scDataset: Scalable Data Loading for Deep Learning
on Large-Scale Single-Cell Omics

Davide D’Ascenzo ! 2 Sebastiano Cultrera di Montesano >

Abstract

Modern single-cell datasets now comprise hun-
dreds of millions of cells, presenting significant
challenges for training deep learning models that
require shuffled, memory-efficient data loading.
While the AnnData format is the community stan-
dard for storing single-cell datasets, existing data
loading solutions for AnnData are often inade-
quate: some require loading all data into memory,
others convert to dense formats that increase stor-
age demands, and many are hampered by slow
random disk access. We present scDataset, a Py-
Torch IterableDataset that operates directly on one
or more AnnData files without the need for format
conversion. The core innovation is a combination
of block sampling and batched fetching, which to-
gether balance randomness and I/O efficiency. On
the Tahoe 100M dataset, scDataset achieves up to
a 48x speed-up over AnnLoader, a 27 x speed-up
over HuggingFace Datasets, and an 18 x speed-up
over BioNeMo in single-core settings. These ad-
vances democratize large-scale single-cell model
training for the broader research community.

1. Introduction

The advent of single-cell omics has transformed molecu-
lar biology by enabling the high-throughput measurement
of gene expression, chromatin accessibility, and protein
abundance at the resolution of individual cells. Among
these, single-cell transcriptomics has emerged as the most
widely adopted modality, providing genome-wide snapshots
of gene expression that reveal cellular identity, state, and
function. These technologies have driven major discoveries

"Department of Computer Science, University of Milan, Milan,
Italy *Department of Control and Computer Engineering, Politec-
nico di Torino, Torino, Italy 3Eric and Wendy Schmidt Center,
Broad Institute of MIT and Harvard, Cambridge, MA, USA. Corre-
spondence to: Davide D’ Ascenzo <davide.dascenzo@unimi.it>,
Sebastiano Cultrera di Montesano <scultrer @broadinstitute.org>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

across cancer biology (Tirosh et al., 2016), neurodevelop-
ment (Nowakowski et al., 2017), and immunology (Vil-
lani et al., 2017), uncovering rare cell types, lineage hier-
archies, and dynamic transcriptional programs (Wang &
Navin, 2015; Buenrostro et al., 2015; Regev et al., 2017).

As the scale and accessibility of single-cell experiments
continue to grow, public datasets have expanded rapidly. As
of October 2024, CELLxGENE Discover hosts over 1,550
datasets and more than 93 million unique cells, spanning
a wide range of tissues, diseases, and experimental condi-
tions (CZI Cell Science Program et al., 2024). This resource
is primarily observational, capturing the natural diversity
of cell states across biological contexts. More recently, the
Tahoe 100M dataset marked a new milestone for interven-
tional single-cell datasets, combining both scale and exper-
imental richness: it profiles over 100 million cells across
379 drug perturbations, 47 cancer cell lines, and multiple
dosages—totaling more than 17,000 perturbation contexts
(Zhang et al., 2025). Together, these large-scale resources
provide a foundation for modeling cell states and biological
responses at unprecedented resolution.

To extract structure from these datasets, the field is increas-
ingly turning to deep learning models that can learn expres-
sive representations of cellular states from raw omics data.
Recent efforts have focused on building biological foun-
dation models—Ilarge, pre-trained architectures designed
to generalize across tissues, conditions, and experimental
settings (Bommasani et al., 2021). Models such as Gene-
Former (Theodoris et al., 2023) and scGPT (Cui et al., 2024)
leverage transformer-based architectures to capture gene-
gene dependencies, and can be fine-tuned for tasks such as
cell type classification, batch correction, and perturbation
prediction. This direction has created strong demand for
scalable infrastructure to support model training on datasets
containing hundreds of millions of cells, with the long-term
goal of building in silico “virtual cells” that simulate cellu-
lar behavior across modalities and contexts (Bunne et al.,
2024).

The AnnData format has become the community standard
for storing single-cell omics data, offering efficient handling
of sparse matrices, metadata, and annotations (Virshup et al.,
2024). However, its integration with deep learning work-

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

flows remains underdeveloped. Standard training algorithms
such as stochastic gradient descent (SGD) require diverse,
randomly sampled minibatches to ensure stable convergence
and generalization (Bottou, 1999; Keskar et al., 2016). En-
suring this diversity at hundred-million-cell scale typically
requires loading the full dataset into memory, which is in-
feasible for most practitioners. Alternative strategies, such
as converting to dense formats or relying on random disk
access, suffer from inflated storage costs or low throughput.
For instance, AnnLoader—an experimental PyTorch data
loader developed by the AnnData team to enable on-disk
sampling—achieves only 20 samples/second on the Tahoe
100M dataset, requiring more than 58 days for a single
training epoch.

We introduce scDataset, a PyTorch IterableDataset designed
for efficient and scalable training on large single-cell omics
datasets. scDataset operates directly on one or more Ann-
Data files—without format conversion or full in-memory
loading—and implements a quasi-random sampling strat-
egy that combines block sampling with batched fetching.
Block sampling reduces the number of random disk reads by
accessing contiguous chunks, while batched fetching amor-
tizes I/O latency and enables in-memory reshuffling for mini-
batch diversity. While scDataset was developed to address
the limitations of AnnData in deep learning applications,
its design is broadly applicable to any large-scale dataset
stored on disk. In benchmarking on the Tahoe 100M dataset,
scDataset achieved up to a 48 x speed-up over AnnLoader.
Furthermore, as AnnLoader does not natively support mul-
tiprocessing, we evaluated scDataset in a multiprocessing
configuration and observed a 129 x speed-up compared to
AnnLoader in single-core mode. We also conducted sys-
tematic benchmarks against HuggingFace Datasets (Lhoest
et al., 2021), a widely used dataset library, and BioNeMo-
SCDL (John et al., 2024), a specialized single-cell data load-
ing solution developed by NVIDIA. scDataset improved
the performance of both backends, achieving a 27 x speed-
up over HuggingFace Datasets and an 18 x speed-up over
BioNeMo.

The source code and documentation for scDataset are pub-
licly available on GitHub at https://github.com/
Kidara/scDataset.

Current solutions The AnnData format has become the
community standard for single-cell omics data, underpin-
ning widely used analysis tools such as Scanpy (Wolf et al.,
2018). Its popularity stems from flexible support for sparse
matrices, rich metadata, and seamless integration with the
Python data science ecosystem. While AnnData supports on-
disk access via backing modes, most deep learning tools—
including frameworks like scvi-tools (Gayoso et al., 2021)—
often require loading the entire dataset into memory. As
modern single-cell atlases span hundreds of millions of cells

and multiple terabytes of storage, this is increasingly in-
feasible. The only native option, AnnLoader, preserves
format compatibility but suffers from slow throughput and
lacks multiprocessing support, making it impractical for
large-scale use.

In response, various groups have developed custom data
loading pipelines tailored for deep learning. These typi-
cally convert AnnData to alternative formats, introducing
new technical and interoperability challenges. For example,
GeneFormer (Theodoris et al., 2023) converts data to Hug-
gingFace Datasets, while scTab (Fischer et al., 2024) trans-
forms AnnData into Parquet files for use with NVIDIA Mer-
lin. These conversions often require densifying sparse ma-
trices, significantly increasing storage requirements. Other
groups have developed custom storage infrastructures, such
as the Zarr-based backend in SCimilarity (Heimberg et al.,
2025), or adopted entirely new formats like TileDB’s SOMA
in CZ CELLxXxGENE (CZI Cell Science Program et al.,
2024). A notable tailored solution is BioNeMo-SCDL,
developed by NVIDIA to support large-scale single-cell
training (John et al., 2024). It introduces a custom format
and leverages NumPy memory mapping for efficient load-
ing of the X matrix. However, it still requires conversion
from AnnData and does not natively handle the full meta-
data stack, limiting compatibility with the broader analysis
ecosystem.

In summary, while AnnData remains central to the field and
does support on-disk access in principle, no efficient, stan-
dard solution exists for deep learning workflows. Existing
alternatives either sacrifice compatibility and flexibility or
fall short on performance. Our work addresses this gap by
introducing a faster and more flexible solution that operates
directly on AnnData files—eliminating format conversion
and enabling scalable model training on modern single-cell
datasets.

2. Method

scDataset is designed to enable efficient, randomized data
loading from large-scale datasets. It serves as a flexible
and extensible interface that connects diverse data backends,
such as AnnData and HuggingFace Datasets, to PyTorch’s
Datal.oader. The core technical innovations of scDataset are
its block sampling and batched fetching strategies, which
together balance 1/O efficiency with minibatch diversity. To
accommodate a wide range of data sources and workflows,
scDataset is implemented as a PyTorch IterableDataset with
a modular architecture. The design centers on four user-
configurable functions that govern data retrieval and trans-
formation, enabling seamless integration with arbitrary data
backends (see Figure 1).

Appendix A.l discusses the rationale for adopting an

https://github.com/Kidara/scDataset
https://github.com/Kidara/scDataset

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

AnnData = scDataset

HiN
{.} !‘

Block sampling
oo O0oooo
—
05

Batched fetching O PyTorch
—
: j Dataloader
+~ Datasets = @
NVIDIA BioNeMo-SCDL |+—>

Figure 1. scDataset bridges diverse data backends with PyTorch’s
DatalLoader through a modular interface. Data retrieval is managed
by a configurable fetch_callback, followed by preprocess-
ing with fetch_transform (e.g., sparse-to-dense conversion).
Batches are selected using batch_callback and further pro-
cessed with bat ch_t ransform before being yielded to the train-
ing pipeline.

iterable-style dataset over the traditional map-style paradigm
in PyTorch. Detailed descriptions of the block sampling and
batched fetching strategies are provided in Appendix A.2
and Appendix A.3, respectively.

Evaluation setup We benchmarked scDataset on the
Tahoe 100M dataset (Zhang et al., 2025), which is avail-
able in three formats: AnnData (14 files of approximately 7
million cells each), HuggingFace Datasets, and BioNeMo.
The AnnData files (downloadable from the official GitHub')
occupy 314GB on disk. The HuggingFace version® requires
1.9TB, and the BioNeMo format, generated using the offi-
cial conversion script’, occupies 1.1TB, with peak storage
usage of 2.2TB during conversion.

For the HuggingFace dataset, a custom script was used to
load the X matrix. The BioNeMo dataset stores only the
X matrix, so handling metadata requires additional custom
logic. When applied to AnnData, scDataset yields batches
as AnnData objects, preserving all original metadata. In con-
trast, when used with HuggingFace or BioNeMo, scDataset
currently returns only the X matrix, as metadata must be
managed separately.

All experiments were conducted on an NVIDIA DGX Sta-
tion with 256GB RAM, an Intel Xeon E5-2698 v4 CPU,
and 5TB of solid-state drive (SSD) storage. Unless oth-
erwise specified, a fixed batch size of 64 was used for all
benchmarks.

Data loading throughput We evaluated data loading
speed by measuring single-core throughput (samples per
second). Each data loader was warmed up for 30 seconds,
followed by 120 seconds of measurement per condition. We

1https ://github.com/ArcInstitute/
arc-virtual-cell-atlas

2https ://huggingface.co/datasets/tahoebio/Tahoe-100M

3https ://nvidia.github.io/bionemo-framework/API_

reference/bionemo/scdl/scripts/convert_h5ad_to_scdl/

benchmarked scDataset using seven block sizes (1, 2, 4, 8,
16, 32, 64) and seven fetch factors (1, 2, 4, 8, 16, 32, 64)
on the AnnData, HuggingFace, and BioNeMo datasets. For
AnnData, AnnLoader served as a baseline.

The performance of scDataset depends not only on the
sampling strategy but also on how efficiently the storage
backend serves data requests. While scDataset delivers
requests in an optimal format for batch retrieval, the ac-
tual data access pattern—whether batched or as individual
queries—is determined by the backend implementation. As
a result, improvements from increasing the fetch factor are
observed only when the backend supports efficient batched
reads. Notably, very large fetch factors can slightly degrade
throughput due to the increased computational overhead of
in-memory shuffling of large buffers.

Results are presented in Figure 2 (AnnData), Figure 3 (Hug-
gingFace), and Figure 4 (BioNeMo). As expected, scDataset
with block size 1 and fetch factor 1 matches the baseline per-
formance. On AnnData, increasing both block size and fetch
factor yields up to a 48 x speed-up over AnnLoader (block
size 64, fetch factor 64). For HuggingFace and BioNeMo,
throughput improves with larger block sizes, reaching up to
27 x and 18x speed-ups, respectively, at block size 64.

scDataset throughput with AnnData dataset
1024

512

R

8

.
°

Samples Per Second
R
3
¢ o
\. 19

—e— fetch_factor=1
—e— fetch_factor = 2
—e— fetch_factor =4
—e— fetch_factor = 8
—e— fetch_factor = 16
fetch_factor = 32
fetch_factor = 64
-=- AnnLoader

\
|
|
\

1 2 4 8 16 32 64
Block Size

Figure 2. Data loading throughput for scDataset on the AnnData
dataset as a function of block size and fetch factor. Throughput
(samples/sec) increases substantially with larger block sizes and
higher fetch factors, demonstrating that both parameters synergisti-
cally improve I/O efficiency. At the largest tested values, scDataset
achieves over 48 x higher throughput compared to the baseline.

Minibatch diversity We assessed sampling quality by
measuring plate label entropy within minibatches. In the
Tahoe 100M dataset, each of the 14 AnnData files corre-
sponds to a unique plate label, and because the dataset is
concatenated without prior shuffling, adjacent cells share
the same label.

We evaluated scDataset using the same seven block sizes
and fetch factors as in the throughput benchmarks. Since
minibatch diversity is determined solely by the sampling

https://github.com/ArcInstitute/arc-virtual-cell-atlas
https://github.com/ArcInstitute/arc-virtual-cell-atlas
https://huggingface.co/datasets/tahoebio/Tahoe-100M
https://nvidia.github.io/bionemo-framework/API_reference/bionemo/scdl/scripts/convert_h5ad_to_scdl/
https://nvidia.github.io/bionemo-framework/API_reference/bionemo/scdl/scripts/convert_h5ad_to_scdl/

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

scDataset throughput with HuggingFace dataset

2048 / pe
1024 /

Samples Per Second

—e— fetoh_factor = 1
—e— fetch_factor =2
—e— fetoh_factor =4
—e— fetch_factor =8
ya —e— fetch_factor = 16
256 y fetch_factor = 32
fetch_factor = 64
-~ HuggingFace

\

8 16 32 64
Block Size

Figure 3. Data loading throughput for scDataset on the Hugging-
Face dataset as a function of block size and fetch factor. Through-
put increases with larger block sizes, but remains unaffected by the
fetch factor. At the largest block size, scDataset achieves a 27 X
speed-up over the baseline.

scDataset throughput with BioNeMo dataset

4096
2048

1024

. /

Figure 4. Data loading throughput for scDataset on the BioNeMo
dataset as a function of block size and fetch factor. Throughput
increases with larger block sizes, but remains unaffected by the
fetch factor. At the largest block size, scDataset achieves an 18x
speed-up over the baseline.

—e— fetch_factor = 1

Samples Per Second

—e— fetch_factor =2
—e— fetch_factor =4
—e— fetch_factor =8
—e— fetch_factor = 16

AN

feteh_factor = 32
fetch_factor = 64
--- BioNeMo

8 16 32 64
Block Size

strategy, this analysis was performed once, independent
of backend. Both AnnLoader and scDataset with block
size 1 and fetch factor 1 achieve random shuffling, yielding
an entropy of approximately 3.63. As shown in Figure 5,
increasing block size reduces entropy—reaching zero at
block size 64—while higher fetch factors counteract this
effect and help maintain diversity.

Scaling throughput with multiprocessing We evaluated
the maximum throughput of scDataset on the AnnData
dataset using multiprocessing, a feature not natively sup-
ported by AnnLoader. The hyperparameter search space is
summarized in Table 1, with full results in Table 2. While no
single configuration is universally optimal, we highlight a
setting with block_size=4, fetch_factor=16, and
num_workers=12, which achieves approximately 2593

scDataset batch entropy

Batch Entropy

—e— fetch_factor =
10 —e— fetch_factor =
—e— fetch_factor =
—e— fetch_factor =
05 | —e— fetch_factor = 16
fetch_factor = 32
fetch_factor = 64
00 === AnnLoader 1

P

@

1 2 4 8 16 32 64
Block Size

Figure 5. Plate label entropy within minibatches for scDataset as a
function of block size and fetch factor. Higher entropy indicates
greater minibatch diversity.

samples/sec and maintains an entropy of 3.59—comparable
to random sampling. This represents a 129x speed-up
over AnnLoader. Notably, training for one epoch on the
full Tahoe 100M dataset would take over 58 days with
AnnLoader, but less than 11 hours with scDataset.

Table 1. Hyperparameter search space for throughput experiments
with multiprocessing on the AnnData dataset.

Parameter Values
Block size (b) 4,8, 16, 32
Fetch factor (f) 4,8, 16,32
Number of workers 8, 12, 16

3. Discussion

This work introduces scDataset, a scalable and flexible
data loader for training deep learning models on large-scale
single-cell omics datasets. By combining block sampling
and batched fetching, scDataset enables randomized, high-
throughput training directly from disk without requiring
format conversion or full in-memory loading. The imple-
mentation integrates directly with PyTorch, provides na-
tive support for multiprocessing, and consistently deliv-
ers substantial speed-ups over existing solutions such as
AnnLoader, HuggingFace Datasets, and BioNeMo. By op-
erating directly on formats like AnnData, scDataset enables
shuffled training on commodity hardware and lowers the
barrier to large-scale deep learning in single-cell biology.

While scDataset delivers strong practical performance, two
limitations remain. First, our assessment of sampling qual-
ity is based on plate label entropy—a metadata-based mea-
sure that captures known batch structure but may overlook
more subtle correlations or biases. Second, the current im-
plementation does not support weighted sampling, which
is important for handling imbalanced datasets or enabling

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

stratified sampling of rare subpopulations. Future work
will focus on incorporating additional metrics for sampling
quality and extending support to weighted and stratified
sampling—improving the flexibility and applicability of
scDataset across increasingly diverse biological settings.

Acknowledgements

Davide D’ Ascenzo was financially supported by the Ital-
ian National PhD Program in Artificial Intelligence (DM
351 intervento M4C1 - Inv. 4.1 - Ricerca PNRR), funded
by NextGenerationEU (EU-NGEU). Sebastiano Cultrera di
Montesano was supported by the Eric and Wendy Schmidt
Center at the Broad Institute of MIT and Harvard.

Impact Statement

This work helps democratize large-scale model training to
the broader scientific community.

References

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D.,
Castellon, R., Chatterji, N. S., Chen, A. S., Creel, K. A.,
Davis, J., Demszky, D., Donahue, C., Doumbouya, M.
K. B., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh,
K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel, K.,
Goodman, N. D., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T. F,, Jain, S., Jurafsky, D., Kalluri,
P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O.,
Koh, P. W, Krass, M. S., Krishna, R., Kuditipudi, R.,
Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J.,
Levent, 1., Li, X. L., Li, X., Ma, T., Malik, A., Man-
ning, C. D., Mirchandani, S., Mitchell, E., Munyikwa,
Z., Nair, S., Narayan, A., Narayanan, D., Newman, B.,
Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J. F,,
Ogut, G., Orr, L. J., Papadimitriou, 1., Park, J. S., Piech,
C., Portelance, E., Potts, C., Raghunathan, A., Reich, R.,
Ren, H., Rong, F., Roohani, Y. H., Ruiz, C., Ryan, J.,
R’e, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A.,
Srinivasan, K. P., Tamkin, A., Taori, R., Thomas, A. W.,
Tramer, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu,
Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M. A.,
Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L.,
Zhou, K., and Liang, P. On the opportunities and risks of
foundation models. ArXiv, abs/2108.07258, 2021.

Bottou, L. On-line learning and stochastic approximations,
pp. 9-42. Cambridge University Press, USA, 1999. ISBN
0521652634.

Buenrostro, J. D., Wu, B., Litzenburger, U., Ruff, D. W,

Gonzales, M. L., Snyder, M. P., Chang, H. Y., and Green-
leaf, W. J. Single-cell chromatin accessibility reveals
principles of regulatory variation. Nature, 523:486 — 490,
2015.

Bunne, C., Roohani, Y., Rosen, Y., Gupta, A., Zhang, X.,
Roed, M., Alexandrov, T., AlQuraishi, M., Brennan, P.,
Burkhardt, D. B., Califano, A., Cool, J., Dernburg, A. F,,
Ewing, K., Fox, E. B., Haury, M., Herr, A. E., Horvitz,
E., Hsu, P. D, Jain, V., Johnson, G. R., Kalil, T., Kelley,
D. R, Kelley, S. O., Kreshuk, A., Mitchison, T., Otte,
S., Shendure, J., Sofroniew, N. J., Theis, F., Theodoris,
C. V,, Upadhyayula, S., Valer, M., Wang, B., Xing, E.,
Yeung-Levy, S., Zitnik, M., Karaletsos, T., Regev, A.,
Lundberg, E., Leskovec, J., and Quake, S. R. How to
build the virtual cell with artificial intelligence: Priorities
and opportunities. Cell, 187(25):7045-7063, Dec 2024.
ISSN 0092-8674. doi: 10.1016/j.cell.2024.11.015.

Cui, H., Wang, C., Maan, H., Pang, K., Luo, F,, Duan, N.,
and Wang, B. scgpt: toward building a foundation model
for single-cell multi-omics using generative ai. Nature
Methods, 21(8):1470-1480, Aug 2024. ISSN 1548-7105.
doi: 10.1038/541592-024-02201-0.

CZI Cell Science Program, Abdulla, S., Aevermann, B.,
Assis, P., Badajoz, S., Bell, S. M., Bezzi, E., Cakir, B.,
Chaffer, J., Chambers, S., Cherry, J., Chi, T., Chien, J.,
Dorman, L., Garcia-Nieto, P., Gloria, N., Hastie, M.,
Hegeman, D., Hilton, J., Huang, T., Infeld, A., Istrate,
A.-M., Jelic, L., Katsuya, K., Kim, Y. J., Liang, K., Lin,
M., Lombardo, M., Marshall, B., Martin, B., McDade,
F., Megill, C., Patel, N., Predeus, A., Raymor, B., Ro-
batmili, B., Rogers, D., Rutherford, E., Sadgat, D., Shin,
A., Small, C., Smith, T., Sridharan, P., Tarashansky, A.,
Tavares, N., Thomas, H., Tolopko, A., Urisko, M., Yan, J.,
Yeretssian, G., Zamanian, J., Mani, A., Cool, J., and Carr,
A. Cz cellxgene discover: a single-cell data platform for
scalable exploration, analysis and modeling of aggregated
data. Nucleic Acids Research, 53(D1):D886-D900, 11
2024. ISSN 1362-4962. doi: 10.1093/nar/gkae1142.

Fischer, F., Fischer, D. S., Mukhin, R., Isaev, A., Bieder-
stedt, E., Villani, A.-C., and Theis, F. J. sctab: Scaling
cross-tissue single-cell annotation models. Nature Com-
munications, 15(1):6611, Aug 2024. ISSN 2041-1723.
doi: 10.1038/s41467-024-51059-5.

Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jaya-
suriya, M., Melhman, E., Langevin, M., Liu, Y., Sama-
ran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C.,
Ashuach, T., Lotfollahi, M., Svensson, V., Beltrame, E.
d. V., Talavera-Loépez, C., Pachter, L., Theis, F. J., Streets,
A., Jordan, M. I, Regier, J., and Yosef, N. scvi-tools: a
library for deep probabilistic analysis of single-cell omics
data. bioRxiv, 2021. doi: 10.1101/2021.04.28.441833.

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

Heimberg, G., Kuo, T., DePianto, D. J., Salem, O., Heigl,
T., Diamant, N., Scalia, G., Biancalani, T., Turley, S. J.,
Rock, J. R., Corrada Bravo, H., Kaminker, J., Vander Hei-
den, J. A., and Regev, A. A cell atlas foundation model
for scalable search of similar human cells. Nature, 638
(8052):1085—-1094, Feb 2025. ISSN 1476-4687. doi:
10.1038/s41586-024-08411-y.

John, P. S., Lin, D., Binder, P., Greaves, M., Shah, V., John,
J. S., Lange, A., Hsu, P. D., Illango, R., Ramanathan, A.,
Anandkumar, A., Brookes, D. H., Busia, A., Mahajan, A.,
Malina, S., Prasad, N., Sinai, S., Edwards, L., Gaudelet,
T., Regep, C., Steinegger, M., Rost, B., Brace, A., Hippe,
K., Naef, L., Kamata, K., Armstrong, G., Boyd, K., Cao,
Z., Chou, H.-Y., Chu, S., dos Santos Costa, A., Darabi,
S., Dawson, E., Didi, K., Fu, C., Geiger, M., Gill, M.,
Hsu, D. J., Kaushik, G., Korshunova, M., Kothen-Hill,
S.T., Lee, Y., Liu, M., Livne, M., McClure, Z., Mitchell,
J., Moradzadeh, A., Mosafi, O., Nashed, Y. L., Paliwal,
S., Peng, Y., Rabhi, S., Ramezanghorbani, F., Reiden-
bach, D., Ricketts, C., Roland, B., Shah, K., Shimko,
T., Sirelkhatim, H., Srinivasan, S., Stern, A. C., Toczyd-
lowska, D., Veccham, S. P., Venanzi, N. A. E., Vorontsov,
A., Wilber, J., Wilkinson, 1., Wong, W. J., Xue, E., Ye,
C., Yu, X., Zhang, Y., Zhou, G., Zandstein, B., Dallago,
C., Trentini, B., Kucukbenli, E., Rvachov, T., Calleja, E.,
Israeli, J., Clifford, H., Haukioja, R., Haemel, N., Tretina,
K., Tadimeti, N., and Costa, A. B. Bionemo framework:
a modular, high-performance library for ai model devel-
opment in drug discovery. ArXiv, abs/2411.10548, 2024.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. ArXiv,
abs/1609.04836, 2016.

Lhoest, Q., del Moral, A. V., Jernite, Y., Thakur, A., von
Platen, P., Patil, S., Chaumond, J., Drame, M., Plu, J.,
Tunstall, L., Davison, J., vSavsko, M., Chhablani, G.,
Malik, B., Brandeis, S., Scao, T. L., Sanh, V., Xu, C.,
Patry, N., McMillan-Major, A., Schmid, P., Gugger, S.,
Delangue, C., Matussiere, T., Debut, L., Bekman, S.,
Cistac, P., Goehringer, T., Mustar, V., Lagunas, F., Rush,
A. M., and Wolf, T. Datasets: A community library
for natural language processing. ArXiv, abs/2109.02846,
2021.

Nowakowski, T. J., Bhaduri, A., Pollen, A. A., Alvarado,
B., Mostajo-Radji, M. A., Lullo, E. D., Haeussler, M.,
Sandoval-Espinosa, C., Liu, S. J., Velmeshev, D., Ounad-
jela, J. R., Shuga, J., Wang, X., Lim, D. A., West, J.
A. A, Leyrat, A. A., Kent, W. J., and Kriegstein, A. R.
Spatiotemporal gene expression trajectories reveal devel-
opmental hierarchies of the human cortex. Science, 358:
1318 — 1323, 2017.

Regev, A., Teichmann, S. A., Lander, E. S., Amit, 1., Benoist,

C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P.,
Clatworthy, M. R., Clevers, H., Deplancke, B., Dunham,
I, Eberwine, J., Eils, R., Enard, W., Farmer, A., Fugger,
L., Gottgens, B., Hacohen, N., Haniffa, M. A., Hemberg,
M., Kim, S., Klenerman, P., Kriegstein, A. R., Lein, E. S.,
Linnarsson, S., Lundberg, E., Lundeberg, J., Majumder,
P. P, Marioni, J. C., Merad, M., Mhlanga, M. M., Nawijn,
M. C., Netea, M., Nolan, G. P,, Pe’er, D., Phillipakis, A.,
Ponting, C. P, Quake, S. R., Reik, W., Rozenblatt-Rosen,
O., Sanes, J. R., Satija, R., Schumacher, T. N., Shalek,
A. N., Shapiro, E. Y., Sharma, P., Shin, J. W., Stegle, O.,
Stratton, M., Stubbington, M. J. T., Theis, F. J., Uhlen, M.,
van Oudenaarden, A., Wagner, A., Watt, F. M., Weissman,
J. S., Wold, B., Xavier, R., and Yosef, N. The human cell
atlas. eLife, 6, 2017.

Theodoris, C. V., Xiao, L., Chopra, A., Chaffin, M. D.,

Al Sayed, Z. R., Hill, M. C., Mantineo, H., Brydon,
E. M., Zeng, Z., Liu, X. S., and Ellinor, P. T. Transfer
learning enables predictions in network biology. Nature,
618(7965):616-624, Jun 2023. ISSN 1476-4687. doi:
10.1038/s41586-023-06139-9.

Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H.,

Treacy, D. J., Trombetta, J. J., Rotem, A., Rodman, C.,
Lian, C. G., Murphy, G., Fallahi-Sichani, M., Dutton-
Regester, K., Lin, J.-R., Cohen, O., Shah, P., Lu, D., Gen-
shaft, A. S., Hughes, T., Ziegler, C. G. K., Kazer, S. W.,
Gaillard, A., Kolb, K. E., Villani, A.-C., Johannessen,
C. M., Andreev, A., Allen, E. M. V., Bertagnolli, M. M.,
Sorger, P. K., Sullivan, R. J., Flaherty, K. T., Frederick,
D. T., Jané-Valbuena, J., Yoon, C. H., Rozenblatt-Rosen,
0., Shalek, A. K., Regev, A., and Garraway, L. A. Dissect-
ing the multicellular ecosystem of metastatic melanoma
by single-cell rna-seq. Science, 352:189 — 196, 2016.

Villani, A.-C., Satija, R., Reynolds, G., Sarkizova, S.,

Shekhar, K., Fletcher, J., Griesbeck, M., Butler, A.,
Zheng, S., Lazo, S., Jardine, L., Dixon, D., Stephenson,
E., Nilsson, E., Grundberg, 1., McDonald, D., Filby, A.,
Li, W, Jager, P. L. D., Rozenblatt-Rosen, O., Lane, A. A.,
Haniffa, M. A., Regev, A., and Hacohen, N. Single-cell
rna-seq reveals new types of human blood dendritic cells,
monocytes, and progenitors. Science, 356, 2017.

Virshup, 1., Rybakov, S., Theis, F. J., Angerer, P., and Wolf,

F. A. anndata: Access and store annotated data matrices.
Journal of Open Source Software, 9(101):4371, 2024. doi:
10.21105/joss.04371.

Wang, Y. X. and Navin, N. E. Advances and applications of

single-cell sequencing technologies. Molecular cell, 58
4:598-609, 2015.

Wolf, F. A., Angerer, P., and Theis, F. J. Scanpy: large-

scale single-cell gene expression data analysis. Genome

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

Biology, 19(1):15, Feb 2018. ISSN 1474-760X. doi:
10.1186/s13059-017-1382-0.

Zhang, J., Ubas, A. A., de Borja, R., Svensson, V., Thomas,
N., Thakar, N., Lai, I., Winters, A., Khan, U., Jones,
M. G., Tran, V., Pangallo, J., Papalexi, E., Sapre, A.,
Nguyen, H., Sanderson, O., Nigos, M., Kaplan, O.,
Schroeder, S., Hariadi, B., Marrujo, S., Salvino, C.
C. A., Gallareta Olivares, G., Koehler, R., Geiss, G.,
Rosenberg, A., Roco, C., Merico, D., Alidoust, N.,
Goodarzi, H., and Yu, J. Tahoe-100m: A giga-scale
single-cell perturbation atlas for context-dependent gene
function and cellular modeling. bioRxiv, 2025. doi:
10.1101/2025.02.20.639398.

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

A. Appendix
A.1. Map-style vs iterable-style PyTorch Datasets
PyTorch supports two primary paradigms for dataset implementation: map-style and iterable-style datasets.

Map-style datasets implement the ___getitem__ method, allowing retrieval of individual samples by index. Batching is
managed by the Datal.oader, which assembles minibatches by collecting samples one at a time and merging them via a
collate_ fn. This approach is efficient when the dataset resides in memory, as random access is fast. However, for on-disk
datasets, this results in a large number of random I/O operations per minibatch—a significant bottleneck, especially on hard
disk drives (HDDs). For instance, SCimilarity employs a map-style dataset, which constrains disk throughput (Heimberg
et al., 2025).

An exception is the experimental AnnLoader and its underlying AnnCollection dataset, which extend ___getitem_
to accept both single indices and batches of indices. By providing a batch_sampler to the Dataloader’s sampler
argument, minibatches can be retrieved in a single call, reducing I/O overhead. While this approach deviates from standard
PyTorch API usage, it does improve throughput by minimizing disk accesses.

Iterable-style datasets, in contrast, require implementation of the ___iter__ method, returning an iterator over samples.
This paradigm offers maximal flexibility, enabling custom sampling and loading strategies. However, it precludes the use of
standard PyTorch samplers, which rely on map-style indexing, and necessitates careful handling of multiprocessing within
the iterable implementation.

Given the limitations of map-style datasets for large, on-disk single-cell data, we adopt an iterable-style dataset for
scDataset. This design empowers us to implement efficient sampling strategies optimized for disk-based access patterns. Our
implementation natively supports reading from single or multiple AnnData files without format conversions and integrates
custom multiprocessing logic aligned with PyTorch’s Datal.oader specifications.

A.2. Block sampling

Training deep learning models relies on stochastic gradient descent (SGD), where the diversity of each minibatch is crucial
for unbiased updates and robust convergence (Bottou, 1999). Achieving this diversity via random sampling is straightforward
in-memory, but becomes challenging when datasets are too large to fit in memory and must be accessed from disk.

Disk drives, particularly HDDs, are optimized for reading large contiguous chunks of data, but are inefficient when required
to perform frequent, small, non-sequential reads. While SSDs mitigate this limitation to some extent, contiguous access
remains significantly faster than random access.

To reconcile the need for random sampling with the realities of disk I/O, we introduce a block sampling strategy (see
Algorithm 1). Instead of sampling each data point independently, we randomly select contiguous blocks of size b (e.g., 8
cells) from the dataset. For a minibatch size m (e.g., m = 256) and block size b = 8, only m /b = 32 random disk reads are
required per minibatch, each retrieving a contiguous chunk of b samples. These blocks are then assembled to form the final
minibatch.

The choice of block size b governs the trade-off between I/O efficiency and minibatch diversity. Larger blocks improve
throughput by reducing the number of random disk operations, but may group together cells with correlated metadata (e.g.,
from the same tissue or batch), potentially reducing diversity. Conversely, smaller blocks enhance randomness but increase
I/0 overhead. This parameter can be tuned based on dataset properties and hardware capabilities.

A.3. Batched fetching

While block sampling reduces the number of random disk reads, further improvements in throughput and randomness can be
achieved through batched fetching. In this approach, multiple blocks are prefetched into memory in a single I/O operation,
forming a buffer that is subsequently reshuffled to construct diverse minibatches.

Batched fetching amortizes the latency of disk access across larger data transfers, which is particularly beneficial on
high-latency storage devices. After fetching a batch of blocks, the samples are randomly permuted in memory before being
yielded as minibatches, ensuring that each minibatch contains a diverse set of cells.

The detailed procedure for batched fetching is presented in Algorithm 2. This algorithm outlines how scDataset preloads

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

Algorithm 1 Block Sampling

Input :Dataset size n, block size b, minibatch size m
(where n is a multiple of b and m for simplicity)

Output : Sequence of minibatches Mg, My, ...

1 Generate full index array: I = [0,1,...,n — 1]

-

Split [into k = 7 blocks [By, By, ..., Br_1],
where B; = [i-b,...,(i+1)-b—1]
Shuffle block order:

[Bs(0)s - - s Bo(k—1)] < RandomPerm([By, ..., By_1])
Concatenate shuffled blocks:

Linuttied <= Bo(oyll - - - | Bo(r-1)
Split Ispyfnea into minibatches [Mo, ..., M %_1] of size m
for each M; do

Load data: M; < ReadFromDisk(M;)
L yield M;

blocks, reshuffles their contents, and yields randomized minibatches, balancing I/O efficiency with quasi-random sampling.

Algorithm 2 Block Sampling with Batched Fetching
Input :Dataset size n, block size b, minibatch size m, fetch factor f
(where n is a multiple of b and m - f for simplicity)
Qutput : Sequence of minibatches Mg, My, ...
Generate full index array: I = [0,1,...,n — 1]
Split I into k = % blocks By, B1,. .., Br_1],
where B; =[i-b,...,(i+1)-b—1]
Shuffle block order:
[Bs(0)s - - s Bo(k—1)] +— RandomPerm([By, ..., Bx_1])
Concatenate shuffled blocks:
Littied < Bo(oyll - - - [Bo(r—1)
Split Iiufmea into batches [Fy, . . . ’Fm"lf _1] of sizem - f
for each F; do
Load data: F; < ReadFromDisk(F;)
Shuffle F; in memory
Split F; into minibatches M, ..., M;
for each M do
| yield M;

scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics

Table 2. Results for throughput experiments with multiprocessing on the AnnData dataset. The experiment highlighted in bold corresponds
to the configuration referenced in the main text.

Block size Fetch factor Num workers Samples/sec Avg. batch entropy Std. batch entropy

4 4 8 597 3.51 0.11
12 882 3.49 0.11

16 1175 3.50 0.11

8 8 1061 3.56 0.10
12 1626 3.57 0.09

16 2131 3.56 0.09

16 8 1876 3.59 0.08
12 2593 3.59 0.09

16 2492 3.59 0.08

32 8 1852 3.60 0.08
12 1768 3.61 0.08

16 1761 3.61 0.08

8 4 8 666 3.34 0.15
12 993 3.34 0.16

16 1323 3.33 0.16

8 8 1181 3.48 0.12
12 1766 3.49 0.12

16 2297 3.48 0.12

16 8 2093 3.55 0.09
12 2603 3.56 0.10

16 2529 3.55 0.10

32 8 1873 3.59 0.08
12 1774 3.59 0.09

16 1789 3.59 0.08

16 4 8 861 3.00 0.23
12 1308 3.00 0.23

16 1697 3.01 0.22

8 8 1319 3.33 0.16
12 1940 3.32 0.16

16 2573 3.32 0.16

16 8 2266 3.48 0.12
12 2612 3.48 0.12

16 2549 3.47 0.12

32 8 1878 3.54 0.10
12 1834 3.55 0.10

16 1775 3.54 0.10

32 4 8 1309 2.47 0.27
12 1932 247 0.27

16 2510 247 0.28

8 8 1662 3.00 0.23
12 2493 3.00 0.22

16 3122 3.00 0.22

16 8 2474 3.32 0.16
12 2570 3.32 0.16

16 2458 3.31 0.16

32 8 1837 3.48 0.12
12 1740 3.46 0.13

16 1781 3.46 0.12

10

