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Abstract
The recent developments of Diffusion Models
(DMs) enable generation of astonishingly high-
quality synthetic samples. Recent work showed
that the synthetic samples generated by the dif-
fusion model, which is pre-trained on public
data and fully fine-tuned with differential privacy
on private data, can train a downstream classi-
fier, while achieving a good privacy-utility trade-
off. However, fully fine-tuning such large diffu-
sion models with DP-SGD can be very resource-
demanding in terms of memory usage and com-
putation. In this work, we investigate Parameter-
Efficient Fine-Tuning (PEFT) of diffusion models
using Low-Dimensional Adaptation (LoDA) with
Differential Privacy. We evaluate the proposed
method with the MNIST and CIFAR-10 datasets
and demonstrate that such efficient fine-tuning can
also generate useful synthetic samples for training
downstream classifiers, with guaranteed privacy
protection of fine-tuning data. Our source code
will be made available on GitHub.

1. Introduction
Differentially Private (DP) training, via DP-SGD (Abadi
et al., 2016), of a task-specific classifier is commonly used
for protecting the privacy of sensitive training data. How-
ever, it often comes with a significant cost in terms of model
utility. The recent developments of Diffusion Models (DMs)
enable generation of astonishingly high-quality synthetic
samples, which can be used to train downstream classifiers.
However, the synthetic samples generated by diffusion mod-
els do not inherently preserve training data privacy. In fact,
Carlini et al. (2023) demonstrates that diffusion models
memorize individual images from their training data and
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emit them at generation time. It is vital to train the dif-
fusion model with privacy guarantees. The recent work
of Ghalebikesabi et al. (2023b) showed that the synthetic
samples generated by the diffusion model, which is fully
fine-tuned with differential privacy, can train a downstream
classifier that achieves very good utility. However, fully
fine-tuning such large diffusion model with DP-SGD can be
very resource-demanding.

Parameter-Efficient Fine-Tuning (PEFT) updates only a
small set of model parameters, which may be a subset of
the existing model parameters or a set of newly added pa-
rameters, can greatly reduce the computation and memory
costs, and has become popular in fine-tuning Large Lan-
guage Models (LLMs). The most widely-used PEFT ap-
proach is Low-Rank Adaptation (LoRA), which constrains
the updates of weights to be low-rank. In LLMs, the var-
ious modules are mostly built from linear layers, where
it is straightforward to apply LoRA to the weight matrix.
However, in Diffusion Models, there are many convolu-
tional layers instead of linear layer, and the appropriate
generalization of “Low-Rank Adaptation” becomes some-
what unclear when applied to convolutional layers. For in-
stance, in the official implementation of LoRA1, the weight
parameters of the 2D convolutional layer with dimension
(out channels, in channels, kernel size, kernel size) is re-
shaped/viewed as a 2D matrix with shape (out channels ×
kernel size, in channels × kernel size), and the low-rank
adapter is applied to this giant matrix. The recent work
(Liu et al., 2023) proposed Low-Dimensional Adaptation
(LoDA), which is a generalization of LoRA from a linear
low-rank mapping to a nonlinear low-dimensional mapping,
which is more suitable for convolutional layers than LoRA.
We will discuss the details of LoDA applied to convolutional
layers in Section 2.1.

This motivates us to investigate whether using LoDA to
fine-tune Diffusion Models with Differential Privacy (a.k.a.
DP-LoDA) can also generate synthetic samples for training
a downstream classifier with good utility. We notice an
interesting concurrent work (Lyu et al., 2023) that uses
a Latent Diffusion Model to reduce the number of fine-
tuning parameters, and they further propose to fine-tune the

1https://github.com/microsoft/LoRA
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Figure 1. An illustration of the proposed DP-LoDA framework for training a downstream classifier with differential privacy. Figure is
modified from Yu et al. (2022).

attention module only2. It is an interesting future direction
to investigate DP-LoDA combined with Latent Diffusion
Models. Note that the high-level idea of combining DP
with PEFT was proposed in Yu et al. (2022) for LLMs, but
with the purpose of only fine-tuning the LLM. No synthetic
samples were generated for training a downstream classifier
in that work.

It is also worth mentioning that there is a large body of work
using conventional generative models, such as Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014)
or Variational AutoEncoders (VAEs) (Kingma & Welling,
2019) to generate differentially private synthetic samples
(Xie et al., 2018; Tantipongpipat et al., 2020; Jordon et al.,
2019; Chen et al., 2020; Harder et al., 2021a; Papernot et al.,
2021; Cao et al., 2021; Liew et al., 2022; Harder et al.,
2023; 2021b; Acs et al., 2018; Jiang et al., 2022; Pfitzner
& Arnrich, 2022). We compare with two recent approaches
(DP-MEPF and DP-MERF) in our experiments.

In the following sections, we first introduce the overall
framework of DP-LoDA, and the details of LoDA for convo-
lutional layers. We then conduct experiments on benchmark

2In the latest version of Lyu et al. (2023), we notice the authors
tried LoRA fine-tuning, but the FID score of generated synthetic
samples is worse than fully fine-tuning the attention module, and
the downstream classification accuracy is not reported for LoRA,
and remains unclear.

datasets and compare with state-of-the-art methods. Finally,
we conclude and discuss future directions as well as poten-
tial broader impact.

2. Efficiently fine-tuning of diffusion models
via DP-LoDA

The overall framework of the proposed DP-LoDA method
is illustrated in Fig. 1. First, the classifier-free diffusion
model (Ho & Salimans, 2021) is pre-trained on some public
dataset. Next, LoDA adapters are attached to the Diffu-
sion Model and are differential privately fine-tuned (via
DP-SGD) on a smaller private dataset. The original param-
eters of the pre-trained diffusion models are frozen during
this process. Then, the DP-LoDA fine-tuned, classifier-free
diffusion model is used to generate synthetic samples with
class conditioning. Finally, the downstream classifier is
trained with the generated synthetic samples.

2.1. Illustration of diffusion model and LoDA adapter

The classifier-free diffusion model (Ho & Salimans, 2021)
that we used for image generation is adapted from a pub-
lic codebase3. Its U-Net structure is illustrated in Fig. 2,
which contains 21 attention modules and 22 ResNet mod-

3https://github.com/coderpiaobozhe/
classifier-free-diffusion-guidance-Pytorch
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Figure 2. Classifier-free diffusion model structure.

Figure 3. Low-Dimensional Adaptation (LoDA) for convolutional
layer.

ules, where most of the layers (including the query/value/key
projection layers) are convolutional layers. The total number
of parameters in the U-Net base model is 10.42M. Follow-
ing the idea of Low-Dimensional Adaptation (LoDA), we
attach a low-dimensional convolutional adapter in parallel
with the original convolutional layer. As illustrated in Fig. 3,
it consists of 1) a convolutional layer A which has output
channel size r that is much smaller than the input channel
size; 2) one or more nonlinear function(s); 3) a convolu-
tional layer B which maps the r channel latent back to the
original output channel size. During the LoDA fine-tuning,
the original convolutional layer W is frozen and only the
LoDA adapter is fine-tuned. As the value of r is much
smaller than the original input/output channel size, the num-
ber of tunable parameters in A and B is much smaller than
the original convolutional layer W .

3. Experiments
We first compare the proposed method with the widely used
standard DP method, which simply trains the classifier us-
ing DP-SGD. We also compare with several state-of-the-art
generative model based approaches, such as DP-Diffusion
(Ghalebikesabi et al., 2023b) that fully fine-tunes the Diffu-
sion Model, DP-LDM (Lyu et al., 2023) that fine-tunes the
attention module of the Latent Diffusion Model, DP-MEPF
(Harder et al., 2023), and DP-MERF (Harder et al., 2021a).
As a reference, we also report the accuracy of the classi-
fier when it is trained on private data without any privacy
protection, denoted as “No DP”.

We consider MNIST (LeCun & Cortes, 2010) and CIFAR-
10 (Krizhevsky & Hinton, 2009) as the private datasets, and
leverage SVHN (Netzer et al., 2011) and ImageNet32 (Deng
et al., 2009) as the corresponding public datasets. We also
consider the setting that each class of CIFAR-10 has only
1% of the original training samples, to simulate the situation
of a small private dataset in practice, which may often be the
case for private medical or biosignal datasets, for example.

For our proposed DP-LoDA, the dimension r is set to 4 in
all of the experiments. We use LeakyReLU with negative
slope of 0.1 as the nonlinear function between A and B in
LoDA. Our implementations of the LoDA adapter for the
convolutional layer is modified from a public codebase4,
and the DP accounting tool we used is from Bu et al. (2023).
We fine-tune for 200 epochs on the CIFAR-10 training set,
and 100 epochs on the MNIST training set. We report the
downstream classification accuracies on the the true CIFAR-
10/MNIST testing set, under various privacy levels.

4https://github.com/cloneofsimo/lora
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3.1. Experiments on CIFAR-10

In this first set of experiments, we use the training set of
CIFAR-10 (Krizhevsky & Hinton, 2009) as private dataset,
and leverage ImageNet32 (Deng et al., 2009) as the corre-
sponding public dataset. However, ImageNet32 has 1000
classes, and the 10 classes of CIFAR-10 are not exactly
covered by the ImageNet32 classes. Motivated by Huang
et al. (2021), which identifies the ImageNet classes that
are close to CIFAR-10 classes, we identified 10 classes of
ImageNet32 that are similar to CIFAR-10 classes, listed in
Table 1.

Table 1. The 10 ImageNet classes similar to the CIFAR-10 classes.

CIFAR-10 Class ImageNet32 Class
Airplane Airliner

Car Wagon
Bird Humming Bird
Cat Siamese Cat

Deer Hartebeest
Dog Golden Retriever
Frog Tailed Frog
Horse Sorrel Horse
Ship Container Ship

Truck Trailer Truck

However, for those corresponding 10 ImageNet32 classes,
there are only 13k training samples in total, and we empiri-
cally found that they are not sufficient to train the Classifier-
free Diffusion Model. Since ImageNet32 has more than
1281k training samples overall, we propose the following
pre-training procedure to leverage the entire ImageNet32
dataset:

Step 1: Pre-train the diffusion model without class condi-
tioning using all ImageNet32 samples;

Step 2: Continue pre-training using the corresponding 10
ImageNet32 classes only, with class conditioning.

Fig. 4 in the Appendix shows the images generated by the
Diffusion Model following Step 1, after pre-training for 300
epochs on all ImageNet32 training samples without class
conditioning. Fig. 5 in the Appendix shows the images
generated by the Diffusion Model following Step 2, after
further pre-training of 1200 epochs with class conditioning
on the corresponding 10 ImageNet32 classes. We can see
that Step 2 is very effective at training class conditioning.

3.1.1. CIFAR-10 AS THE PRIVATE DATA

The full training set of CIFAR-10 has 50K samples. DP-
LDM generates 50K synthetic samples for training the clas-
sifier, while DP-Diffusion generates 1 million synthetic sam-
ples. In our proposed method, we follow the conventions

Table 2. Test accuracies (on the true CIFAR-10 testing set) of
ResNet9 by each DP training method (with access to the full
CIFAR-10 training set), under different levels of privacy cost (ϵ, δ),
with δ fixed to be 10−5. The values of DP-LDM, DP-MEPF and
DP-MERF are from Lyu et al. (2023).

Method ϵ = 1 ϵ = 5 ϵ = 10
DP-LDM 51.3 ± 0.1 59.1 ± 0.2 65.3 ± 0.3
DP-LoDA 60.2 ± 0.2 62.2 ± 0.4 63.5 ± 1.8
DP-Diffusion 66.3 ± 0.4 69.6 ± 0.2 69.7 ± 1.4
DP-SGD 36.5 ± 0.9 47.4 ± 0.9 48.3 ± 0.2
DP-MEPF (ϕ1, ϕ2) 28.9 47.9 48.9
DP-MEPF (ϕ1) 29.4 48.5 51.0
DP-MERF 13.8 13.4 13.2
No DP 90.7

of DP-Diffusion by generating 1 million synthetic samples.
Table 2 shows the test accuracies (on the true CIFAR-10
testing set) of ResNet9 by each DP training method (with
access to the full CIFAR-10 training set). Various levels of
(ϵ, δ)-DP are reported, with δ fixed at 10−5.

First of all, we can see that DP-LDM, DP-Diffusion, and
the proposed DP-LoDA significantly outperform DP-SGD,
DP-MERF and DP-MEPF. When ϵ is relatively small, the
proposed DP-LoDA outperforms DP-LDM. There is still
some gap between parameter-efficiently fine-tuned Diffu-
sion Model and fully fine-tuned Diffusion Model. Note
that the classifier accuracy can be further improved by us-
ing the Wide ResNet (WRN-40-4) architecture instead of
ResNet9, as demonstrated in Lyu et al. (2023). Further,
Ghalebikesabi et al. (2023a) showed that the accuracy can
be further improved by using the augmentation multiplicity
technique (De et al., 2022). Finally, as a reference, Fig. 6
in the Appendix shows the images generated by Diffusion
Model after DP-LoDA fine-tuning with (ϵ = 10, δ = 10−5)
on the full CIFAR-10 training set.

3.1.2. 1% OF CIFAR-10 AS THE PRIVATE DATA

In some cases of private datasets, such as medical or biosig-
nal data, the number of training samples may be quite lim-
ited. To simulate this scenario, we conduct an experiment
with only 1% of the CIFAR-10 training set as the private
dataset.

Table 3 shows the test accuracies (on the true CIFAR-10
testing set) of ResNet9 using each DP training method (with
access to 1% of the CIFAR-10 training set), under the com-
mon DP settings ϵ = 1, 10 and δ = 10−5. First of all,
we can see that DP-SGD works poorly under this setting.
The gap between the accuracies of DP-Diffusion and DP-
LoDA becomes very small, which aligns with the findings
in the LLM literature that PEFT approaches perform simi-
larly as full fine-tuning when the fine-tuning dataset is small.
More interestingly, even at a very small privacy cost of
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Table 3. Test accuracies (on the true CIFAR-10 testing set) of
ResNet9 by each DP training method (with access to 1% CIFAR-
10 training set), under different levels of privacy cost (ϵ, δ), with δ
fixed to be 10−5.

Method ϵ = 1 ϵ = 10
DP-LoDA 54.2 53.6
DP-Diffusion 54.6 55.9
DP-SGD 11.5 21.2
No DP 52.5

(ϵ = 1, δ = 10−5), both DP-Diffusion and DP-LoDA out-
perform the accuracy of the classifier trained without DP
(“No DP”). Finally, as a reference, Fig. 7 in the Appendix
shows the generated images by Diffusion Model after DP-
LoDA fine-tuning with (ϵ = 10, δ = 10−5) using 1% of the
CIFAR-10 training set. Even with such a very limited pri-
vate dataset, the quality of the generated synthetic samples
are still good.

3.2. Experiments on MNIST

In this section, we consider the 60K sample training set of
MNIST (LeCun & Cortes, 2010) as the private dataset, and
we use SVHN (Netzer et al., 2011) as the public dataset.
Note that SVHN has exactly the same classes as MNIST,
and therefore we directly pre-train the diffusion model with
class conditioning. Fig. 8 in the Appendix shows the images
generated by the pre-trained Diffusion Model. Fig. 9 in the
Appendix shows the images generated by Diffusion Model
after DP-LoDA fine-tuning with (ϵ = 10, δ = 10−5) on
MNIST training set. It is clear that DP-LoDA fine-tuning
can successfully transfer from SVHN to MNIST.

For the tuned Diffusion Models, we generate 60K synthetic
samples for both DP-Diffusion and DP-LoDA methods. We
fix (ϵ = 10, δ = 10−5) and report the test accuracy of
different methods in Table 4. DP-Diffusion, DP-LDM, and
the proposed DP-LoDA methods significantly outperform
DP-SGD, and achieve very good utility. DP-LoDA performs
slightly better than DP-LDM and close to DP-Diffusion.

Since SVHN dataset has exactly the same classes as MNIST,
as a reference, we also tried directly training the classifier
on the SVHN dataset and testing on the MNIST testing set,
which yields a classification accuracy of only 60.22%.

4. Conclusion and Future Work
We have proposed and evaluated DP-LoDA for efficiently
fine tuning a diffusion model with differential privacy, which
is then used to generate synthetic samples for training a
downstream classifier. We have evaluated the proposed
method on the MNIST and CIFAR-10 datasets, and demon-

Table 4. Test accuracies (on true MNIST testing set) of a CNN
classifier by each DP training method (with access to the full
MNIST training set). The value of DP-LDM is from Lyu et al.
(2023).

Method (ϵ = 10, δ = 10−5)
DP-LDM 94.3
DP-LoDA 95.0
DP-Diffusion 95.9
DP-SGD 79.3
No DP 99.4

strated that such efficient fine-tuning can generate useful
synthetic samples for training downstream classifiers, while
protecting the privacy of the fine-tuning data. Empirical
studies on the CIFAR-10 dataset further show that such
parameter-efficient method gains more advantage when the
private fine-tuning data is limited. An interesting future
exploration is to test DP-LoDA on Latent Diffusion Models,
which can further improve parameter-efficiency.

Impact Statement
This paper presents work whose goal is to propose and inves-
tigate whether the efficient fine-tuning of vision foundation
model under Differential Privacy is effective for data privacy
protection and useful for training a downstream classifier.
There are many positive social impacts in terms of privacy
protection and computational efficiency. We do not feel
there are any major negative impacts.
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A. Appendix

Figure 4. Generated images by Diffusion Model from
Step 1 of pre-training (epoch 300).

Figure 5. Generated images by Diffusion Model from
Step 2 of pre-training (epoch 1200).

Figure 6. Generated images by Diffusion Model after
DP-LoDA fine-tuning with (ϵ = 10, δ = 10−5) on full
CIFAR-10 training set (epoch 200).

Figure 7. Generated images by Diffusion Model after
DP-LoDA fine-tuning with (ϵ = 10, δ = 10−5) on 1%
CIFAR-10 training set (epoch 200).
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Figure 8. Generated images by Diffusion Model after
pre-trained 720 epochs on SVHN dataset.

Figure 9. Generated images by Diffusion Model after
DP-LoDA fine-tuning with (ϵ = 10, δ = 10−5) on
MNIST training set (epoch 100).
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