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Abstract

The bi-encoder design of dense passage re-001
triever (DPR) is a key factor to its success in002
open-domain question answering (QA). How-003
ever, it is unclear how DPR’s question encoder004
and passage encoder individually contributes005
to the overall performance, which we refer to006
as the encoder attribution problem. The prob-007
lem is important as it helps us isolate respon-008
sible factors for individual encoders to fur-009
ther improve overall performance. In this pa-010
per, we formulate our analysis under a prob-011
abilistic framework called encoder marginal-012
ization, where we quantify the contribution of013
a single encoder by marginalizing over other014
variables. We find that the passage encoder015
contributes more than the question encoder to016
the in-domain retrieval accuracy. We further017
use an example to demonstrate how to find018
the affecting factors for each encoder, where019
we train multiple DPR models with different020
amounts of data and use encoder marginaliza-021
tion to analyze the results. We find that the pos-022
itive passage overlap and corpus coverage of023
training data have big impacts on the passage024
encoder, while the question encoder is mainly025
affected by training sample complexity under026
this setting. Based on this framework, we can027
devise data-efficient training regimes: for ex-028
ample, we manage to train a passage encoder029
on SQuAD using 60% less training data with-030
out loss of accuracy. These results illustrate the031
utility of our encoder attribution analysis.032

1 Introduction033

Attribution analysis, or credit assignment, con-034

cerns how individual components of a system con-035

tribute to its overall performance (Minsky, 1961).036

In this paper, we are interested in the encoder037

attribution problem of dense passage retrievers038

(DPR) (Karpukhin et al., 2020; Zhan et al., 2020b)039

for open-domain question answering (Voorhees and040

Tice, 2000; Chen et al., 2017). DPR leverages a041

bi-encoder structure that encodes questions and042
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Figure 1: Encoder marginalization. "*": The target en-
coder we want to evaluate, where we use the Q-encoder
of DPR trained on NQ as an example. The Q-encoder
is evaluated on NQ-test data and paired with different
P-encoders, and the final contribution is by averaging
across the scores of different encoder pairings.

passages into low dimensional vectors separately. 043

Follow-up work has proposed various methods to 044

further improve and analyze DPR (Xiong et al., 045

2021; Luan et al., 2021; Mao et al., 2021; Gao and 046

Callan, 2021). However, most of these methods 047

only test the bi-encoder model in tandem, leaving 048

two questions unanswered: 049

(1) What are the individual contributions of each 050

encoder of DPR? 051

(2) How to find the affecting factors for each en- 052

coder in different QA datasets? 053

The first problem, which we refer to as encoder 054

attribution, is important as it helps us understand 055

which part of the DPR model might go wrong and 056

identify possible sources of error in the data for 057

the second problem. For example, if a DPR model 058

fails to generalize to certain domains, it would be 059

helpful to know whether the questions are out-of- 060

distribution for the question encoder, or the pas- 061

sage encoding of the textual corpus is problematic. 062

Therefore, it is important to separately inspect indi- 063

vidual encoders of DPR. 064

In this paper, we perform an encoder attribu- 065

tion analysis of DPR under a probabilistic frame- 066

work, where we model the evaluation function for 067
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DPR’s predictions as a Dirac delta distribution. The068

core component of our method is called encoder069

marginalization, where we target one encoder and070

marginalize over the other encoder variable in the071

Dirac delta distribution. We then use the expec-072

tation under the marginalized distribution as the073

encoder’s contribution to the evaluation score. The074

marginalization can be approximated using Monte-075

Carlo as illustrated in Fig. 1, where we view the076

encoders trained from different domains as em-077

pirical samples from an encoder prior distribution078

which will be discussed in Section 6.079

For question (1), we leverage encoder marginal-080

ization to compare the question encoder and pas-081

sage encoder of the same DPR (Section 9). We find082

that in general, the passage encoder plays a more083

important role than the question encoder in terms of084

retrieval accuracy, as replacing the passage encoder085

causes a more significant performance drop.086

For question (2), there are numerous affecting087

factors which we can not find them all in one pa-088

per. Therefore, we perform a case study where we089

analyze DPR’s individual encoders under a data ef-090

ficiency setting. We evaluate different DPR models091

trained with different amounts of data. Under this092

setting, we find that positive passage overlap and093

corpus coverage of the training data might be the094

affecting factors for the passage encoder, while the095

question encoder seems be affected by the sample096

complexity of training data. Based on the discov-097

ery of the affecting factors, we could develop a098

data-efficient training regime, where we manage to099

train a passage encoder on SQuAD using 60% less100

training data without loss of accuracy.101

Our contributions in this paper are four-fold:102

• To our knowledge, we formulate the first en-103

coder attribution analysis for DPR under a104

probabilistic framework.105

• We find that the passage encoder plays a more106

important role than the question encoder in107

terms of in-domain retrieval accuracy.108

• Under a data efficiency setting, we identify109

that passage encoders are affected by positive110

passage overlap and corpus coverage of the111

training data, while question encoders are sen-112

sitive to the training sample complexity.113

• Our framework enables the development of114

data-efficient training regimes where we are115

able to use up to 60% less training data with-116

out loss of accuracy.117

2 Related Work 118

Attribution analysis It is also known as credit 119

assignment and has long been discussed in vari- 120

ous areas and applications. In reinforcement learn- 121

ing (Sutton and Barto, 1998), the accumulated re- 122

ward from the environment needs to be distributed 123

to the agent’s historical decisions (Sutton, 1984; 124

Harutyunyan et al., 2019; Arumugam et al., 2021). 125

In investment (Binay, 2005), it is used to explain 126

why a portfolio’s performance differed from the 127

benchmark. Attribution analysis has also been used 128

in NLP (Mudrakarta et al., 2018; Jiang et al., 2021) 129

and CV (Schulz et al., 2020) to interpret models’ 130

decisions. Therefore, attribution analysis is an im- 131

portant topic for understanding a system’s behavior, 132

especially for black-box models like deep neural 133

networks (Goodfellow et al., 2016). 134

First-stage retrieval for QA The first-stage re- 135

trieval aims to efficiently find a set of candi- 136

date documents from a large corpus (Cai et al., 137

2021). Term-matching methods such as TF-IDF or 138

BM25 (Robertson and Zaragoza, 2009; Lin et al., 139

2021) have established strong baselines in the first- 140

stage retrieval of various QA tasks (Chen et al., 141

2017; Yang et al., 2019; Min et al., 2019). Re- 142

cently, retrievers based on pre-trained language 143

models (Devlin et al., 2019; Liu et al., 2019) also 144

make great advancements (Seo et al., 2019; Lee 145

et al., 2019; Guu et al., 2020; Khattab and Za- 146

haria, 2020). Particularly, dense passage retrievers 147

(DPR) (Karpukhin et al., 2020; Zhan et al., 2020b) 148

set the milestone by encoding questions and pas- 149

sages separately with a bi-encoder design. Based 150

on DPR, multiple works on compression (Yamada 151

et al., 2021; Izacard et al., 2020; Ma et al., 2021), 152

hard-negative mining (Xiong et al., 2021; Zhan 153

et al., 2021), multi-vector encoding (Luan et al., 154

2021; Lee et al., 2021b), and QA pre-training (Lu 155

et al., 2021; Gao and Callan, 2021) have further 156

expanded the boundary of dense retrieval. 157

Other Analysis work of DPR BEIR investi- 158

gates DPR’s transferability over multiple retrieval 159

tasks (Thakur et al., 2021), while Mr.TYDI evalu- 160

ates DPR pre-trained on English corpus in a multi- 161

lingual setting (Zhang et al., 2021). Lewis et al. 162

(2021) finds that most of the test answers also oc- 163

cur somewhere in the training data for most QA 164

datasets. Liu et al. (2021) observes that neural- 165

retrievers fail to generalize to compositional ques- 166

tions and novel entities. Sciavolino et al. (2021) 167
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also finds that dense models can only generalize to168

common question patterns.169

3 Open-Domain Question Answering170

Open-domain question-answering requires finding171

answers to given questions from a large collection172

of documents (Voorhees and Tice, 2000). For ex-173

ample, the question "How many episodes in Season174

2 Breaking Bad?" is given and then the answer175

"13" will be either extracted from the retrieved176

passages or generated from a model. The goal of177

open-domain question answering is to learn a map-178

ping from the questions to the answers, where the179

mapping could be a multi-stage pipeline that in-180

cludes retrieval and extraction, or it could be a181

large language model that generate the answers di-182

rectly given the questions. In this paper, we mainly183

discuss the retrieval component in the multi-stage184

system, which involves retrieving a set of candidate185

documents from a large text corpus. Based on the186

type of the corpus, we could further divide open-187

domain question answering into textual QA and188

knowledge base QA. Textual QA mines answers189

from unstructured text documents (e.g., Wikipedia)190

while the other one searches through a manually191

constructed knowledge base. We will mainly focus192

on textual QA in this paper.193

4 Dense Passage Retrieval194

Given a corpus of passages C = {d1, d2, · · · , dn}195
and a query q, DPR (Karpukhin et al., 2020) lever-196
ages two encoders ηQ and ηD to encode the ques-197
tion and documents separately. The similarity be-198
tween the question q and document d is defined as199
the dot product of their vector output:200

s = ETq Ed, (1)201

where Eq = ηQ(q) and Ed = ηD(d). The similar-202

ity score s will be used to rank the passages during203

retrieval. Both ηQ and ηD use the pre-trained BERT204

model (Devlin et al., 2019) for initialization and205

the [CLS] vector as the representation.206

Training As pointed out by Karpukhin et al.207
(2020), training the encoders such that Eq. (1) be-208
comes a good ranking function is essentially a met-209
ric learning problem (Kulis, 2012). Given a specific210
question q, let d+ be the positive context that con-211

tains the answer a for q and {d−1 , d
−
2 , ...d

−
k } be the212

negative contexts, the contrastive learning objective213

w.r.t. q, d+, and {d−i }ki=1 is: 214

L(q, d+, d−1 , d
−
2 , ...d

−
k ) 215

=− log
exp(ETq Ed+)

exp(ETq Ed+) +
k∑
i=1

exp(ETq Ed−i
)

. (2) 216

The loss function in Eq. (2) encourages the repre- 217

sentations of q and d+ to be close and increases the 218

distance between q and d−. 219

Retrieval/Inference The bi-encoder design en- 220

ables DPR to perform an approximate near- 221

est neighbour search (ANN) using tools like 222

FAISS (Johnson et al., 2017), where the represen- 223

tations of the corpus passages are indexed offline. 224

It is typically used in first stage retrieval, where the 225

goal is to retrieve all potentially relevant documents 226

from the large corpus. Therefore, we consider the 227

top-k accuracy as the evaluation metric in this paper 228

following Karpukhin et al. (2020). 229
LetR be an evaluation function (e.g., top-k accu- 230

racy) for the first stage retrieval. Given a question- 231
answer pair (q, a) and a corpus C, we use ηQ and 232
ηD to encode questions and retrieve passages sepa- 233
rately. We define the evaluation score r0 given the 234
above inputs to be: 235

r0 = R(q, a, C, ηQ, ηD) (3) 236

For simplicity’s sake, in the rest of the paper, we 237

will omit the answer a and corpus C as they are 238

held fixed during evaluation. 239

5 Encoder Marginalization 240

In this section, we propose a simple probabilistic 241

method to evaluate the contributions of encoders 242

ηQ and ηD, as well as compare the same type of 243

encoders across different datasets. The core com- 244

ponent is called encoder marginalization, where 245

marginalization simply means summing over the 246

probability of possible values of a random variable. 247
Typically, the evaluation function R in Eq. (3) 248

outputs a deterministic score r0. However, we 249
could also view r0 as a specific value of a con- 250
tinuous random variable r ∈ R sampled from a 251
Dirac delta distribution p(r | q, ηQ, ηD): 252

p(r | q, ηQ, ηD)
.
= δ(r − r0) 253

=

{
+∞, r = r0
0, r 6= r0,

254

s.t.,
∫ +∞

−∞
δ(r − r0)dr = 1 (4) 255

where r0 = R(q, a, C, ηQ, ηD). Again, the answer 256
a and corpus C are omitted for simplicity’s sake. 257

3



The expectation of the evaluation score r under the258
Dirac delta distribution δ(r − r0) is:259

Er∼p(r|q,ηQ,ηD) [r] =

∫ +∞

−∞
r · δ(r − r0)dr260

= r0 (5)261

which is the score of the evaluation function in262

Eq. (3). This is also known as the sifting property1263

of the Dirac delta distribution (Mack, 2008), where264

the delta function is said to "sift out" the value at265

r = r0. The reason for such a formalization is that266

now we could evaluate the contribution of a single267

encoder to the evaluation score r by marginalizing268

over the other random variables.269
The contribution of an individual encoder ηQ or270

ηD to score r on a question q can be evaluated by271
marginalizing the other encoder of p(r | q, ηQ, ηD)272
in Eq. (4). We assume that the question q is sampled273
from the training data distribution for learning ηQ274
and ηD. Let’s take the question encoder ηQ as an275
example. The distribution of r after marginalizing276
over ηD is:277

p(r | q, ηQ) =
∫
ηD

p(r | q, ηQ, ηD)p(ηD)dηD278

≈ 1

K

K∑
i=1

p(r | q, ηQ, η(i)D )279

=
1

K

K∑
i=1

δ(r − r(i)0 ) (6)280

where the superscript (i) means the tagged random281

variables belong to the ith out of K QA dataset282

(e.g., η(i)D means the passage encoder trained on283

the ith QA dataset). The second to the last step284

uses Monte-Carlo approximation, where we use285

η
(i)
D sampled from a prior distribution p(ηD) which286

will be discussed in Section 6.287

The integration step in Eq. (6) assumes the inde-288

pendence between q, ηD, and ηQ. Although during289

training of DPR, ηD and ηQ are usually learned290

together, the two encoders do not necessarily need291

to be evaluated together during inference. For ex-292

ample, a question encoder trained on NQ could be293

paired with another passage encoder trained on Cu-294

rated and tested on the Trivia QA dataset, without295

assuming any dependency among. Therefore, we296

here assume no prior knowledge about how ηD and297

ηQ are trained, but rather highlight their indepen-298

dence during evaluation to validate Eq. (6).299
As for the contribution of ηQ, according to the300

expectation of Dirac delta distribution in Eq. (5),301

1This property requires the sifted function g(r) (in this case,
g(r) = r) to be Lipschitz continuous.

the expectation of r under the marginalized distri- 302
bution in Eq. (6) is: 303

Er∼p(r|q,ηQ)[r] =

∫ +∞

−∞
r · p(r | q, ηQ)dr 304

≈
∫ +∞

−∞
r · 1

K

K∑
i=1

p(r | q, ηQ, η(i)D )dr 305

=
1

K

K∑
i=1

∫ +∞

−∞
r · δ(r − r(i)0 )dr 306

=
1

K

K∑
i=1

r
(i)
0 (7) 307

which corresponds to the in-domain encoder 308

marginalization in Fig. 1. In this way, we manage 309

to calculate the contribution of a question encoder 310

ηQ to the evaluation score r given a question q. 311

6 Encoder Prior Distribution, Sampling, 312

and Approximation 313

In the previous section, we define the contribu- 314

tion of a single encoder for DPR using encoder 315

marginalization. However, to approximate the ex- 316

pectation under the marginalized distribution in 317

Eq. (6), we need to sample the encoder ηD from 318

a prior distribution p(ηD). In practice, we do not 319

have access to p(ηD) but instead we need to train 320

ηD on specific datasets as empirical samples. 321

In addition, we can not consider every possible 322

function for the encoder. Therefore, we need to put 323

constraints on the encoder prior distribution, so that 324

p(ηD) becomes p(ηD | Φ) that implicitly condi- 325

tions on some constraints Φ. In this paper, Φ could 326

represent, for example, model structures, training 327

schemes, optimizers, initialization, and so on. In 328

this paper, the (sampled) encoders we run in the ex- 329

periments are initialized with the same pre-trained 330

language models (e.g., bert-base-uncased) and op- 331

timized with the same scheme (e.g., 40 epochs, 332

Adam optimizers...), to ensure the constraints we 333

put are consistent for different DPR models. 334

In practice, we use empirical samples such as 335

DPRs pre-trained on different QA datasets for ap- 336

proximation in Eq. (7). Although the sample size 337

is not big enough as it is very expensive to train 338

DPR and encode a large textual corpus, the sam- 339

ples themselves are statistically meaningful as they 340

are carefully fine-tuned at the domains we want to 341

evaluate at, instead of using models with randomly 342

initialized weights. 343
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Datasets Train Dev Test

Natural Questions 58,880 8,757 3,610
TriviaQA 60,413 8,837 11,313
WebQuestions 2,474 361 2,032
CuratedTREC 1,125 133 694
SQuAD 70,096 8,886 10,570

Table 1: Number of questions in each QA dataset
from Karpukhin et al. (2020). The column of Train de-
notes the number of questions after filtering.

7 Experimental Setup344

We follow the DPR paper (Karpukhin et al., 2020)345

to train and evaluate our dense retrievers. We repro-346

duce their results on five benchmark datasets using347

Tevatron 2, an efficient toolkit for training dense348

retrievers with deep language models. Our repro-349

duced results have only a maximum difference of350

∼2% compared to their numbers. We report the351

top-20 and top-100 accuracy for evaluation.352

Datasets We train individual DPR models on353

five standard benchmark QA tasks: Natural Ques-354

tions (NQ) (Kwiatkowski et al., 2019), Triv-355

iaQA (Trivia) (Joshi et al., 2017), WebQues-356

tions (WQ) (Berant et al., 2013), CuratedTREC357

(TREC) (Baudiš and Šedivỳ, 2015), SQuAD-1.1358

(SQuAD) (Rajpurkar et al., 2016) as shown in359

Tbl. 1. We use the data provided in the DPR3360

repository to reproduce their results. We evaluate361

the retriever models on the test sets of the afore-362

mentioned datasets. For retrieval, we chunk the363

Wikipedia collections (Guu et al., 2020) into pas-364

sages of 100 words as in Wang et al. (2019), which365

yields about 21 million samples in total. We fol-366

low Karpukhin et al. (2020) using BM25 (Robert-367

son and Zaragoza, 2009; Lin et al., 2021) to select368

the positive and negative passages as the initial369

training data for DPR.370

Models and Training During training, each371

question is paired with 1 positive passage, 1 hard372

negative retrieved by BM25, and 2 × (B − 1) in-373

batch negatives where B is the batch size. We op-374

timize the objective in Eq. (2) with a learning rate375

of 1e-05 using Adam (Kingma and Ba, 2015) for376

40 epochs. The rest of the hyperparameters remain377

the same as described in Karpukhin et al. (2020).378

2https://github.com/texttron/tevatron
3https://github.com/facebookresearch/DPR

8 Generalization of Tandem Encoders 379

This section aims to show the generalization per- 380

formance of DPR’s bi-encoder evaluated in tan- 381

dem. Tbl. 2 shows the zero-shot retrieval perfor- 382

mance of different DPR models and BM25 on five 383

benchmark QA datasets. Normally, the in-domain 384

DPR model is expected to outperform the other 385

DPR models trained from other domains, which is 386

the situation that happens to most datasets such as 387

NQ, Trivia, and SQuAD. However, for Curated, the 388

DPR trained on NQ and Trivia has better zero-shot 389

performance than the in-domain one. We suspect it 390

is because NQ and Trivia have much larger training 391

data than Curated as shown in Tbl. 1, which poten- 392

tially covers some similar questions in Curated. 393

Moreover, BM25 outperforms all DPR mod- 394

els on SQuAD as SQuAD mainly contains entity- 395

centred questions which is good for term-matching 396

algorithms. Besides, the SQuAD dataset is mainly 397

for machine reading comprehension and therefore a 398

passage could be used to answer multiple questions, 399

which could cause potential conflicts in representa- 400

tion learning (Wu et al., 2021). 401

In the following sections, we will perform en- 402

coder attribution analysis to examine DPR’s each 403

encoder individually. 404

9 In-Domain Encoder Marginalization 405

This section aims to answer the question (1) “What 406

are the individual contributions of each encoder of 407

DPR?” in Section 1. To analyze the contribution 408

of a single encoder on a specific QA dataset, we 409

compare the marginalized top-20 retrieval accuracy 410

of the encoder using in-domain encoder marginal- 411

ization shown in Fig. 1 and Eq. (7). 412

Fig. 2 shows the in-domain encoder marginal- 413

ization results relative to the tandem DPR results. 414

The blue bars show the question encoder’s contri- 415

butions where we target the question encoder and 416

marginalize over the passage encoders, and vice 417

versa for the orange bars (passage encoder) on five 418

datasets. We further divide those results by the in- 419

domain DPR performance which are normalized 420

to 100% (the horizontal line in Fig. 2). We do not 421

compare across different datasets, but rather com- 422

pare the question encoder and passage encoder for 423

each domain. We can see that in general, the pas- 424

sage encoder (orange bar) contributes more to the 425

top-20 accuracy compared to the question encoder 426

(blue bar) on all five datasets. Moreover, for the Cu- 427

rated dataset, marginalizing over the out-of-domain 428

5



Encoder
Test set

NQ Trivia WQ Curated SQuAD Average

BM25 62.9/78.3 62.4/75.5 76.4/83.2 80.7/89.9 71.1/81.8 70.7/81.7

DPR-NQ 79.8/86.9 73.2/81.7 68.8/79.3 86.7/92.7 54.5/70.2 72.6/82.2
DPR-Trivia 66.4/78.9 80.2/85.5 71.4/81.7 87.3/93.9 53.0/69.2 71.7/81.8
DPR-WQ 54.9/70.0 66.5/78.9 76.0/82.9 82.9/90.8 49.3/66.2 65.9/77.8
DPR-Curated 68.5/72.7 66.5/77.7 65.5/77.5 84.0/90.7 51.3/67.5 67.2/77.2
DPR-SQuAD 56.6/72.3 71.0/81.7 64.3/77.0 83.3/92.4 61.1/76.0 67.3/80.0

Table 2: Zero-shot evaluation of DPR’s bi-encoder in tandem. Top-20/Top-100 retrieval accuracy (%) on five
benchmark QA test sets is reported. Each score represents the percentage of top-20/100 retrieved passages that
contain answers.
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Figure 2: In-Domain marginalized top-20 accuracy (%)
of each encoder relative to the in-domain DPR for each
dataset using Eq. (7). Each in-domain DPR’s top-20 ac-
curacy is normalized to 100%.

question encoders even improves the marginalized429

performance of the passage encoder of Curated.430

Overall, we could see that the passage encoder431

plays a more vital role compared to the question432

encoder in terms of in-domain retrieval accuracy,433

which makes sense as the passage encoder needs434

to encode the entire corpus (in our case, 21M pas-435

sages), while the question sets are much smaller.436

10 Affecting Factors for Encoders in QA437

Training Data438

In this section, our goal is to answer the question (2)439

“How to find the affecting factors for each encoder440

in different QA datasets?” from Section 1. Obvi-441

ously, there are too many affecting factors which442

we can not find them all in this paper. Therefore, we443

will use data efficiency test as an example and show444

how using encoder attribution in data efficiency test445

could help us locate possible affecting factors in the 446

dataset. Specifically, we will train the DPR models 447

with different amount of training data. The reason 448

we choose to change the size of the training data 449

is that data sizes often have major influences on a 450

model’s generalization performance, which could 451

help reveal relevant affecting factors in the data. 452

10.1 In-Domain Data Efficiency Test 453

We train the DPR model with different amounts of 454

data and test each encoder’s in-domain marginal- 455

ization performance w.r.t. the training data amount. 456

Since it is extremely resource-consuming to train 457

different DPR models and encode the entire 458

Wikipedia corpus into dense vectors, in this sec- 459

tion, we mainly focus on NQ, Trivia, and SQuAD 460

due to their relatively large dataset sizes. 461

Fig. 3 shows the in-domain encoder marginal- 462

ization results for both question encoder 463

and passage encoder under a data effi- 464

ciency setting, where we uniformly sample 465

10%, 25%, 40%, 55%, 70%, 85% of training data 466

of each dataset to train DPR. We use in-domain 467

encoder marginalization to evaluate each encoder’s 468

performance with different amounts of data. 469

Specifically, to provide a fair comparison, we 470

use 100% data trained DPR’s encoders as the 471

samples for all marginalization. For example, for 472

the question encoder trained with 10% data, it 473

will be paired with five passage encoders of DPR 474

trained on five different domains with 100% data. 475

This is to ensure the comparison between different 476

question encoders is not affected by different ways 477

of marginalization. 478

As we could see, the performance of the ques- 479

tion encoder w.r.t. to different training data amounts 480

(left column in Fig. 3) on three datasets improves 481
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(a) Question encoder. (b) Passage Encoder.

Figure 3: In-Domain encoder marginalization results
under a data efficiency setting. We train DPR on NQ,
Trivia, and SQuAD with different amounts of training
data. The marginalized top-20/100 accuracy (%) for
each encoder is normalized. The y-axis is shared in
each row. The horizontal line is the performance of an
encoder trained with 100% data.

as the amount of training data increases. For the482

passage encoder (right column in Fig. 3), NQ’s483

and Trivia’s behave similarly to the question en-484

coder (blue and orange lines of the right column485

in Fig. 3). However, the performance of SQuAD’s486

passage encoder (green line of the right column487

in Fig. 3) shows a non-monotonic behaviour w.r.t.488

to the training data sizes at the [40%, 100%] inter-489

val, where the performance first rises before 40%490

and drops afterwards. This means that besides the491

training sample complexity, there’s more affecting492

factors that influence the performance of the pas-493

sage encoder, which we will have further analysis494

in the following section.495

10.2 Factor Analysis496

Based on the results in the previous section, we now497

propose two possible affecting factors in the train-498

ing data for the question encoder and passage en-499

coder: corpus coverage and positive passage over-500

lap defined as follows:501

• Corpus coverage: Number of distinct posi-502

tive passages in the training data (i.e., with503

different texts and titles in Wikipedia corpus).504

10 25 40 55 70 85 100
Percentage of full training data (%)

0.2

0.4

0.6

0.8

1.0
Normalized corpus coverage

10 25 40 55 70 85 100
Percentage of full training data (%)

Normalized unique coverage

NQ Trivia SQuAD

Figure 4: Dataset statistics for different amounts of data.
Left: Normalized corpus coverage. Right: Normalized
unique passage coverage. The y-axis is shared in each
row.

Dataset Coverage Overlap Unique

NQ 30,466 0.21 22,424
Trivia 42,473 0.14 34,910
SQuAD 3,247 0.68 738

Table 3: Corpus coverage and positive passage overlap,
as well as the unique passage coverage which equals to
corpus coverage ∗ (1−positive passage overlap)1.3 for
each dataset.

• Positive passage overlap: Ratio between the 505

number of positive passages that can answer 506

more than two training questions and the total 507

number of distinct positive passages. 508

In this paper, each question only has one positive 509

passage. We further define an intermediate statistics 510

called unique passage coverage: 511

• Unique passage coverage: Corpus coverage 512

× (1− positive passage overlap)α. 513

where α is an empirical value and is used to adjust 514

the weights between the coverage and overlap. 515

Despite there being other statistics, we find these 516

statistics above reasonable to reflect the features 517

of each dataset, as well as the correlation with the 518

cross-domain marginalization. 519

Tbl. 3 shows the corpus coverage and positive 520

passage overlap we define on three QA datasets, 521

where we collect the aforementioned statistics for 522

the training data of each dataset. We can see that 523

despite having the most training data, SQuAD also 524

has the largest positive passage overlap. 525

Fig. 4 (right column) shows that the unique pas- 526

sage coverage of SQuAD (green line) also behaves 527

similarly as the in-domain marginalization results 528

of SQuAD’s passage encoder (Fig. 3, right column), 529
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P-encoder NQ Trivia WQ Curated SQuAD Average

SQuAD-100% 63.3/77.1 73.5/82.4 65.2/76.7 79.5/90.6 61.1/76.0 68.5/80.5
SQuAD-40% 62.8/76.4 72.8/82.3 65.9/77.4 81.3/91.1 62.3/76.8 69.2/80.8

Table 4: Top-20/100 (%) accuracy of the passage encoders trained on SQuAD and 40% of SQuAD, pairing with
the question encoder trained on each domain and tested on each domain’s test set. With only 40% of data, a
better balance between the corpus coverage and positive passage overlap is achieved on SQuAD, and therefore this
passage encoder is even better than the one trained with 100% SQuAD data.

which rises as the data amount increases and then530

drops after 40% of training data. We set α = 1.3531

for the unique corpus coverage in order to obtain532

the best curve in Fig. 4. For other α values in [1, 2],533

the trend is similar but peaks at different percent-534

ages of the data.535

To further verify the robustness of the passage536

encoder trained with only 40% training data of537

SQuAD, we test its passage encoder on five QA538

test sets and pair it with the in-domain question539

encoder trained with 100% data. Tbl. 4 shows the540

comparison between the passage encoders trained541

with full SQuAD and 40% of SQuAD, respectively.542

We can see that with only 40% of training data, the543

passage encoder manages to achieve similar and544

even higher performance compared with the one545

trained with full data. Therefore, we have enough546

reasons to believe that the unique passage coverage,547

which is related to the corpus coverage and posi-548

tive passage overlap of the training data, indeed549

influences the passage encoder strongly.550

11 Discussions about Passage Encoder551

In the previous sections, we manage to identify552

the importance of the passage encoder and its af-553

fecting factors such as positive passage overlap554

and corpus coverage of the training data. We find555

that our discoveries are consistent with some pre-556

vious work’s conclusions. For example, Zhan et al.557

(2021, 2020a); Sciavolino et al. (2021) all find that558

it is sufficient to achieve satisfying retrieval perfor-559

mance by just fine-tuning the question encoder with560

a fixed passage encoder, which demonstrates the561

importance of a robust passage encoder in domain562

adaptation and hard-negative mining.563

However, how to learn such a robust passage564

encoder is challenging as pre-training DPR on a565

single QA dataset will introduce biases. Multi-task566

dense retrieval (Maillard et al., 2021; Li et al., 2021;567

Metzler et al., 2021) uses multiple experts learned568

on different domains to solve this problem. These569

solutions are effective but not efficient as they build570

multiple indexes and perform searches for each ex- 571

pert, requiring a lot of resources and storage space. 572

Another solution is to build a question-agnostic 573

passage encoder so that the model is not biased 574

towards particular QA tasks. Densephrases (Lee 575

et al., 2021a,b) pioneers in this direction by build- 576

ing indexes using phrases instead of chunks of pas- 577

sages for multi-granularity retrieval. By breaking 578

passages into finer units, Densephrases indeed im- 579

proves the generalization of dense retrieval in differ- 580

ent domains with query-side fine-tuning. However, 581

similar to multi-task learning, it is not efficient as 582

the phrase index could be enormous for a corpus 583

like Wikipedia, and techniques such as product 584

quantization (Gray and Neuhoff, 1998) are applied 585

to improve efficiency at the cost of effectiveness. 586

Overall, it is desirable to have a robust passage 587

encoder for efficient dense retrieval according to 588

previous work and our analysis, but challenges still 589

remain in effectiveness-efficiency trade-off. 590

12 Conclusions 591

We propose a encoder attribution analysis of DPR 592

using encoder marginalization to individually eval- 593

uate each encoder of DPR. We quantify the contri- 594

bution of each encoder of DPR by marginalizing 595

over the other random variables under a probabilis- 596

tic framework. We find that the passage encoder 597

plays a more important role compared to the ques- 598

tion encoder in terms of top-k retrieval accuracy. 599

We also perform a case study under the data effi- 600

ciency setting to demonstrate how to find possible 601

affecting factors in the QA datasets for individual 602

encoders. We identify that passage encoders are af- 603

fected by positive passage overlap and corpus cov- 604

erage of the training data, while question encoders 605

are sensitive to the training sample complexity. Our 606

framework is also very general and can be applied 607

to other bi-encoder-based methods for encoder at- 608

tribution analysis, but one needs to pay attention 609

to the choice of the encoder prior distribution to 610

ensure the marginalization is appropriate. 611
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