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ABSTRACT

Diffusion has emerged as a powerful framework for generative modeling, achieving
remarkable success in applications such as image and audio synthesis. Enlight-
ened by this progress, we propose a novel diffusion-based approach for symbolic
regression. We construct a random mask-based diffusion and denoising process
to generate diverse and high-quality equations. We integrate this generative pro-
cesses with a token-wise Group Relative Policy Optimization (GRPO) method
to conduct efficient reinforcement learning on the given measurement dataset. In
addition, we introduce a long short-term risk-seeking policy to expand the pool of
top-performing candidates, further enhancing performance. Extensive experiments
and ablation studies have demonstrated the effectiveness of our approach.

1 Introduction

Given a dataset of measurements D = {(xi, yi)}Ni=1, symbolic regression aims to discover a simple
mathematical expression that captures the relationship between the input and output variables, such
as y = 3 sin(x1) + x2

2. Unlike traditional machine learning, where the model architecture is fixed,
symbolic regression explores an open-ended space, dynamically adjusting the number, order, and type
of parameters and operations. While machine learning models can also be written as mathematical
expressions, they are often too complicated or opaque in form for humans to understand. Symbolic
regression prioritizes simplicity and interpretability, making it especially popular among scientists
and engineers who seek not only for accurate predictions but also a deeper understanding of the
underlying data relationships. Interpretable models also earn greater trust, as they avoid unexplained
behaviors and require less extensive testing for validation. In contrast, large, complex models often
behave unpredictably, especially in regions with sparse training data.

Since its publication in 1994, genetic programming (GP) (Koza, 1994; Randall et al., 2022; Burlacu
et al., 2020) has been the dominant approach to symbolic regression. It begins with a population of
randomly generated seed expressions and iteratively evolves the population through genetic operations
such as selection, crossover, and mutation, until a set of optimal equations is found. Despite its strong
performance, GP is known to be computationally expensive due to the need for many generations
and extensive genetic operations. To address this, Petersen et al. (2019) proposed Deep Symbolic
Regression (DSR), which significantly accelerates expression discovery. DSR introduces a recurrent
neural network (RNN) to sample expressions and employs a reinforcement learning framework, with
a risk-seeking policy gradient, to train the RNN on the measurement dataset. DSR has since become
a major baseline in symbolic regression research and development. More recent efforts have explored
using pretrained foundation models (Kamienny et al., 2022; Valipour et al., 2021) to map datasets
directly to candidate expressions, followed by GP and/or Monte Carlo Tree Search (MCTS) (Browne
et al., 2012) to further optimize the expression(s) for a given dataset.

Most of the recent symbolic regression (SR) approaches rely on a generative model for expression
sampling, trained by maximizing the likelihood of the correct next token. However, diffusion
methods — as a powerful generative modeling framework (Ho et al., 2020) — have been relatively
overlooked in SR, despite their remarkable success in other domains, such as image generation
(Rombach et al., 2022), audio synthesis (Huang et al., 2023), and more recently, large language
model (LLM) training (Nie et al., 2025). Diffusion models apply a forward process that gradually
corrupts data with noise, while learning a reverse process that denoises to reconstruct the original
instances. New samples are then generated by starting from random noise and iteratively applying
the reverse denoising steps. This mechanism enables diffusion models to produce more diverse
and high-quality samples, offering the potential to improve SR by exploring expression space more
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effectively and avoiding collapse into a single inferior mode (e.g., overly complex structures or
spurious terms), thereby facilitating the discovery of better expressions. Motivated by this, we
propose a diffusion-based deep symbolic regression method (DDSR) for generating expressions from
measurement datasets. Our main contributions are summarized as follows.

• Random Mask-Based Discrete Diffusion. We propose a discrete diffusion model for
expression generation, where noise is represented by token masking. The forward process
randomly masks out one token at a time. Generation starts with a fully masked (empty)
sequence and progressively reconstructs the tokens step by step. This approach not only
enables the generation of diverse expressions but also significantly reduces the number of
denoising steps and the overall computational cost.

• Token-Wise GRPO. We integrated our diffusion model into a Group Relative Policy Opti-
mization (GPRO) (Shao et al., 2024a) framework for efficient reinforcement learning. At
each step, we employ a risk-seeking strategy by selecting the top-performing expressions
generated by our model. We maximize the per-token denoising likelihood for each expres-
sion, scaled by its corresponding reward. The GRPO framework enforces updates within a
trust region, thereby improving both the stability and efficiency of the learning process.

• Long Short-Term Risk-Seeking. We extend the risk-seeking policy used in DSR, which
selects top-performing expressions solely from the current model. While effective locally,
this strategy may focus too much on short-term improvements and overlook longer-term
trends. To address this, we expand the candidate pool to include top-performing expressions
sampled from all model versions seen so far. This combined strategy resolves both long-term
and short-term risks, aiming to build a more robust and effective model.

• Experiments. We evaluated DDSR on the SRBench benchmark, comparing it against eigh-
teen baseline methods. Our results show that DDSR significantly improves both solution
accuracy and symbolic recovery rate on datasets with known ground-truth expressions, as
compared to DSR. Moreover, DDSR achieves a higher symbolic solution rate than most
genetic programming (GP) methods, while generating considerably simpler and more in-
terpretable expressions. On the black-box problems, DDSR lies on the Pareto frontier,
demonstrating a favorable trade-off between expression complexity and predictive perfor-
mance. Ablation studies further validate the contribution of each individual component in
our framework, confirming their collective importance to overall performance.

2 Background

Diffusion Models. The denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) funda-
mentally shifted the paradigm of generative modeling and has inspired numerous follow-up works.
However, DDPM defines the diffusion process as a Gauss-Markov chain that gradually adds Gaussian
white noise, and is therefore inherently suited for continuous data. For categorical data such as
discrete tokens, adding continuous Gaussian noise is neither feasible nor meaningful. To address this
issue, Austin et al. (2021) proposed the Discrete Denoising Diffusion Probabilistic Model (D3PM).
Each data instance X0 ∈ RM×d represents a collection of M tokens, where each row is the one-hot
encoding of a token (assuming d different categories for each token). D3PM defines a forward
process that gradually transforms the deterministic one-hot encoding X0 into a uniform distribution,
effectively modeling discrete white noise. Specifically, at each step t > 0, the token distribution is
updated via Xt = Xt−1Qt, where Qt = βtI+(1−βt)11

⊤/d, 1 is a vector of ones, and βt ∈ (0, 1).
It can be shown that each row of Xt maintains a valid probability distribution, and as t→∞, each
row converges to the uniform distribution. One can derive a closed-form conditional distribution for

sampling: q(Xt|X0) = X0Qt where Qt = Q1Q2 · · ·Qt, and q(Xt−1|Xt,X0) =
XtQ

⊤
t ⊙X0Qt−1

X0QtX
⊤
t

,
where ⊙ is element-wise multiplication. During training, a random timestep t is selected, and
tokens are sampled from q(Xt|X0). The sampled tokens, along with t, are fed into a neural network
tasked with predicting the initial token distribution q(X0). The model is trained by minimizing a
cross-entropy loss between the predicted distribution and the ground-truth tokens.

Generation starts with randomly sampled tokens from the uniform distribution. At each step t, the
conditional distribution q(Xt−1|Xt) is computed by marginalizing out X0 in q(Xt−1|Xt,X0) with
the distribution q(X0) predicted by the neural network. A sample Xt−1 is drawn accordingly. This
process repeats until t = 0, at which X0 is obtained as the final generated sample.
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Deep Symbolic Regression (DSR). Given a measurement dataset, DSR trains a recurrent neural
network (RNN) to generate expressions that describe the underlying data. The RNN predicts each
token in the preorder traversal of the expression tree in an autoregressive manner. Training is
performed via reinforcement learning, where the reward is based on the normalized root mean

squared error (NRMSE) of the data fit: NRMSE = 1
σy

√
1
n

∑n
i=1(yi − τ(xi))2, where τ denotes the

expression and σy is the standard deviation of the outputs in the dataset. Since the goal is to identify
the best expressions, DSR employs a risk-seeking policy in which only the top α% of expressions are
used to update the model at each iteration:

R(τ) =
1

1 + NRMSE(τ,x, y)
, (1)

∇Jrisk(θ;α) =
1

Bα/100

∑B

i=1
[R(τ (i))−Rα] · 1

(
R(τ (i)) ≥ Rα

)
∇θ log(p(τ

(i)|θ)), (2)

where B is the size of expression batch sampled at each epoch, Rα is the minimum reward among
the top α% expressions, R(τ) is the reward for any expression τ , 1(·) is an indicator function, and θ
denotes the parameters of the RNN.

3 Method

3.1 Random Mask-Based Discrete Diffusion

We represent a symbolic expression as a token matrix X0 ∈ RM×d, where each row is the one-hot
encoding of a token and M denotes the maximum number of tokens. If the actual number of tokens is
fewer than M , we pad the matrix with zero rows. While one could directly apply the D3PM method
for expression generation (see Section 2), we empirically found its performance to be unsatisfactory.
In D3PM, at each diffusion and denoising step, the distribution of every token is perturbed, which
can severely disrupt the structure of the expression. This disruption leads to unstable and inefficient
training, particularly when combined with reinforcement learning, resulting in degraded performance.

Recent work of Nie et al. (2025) on large language models proposed randomly masking a portion of
sequence elements at each step and training the model to reconstruct the masked elements conditioned
on the remaining ones. Inspired by their success, we adopt a similar idea but with a key difference:
we mask out only one token at each step. This approach gradually and smoothly blurs the expression
structure, avoiding abrupt distortions and preserving most structural information, thereby promoting
learning stability and efficiency.

Specifically, let qt denote the token index to be masked at time step t, and let qt = {q1, . . . , qt}
represent the set of all masked indices up to step t. Given X0, we sample qt and Xt as follows:

qt ∼ Uniform({1, . . . ,M}\qt−1), Qt = I− diag(eqt),

Xt = QtX0, Qt = QtQt−1 . . .Q1, (3)
where eqt is a one-hot vector with one at position qt and zeros elsewhere. We design a Transformer
network ϕθ that takes Xt as input and predicts q(X0) — the token distribution matrix corresponding
to X0. The architectural details of ϕθ are provided in Appendix B. Training of ϕθ is integrated into a
reinforcement learning framework, whose details are described later.

To generate an expression, we begin with a zero matrix XM , where all tokens are masked. At each
backward step t = M,M − 1, . . ., we input Xt into ϕθ to predict the distribution q(X0) and use it
to sample the masked tokens in Xt. To ensure validity, we first identify the valid token set for each
masked position based on the current unmasked tokens. We retrieve and normalize the probabilities
of these valid tokens from q(X0), and sample each masked token accordingly. The sampled tokens
are combined with the existing unmasked tokens to form an intermediate instance of X0. Next, we
apply the diffusion (masking) process defined in (3) to obtain Xt−1, while keeping all the previously
unmasked tokens fixed, i.e., revealing exactly one new token.

This iterative process continues, reconstructing one token at a time, until a complete sample of X0

is obtained (i.e., t = 0). Generation terminates early if the current token matrix already forms a
valid expression. If the final X0 does not represent a valid expression, we randomly replace invalid
tokens until a valid expression is obtained. The full generation procedure is summarized in Appendix
Algorithm 2, and further implementation details are given in Appendix Section A.1.

3
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Forward Pass Backward Pass

Figure 1: Illustration of the forward and backward process of the random mask-based diffusion. White entries
represent the masked tokens. Green entries represent tokens in the original expression (left), and the generated
tokens (right).

3.2 Reinforcement Learning with Token-Wise GPRO

To train the diffusion model ϕθ using a given measurement dataset D, we adopt a reinforcement
learning framework. Specifically, we employ a risk-seeking strategy similar to that used in DSR.
At each training step, we select the top α% of expressions generated by our model based on their
NRMSE of the data fit. For each expression τ (i), we assign a reward R(τ (i)) as defined in (1). We
then update ϕθ to encourage the generation of expressions with similarly high rewards.

Specifically, let X(i)
0 denote the token matrix representation of expression τ (i). We randomly select

a diffusion step t and generate a noisy version X
(i)
t using the forward process as described in (3).

Feeding X
(i)
t into ϕθ, we obtain a prediction of q(X(i)

0 ). The model is trained to maximize the
log-likelihood of X(i)

0 scaled by the relative reward Ai = R(τ (i))−Rα, under the predicted q(X
(i)
0 ).

This leads to the following optimization objective:

maximizeθ Et

[∑
τ(i)∈Sα

Ai · log p
(
X

(i)
0 |ϕθ(X

(i)
t )

)]
, (4)

where Sα denotes the set of top α% expressions, and the likelihood p(X
(i)
0 |ϕθ(X

(i)
t )) =∏

k p(x
(i)
k |η

(i)
k,t,θ), each x

(i)
k is the k-th row of X(i) corresponding to an non-empty token, and

η
(i)
k,t,θ is the predicted probability distribution for that token, i.e., the k-th row of ϕθ(X

(i)
t ).

To further enhance training stability and efficiency, we adapt the recent Group Relative Policy
Optimization (GRPO) framework (Shao et al., 2024b) to optimize (4). Specifically, instead of using
all token likelihoods equally, we selectively use them to update model parameters based on a trust
region criterion: we only use token likelihoods whose variation remains within a bounded range
relative to the earlier model. Specifically, the model update is given by:

θ ← θ + γ∇JGRPO(θ;α),

JGRPO(θ;α) =
1

Bα/100

∑
τ(i)∈Sα

∑
k

min {hθkt, clip (hθkt, 1− ϵ, 1 + ϵ)} ·Ai − β · gθkt, (5)

where γ > 0 is the learning rate, hθkt =
p(x

(i)
k |η(i)

k,t,θ)

p(x
(i)
k |η(i)

k,t,θold
)

is the likelihood ratio of k-th token between

the current model and the model at the beginning of the current epoch (with parameters θold),
gθkt = KL[p(x(i)

k |η
(i)
k,t,θ)∥p(x

(i)
k |η

(i)
k,t,θref

)] is a regularization term that regularizes the current model
not to deviate too much from a reference model with parameters θref. Here β > 0 controls the strength
of regularization, and KL[·∥·] denotes the Kullback–Leibler divergence. By restricting updates to
tokens whose likelihood ratios hθkt lie within the trust region [1− ϵ, 1 + ϵ], we prevent unstable and
potentially harmful updates caused by outlier token samples.

It is worth noting that our approach differs from standard diffusion training, which constructs fixed
paths from ground-truth instances to noise and learns to reverse them. Our setting is unsupervised:

4
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Algorithm 1 Diffusion based Deep Symbolic Regression (DDSR)
input Learning rate γ; risk factor α; expression batch size B; steps per epoch C; epochs per reference
G; number of epochs N ; entropy scalar λ
output The best equation τ∗

1: Initialize transformer ϕ with parameters θ
2: Sα ← {}
3: for i = 0 to N − 1 do
4: if i mod(G) = 0 then
5: θref ← θ
6: end if
7: θold ← θ
8: Sample B expression with the current model, and obtain the top α% expressions Siα
9: Sα ← Sα ∪ Siα

10: Set Rα to the minimum award among the expressions in Sα.
11: for j = 1 to C do
12: Randomly sample diffusion time step t
13: Compute JGRPO from (5)
14: θ ← θ + γ(∇θJGRPO + λ · Entropy-Gradient)
15: end for
16: Remove the bottom α% expressions from Sα according to the rewards
17: end for
18: return the best expression from Sα

we only have numerical measurement data, with no ground-truth expressions available (the goal is to
discover them). To address this, we adopt a reinforcement learning approach. Starting from randomly
initialized parameters, the diffusion model generates candidate expressions, which are evaluated
on the measurement data and assigned rewards. These rewards weight the log-likelihoods of the
corresponding token sequences, forming the update in (5). Since token likelihoods are determined by
the diffusion model, gradients can be backpropagated to update parameters, progressively increasing
the probability of generating high-reward expressions. Repeating this process throughout training
adaptively shifts the model distribution toward more accurate expressions.

3.3 Long Short-Term Risk-Seeking

The risk-seeking policy used in DSR leverages only the top-performing expressions generated by
the current model. However, this local policy can limit the exploitation capability of reinforcement
learning. To encourage broader exploitation and to drive the model toward generating diverse yet
high-quality expressions, we expand the candidate set by incorporating the top α% expressions not
only from the current epoch but also from all previous epochs. Specifically, at each epoch k, we
update the candidate pool as follows:

Sα ← Sα ∪ Skα, (6)
where Skα denotes the top α% expressions sampled at epoch k. We then set Rα to the minimum
reward among all expressions in Sα, and update the model accordingly following (5). To prevent
the buffer from growing indefinitely, after each epoch we remove the bottom α% expressions with
the lowest rewards from Sα. This policy can be viewed as a hybrid of the risk-seeking strategy in
DSR and the priority training queue proposed in (Mundhenk et al., 2021). By jointly considering
both short-term and long-term risks, our approach prevents the model from drifting away from
well-performing but hard-to-sample expressions. By continuously updating from such expressions,
the model progressively improves its ability to generate high-quality outputs. A full summary of our
training procedure is provided in Algorithm 1.

4 Related Work

The Deep Symbolic Regression (DSR) framework (Petersen et al., 2019) pioneered the use of rein-
forcement learning to train RNN-based expression generators from the measurement data. Building
on this framework, recent extensions (Tenachi et al., 2023; Jiang et al., 2024) have enforced physics-
unit constraints as domain knowledge to enhance the quality of expression generation or confined the
search space through vertical discovery strategies for vector symbolic regression.

5
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Another line of work has shifted toward building foundation models that map numerical measurements
outright to symbolic expressions (Biggio et al., 2021; Kamienny et al., 2022; Valipour et al., 2021;
Vastl et al., 2022). These models typically adopt an encoder-decoder transformer architecture, where
encoder layers extract structural patterns from the input data, and decoder layers synthesize symbolic
outputs. Although these approaches are promising, the training is costly and acutely sensitive to
data preparation pipelines, often requiring massive synthetic datasets. More critically, without a
data-specific search mechanism, such models often struggle to generalize — especially when faced
with out-of-distribution measurement datasets (Kamienny et al., 2023).

To overcome these limitations, a new wave of research couples pretrained foundation models with
explicit search or planning mechanisms tailored to the target dataset, for instance, TPSR (Shojaee et al.,
2023), DGSR (Holt et al., 2023), and DGSR-MCTS (Kamienny et al., 2023). In TPSR, the pretrained
model is integrated into a modified Monte Carlo Tree Search (MCTS) method (Browne et al., 2012),
using model-guided token selection and tree expansion driven by an upper confidence bound (UCB)
heuristic. DGSR combines a pretrained encoder-decoder model with genetic programming (GP) at
inference time: decoder-generated expressions seed the initial GP population, and top candidates are
used to iteratively fine-tune the decoder. DGSR-MCTS uses a flexible MCTS search model including
a mutation policy network, augmented with critic layers; The mutation policy network is pretrained
on external datasets and then fine-tuned on the task-specific data while the critic layers are trained
from scratch on the task-specific data.

Beyond these model-based approaches, ensemble frameworks such as uDSR (Landajuela et al., 2022)
combine multiple symbolic regression strategies (e.g., GP and DSR) to boost robustness and accuracy.
Meanwhile, model-free methods (Sun et al., 2023; Xu et al., 2024) explore purely search-based
techniques, using MCTS or ensemble strategies combining MCTS with GP, to uncover symbolic
expressions without relying on heavy pretraining.

In the domain of discrete diffusion, beyond D3PM (Austin et al., 2021), several works have explored
graph (Vignac et al., 2023) and tree (Li et al., 2024) generation. Both graph diffusion models employ
a modified transition matrix of the form Qt = (1− βt)I+ βt1m

⊤, where βt is a scalar determined
by the diffusion schedule, and m represents the marginal distribution over nodes (or edges) in the
training data. Recently, Nie et al. (2025) proposed a masked discrete distribution framework, training
models in a supervised learning setting to improve sampling quality in LLMs. Our approach adopts a
similar masking idea but differs in two key aspects: (1) at each step, we mask out only a single token
to preserve structural information more effectively, and (2) we integrate the diffusion process into a
reinforcement learning framework to guide training toward high-reward expressions.

5 Experiment

5.1 Performance on SRBench

We first evaluated DDSR on the well-known and comprehensive SRBench dataset (La Cava et al.,
2021), which is divided into two groups: 133 problems with known ground-truth solutions and
120 black-box problems without known solutions. The black-box problems consists of real-world
scientific and engineering problems spanning domains such as health informatics, technology, envi-
ronmental science, and economics. For the first group, four noise levels are considered: 0%, 0.1%,
1%, and 10% (see details in Appendix Section C). All experiments were conducted on A40s from the
NCSA Delta cluster1. Each A40 ran 8 trials in parallel. For each problem at each noise level, we ran
DDSR eight times, with each run capped at a four-hour time limit. The hyperparameter settings used
by DDSR are detailed in Appendix Table 4.

We compared DDSR against eighteen existing symbolic regression (SR) methods, spanning GP-based,
MCTS-based, deep learning-based, and ensemble approaches. Notably, we include two versions of
DSR in the comparison: the original version without constant tokens and an extended version that
incorporates and optimizes constant tokens during training. We denote these as DSR-W/OC and
DSR-W/C, respectively. DSR is the most comparable method to DDSR, as it also uses a reinforcement
learning framework and learns directly from data, without relying on pretrained models. AIFeynman
is a method that searches for hyperplanes in the dataset and fits each with a polynomial (Udrescu
& Tegmark, 2020). Gplearn, Bingo (Randall et al., 2022), GP-GOMEA (Virgolin et al., 2021),

1https://www.ncsa.illinois.edu/research/project-highlights/delta/
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Figure 2: Performance on SRBench problems with ground-truth solutions. Error bars denote a 95% confidence
interval. uDSR’s high performance is attributed to it being an ensemble method that combines several SR
methodologies.

Table 1: Performance on SRBench problems with ground truth solutions.

Symbolic Solution Rate (%) Accuracy Rate (%)

Algorithm 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1

DDSR 46.54 27.02 20.33 10.69 60 60 59 56
DSR-W/C 24.81 24.42 17.53 10.48 38 41 40 39
DSR-W/OC 19.71 19.23 18.92 16.61 24 25 25 25
GP-GOMEA 43.08 10.62 4.69 1.46 71 70 73 68
TPSR 36.09 0.00 0.00 0.00 68 68 66 38

SBP-GP (Virgolin et al., 2019), Operon (Burlacu et al., 2020), and MRGP (Arnaldo et al., 2014) all
incorporate GP as a primary or supporting component. TPSR combines a pretrained transformer-
based foundation model with a Monte Carlo Tree Search to find optimal expressions, while uDSR
is a hybrid model that ensembles a pretrained numeral symbolic regression model with DSR, GP,
AIFeynman, and linear models.

For problems with known solutions, we evaluated each method on symbolic solution rate, accuracy
rate, and simplified complexity. The symbolic solution rate is computed using two criteria: symbolic
equivalence, as determined by the SymPy library2, or an R2 score of exactly 1.0. Accuracy rate is a
binary metric indicating whether the method finds an expression with R2 > 0.999. The simplified
complexity is defined as the number of tokens in the expression tree after simplification by SymPy.
We present results for the most comparable and several representative methods in Table 1. Full
comparison results are provided in Figure 2 and Appendix Table 5.

We observe that DDSR substantially outperforms DSR in nearly all settings, with the exception
of the 10% noise level, where DSR-W/OC achieves a higher solution rate. This may be attributed
to the larger token space employed by DDSR. Since DSR-W/OC excludes constant tokens, its
reduced token space makes the search process more conservative, potentially offering greater
robustness in the presence of high noise. However, even at the 10% noise level, DDSR still
achieves substantially higher solution accuracy than DSR-W/OC. When DSR uses the same to-
ken space as DDSR— namely, in the DSR-W/C variant — both its solution rate and accuracy
consistently lag behind DDSR, demonstrating the advantage of our diffusion-based framework.
DDSR also outperforms TPSR, GP-GOMEA, SBP-GP, and many other GP-based methods in terms
of solution rate, particularly under non-zero noise levels. Although these methods often achieve
higher solution accuracy, the expressions they generate tend to be much longer and more com-
plex. For instance, TPSR and GP-GOMEA yield average simplified complexities of 61.4 and 35.4,

2https://www.sympy.org/
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respectively, while DDSR maintains a significantly lower average of 17.7. These results under-
score the robustness of DDSR and its ability to generate more interpretable symbolic expressions.
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Figure 3: Mean R2 score vs. model size on black-box
problems. Model size means the expression length.The
numerical values are reported in Appendix Table 7.

AIFeynman outperforms DDSR in symbolic so-
lution rate in the noiseless setting, which aligns
with its algorithmic design. AIFeynman fits aug-
mented polynomials and excels when the tar-
get expression is a clean polynomial — com-
mon among the noiseless symbolic problems in
SRBench. However, its performance degrades
sharply in black-box settings; its average R2

score falls below zero, leading to its exclusion
from Figure 3. Lastly, while uDSR — an en-
semble method — still achieves higher overall
performance than DDSR, it is important to note
that DDSR can be seamlessly incorporated into
the uDSR pipeline. It could either replace DSR
or be added as a complementary component, fur-
ther enhancing the ensemble’s effectiveness in
symbolic expression discovery.

For the black-box problems — where ground-
truth solutions are unavailable — we evaluated
model performance using the trade-off between
average R2 score and expression size, as shown in Figure 3. DDSR lies at the frontier of the
Pareto curve, indicating that it achieves one of the best balances between accuracy and inter-
pretability. In other words, DDSR offers high data-fitting performance while maintaining rela-
tively concise expressions. As an example for comparison, TPSR achieves slightly higher R2

scores, but the resulting expressions are substantially more complex, averaging around 70 tokens.

Table 2: Performance of DSR w/wo Diffusion.

DSR Diffusion-DSR DDSR

Solution Rate (%) 24.8 44.6 46.5
Accuracy Rate (%) 38 57 60

Running Time. Average run-time of each method is
reported in Appendix Table 6. When using the same
token space, DDSR requires only about 1/2 of the
runtime of DSR (specifically, DSR-W/C), highlight-
ing the training efficiency enabled by our diffusion-
based framework. This might be attributed to our
diffusion-based model, which generates more diverse
and high-quality candidates, thereby accelerating ex-
pression discovery. Note that DSR-W/OC took less running time due to its reduced token space —
no constant tokens — and the thereof lack of constant optimization step.

5.2 Ablation Studies

Table 3: Average number of novel expressions
(diversity) generated across Feynman problems.

Epoch DDSR DSR Improvement (%)

0 951.8 989.8 -3.8
50 917.3 804.1 14.1

150 928.0 720.7 28.8
200 914.0 710.2 28.7
250 869.7 655.3 32.7
300 812.8 656.1 23.9
350 756.0 578.1 30.8
400 710.6 558.5 27.2
450 684.5 536.0 27.7
500 662.0 468.0 41.5

Advantage of Diffusion. To isolate the effect of
diffusion, we retain only the diffusion component
and keep all other parts of our SR model identical
to DSR — namely, the risk-seeking policy gradient
(w/o GPRO) and short-term risk seeking. We refer
to this variant as Diffusion-DSR. The symbolic solu-
tion rate and accuracy rate on SRBench (0% noise)
are reported in Table 2. Results show that diffusion
alone substantially improves DSR, and adding our
other components yields further gains. This demon-
strates that diffusion is a key driver of the overall
improvement.

Expression Diversity. We examined the average
number of novel expressions generated during train-
ing across all Feynman problems. The results, shown in Table 3 and Appendix Figure 9, indicate
that DDSR consistently discovers more novel expressions than DSR during training, with an average
diversity improvement of about 28% and a peak improvement of 41%. These findings confirm that
DDSR effectively explores a broader range of expressions, thereby facilitating expression discovery.

8
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Figure 5: Learning curves for DDSR with GPRO and with RSPG. Error bars denote one standard deviation.

Individual Components. Next, we conducted ablation studies to assess the effectiveness of individual
components in our method. Specifically, we evaluated three variants of DDSR by: (1) replacing our
random mask-based discrete diffusion with the standard Discrete Denoising Diffusion Probabilistic
Model (D3PM) (see Section 2); (2) replacing Grouped Relative Policy Optimization (GRPO) with
the standard risk-seeking policy gradient (RSPG); (3) substituting our Long-Short-Term (LST) policy
with a short-term (ST) policy that selects the top α% expressions only from the current model. We
tested these variants on the Feynman and Strogatz datasets in SRBench. The solution accuracy results
are shown in Figure 4.
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Figure 4: DDSR ablations accuracy rate (%) for the
Feynman and Strogatz datasets.

First, our random mask-based diffusion im-
proves solution accuracy rate — by 2.2% on
the Feynman dataset and 35.7% on the Stro-
gatz dataset — compared to the standard D3PM.
This improvement may stem from the fact that
D3PM perturbs all tokens at each diffusion step,
which can introduce instability during training.
In contrast, our method perturbs only one token
at each step, providing more stable and effective
learning dynamics.

Second, while RSPG leads to a modest 0.4% im-
provement on the Feynman dataset, it results in
a 3.5% performance drop on the Strogatz dataset
relative to GRPO. This highlights GRPO’s ro-
bustness. Moreover, GRPO accelerates training:
on average, it converges 30 epochs faster than RSPG. Representative learning curves for randomly
selected problems are shown in Figure 5 and Appendix Figure 8.

Third, the LST policy outperforms the ST policy by 1.3% and 3.5% on the Feynman and Stro-
gatz datasets, respectively. This demonstrates the benefit of leveraging historically top-performing
expressions to enhance exploitation.

Choice of α. Our main results are reported with α = 5%, following the same setting as DSR
— our primary competing baseline — for a fair and strong comparison. We further examine how
different choices of α affect the trade-off between computational cost and performance. The details
are provided in Appendix D.1.

6 Conclusion

We have introduced DDSR— a random masked discrete diffusion model for symbolic regression.
Our experimental results on the SRBench benchmark demonstrate that DDSR outperforms deep
reinforcement learning-based approaches and achieves performance comparable to state-of-the-art
genetic programming (GP) methods.

However, DDSR has some limitations. In particular, it tends to require longer runtimes to discover
solutions for complex problems and exhibits reduced robustness to high levels of noise in the data.

Future work may explore extending the discrete diffusion framework to supervised learning of
foundational models, improving the efficiency of the diffusion transformation process, and refining
the reward function to enhance exploitation and increase robustness to noisy data.
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Appendix

A Algorithms

A.1 Sampling Expressions

We sample an expression from a distribution matrix of size M × d, where M denotes the maximum
length of the expression, and d denotes the number of tokens in the library. At each step in the
process, we get a vector of valid tokens for the current node based on the current incomplete version
of τ . This vector enforces rules to avoid the expression from being invalid. DDSR further restricts
that the sampled expression trees can include up to 10 constants, and trigonometric functions such
as sin and cos can not be nested. The rule for setting a maximum number of constant tokens can
help reduce optimization runtime and mitigate overfitting. Constant tokens are optimized with the
Levenberg-Marquardt algorithm (Levenberg, 1944) for each discovered equation. The prevention
of nested trigonometric functions is inherited from DSR, as the authors of DSR claimed nested
trigonometric functions do not occur in physics.

Algorithm 2 Sampling expressions for a given sequence of categorical distributions
input probability distribution p, max depth of the tree M
output An expression τ

1: for i = 0 to M do
2: r ← Get Valid Tokens(τ, i)
3: pi ← pi · r
4: if

∑d
j=1 pi,j = 0 then

5: pi ← 1 ∗ r
6: end if
7: pi ← pi/

∑d
j=1 pi,j

8: τi ∼ pi
9: end for

10: return τ

Ordering: Converting expression trees into a vector of tokens can be done in various ways. We
used the tree’s breadth-first search ordering (BFS) to order the nodes/tokens. This ordering keeps
siblings of parents nodes close to each other in the ordering. In comparison, the preorder traversal
ordering (POT) can place siblings far apart. Figure 6 shows the conversion of an expression tree into
a breadth-first search ordering and the comparison to a preorder traversal ordering.

B Model Architecture

The positional encoding in the input layer enables the attention layers to capture positional-based
relationships of the tokens. In addition to generating tokens from the BFS search order, our diffusion
model also involves a time step variable t informing the progress of the diffusion and denoising.
To integrate the information from both token positions l and time steps t, we introduce a two-
dimensional encoding as defined below. The full architecture of our model is shown in Figure 7. The
hyperparameter settings are listed in Table 4.

PE(l, t)2i = sin(
l

10000(4i/D)
),PE(l, t)2i+1 = cos(

l

10000(4i/D)
),

PE(l, t)D+2j = sin(
t

10000(4j/D)
),PE(l, t)D+2j+1 = cos(

t

10000(4j/D)
), (7)

C Noise Setting in SRBench

The noise levels indicate the relative amount of noise added to the expression values for evalua-
tion purposes. Specifically, for each data point, Gaussian noise is added as y = f(x1, . . . , xk) +
noise-level · s · ϵ, where f(x1, . . . , xk) is the ground-truth expression, s is the standard deviation of
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BFS:

POT:

Figure 6: Breadth first search ordering of an expression compared to the pre-order traversal

Table 4: Hyperparameter settings of DDSR.

Hyperparameter DDSR
Variables {1, c (Constant Token), xi}

Unary Functions {sin, cos, log,
√

(·), exp}
Binary Functions {+, -, *, /,ˆ}

Batch Size 1000
Risk Seeking Percent (α) 5%

Optimizer ADAM
Learning Rate 1E-4

Max Depth 32
Oversampling 3

Number of Epochs 600
Entropy Coefficient λ 0.0005

Encoder Number 1
Decoder Number 1
Number of Heads 1

Feed Forward Layers Size 2048
β 0.01
ϵ 0.2

Embedding Dim 15
C 5
G 5

the expression values across all inputs (x1, . . . , xk) in the dataset, and ϵ is drawn from a standard
Gaussian white noise distribution N (0, 1). This setup is the standard evaluation protocol in the
SRBench benchmark, which is designed to assess the robustness of symbolic regression methods
under varying noise levels.

D Additional Results

Table 5 provides the numerical values of the symbolic solution rate, accuracy rate and simplified
complexity of all the methods offered by SRBench for problems with known solutions. Table 8
reports the R2 scores, model size, and training time of every method on the black-box problems of
SRBench. DDSR has similar performance to Bingo and GP-GOMEA on the black box problems,
performing as an improvement in reducing the complexity of GP-GOMEA and increasing the R2
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Figure 7: The architecture of the diffusion model in DDSR.
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Figure 8: Learning curves of 20 problems for DDSR with GPRO and with RSPG. These problems are randomly
selected from the Feynman and Strogatz dataset. Colored regions denote one standard deviation.
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score of Bingo. Significantly, DDSR outperforms four of the five machine learning methods from
SRBench (linear fit, random forests, AdaBoost, and MLPs) in R2 while offering an interpretable
model. XGBoost is the only machine learning method that outperforms DDSR in R2 score by 0.046
while increasing the model size by 713x and losing any natural interpretability.

Table 5: Performance on SRBench problems with known solutions.

Symbolic Solution Rate (%) Accuracy Rate (%) Simplified Complexity

Algorithm 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1

AFP 22.31 19.92 16.85 12.85 43 42 40 41 29.35 28.43 29.01 30.82
AFP_FE 28.08 22.69 20.31 12.85 56 50 50 50 34.58 35.66 34.45 36.77
AIFeynman 61.84 31.89 12.61 0.86 74 74 68 10 83.29 88.66 99.27 110.54
BSR 2.50 0.61 0.08 0.00 12 11 12 7 34.29 35.51 36.80 38.38
Bingo 48.77 14.62 4.77 0.77 64 60 62 59 15.56 19.29 21.32 22.54
DDSR 46.54 27.02 20.33 10.69 60 60 59 56 17.33 17.13 17.87 18.48
DSR-W/C 24.81 24.42 17.53 10.48 38 41 40 39 16.57 16.10 16.96 18.45
DSR-W/OC 19.71 19.23 18.92 16.61 24 25 25 25 13.14 14.36 14.61 14.40
EPLEX 12.50 9.92 8.77 9.54 44 45 52 47 53.24 51.74 49.91 40.04
FEAT 0.10 0.00 0.00 0.00 40 43 41 14 88.01 77.32 72.61 50.40
FFX 0.00 0.00 0.00 0.08 0 0 3 18 274.88 273.29 286.03 341.38
GP-GOMEA 43.08 10.62 4.69 1.46 71 70 73 68 25.73 32.75 37.59 45.41
ITEA 20.77 13.77 7.69 1.46 27 27 27 26 14.46 14.96 15.35 16.00
MRGP 0.00 0.00 0.00 0.00 93 92 89 2 109.95 106.50 83.06 0.00
Operon 16.00 12.31 1.92 0.08 87 86 86 73 40.80 40.13 60.40 70.78
SBP-GP 22.69 0.69 0.00 0.00 74 74 75 54 109.94 102.09 112.93 116.30
TPSR 36.09 0.00 0.00 0.00 68 68 66 38 57.11 59.32 63.42 65.83
gplearn 16.15 16.86 16.59 16.00 30 29 27 22 45.80 37.76 36.42 33.84

Table 6: Average run time for each method on SRBench symbolic dataset.

Algorithm Run Time (s)
AFP 3488.63
AFP_FE 28830.37
AIFeynman 29590.66
Bingo 22542.44
BSR 28800.16
DDSR 14441.12
DSR-W/C 27131.73
DSR-W/OC 630.83
EPLEX 10865.90
FEAT 1079.46
FFX 17.34
GP-GOMEA 2072.25
ITEA 1411.92
MRGP 18527.59
Operon 2483.09
SBP-GP 28968.48
TPSR 172.87
gplearn 1396.98

D.1 Ablation Study on Risk-Seeking Percentage α

For a fair and strong comparison, we set α = 5%, following the same setting as DSR (Petersen et al.,
2019), which is our primary competing baseline. To investigate the trade-off between the memory
cost for back-propagation at each training step and solution discovery performance, we varied α from
1%, 5%, 10% and 25%, and ran our method on the Strogatz dataset. The GPU memory usage and the
solution accuracy rate are reported in Table 8. We can see the best trade-off is achieved at 5%.
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Table 7: Performance on black-box problems of SRBench.

Algorithm R2 Score Complexity
AFP 0.657613 34.5
AFP_FE 0.664599 35.6
AIFeynman -3.745132 2500
AdaBoost 0.704752 10000
BSR 0.257598 19.8
Bingo 0.711951 22.2
DDSR 0.730218 23.8
DSR-W/OC 0.571669 8.89
DSR-W/C 0.642417 14.8
EPLEX 0.760414 55.8
FEAT 0.784662 74.2
FFX -0.667716 1570
GP-GOMEA 0.746634 27.3
ITEA 0.640731 112
KernelRidge 0.615147 1820
LGBM 0.637670 5500
Linear 0.454174 17.4
MLP 0.531249 3880
MRGP 0.417864 12100
Operon 0.794831 65.0
RandomForest 0.698541 1.54e+06
SBP-GP 0.798932 639
TPSR 0.792001 95.7
XGB 0.775793 16400
gplearn 0.541264 16.3

Table 8: DDSR performance on Strogatz dataset with different choices of α.

α 1% 5% 10% 25%
Accuracy Rate 89% 96% 92% 92%

GPU Memory (MB) 220 270 348 530
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