed
one for S1, S2, and S3, respectively. Fig. 11(a) can be
regarded as a ceiling of the reconstruction performance of S1,
S2, and S3. The obvious difference between Fig. 11(b)–(d)
indicates the individual difference between the three subjects.
For example, S1 and S3 are better at reconstructing “N” than
S2. The block diagonal structures of Fig. 11(b)–(d) indicate
that our algorithm has successfully decoded the category infor-
mation of brain signals. Note that the letter classes “B” and
“S” are easily confused, because their appearance difference
is relatively small.

C. Interpretation of Latent Representations

Automatically learn the basic visual concepts is important
to visual image reconstruction. Without disentangled and
symbolic visual concepts, it is difficult to interpret or reuse
representations across tasks as no single component of the
representation vector has a semantic meaning by itself. In order
to find disentangled factors in the latent space corresponding
to specific semantic concepts or visual features in the image
space [30], [56], we inspect the latent space of a trained
DGMM model. The idea is to reconstruct the visual images
using each dimension of the latent representation. Fig. 12
depicts 18 distinct reconstructions taken from the testing set
of S3. Though not perfect, we clearly see that each dimension
of the latent representation captures some semantic concepts in
the image space such as “R,” “N,” and so on. We also see that
each dimension roughly captures two kinds of visual features,
which are the basic components of the original visual stimuli.

D. Estimated fMRI Voxel Weights

Fig. 13 illustrates the distribution of fMRI voxels selected
from S3. Obviously, not all voxels are needed in image
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Fig. 12. Reconstructions (taken from S3) by using only one dimension of
the learned latent representation. The top row is the original visual stimuli,
and the following rows are the reconstructed results by each dimension of the
latent representation inferred from the testing brain response.

Fig. 13. Distribution of fMRI voxels selected from S3. Only the selected
voxels were involved in reconstruction.

Fig. 14. Estimated fMRI voxel weights for S3. Higher voxel weight means
higher contribution to image reconstruction.

reconstruction. To further investigate the importance of
each selected voxel in image reconstruction, the estimated
voxel weights were mapped to the cortical surface and
shown in Fig. 14. Specifically, the absolute values of
the estimated voxel weights were projected on the visual
areas V1 and V2. It seems that the most important voxels
come from area V1 rather than V2, and the voxels with high
weights tend to be spatially localized in V1 and V2. These
results suggest that the sparsity-inducing priors imposed on
the projection matrices play an important role in estimating
physiologically meaningful fMRI voxels.

E. Full Versus Diagonal Covariance

Comparing the proposed DGMM to the previous
approaches [17], [18], one core difference is the full-
covariance matrix, which is introduced to capture the
correlations among voxels. Here, we investigate the effects
of utilizing spatial voxel covariance in the perceived image
reconstruction. To implement our DGMM with a diagonal
covariance, we ignored the terms with respect to the projection
matrix H, the precision variable η, and the auxiliary latent
variable r in the generative and inference procedures.
Handwritten digits and characters reconstructed by DGMM
with a full/diagonal covariance were shown in Fig. 15.

Fig. 15. Reconstructions produced by our DGMM with a full or diagonal
covariance. The handwritten characters were taken from S3.

Fig. 16. Average SSIM of reconstructed handwritten digits (blue) and
characters (red) with different regularization parameters ρ.

The average SSIM values computed under the full/diagonal
covariance cases were shown on the right side of the figure.
In most cases, we can observe that DGMM with a full
covariance produced better results, which indicate that our
DGMM approach has benefitted from taking into account the
correlations among voxels.

F. Effects of Posterior Regularization Strategy

Another important feature of the proposed DGMM approach
is its ability to exploit the similarity information between dif-
ferent brain activities via the posterior regularization strategy.
If two brain activities are similar, then the posterior regulariza-
tion will make their reconstructions similar too. We conducted
image reconstruction experiments with different regularization
parameters ρ, and displayed the results in Fig. 16. From the
figure, we can observe that the best regularization parameter ρ
can be chosen from [0.05, 0.1, 0.5, 1, 5], where DGMM
achieves good results.

V. CONCLUSION

We presented a DGMM for perceived image reconstruction
from human brain activities. DGMM models the statistical
relationships between the visual image and the evoked fMRI
by using two view-specific generators with a shared latent
space. On the one hand, we adopted a DNN architecture for
visual image generation. On the other hand, we designed a
sparse Bayesian linear model for brain activity generation. Our
model disentangles the factors of variation in the latent space,
corresponding to specific semantic concepts or visual features

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on April 01,2020 at 15:03:59 UTC from IEEE Xplore.  Restrictions apply. 



DU et al.: RECONSTRUCTING PERCEIVED IMAGES FROM HUMAN BRAIN ACTIVITIES WITH BAYESIAN DEEP MULTIVIEW LEARNING 2321

in the image space. Furthermore, the sparsity-inducing priors
imposed on the projection matrices facilitated the selection
of the meaningful voxels, and the full-covariance matrix we
adopted is benefit to capture the correlations among fMRI
voxels. Finally, our posterior regularization strategy incorpo-
rated the similarity between different brain activities into the
Bayesian inference of latent variables, which also improved
the reconstruction ACC.

Although the power of our framework has been verified in
this paper, there are some promising future directions.

1) Given the image categories (or attributes), each stimulus-
response pair has a label indicator vector. This vector
captures the high-level semantic information about the
visual image. Therefore, creating an auxiliary generation
pathway for the semantic view allows us to decode the
brain activity patterns into a low-level pixel space and a
high-level semantic space simultaneously [57]–[59].

2) Human’s visual experiences are often dynamic, how
to reconstruct the dynamic visual experiences from the
measured human brain activities is a more challenging
task [6], [60]. Under the proposed framework, replacing
the MLPs by the recurrent neural networks [61] allows
us to explore the reconstruction of the dynamic visual
scenes.

APPENDIX A
LOW-RANK ASSUMPTION ON �

According to the definitions in (5) and (6), we have p(r) =
NDr (r|0, I) ∝ exp[−(1/2)r�r] and

p(y|z, r) = NDy (y|B�z + H�r, γ −1I)

∝ exp

{
− γ

2
[r�HH�r − 2r�H(y − B�z)

+ (y − B�z)�(y − B�z)]
}
.

Then,
∫

p(y|z, r)p(r) dr can be computed by
∫

p(y|z, r)p(r) dr

∝
∫

exp

{
− γ

2
[r�HH�r − 2r�H(y − B�z)

+ (y − B�z)�(y − B�z)]
}

exp

[
− 1

2
r�r

]
dr

∝
∫

exp

{
− 1

2

[
r� (γ HH� + I)︸ ︷︷ ︸

U

r − 2r� γ H(y − B�z)︸ ︷︷ ︸
V

+ γ (y − B�z)�(y − B�z)
]}

dr

∝
∫

exp

{
− 1

2
[r�Ur − 2r�V + V �U−1V − V �U−1V

+ γ (y − B�z)�(y − B�z)]
}

dr

∝
∫

exp

{
− 1

2
[(r − U−1V )�U(r − U−1V )]

}
dr

︸ ︷︷ ︸
1

· exp

{
− 1

2
[−V �U−1V + γ (y − B�z)�(y − B�z)]

}

∝ exp

{
− 1

2
[−V �U−1V + γ (y − B�z)�(y − B�z)]

}

∝ exp

{
− 1

2
[−[γ H(y − B�z)]�U−1[γ H(y − B�z)]

+ γ (y − B�z)�(y − B�z)]
}

∝ exp

{
− 1

2
[(y − B�z)� (−γ 2H�U−1H+γ I)︸ ︷︷ ︸

�−1

(y − B�z)]
}

∼ NDy (y|B�z,�)

= p(y|z).
We have proved the model in (3) is equivalent to the

model in (5) and (6). In the following, we prove that
� = H�H + γ −1I.

We first approximate U−1 by using Taylor expansion

U−1 = (γ HH� + I)−1

= I − γ HH� + (γ HH�)2 − (γ HH�)3 + · · ·
≈ I − γ HH�

where we used the Taylor expansion for the inversion of the
sum of two matrices. Then, we can obtain

� = (−γ 2H�U−1H + γ I)−1

= [−γ 2H�(I − γ HH�)H + γ I]−1

= [γ I − γ 2H�H + γ 3(H�H)2]−1

≈ [γ I − γ 2H�H]−1

= γ −1(I + γ H�H + (γ HH�)2 + · · · )
≈ H�H + γ −1I.

APPENDIX B
OPTIMIZING THE VARIATIONAL LOWER BOUND L(X, Y)

The variational lower bound on the marginal likelihood is

L(X, Y) = Eqϕ(Z|X,Y)[log pθ (X|Z) + log p(Y|Z)]
− KL(qϕ(Z|X, Y) ‖ p(Z))

where the KL divergence term can be computed exactly as

−KL(qϕ(Z|X, Y) ‖ p(Z))

= 1

2

N∑

i=1

Dz∑

d=1

(
1 + log

(
σ 2

z id

) − μz
2
id − σ 2

z id

)
.

On the other hand, the likelihood terms
Eqϕ(Z|X,Y)

[
log pθ (X|Z)

]
and Eqϕ(Z|X,Y)

[
log p(Y|Z)

]
can be

approximated by Monte Carlo approximation

Eqϕ(Z|X,Y)[log pθ (X|Z)] = 1

L

N∑

i=1

L∑

l=1

log pθ

(
xi

∣∣z(l)
i

)

Eqϕ(Z|X,Y)[log p(Y|Z)] = 1

L

N∑

i=1

L∑

l=1

log p
(
yi

∣∣z(l)
i , ri

)

with z(l)
i = μz(xi , yi ) + σz(xi , yi )  ε(l), where ε(l) ∼

NDz (0, I) and  denotes elementwise multiplication.
Finally, θ and ϕ can be optimized by maximizing L(X, Y),

using stochastic gradient descent method.
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APPENDIX C
REGULARIZED POSTERIOR DISTRIBUTION preg(z�|y�)

The regularized posterior distribution preg(z�|y�) =
NDz (z�|μz� ,�z� ), where

�z� =
[
〈BTB�〉 +

(
1 + ρ

N∑

i=1

si

)
I

]−1

μz� = �z�

[
〈B〉Ty� + ρ

N∑

i=1

si 〈zi 〉
]

T = γ I − γ 2〈H�(I + γ 〈HH�〉)−1H〉.
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