
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFUSION-BASED SYMBOLIC REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion has emerged as a powerful framework for generative modeling, achieving
remarkable success in applications such as image and audio synthesis. Enlight-
ened by this progress, we propose a novel diffusion-based approach for symbolic
regression. We construct a random mask-based diffusion and denoising process
to generate diverse and high-quality equations. We integrate this generative pro-
cesses with a token-wise Group Relative Policy Optimization (GRPO) method
to conduct efficient reinforcement learning on the given measurement dataset. In
addition, we introduce a long short-term risk-seeking policy to expand the pool of
top-performing candidates, further enhancing performance. Extensive experiments
and ablation studies have demonstrated the effectiveness of our approach.

1 Introduction

Given a dataset of measurements D = {(xi, yi)}Ni=1, symbolic regression aims to discover a simple
mathematical expression that captures the relationship between the input and output variables, such
as y = 3 sin(x1) + x2

2. Unlike traditional machine learning, where the model architecture is fixed,
symbolic regression explores an open-ended space, dynamically adjusting the number, order, and type
of parameters and operations. While machine learning models can also be written as mathematical
expressions, they are often too complicated or opaque in form for humans to understand. Symbolic
regression prioritizes simplicity and interpretability, making it especially popular among scientists
and engineers who seek not only for accurate predictions but also a deeper understanding of the
underlying data relationships. Interpretable models also earn greater trust, as they avoid unexplained
behaviors and require less extensive testing for validation. In contrast, large, complex models often
behave unpredictably, especially in regions with sparse training data.

Since its publication in 1994, genetic programming (GP) (Koza, 1994; Randall et al., 2022; Burlacu
et al., 2020) has been the dominant approach to symbolic regression. It begins with a population of
randomly generated seed expressions and iteratively evolves the population through genetic operations
such as selection, crossover, and mutation, until a set of optimal equations is found. Despite its strong
performance, GP is known to be computationally expensive due to the need for many generations
and extensive genetic operations. To address this, Petersen et al. (2019) proposed Deep Symbolic
Regression (DSR), which significantly accelerates expression discovery. DSR introduces a recurrent
neural network (RNN) to sample expressions and employs a reinforcement learning framework, with
a risk-seeking policy gradient, to train the RNN on the measurement dataset. DSR has since become
a major baseline in symbolic regression research and development. More recent efforts have explored
using pretrained foundation models (Kamienny et al., 2022; Valipour et al., 2021) to map datasets
directly to candidate expressions, followed by GP and/or Monte Carlo Tree Search (MCTS) (Browne
et al., 2012) to further optimize the expression(s) for a given dataset.

Most of the recent symbolic regression (SR) approaches rely on a generative model for expression
sampling, trained by maximizing the likelihood of the correct next token. However, diffusion
methods — as a powerful generative modeling framework (Ho et al., 2020) — have been relatively
overlooked in SR, despite their remarkable success in other domains, such as image generation
(Rombach et al., 2022), audio synthesis (Huang et al., 2023), and more recently, large language
model (LLM) training (Nie et al., 2025). Diffusion models apply a forward process that gradually
corrupts data with noise, while learning a reverse process that denoises to reconstruct the original
instances. New samples are then generated by starting from random noise and iteratively applying
the reverse denoising steps. This mechanism enables diffusion models to produce more diverse
and high-quality samples, offering the potential to improve SR by exploring expression space more

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

effectively and avoiding collapse into a single inferior mode (e.g., overly complex structures or
spurious terms), thereby facilitating the discovery of better expressions. Motivated by this, we
propose a diffusion-based deep symbolic regression method (DDSR) for generating expressions from
measurement datasets. Our main contributions are summarized as follows.

• Random Mask-Based Discrete Diffusion. We propose a discrete diffusion model for
expression generation, where noise is represented by token masking. The forward process
randomly masks out one token at a time. Generation starts with a fully masked (empty)
sequence and progressively reconstructs the tokens step by step. This approach not only
enables the generation of diverse expressions but also significantly reduces the number of
denoising steps and the overall computational cost.

• Token-Wise GRPO. We integrated our diffusion model into a Group Relative Policy Opti-
mization (GPRO) (Shao et al., 2024a) framework for efficient reinforcement learning. At
each step, we employ a risk-seeking strategy by selecting the top-performing expressions
generated by our model. We maximize the per-token denoising likelihood for each expres-
sion, scaled by its corresponding reward. The GRPO framework enforces updates within a
trust region, thereby improving both the stability and efficiency of the learning process.

• Long Short-Term Risk-Seeking. We extend the risk-seeking policy used in DSR, which
selects top-performing expressions solely from the current model. While effective locally,
this strategy may focus too much on short-term improvements and overlook longer-term
trends. To address this, we expand the candidate pool to include top-performing expressions
sampled from all model versions seen so far. This combined strategy resolves both long-term
and short-term risks, aiming to build a more robust and effective model.

• Experiments. We evaluated DDSR on the SRBench benchmark, comparing it against eigh-
teen baseline methods. Our results show that DDSR significantly improves both solution
accuracy and symbolic recovery rate on datasets with known ground-truth expressions, as
compared to DSR. Moreover, DDSR achieves a higher symbolic solution rate than most
genetic programming (GP) methods, while generating considerably simpler and more in-
terpretable expressions. On the black-box problems, DDSR lies on the Pareto frontier,
demonstrating a favorable trade-off between expression complexity and predictive perfor-
mance. Ablation studies further validate the contribution of each individual component in
our framework, confirming their collective importance to overall performance.

2 Background

Diffusion Models. The denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) funda-
mentally shifted the paradigm of generative modeling and has inspired numerous follow-up works.
However, DDPM defines the diffusion process as a Gauss-Markov chain that gradually adds Gaussian
white noise, and is therefore inherently suited for continuous data. For categorical data such as
discrete tokens, adding continuous Gaussian noise is neither feasible nor meaningful. To address this
issue, Austin et al. (2021) proposed the Discrete Denoising Diffusion Probabilistic Model (D3PM).
Each data instance X0 ∈ RM×d represents a collection of M tokens, where each row is the one-hot
encoding of a token (assuming d different categories for each token). D3PM defines a forward
process that gradually transforms the deterministic one-hot encoding X0 into a uniform distribution,
effectively modeling discrete white noise. Specifically, at each step t > 0, the token distribution is
updated via Xt = Xt−1Qt, where Qt = βtI+(1−βt)11

⊤/d, 1 is a vector of ones, and βt ∈ (0, 1).
It can be shown that each row of Xt maintains a valid probability distribution, and as t→∞, each
row converges to the uniform distribution. One can derive a closed-form conditional distribution for

sampling: q(Xt|X0) = X0Qt where Qt = Q1Q2 · · ·Qt, and q(Xt−1|Xt,X0) =
XtQ

⊤
t ⊙X0Qt−1

X0QtX
⊤
t

,
where ⊙ is element-wise multiplication. During training, a random timestep t is selected, and
tokens are sampled from q(Xt|X0). The sampled tokens, along with t, are fed into a neural network
tasked with predicting the initial token distribution q(X0). The model is trained by minimizing a
cross-entropy loss between the predicted distribution and the ground-truth tokens.

Generation starts with randomly sampled tokens from the uniform distribution. At each step t, the
conditional distribution q(Xt−1|Xt) is computed by marginalizing out X0 in q(Xt−1|Xt,X0) with
the distribution q(X0) predicted by the neural network. A sample Xt−1 is drawn accordingly. This
process repeats until t = 0, at which X0 is obtained as the final generated sample.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Deep Symbolic Regression (DSR). Given a measurement dataset, DSR trains a recurrent neural
network (RNN) to generate expressions that describe the underlying data. The RNN predicts each
token in the preorder traversal of the expression tree in an autoregressive manner. Training is
performed via reinforcement learning, where the reward is based on the normalized root mean

squared error (NRMSE) of the data fit: NRMSE = 1
σy

√
1
n

∑n
i=1(yi − τ(xi))2, where τ denotes the

expression and σy is the standard deviation of the outputs in the dataset. Since the goal is to identify
the best expressions, DSR employs a risk-seeking policy in which only the top α% of expressions are
used to update the model at each iteration:

R(τ) =
1

1 + NRMSE(τ,x, y)
, (1)

∇Jrisk(θ;α) =
1

Bα/100

∑B

i=1
[R(τ (i))−Rα] · 1

(
R(τ (i)) ≥ Rα

)
∇θ log(p(τ

(i)|θ)), (2)

where B is the size of expression batch sampled at each epoch, Rα is the minimum reward among
the top α% expressions, R(τ) is the reward for any expression τ , 1(·) is an indicator function, and θ
denotes the parameters of the RNN.

3 Method

3.1 Random Mask-Based Discrete Diffusion

We represent a symbolic expression as a token matrix X0 ∈ RM×d, where each row is the one-hot
encoding of a token and M denotes the maximum number of tokens. If the actual number of tokens is
fewer than M , we pad the matrix with zero rows. While one could directly apply the D3PM method
for expression generation (see Section 2), we empirically found its performance to be unsatisfactory.
In D3PM, at each diffusion and denoising step, the distribution of every token is perturbed, which
can severely disrupt the structure of the expression. This disruption leads to unstable and inefficient
training, particularly when combined with reinforcement learning, resulting in degraded performance.

Recent work of Nie et al. (2025) on large language models proposed randomly masking a portion of
sequence elements at each step and training the model to reconstruct the masked elements conditioned
on the remaining ones. Inspired by their success, we adopt a similar idea but with a key difference:
we mask out only one token at each step. This approach gradually and smoothly blurs the expression
structure, avoiding abrupt distortions and preserving most structural information, thereby promoting
learning stability and efficiency.

Specifically, let qt denote the token index to be masked at time step t, and let qt = {q1, . . . , qt}
represent the set of all masked indices up to step t. Given X0, we sample qt and Xt as follows:

qt ∼ Uniform({1, . . . ,M}\qt−1), Qt = I− diag(eqt),

Xt = QtX0, Qt = QtQt−1 . . .Q1, (3)
where eqt is a one-hot vector with one at position qt and zeros elsewhere. We design a Transformer
network ϕθ that takes Xt as input and predicts q(X0) — the token distribution matrix corresponding
to X0. The architectural details of ϕθ are provided in Appendix B. Training of ϕθ is integrated into a
reinforcement learning framework, whose details are described later.

To generate an expression, we begin with a zero matrix XM , where all tokens are masked. At each
backward step t = M,M − 1, . . ., we input Xt into ϕθ to predict the distribution q(X0) and use it
to sample the masked tokens in Xt. To ensure validity, we first identify the valid token set for each
masked position based on the current unmasked tokens. We retrieve and normalize the probabilities
of these valid tokens from q(X0), and sample each masked token accordingly. The sampled tokens
are combined with the existing unmasked tokens to form an intermediate instance of X0. Next, we
apply the diffusion (masking) process defined in (3) to obtain Xt−1, while keeping all the previously
unmasked tokens fixed, i.e., revealing exactly one new token.

This iterative process continues, reconstructing one token at a time, until a complete sample of X0

is obtained (i.e., t = 0). Generation terminates early if the current token matrix already forms a
valid expression. If the final X0 does not represent a valid expression, we randomly replace invalid
tokens until a valid expression is obtained. The full generation procedure is summarized in Appendix
Algorithm 2, and further implementation details are given in Appendix Section A.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Forward Pass Backward Pass

Figure 1: Illustration of the forward and backward process of the random mask-based diffusion. White entries
represent the masked tokens. Green entries represent tokens in the original expression (left), and the generated
tokens (right).

3.2 Reinforcement Learning with Token-Wise GPRO

To train the diffusion model ϕθ using a given measurement dataset D, we adopt a reinforcement
learning framework. Specifically, we employ a risk-seeking strategy similar to that used in DSR.
At each training step, we select the top α% of expressions generated by our model based on their
NRMSE of the data fit. For each expression τ (i), we assign a reward R(τ (i)) as defined in (1). We
then update ϕθ to encourage the generation of expressions with similarly high rewards.

Specifically, let X(i)
0 denote the token matrix representation of expression τ (i). We randomly select

a diffusion step t and generate a noisy version X
(i)
t using the forward process as described in (3).

Feeding X
(i)
t into ϕθ, we obtain a prediction of q(X(i)

0). The model is trained to maximize the
log-likelihood of X(i)

0 scaled by the relative reward Ai = R(τ (i))−Rα, under the predicted q(X
(i)
0).

This leads to the following optimization objective:

maximizeθ Et

[∑
τ(i)∈Sα

Ai · log p
(
X

(i)
0 |ϕθ(X

(i)
t)

)]
, (4)

where Sα denotes the set of top α% expressions, and the likelihood p(X
(i)
0 |ϕθ(X

(i)
t)) =∏

k p(x
(i)
k |η

(i)
k,t,θ), each x

(i)
k is the k-th row of X(i) corresponding to an non-empty token, and

η
(i)
k,t,θ is the predicted probability distribution for that token, i.e., the k-th row of ϕθ(X

(i)
t).

To further enhance training stability and efficiency, we adapt the recent Group Relative Policy
Optimization (GRPO) framework (Shao et al., 2024b) to optimize (4). Specifically, instead of using
all token likelihoods equally, we selectively use them to update model parameters based on a trust
region criterion: we only use token likelihoods whose variation remains within a bounded range
relative to the earlier model. Specifically, the model update is given by:

θ ← θ + γ∇JGRPO(θ;α),

JGRPO(θ;α) =
1

Bα/100

∑
τ(i)∈Sα

∑
k

min {hθkt, clip (hθkt, 1− ϵ, 1 + ϵ)} ·Ai − β · gθkt, (5)

where γ > 0 is the learning rate, hθkt =
p(x

(i)
k |η(i)

k,t,θ)

p(x
(i)
k |η(i)

k,t,θold
)

is the likelihood ratio of k-th token between

the current model and the model at the beginning of the current epoch (with parameters θold),
gθkt = KL[p(x(i)

k |η
(i)
k,t,θ)∥p(x

(i)
k |η

(i)
k,t,θref

)] is a regularization term that regularizes the current model
not to deviate too much from a reference model with parameters θref. Here β > 0 controls the strength
of regularization, and KL[·∥·] denotes the Kullback–Leibler divergence. By restricting updates to
tokens whose likelihood ratios hθkt lie within the trust region [1− ϵ, 1 + ϵ], we prevent unstable and
potentially harmful updates caused by outlier token samples.

It is worth noting that our approach differs from standard diffusion training, which constructs fixed
paths from ground-truth instances to noise and learns to reverse them. Our setting is unsupervised:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Diffusion based Deep Symbolic Regression (DDSR)
input Learning rate γ; risk factor α; expression batch size B; steps per epoch C; epochs per reference
G; number of epochs N ; entropy scalar λ
output The best equation τ∗

1: Initialize transformer ϕ with parameters θ
2: Sα ← {}
3: for i = 0 to N − 1 do
4: if i mod(G) = 0 then
5: θref ← θ
6: end if
7: θold ← θ
8: Sample B expression with the current model, and obtain the top α% expressions Siα
9: Sα ← Sα ∪ Siα

10: Set Rα to the minimum award among the expressions in Sα.
11: for j = 1 to C do
12: Randomly sample diffusion time step t
13: Compute JGRPO from (5)
14: θ ← θ + γ(∇θJGRPO + λ · Entropy-Gradient)
15: end for
16: Remove the bottom α% expressions from Sα according to the rewards
17: end for
18: return the best expression from Sα

we only have numerical measurement data, with no ground-truth expressions available (the goal is to
discover them). To address this, we adopt a reinforcement learning approach. Starting from randomly
initialized parameters, the diffusion model generates candidate expressions, which are evaluated
on the measurement data and assigned rewards. These rewards weight the log-likelihoods of the
corresponding token sequences, forming the update in (5). Since token likelihoods are determined by
the diffusion model, gradients can be backpropagated to update parameters, progressively increasing
the probability of generating high-reward expressions. Repeating this process throughout training
adaptively shifts the model distribution toward more accurate expressions.

3.3 Long Short-Term Risk-Seeking

The risk-seeking policy used in DSR leverages only the top-performing expressions generated by
the current model. However, this local policy can limit the exploitation capability of reinforcement
learning. To encourage broader exploitation and to drive the model toward generating diverse yet
high-quality expressions, we expand the candidate set by incorporating the top α% expressions not
only from the current epoch but also from all previous epochs. Specifically, at each epoch k, we
update the candidate pool as follows:

Sα ← Sα ∪ Skα, (6)
where Skα denotes the top α% expressions sampled at epoch k. We then set Rα to the minimum
reward among all expressions in Sα, and update the model accordingly following (5). To prevent
the buffer from growing indefinitely, after each epoch we remove the bottom α% expressions with
the lowest rewards from Sα. This policy can be viewed as a hybrid of the risk-seeking strategy in
DSR and the priority training queue proposed in (Mundhenk et al., 2021). By jointly considering
both short-term and long-term risks, our approach prevents the model from drifting away from
well-performing but hard-to-sample expressions. By continuously updating from such expressions,
the model progressively improves its ability to generate high-quality outputs. A full summary of our
training procedure is provided in Algorithm 1.

4 Related Work

The Deep Symbolic Regression (DSR) framework (Petersen et al., 2019) pioneered the use of rein-
forcement learning to train RNN-based expression generators from the measurement data. Building
on this framework, recent extensions (Tenachi et al., 2023; Jiang et al., 2024) have enforced physics-
unit constraints as domain knowledge to enhance the quality of expression generation or confined the
search space through vertical discovery strategies for vector symbolic regression.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Another line of work has shifted toward building foundation models that map numerical measurements
outright to symbolic expressions (Biggio et al., 2021; Kamienny et al., 2022; Valipour et al., 2021;
Vastl et al., 2022). These models typically adopt an encoder-decoder transformer architecture, where
encoder layers extract structural patterns from the input data, and decoder layers synthesize symbolic
outputs. Although these approaches are promising, the training is costly and acutely sensitive to
data preparation pipelines, often requiring massive synthetic datasets. More critically, without a
data-specific search mechanism, such models often struggle to generalize — especially when faced
with out-of-distribution measurement datasets (Kamienny et al., 2023).

To overcome these limitations, a new wave of research couples pretrained foundation models with
explicit search or planning mechanisms tailored to the target dataset, for instance, TPSR (Shojaee et al.,
2023), DGSR (Holt et al., 2023), and DGSR-MCTS (Kamienny et al., 2023). In TPSR, the pretrained
model is integrated into a modified Monte Carlo Tree Search (MCTS) method (Browne et al., 2012),
using model-guided token selection and tree expansion driven by an upper confidence bound (UCB)
heuristic. DGSR combines a pretrained encoder-decoder model with genetic programming (GP) at
inference time: decoder-generated expressions seed the initial GP population, and top candidates are
used to iteratively fine-tune the decoder. DGSR-MCTS uses a flexible MCTS search model including
a mutation policy network, augmented with critic layers; The mutation policy network is pretrained
on external datasets and then fine-tuned on the task-specific data while the critic layers are trained
from scratch on the task-specific data.

Beyond these model-based approaches, ensemble frameworks such as uDSR (Landajuela et al., 2022)
combine multiple symbolic regression strategies (e.g., GP and DSR) to boost robustness and accuracy.
Meanwhile, model-free methods (Sun et al., 2023; Xu et al., 2024) explore purely search-based
techniques, using MCTS or ensemble strategies combining MCTS with GP, to uncover symbolic
expressions without relying on heavy pretraining.

In the domain of discrete diffusion, beyond D3PM (Austin et al., 2021), several works have explored
graph (Vignac et al., 2023) and tree (Li et al., 2024) generation. Both graph diffusion models employ
a modified transition matrix of the form Qt = (1− βt)I+ βt1m

⊤, where βt is a scalar determined
by the diffusion schedule, and m represents the marginal distribution over nodes (or edges) in the
training data. Recently, Nie et al. (2025) proposed a masked discrete distribution framework, training
models in a supervised learning setting to improve sampling quality in LLMs. Our approach adopts a
similar masking idea but differs in two key aspects: (1) at each step, we mask out only a single token
to preserve structural information more effectively, and (2) we integrate the diffusion process into a
reinforcement learning framework to guide training toward high-reward expressions.

5 Experiment

5.1 Performance on SRBench

We first evaluated DDSR on the well-known and comprehensive SRBench dataset (La Cava et al.,
2021), which is divided into two groups: 133 problems with known ground-truth solutions and
120 black-box problems without known solutions. The black-box problems consists of real-world
scientific and engineering problems spanning domains such as health informatics, technology, envi-
ronmental science, and economics. For the first group, four noise levels are considered: 0%, 0.1%,
1%, and 10% (see details in Appendix Section C). All experiments were conducted on A40s from the
NCSA Delta cluster1. Each A40 ran 8 trials in parallel. For each problem at each noise level, we ran
DDSR eight times, with each run capped at a four-hour time limit. The hyperparameter settings used
by DDSR are detailed in Appendix Table 4.

We compared DDSR against eighteen existing symbolic regression (SR) methods, spanning GP-based,
MCTS-based, deep learning-based, and ensemble approaches. Notably, we include two versions of
DSR in the comparison: the original version without constant tokens and an extended version that
incorporates and optimizes constant tokens during training. We denote these as DSR-W/OC and
DSR-W/C, respectively. DSR is the most comparable method to DDSR, as it also uses a reinforcement
learning framework and learns directly from data, without relying on pretrained models. AIFeynman
is a method that searches for hyperplanes in the dataset and fits each with a polynomial (Udrescu
& Tegmark, 2020). Gplearn, Bingo (Randall et al., 2022), GP-GOMEA (Virgolin et al., 2021),

1https://www.ncsa.illinois.edu/research/project-highlights/delta/

6

https://www.ncsa.illinois.edu/research/project-highlights/delta/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 20 40 60 80

DDSR
DSR-W/C

DSR-W/OC
TPSR

AFP
AFP_FE

Bingo
EPLEX

FEAT
FFX

GP-GOMEA
ITEA

MRGP
Operon

SBP-GP
gplearn

AIFeynman
BSR

uDSR

Symbolic Solution Rate (%)

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy Rate

10
1

10
2

10
3

10
4

Simplified Complexity

Target Noise
10%
1%
0.1%
0%

Figure 2: Performance on SRBench problems with ground-truth solutions. Error bars denote a 95% confidence
interval. uDSR’s high performance is attributed to it being an ensemble method that combines several SR
methodologies.

Table 1: Performance on SRBench problems with ground truth solutions.

Symbolic Solution Rate (%) Accuracy Rate (%)

Algorithm 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1

DDSR 46.54 27.02 20.33 10.69 60 60 59 56
DSR-W/C 24.81 24.42 17.53 10.48 38 41 40 39
DSR-W/OC 19.71 19.23 18.92 16.61 24 25 25 25
GP-GOMEA 43.08 10.62 4.69 1.46 71 70 73 68
TPSR 36.09 0.00 0.00 0.00 68 68 66 38

SBP-GP (Virgolin et al., 2019), Operon (Burlacu et al., 2020), and MRGP (Arnaldo et al., 2014) all
incorporate GP as a primary or supporting component. TPSR combines a pretrained transformer-
based foundation model with a Monte Carlo Tree Search to find optimal expressions, while uDSR
is a hybrid model that ensembles a pretrained numeral symbolic regression model with DSR, GP,
AIFeynman, and linear models.

For problems with known solutions, we evaluated each method on symbolic solution rate, accuracy
rate, and simplified complexity. The symbolic solution rate is computed using two criteria: symbolic
equivalence, as determined by the SymPy library2, or an R2 score of exactly 1.0. Accuracy rate is a
binary metric indicating whether the method finds an expression with R2 > 0.999. The simplified
complexity is defined as the number of tokens in the expression tree after simplification by SymPy.
We present results for the most comparable and several representative methods in Table 1. Full
comparison results are provided in Figure 2 and Appendix Table 5.

We observe that DDSR substantially outperforms DSR in nearly all settings, with the exception
of the 10% noise level, where DSR-W/OC achieves a higher solution rate. This may be attributed
to the larger token space employed by DDSR. Since DSR-W/OC excludes constant tokens, its
reduced token space makes the search process more conservative, potentially offering greater
robustness in the presence of high noise. However, even at the 10% noise level, DDSR still
achieves substantially higher solution accuracy than DSR-W/OC. When DSR uses the same to-
ken space as DDSR— namely, in the DSR-W/C variant — both its solution rate and accuracy
consistently lag behind DDSR, demonstrating the advantage of our diffusion-based framework.
DDSR also outperforms TPSR, GP-GOMEA, SBP-GP, and many other GP-based methods in terms
of solution rate, particularly under non-zero noise levels. Although these methods often achieve
higher solution accuracy, the expressions they generate tend to be much longer and more com-
plex. For instance, TPSR and GP-GOMEA yield average simplified complexities of 61.4 and 35.4,

2https://www.sympy.org/

7

https://www.sympy.org/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

respectively, while DDSR maintains a significantly lower average of 17.7. These results under-
score the robustness of DDSR and its ability to generate more interpretable symbolic expressions.

0.0 0.2 0.4 0.6 0.8 1.0
R²

0

20

40

60

80

100

M
od

el
 S

iz
e

AFP*

AFP_FE*

BSR* Bingo

DDSR

DSR-W/C
DSR-W/OC

EPLEX*

FEAT*

GP-GOMEA*

Linear

Operon*

TPSR*

gplearn*

Figure 3: Mean R2 score vs. model size on black-box
problems. Model size means the expression length.The
numerical values are reported in Appendix Table 7.

AIFeynman outperforms DDSR in symbolic so-
lution rate in the noiseless setting, which aligns
with its algorithmic design. AIFeynman fits aug-
mented polynomials and excels when the tar-
get expression is a clean polynomial — com-
mon among the noiseless symbolic problems in
SRBench. However, its performance degrades
sharply in black-box settings; its average R2

score falls below zero, leading to its exclusion
from Figure 3. Lastly, while uDSR — an en-
semble method — still achieves higher overall
performance than DDSR, it is important to note
that DDSR can be seamlessly incorporated into
the uDSR pipeline. It could either replace DSR
or be added as a complementary component, fur-
ther enhancing the ensemble’s effectiveness in
symbolic expression discovery.

For the black-box problems — where ground-
truth solutions are unavailable — we evaluated
model performance using the trade-off between
average R2 score and expression size, as shown in Figure 3. DDSR lies at the frontier of the
Pareto curve, indicating that it achieves one of the best balances between accuracy and inter-
pretability. In other words, DDSR offers high data-fitting performance while maintaining rela-
tively concise expressions. As an example for comparison, TPSR achieves slightly higher R2

scores, but the resulting expressions are substantially more complex, averaging around 70 tokens.

Table 2: Performance of DSR w/wo Diffusion.

DSR Diffusion-DSR DDSR

Solution Rate (%) 24.8 44.6 46.5
Accuracy Rate (%) 38 57 60

Running Time. Average run-time of each method is
reported in Appendix Table 6. When using the same
token space, DDSR requires only about 1/2 of the
runtime of DSR (specifically, DSR-W/C), highlight-
ing the training efficiency enabled by our diffusion-
based framework. This might be attributed to our
diffusion-based model, which generates more diverse
and high-quality candidates, thereby accelerating ex-
pression discovery. Note that DSR-W/OC took less running time due to its reduced token space —
no constant tokens — and the thereof lack of constant optimization step.

5.2 Ablation Studies

Table 3: Average number of novel expressions
(diversity) generated across Feynman problems.

Epoch DDSR DSR Improvement (%)

0 951.8 989.8 -3.8
50 917.3 804.1 14.1

150 928.0 720.7 28.8
200 914.0 710.2 28.7
250 869.7 655.3 32.7
300 812.8 656.1 23.9
350 756.0 578.1 30.8
400 710.6 558.5 27.2
450 684.5 536.0 27.7
500 662.0 468.0 41.5

Advantage of Diffusion. To isolate the effect of
diffusion, we retain only the diffusion component
and keep all other parts of our SR model identical
to DSR — namely, the risk-seeking policy gradient
(w/o GPRO) and short-term risk seeking. We refer
to this variant as Diffusion-DSR. The symbolic solu-
tion rate and accuracy rate on SRBench (0% noise)
are reported in Table 2. Results show that diffusion
alone substantially improves DSR, and adding our
other components yields further gains. This demon-
strates that diffusion is a key driver of the overall
improvement.

Expression Diversity. We examined the average
number of novel expressions generated during train-
ing across all Feynman problems. The results, shown in Table 3 and Appendix Figure 9, indicate
that DDSR consistently discovers more novel expressions than DSR during training, with an average
diversity improvement of about 28% and a peak improvement of 41%. These findings confirm that
DDSR effectively explores a broader range of expressions, thereby facilitating expression discovery.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

DDSR-GRPO
DDSR-RSPG

(a) feyman_ll_6_11

0 100 200 300 400 500 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

DDSR-GRPO
DDSR-RSPG

(b) strogatz_predprey2

0 100 200 300 400 500 600
Epoch

0.6

0.7

0.8

0.9

Re
wa

rd

DDSR-GRPO
DDSR-RSPG

(c) feyman_test_3
Figure 5: Learning curves for DDSR with GPRO and with RSPG. Error bars denote one standard deviation.

Individual Components. Next, we conducted ablation studies to assess the effectiveness of individual
components in our method. Specifically, we evaluated three variants of DDSR by: (1) replacing our
random mask-based discrete diffusion with the standard Discrete Denoising Diffusion Probabilistic
Model (D3PM) (see Section 2); (2) replacing Grouped Relative Policy Optimization (GRPO) with
the standard risk-seeking policy gradient (RSPG); (3) substituting our Long-Short-Term (LST) policy
with a short-term (ST) policy that selects the top α% expressions only from the current model. We
tested these variants on the Feynman and Strogatz datasets in SRBench. The solution accuracy results
are shown in Figure 4.

DDSR

DDSR-RSPG
DDSR-ST

D3PM

Algorithm

52.5

53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

Ac
cu

ra
cy

 R
at

e
(%

)

55.2%

55.6%

53.9%

53.0%

(a) Feynman dataset

DDSR

DDSR-RSPG
DDSR-ST

D3PM

Algorithm

55

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 R
at

e
(%

)

96.4%

92.9% 92.9%

60.7%

(b) Strogatz dataset

Figure 4: DDSR ablations accuracy rate (%) for the
Feynman and Strogatz datasets.

First, our random mask-based diffusion im-
proves solution accuracy rate — by 2.2% on
the Feynman dataset and 35.7% on the Stro-
gatz dataset — compared to the standard D3PM.
This improvement may stem from the fact that
D3PM perturbs all tokens at each diffusion step,
which can introduce instability during training.
In contrast, our method perturbs only one token
at each step, providing more stable and effective
learning dynamics.

Second, while RSPG leads to a modest 0.4% im-
provement on the Feynman dataset, it results in
a 3.5% performance drop on the Strogatz dataset
relative to GRPO. This highlights GRPO’s ro-
bustness. Moreover, GRPO accelerates training:
on average, it converges 30 epochs faster than RSPG. Representative learning curves for randomly
selected problems are shown in Figure 5 and Appendix Figure 8.

Third, the LST policy outperforms the ST policy by 1.3% and 3.5% on the Feynman and Stro-
gatz datasets, respectively. This demonstrates the benefit of leveraging historically top-performing
expressions to enhance exploitation.

Choice of α. Our main results are reported with α = 5%, following the same setting as DSR
— our primary competing baseline — for a fair and strong comparison. We further examine how
different choices of α affect the trade-off between computational cost and performance. The details
are provided in Appendix D.1.

6 Conclusion

We have introduced DDSR— a random masked discrete diffusion model for symbolic regression.
Our experimental results on the SRBench benchmark demonstrate that DDSR outperforms deep
reinforcement learning-based approaches and achieves performance comparable to state-of-the-art
genetic programming (GP) methods.

However, DDSR has some limitations. In particular, it tends to require longer runtimes to discover
solutions for complex problems and exhibits reduced robustness to high levels of noise in the data.

Future work may explore extending the discrete diffusion framework to supervised learning of
foundational models, improving the efficiency of the diffusion transformation process, and refining
the reward function to enhance exploitation and increase robustness to noisy data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References

Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic program-
ming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
GECCO ’14, pp. 879–886, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450326629. doi: 10.1145/2576768.2598291. URL https://doi.org/10.1145/
2576768.2598291.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning (ICML),
pp. 936–945. Pmlr, 2021.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda. Operon C++: an efficient ge-
netic programming framework for symbolic regression. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion, GECCO ’20, pp. 1562–1570, New York,
NY, USA, July 2020. Association for Computing Machinery. ISBN 978-1-4503-7127-8. doi:
10.1145/3377929.3398099. URL https://doi.org/10.1145/3377929.3398099.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. In
The Eleventh International Conference on Learning Representations, 2023.

Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen, Zhengdong
Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, Jesse Engel, Quoc V. Le, William Chan,
Zhifeng Chen, and Wei Han. Noise2music: Text-conditioned music generation with diffusion
models, 2023. URL https://arxiv.org/abs/2302.03917.

Nan Jiang, Md Nasim, and Yexiang Xue. Vertical symbolic regression via deep policy gradient. In
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI),
pp. 5891–5899, 2024.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-to-
end Symbolic Regression with Transformers. May 2022. URL https://openreview.net/
forum?id=GoOuIrDHG_Y.

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep
generative symbolic regression with monte-carlo-tree-search, 2023. URL https://arxiv.
org/abs/2302.11223.

John R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87–112, June 1994. ISSN 1573-1375. doi: 10.1007/BF00175355.
URL https://doi.org/10.1007/BF00175355.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrício Olivetti de Francca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary Symbolic Regression Methods
and their Relative Performance, July 2021. URL http://arxiv.org/abs/2107.14351.
arXiv:2107.14351 [cs].

Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio Ar-
avena, Terrell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified frame-
work for deep symbolic regression. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=2FNnBhwJsHK.

10

https://doi.org/10.1145/2576768.2598291
https://doi.org/10.1145/2576768.2598291
https://doi.org/10.1145/3377929.3398099
https://arxiv.org/abs/2302.03917
https://openreview.net/forum?id=GoOuIrDHG_Y
https://openreview.net/forum?id=GoOuIrDHG_Y
https://arxiv.org/abs/2302.11223
https://arxiv.org/abs/2302.11223
https://doi.org/10.1007/BF00175355
http://arxiv.org/abs/2107.14351
https://openreview.net/forum?id=2FNnBhwJsHK

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, 2(2):164–168, Jul 1944. doi: 10.1090/qam/10666.

Mufei Li, Viraj Shitole, Eli Chien, Changhai Man, Zhaodong Wang, Srinivas, Ying Zhang, Tushar
Krishna, and Pan Li. LayerDAG: A layerwise autoregressive diffusion model of directed acyclic
graphs for system. In Machine Learning for Computer Architecture and Systems 2024, 2024.
URL https://openreview.net/forum?id=IsarrieeQA.

Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel faissol, and Brenden K
Petersen. Symbolic regression via deep reinforcement learning enhanced genetic programming
seeding. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 24912–24923. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/d073bb8d0c47f317dd39de9c9f004e9d-Paper.pdf.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

Brenden K. Petersen, Mikel Landajuela, T. Nathan Mundhenk, Claudio P. Santiago, Soo K. Kim,
and Joanne T. Kim. Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients, December 2019. URL https://arxiv.org/abs/1912.
04871v4.

David L. Randall, Tyler S. Townsend, Jacob D. Hochhalter, and Geoffrey F. Bomarito. Bingo: a
customizable framework for symbolic regression with genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO ’22, pp. 2282–2288,
New York, NY, USA, July 2022. Association for Computing Machinery. ISBN 978-1-4503-9268-6.
doi: 10.1145/3520304.3534031. URL https://dl.acm.org/doi/10.1145/3520304.
3534031.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K. Reddy. Transformer-based
Planning for Symbolic Regression, March 2023. URL https://arxiv.org/abs/2303.
06833v5.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Dis-
covering governing equations via monte carlo tree search. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=ZTK3SefE8_Z.

Wassim Tenachi, Rodrigo Ibata, and Foivos I Diakogiannis. Deep symbolic regression for physics
guided by units constraints: toward the automated discovery of physical laws. The Astrophysical
Journal, 959(2):99, 2023.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: a Physics-Inspired Method for Symbolic
Regression, April 2020. URL http://arxiv.org/abs/1905.11481. arXiv:1905.11481
[hep-th, physics:physics].

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. SymbolicGPT: A Generative
Transformer Model for Symbolic Regression, June 2021. URL http://arxiv.org/abs/
2106.14131. arXiv:2106.14131 [cs].

11

https://openreview.net/forum?id=IsarrieeQA
https://proceedings.neurips.cc/paper_files/paper/2021/file/d073bb8d0c47f317dd39de9c9f004e9d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d073bb8d0c47f317dd39de9c9f004e9d-Paper.pdf
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/1912.04871v4
https://arxiv.org/abs/1912.04871v4
https://dl.acm.org/doi/10.1145/3520304.3534031
https://dl.acm.org/doi/10.1145/3520304.3534031
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2303.06833v5
https://arxiv.org/abs/2303.06833v5
https://openreview.net/forum?id=ZTK3SefE8_Z
https://openreview.net/forum?id=ZTK3SefE8_Z
http://arxiv.org/abs/1905.11481
http://arxiv.org/abs/2106.14131
http://arxiv.org/abs/2106.14131

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Martin Vastl, Jonávs Kulhánek, Jivrí Kubalík, Erik Derner, and Robert Babuvska. SymFormer:
End-to-end symbolic regression using transformer-based architecture, October 2022. URL http:
//arxiv.org/abs/2205.15764. arXiv:2205.15764 [cs].

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation, 2023. URL https://arxiv.org/
abs/2209.14734.

Marco Virgolin, Tanja Alderliesten, and Peter A. N. Bosman. Linear scaling with and within
semantic backpropagation-based genetic programming for symbolic regression. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’19, pp. 1084–1092, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361118. doi:
10.1145/3321707.3321758. URL https://doi.org/10.1145/3321707.3321758.

Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter A. N. Bosman. Improving Model-based
Genetic Programming for Symbolic Regression of Small Expressions. Evolutionary Computation,
29(2):211–237, June 2021. ISSN 1530-9304. doi: 10.1162/evco_a_00278. URL http://
arxiv.org/abs/1904.02050. arXiv:1904.02050 [cs].

Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=PJVUWpPnZC.

12

http://arxiv.org/abs/2205.15764
http://arxiv.org/abs/2205.15764
https://arxiv.org/abs/2209.14734
https://arxiv.org/abs/2209.14734
https://doi.org/10.1145/3321707.3321758
http://arxiv.org/abs/1904.02050
http://arxiv.org/abs/1904.02050
https://openreview.net/forum?id=PJVUWpPnZC
https://openreview.net/forum?id=PJVUWpPnZC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A Algorithms

A.1 Sampling Expressions

We sample an expression from a distribution matrix of size M × d, where M denotes the maximum
length of the expression, and d denotes the number of tokens in the library. At each step in the
process, we get a vector of valid tokens for the current node based on the current incomplete version
of τ . This vector enforces rules to avoid the expression from being invalid. DDSR further restricts
that the sampled expression trees can include up to 10 constants, and trigonometric functions such
as sin and cos can not be nested. The rule for setting a maximum number of constant tokens can
help reduce optimization runtime and mitigate overfitting. Constant tokens are optimized with the
Levenberg-Marquardt algorithm (Levenberg, 1944) for each discovered equation. The prevention
of nested trigonometric functions is inherited from DSR, as the authors of DSR claimed nested
trigonometric functions do not occur in physics.

Algorithm 2 Sampling expressions for a given sequence of categorical distributions
input probability distribution p, max depth of the tree M
output An expression τ

1: for i = 0 to M do
2: r ← Get Valid Tokens(τ, i)
3: pi ← pi · r
4: if

∑d
j=1 pi,j = 0 then

5: pi ← 1 ∗ r
6: end if
7: pi ← pi/

∑d
j=1 pi,j

8: τi ∼ pi
9: end for

10: return τ

Ordering: Converting expression trees into a vector of tokens can be done in various ways. We
used the tree’s breadth-first search ordering (BFS) to order the nodes/tokens. This ordering keeps
siblings of parents nodes close to each other in the ordering. In comparison, the preorder traversal
ordering (POT) can place siblings far apart. Figure 6 shows the conversion of an expression tree into
a breadth-first search ordering and the comparison to a preorder traversal ordering.

B Model Architecture

The positional encoding in the input layer enables the attention layers to capture positional-based
relationships of the tokens. In addition to generating tokens from the BFS search order, our diffusion
model also involves a time step variable t informing the progress of the diffusion and denoising.
To integrate the information from both token positions l and time steps t, we introduce a two-
dimensional encoding as defined below. The full architecture of our model is shown in Figure 7. The
hyperparameter settings are listed in Table 4.

PE(l, t)2i = sin(
l

10000(4i/D)
),PE(l, t)2i+1 = cos(

l

10000(4i/D)
),

PE(l, t)D+2j = sin(
t

10000(4j/D)
),PE(l, t)D+2j+1 = cos(

t

10000(4j/D)
), (7)

C Noise Setting in SRBench

The noise levels indicate the relative amount of noise added to the expression values for evalua-
tion purposes. Specifically, for each data point, Gaussian noise is added as y = f(x1, . . . , xk) +
noise-level · s · ϵ, where f(x1, . . . , xk) is the ground-truth expression, s is the standard deviation of

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

BFS:

POT:

Figure 6: Breadth first search ordering of an expression compared to the pre-order traversal

Table 4: Hyperparameter settings of DDSR.

Hyperparameter DDSR
Variables {1, c (Constant Token), xi}

Unary Functions {sin, cos, log,
√

(·), exp}
Binary Functions {+, -, *, /,ˆ}

Batch Size 1000
Risk Seeking Percent (α) 5%

Optimizer ADAM
Learning Rate 1E-4

Max Depth 32
Oversampling 3

Number of Epochs 600
Entropy Coefficient λ 0.0005

Encoder Number 1
Decoder Number 1
Number of Heads 1

Feed Forward Layers Size 2048
β 0.01
ϵ 0.2

Embedding Dim 15
C 5
G 5

the expression values across all inputs (x1, . . . , xk) in the dataset, and ϵ is drawn from a standard
Gaussian white noise distribution N (0, 1). This setup is the standard evaluation protocol in the
SRBench benchmark, which is designed to assess the robustness of symbolic regression methods
under varying noise levels.

D Additional Results

Table 5 provides the numerical values of the symbolic solution rate, accuracy rate and simplified
complexity of all the methods offered by SRBench for problems with known solutions. Table 8
reports the R2 scores, model size, and training time of every method on the black-box problems of
SRBench. DDSR has similar performance to Bingo and GP-GOMEA on the black box problems,
performing as an improvement in reducing the complexity of GP-GOMEA and increasing the R2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

BFS Expression Tree

Output Categorical
Distribution

Attention Block

Normalization
Layer

Attention Block

Normalization
Layer

Feed Forward
Layer

Linear Layer

Softmax

Attention Block

Normalization
Layer

Feed Forward
Layer

Positional EncodingOne Hot Encoding

Linear Layer

Relu

Linear Layer

Normalization
Layer

+

+

+

+

+

Feed Forward
Layer

Encoding
Layer

Decoding
Layer

+

PositionsTimestep

Linear Layer

Figure 7: The architecture of the diffusion model in DDSR.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 200 400 600
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
Re

wa
rd

feynman_II_15_5

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Re
wa

rd

feynman_I_15_3t

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Re
wa

rd

feynman_I_30_3

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

strogatz_vdp1

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

feynman_II_10_9

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

Re
wa

rd

feynman_I_34_14

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.75

0.80

0.85

0.90

0.95

1.00
Re

wa
rd

feynman_II_8_31

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Re
wa

rd

feynman_test_8

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

feynman_II_6_11

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

feynman_III_13_18

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Re
wa

rd

feynman_I_12_5

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

strogatz_lv2

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

feynman_III_15_12
DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

Re
wa

rd

feynman_test_20

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

feynman_II_34_2a

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Re
wa

rd

feynman_test_5

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

feynman_I_18_14

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Re
wa

rd

feynman_II_11_27

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.5

0.6

0.7

0.8

0.9
Re

wa
rd

feynman_I_44_4

DDSR-GRPO
DDSR-RSPG

0 200 400 600
Epoch

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

feynman_I_32_5

DDSR-GRPO
DDSR-RSPG

Figure 8: Learning curves of 20 problems for DDSR with GPRO and with RSPG. These problems are randomly
selected from the Feynman and Strogatz dataset. Colored regions denote one standard deviation.

0 100 200 300 400
Epoch

50

60

70

80

90

100

Pe
rc

en
t N

ov
el

 E
xp

re
ss

io
ns

 (%
)

Percent of Novel Expressions per Epoch

DDSR
DSR

Figure 9: Comparing expression novelty throughout training for DDSR and DSR

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

score of Bingo. Significantly, DDSR outperforms four of the five machine learning methods from
SRBench (linear fit, random forests, AdaBoost, and MLPs) in R2 while offering an interpretable
model. XGBoost is the only machine learning method that outperforms DDSR in R2 score by 0.046
while increasing the model size by 713x and losing any natural interpretability.

Table 5: Performance on SRBench problems with known solutions.

Symbolic Solution Rate (%) Accuracy Rate (%) Simplified Complexity

Algorithm 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1 0.0 0.001 0.01 0.1

AFP 22.31 19.92 16.85 12.85 43 42 40 41 29.35 28.43 29.01 30.82
AFP_FE 28.08 22.69 20.31 12.85 56 50 50 50 34.58 35.66 34.45 36.77
AIFeynman 61.84 31.89 12.61 0.86 74 74 68 10 83.29 88.66 99.27 110.54
BSR 2.50 0.61 0.08 0.00 12 11 12 7 34.29 35.51 36.80 38.38
Bingo 48.77 14.62 4.77 0.77 64 60 62 59 15.56 19.29 21.32 22.54
DDSR 46.54 27.02 20.33 10.69 60 60 59 56 17.33 17.13 17.87 18.48
DSR-W/C 24.81 24.42 17.53 10.48 38 41 40 39 16.57 16.10 16.96 18.45
DSR-W/OC 19.71 19.23 18.92 16.61 24 25 25 25 13.14 14.36 14.61 14.40
EPLEX 12.50 9.92 8.77 9.54 44 45 52 47 53.24 51.74 49.91 40.04
FEAT 0.10 0.00 0.00 0.00 40 43 41 14 88.01 77.32 72.61 50.40
FFX 0.00 0.00 0.00 0.08 0 0 3 18 274.88 273.29 286.03 341.38
GP-GOMEA 43.08 10.62 4.69 1.46 71 70 73 68 25.73 32.75 37.59 45.41
ITEA 20.77 13.77 7.69 1.46 27 27 27 26 14.46 14.96 15.35 16.00
MRGP 0.00 0.00 0.00 0.00 93 92 89 2 109.95 106.50 83.06 0.00
Operon 16.00 12.31 1.92 0.08 87 86 86 73 40.80 40.13 60.40 70.78
SBP-GP 22.69 0.69 0.00 0.00 74 74 75 54 109.94 102.09 112.93 116.30
TPSR 36.09 0.00 0.00 0.00 68 68 66 38 57.11 59.32 63.42 65.83
gplearn 16.15 16.86 16.59 16.00 30 29 27 22 45.80 37.76 36.42 33.84

Table 6: Average run time for each method on SRBench symbolic dataset.

Algorithm Run Time (s)
AFP 3488.63
AFP_FE 28830.37
AIFeynman 29590.66
Bingo 22542.44
BSR 28800.16
DDSR 14441.12
DSR-W/C 27131.73
DSR-W/OC 630.83
EPLEX 10865.90
FEAT 1079.46
FFX 17.34
GP-GOMEA 2072.25
ITEA 1411.92
MRGP 18527.59
Operon 2483.09
SBP-GP 28968.48
TPSR 172.87
gplearn 1396.98

D.1 Ablation Study on Risk-Seeking Percentage α

For a fair and strong comparison, we set α = 5%, following the same setting as DSR (Petersen et al.,
2019), which is our primary competing baseline. To investigate the trade-off between the memory
cost for back-propagation at each training step and solution discovery performance, we varied α from
1%, 5%, 10% and 25%, and ran our method on the Strogatz dataset. The GPU memory usage and the
solution accuracy rate are reported in Table 8. We can see the best trade-off is achieved at 5%.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Performance on black-box problems of SRBench.

Algorithm R2 Score Complexity
AFP 0.657613 34.5
AFP_FE 0.664599 35.6
AIFeynman -3.745132 2500
AdaBoost 0.704752 10000
BSR 0.257598 19.8
Bingo 0.711951 22.2
DDSR 0.730218 23.8
DSR-W/OC 0.571669 8.89
DSR-W/C 0.642417 14.8
EPLEX 0.760414 55.8
FEAT 0.784662 74.2
FFX -0.667716 1570
GP-GOMEA 0.746634 27.3
ITEA 0.640731 112
KernelRidge 0.615147 1820
LGBM 0.637670 5500
Linear 0.454174 17.4
MLP 0.531249 3880
MRGP 0.417864 12100
Operon 0.794831 65.0
RandomForest 0.698541 1.54e+06
SBP-GP 0.798932 639
TPSR 0.792001 95.7
XGB 0.775793 16400
gplearn 0.541264 16.3

Table 8: DDSR performance on Strogatz dataset with different choices of α.

α 1% 5% 10% 25%
Accuracy Rate 89% 96% 92% 92%

GPU Memory (MB) 220 270 348 530

18

	Introduction
	Background
	Method
	Random Mask-Based Discrete Diffusion
	Reinforcement Learning with Token-Wise GPRO
	Long Short-Term Risk-Seeking

	Related Work
	Experiment
	Performance on SRBench
	Ablation Studies

	Conclusion
	Algorithms
	Sampling Expressions

	Model Architecture
	Noise Setting in SRBench
	Additional Results
	Ablation Study on Risk-Seeking Percentage

