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Abstract

The bi-encoder design of dense passage re-
triever (DPR) is a key factor to its success in
open-domain question answering (QA). How-
ever, it is unclear how DPR’s question encoder
and passage encoder individually contributes
to the overall performance, which we refer to
as the encoder attribution problem. The prob-
lem is important as it helps us isolate respon-
sible factors for individual encoders to fur-
ther improve overall performance. In this pa-
per, we formulate our analysis under a prob-
abilistic framework called encoder marginal-
ization, where we quantify the contribution of
a single encoder by marginalizing over other
variables. We find that the passage encoder
contributes more than the question encoder to
the in-domain retrieval accuracy. We further
use an example to demonstrate how to find
the affecting factors for each encoder, where
we train multiple DPR models with different
amounts of data and use encoder marginaliza-
tion to analyze the results. We find that the pos-
itive passage overlap and corpus coverage of
training data have big impacts on the passage
encoder, while the question encoder is mainly
affected by training sample complexity under
this setting. Based on this framework, we can
devise data-efficient training regimes: for ex-
ample, we manage to train a passage encoder
on SQuAD using 60% less training data with-
out loss of accuracy. These results illustrate the
utility of our encoder attribution analysis.

1 Introduction

Attribution analysis, or credit assignment, con-
cerns how individual components of a system con-
tribute to its overall performance (Minsky, 1961).
In this paper, we are interested in the encoder
attribution problem of dense passage retrievers
(DPR) (Karpukhin et al., 2020; Zhan et al., 2020b)
for open-domain question answering (Voorhees and
Tice, 2000; Chen et al., 2017). DPR leverages a
bi-encoder structure that encodes questions and
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Figure 1: Encoder marginalization. "*": The target en-

coder we want to evaluate, where we use the Q-encoder

of DPR trained on NQ as an example. The Q-encoder

is evaluated on NQ-test data and paired with different

P-encoders, and the final contribution is by averaging
across the scores of different encoder pairings.

passages into low dimensional vectors separately.
Follow-up work has proposed various methods to
further improve and analyze DPR (Xiong et al.,
2021; Luan et al., 2021; Mao et al., 2021; Gao and
Callan, 2021). However, most of these methods
only test the bi-encoder model in tandem, leaving
two questions unanswered:

(1) What are the individual contributions of each
encoder of DPR?

(2) How to find the affecting factors for each en-
coder in different QA datasets?

The first problem, which we refer to as encoder
attribution, is important as it helps us understand
which part of the DPR model might go wrong and
identify possible sources of error in the data for
the second problem. For example, if a DPR model
fails to generalize to certain domains, it would be
helpful to know whether the questions are out-of-
distribution for the question encoder, or the pas-
sage encoding of the textual corpus is problematic.
Therefore, it is important to separately inspect indi-
vidual encoders of DPR.

In this paper, we perform an encoder attribu-
tion analysis of DPR under a probabilistic frame-
work, where we model the evaluation function for



DPR’s predictions as a Dirac delta distribution. The
core component of our method is called encoder
marginalization, where we target one encoder and
marginalize over the other encoder variable in the
Dirac delta distribution. We then use the expec-
tation under the marginalized distribution as the
encoder’s contribution to the evaluation score. The
marginalization can be approximated using Monte-
Carlo as illustrated in Fig. 1, where we view the
encoders trained from different domains as em-
pirical samples from an encoder prior distribution
which will be discussed in Section 6.

For question (1), we leverage encoder marginal-
ization to compare the question encoder and pas-
sage encoder of the same DPR (Section 9). We find
that in general, the passage encoder plays a more
important role than the question encoder in terms of
retrieval accuracy, as replacing the passage encoder
causes a more significant performance drop.

For question (2), there are numerous affecting
factors which we can not find them all in one pa-
per. Therefore, we perform a case study where we
analyze DPR’s individual encoders under a data ef-
ficiency setting. We evaluate different DPR models
trained with different amounts of data. Under this
setting, we find that positive passage overlap and
corpus coverage of the training data might be the
affecting factors for the passage encoder, while the
question encoder seems be affected by the sample
complexity of training data. Based on the discov-
ery of the affecting factors, we could develop a
data-efficient training regime, where we manage to
train a passage encoder on SQuAD using 60% less
training data without loss of accuracy.

Our contributions in this paper are four-fold:

* To our knowledge, we formulate the first en-
coder attribution analysis for DPR under a
probabilistic framework.

* We find that the passage encoder plays a more
important role than the question encoder in
terms of in-domain retrieval accuracy.

* Under a data efficiency setting, we identify
that passage encoders are affected by positive
passage overlap and corpus coverage of the
training data, while question encoders are sen-
sitive to the training sample complexity.

* Our framework enables the development of
data-efficient training regimes where we are
able to use up to 60% less training data with-
out loss of accuracy.

2 Related Work

Attribution analysis It is also known as credit
assignment and has long been discussed in vari-
ous areas and applications. In reinforcement learn-
ing (Sutton and Barto, 1998), the accumulated re-
ward from the environment needs to be distributed
to the agent’s historical decisions (Sutton, 1984;
Harutyunyan et al., 2019; Arumugam et al., 2021).
In investment (Binay, 2005), it is used to explain
why a portfolio’s performance differed from the
benchmark. Attribution analysis has also been used
in NLP (Mudrakarta et al., 2018; Jiang et al., 2021)
and CV (Schulz et al., 2020) to interpret models’
decisions. Therefore, attribution analysis is an im-
portant topic for understanding a system’s behavior,
especially for black-box models like deep neural
networks (Goodfellow et al., 2016).

First-stage retrieval for QA  The first-stage re-
trieval aims to efficiently find a set of candi-
date documents from a large corpus (Cai et al.,
2021). Term-matching methods such as TF-IDF or
BM25 (Robertson and Zaragoza, 2009; Lin et al.,
2021) have established strong baselines in the first-
stage retrieval of various QA tasks (Chen et al.,
2017; Yang et al., 2019; Min et al., 2019). Re-
cently, retrievers based on pre-trained language
models (Devlin et al., 2019; Liu et al., 2019) also
make great advancements (Seo et al., 2019; Lee
et al., 2019; Guu et al., 2020; Khattab and Za-
haria, 2020). Particularly, dense passage retrievers
(DPR) (Karpukhin et al., 2020; Zhan et al., 2020b)
set the milestone by encoding questions and pas-
sages separately with a bi-encoder design. Based
on DPR, multiple works on compression (Yamada
et al., 2021; Izacard et al., 2020; Ma et al., 2021),
hard-negative mining (Xiong et al., 2021; Zhan
et al., 2021), multi-vector encoding (Luan et al.,
2021; Lee et al., 2021b), and QA pre-training (Lu
et al., 2021; Gao and Callan, 2021) have further
expanded the boundary of dense retrieval.

Other Analysis work of DPR BEIR investi-
gates DPR’s transferability over multiple retrieval
tasks (Thakur et al., 2021), while Mr.TYDI evalu-
ates DPR pre-trained on English corpus in a multi-
lingual setting (Zhang et al., 2021). Lewis et al.
(2021) finds that most of the test answers also oc-
cur somewhere in the training data for most QA
datasets. Liu et al. (2021) observes that neural-
retrievers fail to generalize to compositional ques-
tions and novel entities. Sciavolino et al. (2021)



also finds that dense models can only generalize to
common question patterns.

3 Open-Domain Question Answering

Open-domain question-answering requires finding
answers to given questions from a large collection
of documents (Voorhees and Tice, 2000). For ex-
ample, the question "How many episodes in Season
2 Breaking Bad?" is given and then the answer
"13" will be either extracted from the retrieved
passages or generated from a model. The goal of
open-domain question answering is to learn a map-
ping from the questions to the answers, where the
mapping could be a multi-stage pipeline that in-
cludes retrieval and extraction, or it could be a
large language model that generate the answers di-
rectly given the questions. In this paper, we mainly
discuss the retrieval component in the multi-stage
system, which involves retrieving a set of candidate
documents from a large text corpus. Based on the
type of the corpus, we could further divide open-
domain question answering into textual QA and
knowledge base QA. Textual QA mines answers
from unstructured text documents (e.g., Wikipedia)
while the other one searches through a manually
constructed knowledge base. We will mainly focus
on textual QA in this paper.

4 Dense Passage Retrieval

Given a corpus of passages C = {dy,da, -+ ,dp}
and a query ¢, DPR (Karpukhin et al., 2020) lever-
ages two encoders 7)¢ and 7p to encode the ques-

tion and documents separately. The similarity be-
tween the question ¢ and document d is defined as
the dot product of their vector output:

s=ETE,, M

where E, = ng(q) and Eq = np(d). The similar-
ity score s will be used to rank the passages during
retrieval. Both 7¢ and 7n)p use the pre-trained BERT
model (Devlin et al., 2019) for initialization and
the [CLS] vector as the representation.

Training As pointed out by Karpukhin et al.
(2020), training the encoders such that Eq. (1) be-
comes a good ranking function is essentially a met-
ric learning problem (Kulis, 2012). Given a specific

question ¢, let d™ be the positive context that con-
tains the answer a for ¢ and {d; ,d; , ...d, } be the
negative contexts, the contrastive learning objective

w.rt. g, d, and {d; }¥_, is:

L(q,dt,dy,dy,...dy)

exp(EgECH.)
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k .
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The loss function in Eq. (2) encourages the repre-
sentations of ¢ and d™ to be close and increases the
distance between g and d .

Retrieval/Inference The bi-encoder design en-
ables DPR to perform an approximate near-
est neighbour search (ANN) using tools like
FAISS (Johnson et al., 2017), where the represen-
tations of the corpus passages are indexed offline.
It is typically used in first stage retrieval, where the
goal is to retrieve all potentially relevant documents
from the large corpus. Therefore, we consider the
top-k accuracy as the evaluation metric in this paper

following Karpukhin et al. (2020).
Let R be an evaluation function (e.g., top-k accu-
racy) for the first stage retrieval. Given a question-

answer pair (¢, a) and a corpus C, we use 7)o and

np to encode questions and retrieve passages sepa-
rately. We define the evaluation score 7 given the
above inputs to be:

ro = R(q,a,C,nQ,nD) 3)

For simplicity’s sake, in the rest of the paper, we
will omit the answer a and corpus C as they are
held fixed during evaluation.

5 Encoder Marginalization

In this section, we propose a simple probabilistic
method to evaluate the contributions of encoders
ng and 7np, as well as compare the same type of
encoders across different datasets. The core com-
ponent is called encoder marginalization, where
marginalization simply means summing over the

probability of possible values of a random variable.

Typically, the evaluation function R in Eq. (3)
outputs a deterministic score rg. However, we
could also view 7y as a specific value of a con-
tinuous random variable » € R sampled from a

Dirac delta distribution p(r | ¢,n¢,np):

p(r | ¢,nQ,np) = d(r —ro)

_JHoo, r=r10
- 0, T # 1o,
+oo
s.t.,/ o(r—ro)dr =1 “4)

where ro = R(q,a,C,n¢g,np). Again, the answer
a and corpus C are omitted for simplicity’s sake.



The expectation of the evaluation score r under the
Dirac delta distribution 6(r — rp) is:

+oo
]ETNP(T\me,nD) M :/ T 5(1” — To)d’r

=ro ()

which is the score of the evaluation function in
Eq. (3). This is also known as the sifting property'
of the Dirac delta distribution (Mack, 2008), where
the delta function is said to "sift out" the value at
r = ro. The reason for such a formalization is that
now we could evaluate the contribution of a single
encoder to the evaluation score 7 by marginalizing

over the other random variables.

The contribution of an individual encoder 7 or
np to score r on a question ¢ can be evaluated by
marginalizing the other encoder of p(r | ¢,7¢g,1p)

in Eq. (4). We assume that the question g is sampled
from the training data distribution for learning 7

and 7)p. Let’s take the question encoder 7)) as an

example. The distribution of r after marginalizing
over 7)p is:

p(r | ¢,mq;np)p(np)dnp
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where the superscript (7) means the tagged random

variables belong to the i out of K QA dataset
(e.g., 77%) means the passage encoder trained on
the i QA dataset). The second to the last step
uses Monte-Carlo approximation, where we use
ng) sampled from a prior distribution p(np) which
will be discussed in Section 6.

The integration step in Eq. (6) assumes the inde-
pendence between g, 1p, and 7¢. Although during
training of DPR, np and 7¢ are usually learned
together, the two encoders do not necessarily need
to be evaluated together during inference. For ex-
ample, a question encoder trained on NQ could be
paired with another passage encoder trained on Cu-
rated and tested on the Trivia QA dataset, without
assuming any dependency among. Therefore, we
here assume no prior knowledge about how np and
n¢ are trained, but rather highlight their indepen-

dence during evaluation to validate Eq. (6).
As for the contribution of 7, according to the

expectation of Dirac delta distribution in Eq. (5),

"This property requires the sifted function g(r) (in this case,
g(r) = r) to be Lipschitz continuous.

the expectation of r under the marginalized distri-
bution in Eq. (6) is:

+oco
Eroprlamoy[r] = / ro(r | q,1Q)dr

el )
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which corresponds to the in-domain encoder
marginalization in Fig. 1. In this way, we manage
to calculate the contribution of a question encoder
7nq to the evaluation score r given a question gq.

6 Encoder Prior Distribution, Sampling,
and Approximation

In the previous section, we define the contribu-
tion of a single encoder for DPR using encoder
marginalization. However, to approximate the ex-
pectation under the marginalized distribution in
Eq. (6), we need to sample the encoder np from
a prior distribution p(np). In practice, we do not
have access to p(np) but instead we need to train
np on specific datasets as empirical samples.

In addition, we can not consider every possible
function for the encoder. Therefore, we need to put
constraints on the encoder prior distribution, so that
p(np) becomes p(np | ®) that implicitly condi-
tions on some constraints ®. In this paper, ¢ could
represent, for example, model structures, training
schemes, optimizers, initialization, and so on. In
this paper, the (sampled) encoders we run in the ex-
periments are initialized with the same pre-trained
language models (e.g., bert-base-uncased) and op-
timized with the same scheme (e.g., 40 epochs,
Adam optimizers...), to ensure the constraints we
put are consistent for different DPR models.

In practice, we use empirical samples such as
DPRs pre-trained on different QA datasets for ap-
proximation in Eq. (7). Although the sample size
is not big enough as it is very expensive to train
DPR and encode a large textual corpus, the sam-
ples themselves are statistically meaningful as they
are carefully fine-tuned at the domains we want to
evaluate at, instead of using models with randomly
initialized weights.



Datasets Train Dev Test
Natural Questions 58,880 8,757 3,610
TriviaQA 60,413 8,837 11,313
WebQuestions 2,474 361 2,032
CuratedTREC 1,125 133 694
SQuAD 70,096 8,886 10,570

Table 1: Number of questions in each QA dataset
from Karpukhin et al. (2020). The column of Train de-
notes the number of questions after filtering.

7 Experimental Setup

We follow the DPR paper (Karpukhin et al., 2020)
to train and evaluate our dense retrievers. We repro-
duce their results on five benchmark datasets using
Tevatron 2, an efficient toolkit for training dense
retrievers with deep language models. Our repro-
duced results have only a maximum difference of
~2% compared to their numbers. We report the
top-20 and top-100 accuracy for evaluation.

Datasets We train individual DPR models on
five standard benchmark QA tasks: Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), Triv-
1aQA (Trivia) (Joshi et al., 2017), WebQues-
tions (WQ) (Berant et al., 2013), CuratedTREC
(TREC) (Baudi§ and Sedivy, 2015), SQuAD-1.1
(SQuAD) (Rajpurkar et al., 2016) as shown in
Tbl. 1. We use the data provided in the DPR?
repository to reproduce their results. We evaluate
the retriever models on the test sets of the afore-
mentioned datasets. For retrieval, we chunk the
Wikipedia collections (Guu et al., 2020) into pas-
sages of 100 words as in Wang et al. (2019), which
yields about 21 million samples in total. We fol-
low Karpukhin et al. (2020) using BM25 (Robert-
son and Zaragoza, 2009; Lin et al., 2021) to select
the positive and negative passages as the initial
training data for DPR.

Models and Training During training, each
question is paired with 1 positive passage, 1 hard
negative retrieved by BM25, and 2 x (B — 1) in-
batch negatives where B is the batch size. We op-
timize the objective in Eq. (2) with a learning rate
of 1e-05 using Adam (Kingma and Ba, 2015) for
40 epochs. The rest of the hyperparameters remain
the same as described in Karpukhin et al. (2020).

Zhttps://github.com/texttron/tevatron
3https://github.com/facebookresearch/DPR

8 Generalization of Tandem Encoders

This section aims to show the generalization per-
formance of DPR’s bi-encoder evaluated in tan-
dem. Tbl. 2 shows the zero-shot retrieval perfor-
mance of different DPR models and BM25 on five
benchmark QA datasets. Normally, the in-domain
DPR model is expected to outperform the other
DPR models trained from other domains, which is
the situation that happens to most datasets such as
NQ, Trivia, and SQuAD. However, for Curated, the
DPR trained on NQ and Trivia has better zero-shot
performance than the in-domain one. We suspect it
is because NQ and Trivia have much larger training
data than Curated as shown in Tbl. 1, which poten-
tially covers some similar questions in Curated.

Moreover, BM25 outperforms all DPR mod-
els on SQuAD as SQuAD mainly contains entity-
centred questions which is good for term-matching
algorithms. Besides, the SQuAD dataset is mainly
for machine reading comprehension and therefore a
passage could be used to answer multiple questions,
which could cause potential conflicts in representa-
tion learning (Wu et al., 2021).

In the following sections, we will perform en-
coder attribution analysis to examine DPR’s each
encoder individually.

9 In-Domain Encoder Marginalization

This section aims to answer the question (1) “What
are the individual contributions of each encoder of
DPR?” in Section 1. To analyze the contribution
of a single encoder on a specific QA dataset, we
compare the marginalized top-20 retrieval accuracy
of the encoder using in-domain encoder marginal-
ization shown in Fig. 1 and Eq. (7).

Fig. 2 shows the in-domain encoder marginal-
ization results relative to the tandem DPR results.
The blue bars show the question encoder’s contri-
butions where we target the question encoder and
marginalize over the passage encoders, and vice
versa for the orange bars (passage encoder) on five
datasets. We further divide those results by the in-
domain DPR performance which are normalized
to 100% (the horizontal line in Fig. 2). We do not
compare across different datasets, but rather com-
pare the question encoder and passage encoder for
each domain. We can see that in general, the pas-
sage encoder (orange bar) contributes more to the
top-20 accuracy compared to the question encoder
(blue bar) on all five datasets. Moreover, for the Cu-
rated dataset, marginalizing over the out-of-domain



Test set ..

m NQ Trivia WQ Curated  SQuAD  Average
BM25 ‘ 62.9/78.3 62.4/75.5 76.4/83.2 80.7/89.9 71.1/81.8 70.7/81.7
DPR-NQ 79.8/86.9 73.2/81.7 68.8/79.3 86.7/92.7 54.5/70.2 72.6/82.2
DPR-Trivia 66.4/789 80.2/85.5 71.4/81.7 87.3/93.9 53.0/69.2 71.7/81.8
DPR-WQ 54.9/70.0 66.5/78.9 76.0/82.9 82.9/90.8 49.3/66.2 65.9/77.8
DPR-Curated 68.5/72.77 66.5/77.77 65.5/77.5 84.0/90.7 51.3/67.5 67.2/77.2
DPR-SQuAD 56.6/72.3 71.0/81.7 64.3/77.0 83.3/924 61.1/76.0 67.3/80.0

Table 2: Zero-shot evaluation of DPR’s bi-encoder in tandem. Top-20/Top-100 retrieval accuracy (%) on five
benchmark QA test sets is reported. Each score represents the percentage of top-20/100 retrieved passages that

contain answers.
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Figure 2: In-Domain marginalized top-20 accuracy (%)
of each encoder relative to the in-domain DPR for each
dataset using Eq. (7). Each in-domain DPR’s top-20 ac-
curacy is normalized to 100%.

question encoders even improves the marginalized
performance of the passage encoder of Curated.
Overall, we could see that the passage encoder
plays a more vital role compared to the question
encoder in terms of in-domain retrieval accuracy,
which makes sense as the passage encoder needs
to encode the entire corpus (in our case, 21M pas-
sages), while the question sets are much smaller.

10 Affecting Factors for Encoders in QA
Training Data

In this section, our goal is to answer the question (2)
“How to find the affecting factors for each encoder
in different QA datasets?” from Section 1. Obvi-
ously, there are too many affecting factors which
we can not find them all in this paper. Therefore, we
will use data efficiency test as an example and show
how using encoder attribution in data efficiency test

could help us locate possible affecting factors in the
dataset. Specifically, we will train the DPR models
with different amount of training data. The reason
we choose to change the size of the training data
is that data sizes often have major influences on a
model’s generalization performance, which could
help reveal relevant affecting factors in the data.

10.1 In-Domain Data Efficiency Test

We train the DPR model with different amounts of
data and test each encoder’s in-domain marginal-
ization performance w.r.t. the training data amount.
Since it is extremely resource-consuming to train
different DPR models and encode the entire
Wikipedia corpus into dense vectors, in this sec-
tion, we mainly focus on NQ, Trivia, and SQuAD
due to their relatively large dataset sizes.

Fig. 3 shows the in-domain encoder marginal-
ization results for both question encoder
and passage encoder under a data effi-
ciency setting, where we uniformly sample
10%, 25%, 40%, 55%, 70%, 85% of training data
of each dataset to train DPR. We use in-domain
encoder marginalization to evaluate each encoder’s
performance with different amounts of data.
Specifically, to provide a fair comparison, we
use 100% data trained DPR’s encoders as the
samples for all marginalization. For example, for
the question encoder trained with 10% data, it
will be paired with five passage encoders of DPR
trained on five different domains with 100% data.
This is to ensure the comparison between different
question encoders is not affected by different ways
of marginalization.

As we could see, the performance of the ques-
tion encoder w.r.t. to different training data amounts
(left column in Fig. 3) on three datasets improves



In-Domain relative marginalized top-20 accuracy (%)

10 25 40 55 70 85 100
Percentage of full training data (%)

10 25 40 55 70 85 100
Percentage of full training data (%)

In-Domain relative marginalized top-100 accuracy (%)

97
10 25 40 55 70 85 100
Percentage of full training data (%)

10 25 40 55 70 85 100
Percentage of full training data (%)

-8— NQ Trivia —8— SQuAD

(a) Question encoder. (b) Passage Encoder.

Figure 3: In-Domain encoder marginalization results
under a data efficiency setting. We train DPR on NQ,
Trivia, and SQuAD with different amounts of training
data. The marginalized top-20/100 accuracy (%) for
each encoder is normalized. The y-axis is shared in
each row. The horizontal line is the performance of an
encoder trained with 100% data.

as the amount of training data increases. For the
passage encoder (right column in Fig. 3), NQ’s
and Trivia’s behave similarly to the question en-
coder (blue and orange lines of the right column
in Fig. 3). However, the performance of SQuAD’s
passage encoder (green line of the right column
in Fig. 3) shows a non-monotonic behaviour w.r.t.
to the training data sizes at the [40%, 100%] inter-
val, where the performance first rises before 40%
and drops afterwards. This means that besides the
training sample complexity, there’s more affecting
factors that influence the performance of the pas-
sage encoder, which we will have further analysis
in the following section.

10.2 Factor Analysis

Based on the results in the previous section, we now
propose two possible affecting factors in the train-
ing data for the question encoder and passage en-
coder: corpus coverage and positive passage over-
lap defined as follows:

* Corpus coverage: Number of distinct posi-
tive passages in the training data (i.e., with
different texts and titles in Wikipedia corpus).

Normalized corpus coverage Normalized unique coverage

g
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Figure 4: Dataset statistics for different amounts of data.
Left: Normalized corpus coverage. Right: Normalized
unique passage coverage. The y-axis is shared in each
row.

Dataset Coverage Overlap Unique
NQ 30,466 021 22,424
Trivia 42,473 0.14 34,910
SQuAD 3,247 0.68 738

Table 3: Corpus coverage and positive passage overlap,
as well as the unique passage coverage which equals to
corpus coverage * (1 — positive passage overlap)*- for
each dataset.

* Positive passage overlap: Ratio between the
number of positive passages that can answer
more than two training questions and the total
number of distinct positive passages.

In this paper, each question only has one positive
passage. We further define an intermediate statistics
called unique passage coverage:

* Unique passage coverage: Corpus coverage
x (1 — positive passage overlap)®.

where « is an empirical value and is used to adjust
the weights between the coverage and overlap.

Despite there being other statistics, we find these
statistics above reasonable to reflect the features
of each dataset, as well as the correlation with the
cross-domain marginalization.

Tbl. 3 shows the corpus coverage and positive
passage overlap we define on three QA datasets,
where we collect the aforementioned statistics for
the training data of each dataset. We can see that
despite having the most training data, SQuAD also
has the largest positive passage overlap.

Fig. 4 (right column) shows that the unique pas-
sage coverage of SQuUAD (green line) also behaves
similarly as the in-domain marginalization results
of SQuUAD’s passage encoder (Fig. 3, right column),



P-encoder NQ Trivia WwQ Curated SQuAD Average
SQuAD-100% 63.3/77.1 73.5/82.4 65.2/76.7 79.5/90.6 61.1/76.0 68.5/80.5
SQuAD-40% 62.8/76.4 72.8/82.3 65.9/77.4 81.3/91.1 62.3/76.8 69.2/80.8

Table 4: Top-20/100 (%) accuracy of the passage encoders trained on SQuAD and 40% of SQuAD, pairing with
the question encoder trained on each domain and tested on each domain’s test set. With only 40% of data, a
better balance between the corpus coverage and positive passage overlap is achieved on SQuAD, and therefore this
passage encoder is even better than the one trained with 100% SQuAD data.

which rises as the data amount increases and then
drops after 40% of training data. We set o = 1.3
for the unique corpus coverage in order to obtain
the best curve in Fig. 4. For other « values in [1, 2],
the trend is similar but peaks at different percent-
ages of the data.

To further verify the robustness of the passage
encoder trained with only 40% training data of
SQuAD, we test its passage encoder on five QA
test sets and pair it with the in-domain question
encoder trained with 100% data. Tbl. 4 shows the
comparison between the passage encoders trained
with full SQuAD and 40% of SQuUAD, respectively.
We can see that with only 40% of training data, the
passage encoder manages to achieve similar and
even higher performance compared with the one
trained with full data. Therefore, we have enough
reasons to believe that the unique passage coverage,
which is related to the corpus coverage and posi-
tive passage overlap of the training data, indeed
influences the passage encoder strongly.

11 Discussions about Passage Encoder

In the previous sections, we manage to identify
the importance of the passage encoder and its af-
fecting factors such as positive passage overlap
and corpus coverage of the training data. We find
that our discoveries are consistent with some pre-
vious work’s conclusions. For example, Zhan et al.
(2021, 2020a); Sciavolino et al. (2021) all find that
it is sufficient to achieve satisfying retrieval perfor-
mance by just fine-tuning the question encoder with
a fixed passage encoder, which demonstrates the
importance of a robust passage encoder in domain
adaptation and hard-negative mining.

However, how to learn such a robust passage
encoder is challenging as pre-training DPR on a
single QA dataset will introduce biases. Multi-task
dense retrieval (Maillard et al., 2021; Li et al., 2021;
Metzler et al., 2021) uses multiple experts learned
on different domains to solve this problem. These
solutions are effective but not efficient as they build

multiple indexes and perform searches for each ex-
pert, requiring a lot of resources and storage space.
Another solution is to build a question-agnostic
passage encoder so that the model is not biased
towards particular QA tasks. Densephrases (Lee
et al., 2021a,b) pioneers in this direction by build-
ing indexes using phrases instead of chunks of pas-
sages for multi-granularity retrieval. By breaking
passages into finer units, Densephrases indeed im-
proves the generalization of dense retrieval in differ-
ent domains with query-side fine-tuning. However,
similar to multi-task learning, it is not efficient as
the phrase index could be enormous for a corpus
like Wikipedia, and techniques such as product
quantization (Gray and Neuhoff, 1998) are applied
to improve efficiency at the cost of effectiveness.
Overall, it is desirable to have a robust passage
encoder for efficient dense retrieval according to
previous work and our analysis, but challenges still
remain in effectiveness-efficiency trade-off.

12 Conclusions

We propose a encoder attribution analysis of DPR
using encoder marginalization to individually eval-
uate each encoder of DPR. We quantify the contri-
bution of each encoder of DPR by marginalizing
over the other random variables under a probabilis-
tic framework. We find that the passage encoder
plays a more important role compared to the ques-
tion encoder in terms of top-k retrieval accuracy.
We also perform a case study under the data effi-
ciency setting to demonstrate how to find possible
affecting factors in the QA datasets for individual
encoders. We identify that passage encoders are af-
fected by positive passage overlap and corpus cov-
erage of the training data, while question encoders
are sensitive to the training sample complexity. Our
framework is also very general and can be applied
to other bi-encoder-based methods for encoder at-
tribution analysis, but one needs to pay attention
to the choice of the encoder prior distribution to
ensure the marginalization is appropriate.
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