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ABSTRACT

Effective communication is an essential component in collaborative multi-agent
systems. Situations where explicit messaging is not feasible have been common
in human society throughout history, which motivate the study of implicit com-
munication. Previous works on learning implicit communication mostly rely on
theory of mind (ToM), where agents infer the mental states and intentions of others
by interpreting their actions. However, ToM-based methods become less effective
in making accurate inferences in complex tasks. In this work, we propose the
Implicit Channel Protocol (ICP) framework, which allows agents to construct im-
plicit communication channels similar to the explicit ones. ICP leverages a subset
of actions, denoted as the scouting actions, and a mapping between information
and these scouting actions that encodes and decodes the messages. We propose
training algorithms for agents to message and act, including learning with a ran-
domly initialized information map and with a delayed information map. The ef-
ficacy of ICP has been tested on the tasks of Guessing Number, Revealing Goals,
and Hanabi, where ICP significantly outperforms baseline methods through more
efficient information transmission.

1 INTRODUCTION

Effective communication is pivotal in collaborative multi-agent systems, especially in environments
characterized by incomplete information (Panait & Luke, 2005; Busoniu et al., 2008; Tuyls & Weiss,
2012). Communication acts as a vital conduit, enabling agents to exchange private information, co-
ordinate joint actions, and infer real-world states (Wang et al., 2021). These processes synergistically
foster tighter cooperation and enhance collective performance (Li et al., 2002; Cao et al., 2012). We
focus on multi-agent reinforcement learning (MARL) methods for communication, where commu-
nication is broadly categorized into explicit and implicit strategies (Dafoe et al., 2020).

Explicit communication uses direct channels independent of the environment dynamics (Sukhbaatar
et al., 2016; Foerster et al., 2016; Jiang & Lu, 2018), allowing agents to transmit observations, inten-
tions, and advice to facilitate decision-making and coordination (Zhu et al., 2022; Qu et al., 2021).
This approach, analogous to human language or verbal exchanges (Havrylov & Titov, 2017; Baker
et al., 1999), has been widely employed in MARL to enhance collaboration. However, dependence
on direct channels introduces significant computational and memory overheads (Roth et al., 2006),
which makes it challenging to implement in certain scenarios, like tasks without communication
channels or decentralized frameworks (Oliehoek et al., 2008; Kraemer & Banerjee, 2016).

Situations where explicit messaging is not feasible have been common in human society throughout
history. From early humans engaging in hunting and gathering through silent cooperation (Klein,
2009; Tomasello & Vaish, 2013), to modern military operations using gestures and codes for covert
communication (Tzu, 2008), and even in everyday social interactions where intentions are conveyed
through expressions, tone, and body language (Pease, 1984; Duncan Jr, 1969). Implicit communi-
cation has established an effective mechanism for information sharing without explicit language.

Learning methods for implicit communication have been investigated by the MARL community. A
prominent method is the theory of mind (ToM) (Premack & Woodruff, 1978), where agents infer
the mental states and intentions of others by interpreting their actions (Heider & Simmel, 1944). By
modeling the beliefs, desires, and intentions of other agents, ToM enables agents to coordinate in a
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variety of simple tasks (Baker et al., 2017; Zhao et al., 2023; Nguyen et al., 2020). However, ToM-
based approaches face significant challenges, including the difficulty of making accurate inferences
and the high computational complexity involved in modeling other agents. These issues become
particularly pronounced in dynamic environments where agents must constantly update their models
based on limited or ambiguous information.

To address these challenges associated with ToM methods, we introduce Implicit Channel Protocol
(ICP), a novel framework that allows agents to construct communication protocols in implicit com-
munication likewise how it was done in explicit communication. ICP leverages a subset of actions,
denoted as the scouting actions, which have no or uniform effects on environment dynamics. A
centralized mapping between information and these scouting actions is established to encode and
decode the messages. Agents exchange information by deliberately taking scouting actions, form-
ing an implicit communication channel. We further demonstrate how agents’ strategies are trained
on this channel, including training with a randomly initialized information map and training with a
delayed information map.

We validate the effectiveness of ICP through comprehensive experiments on the tasks of Guessing
Number, Revealing Goals, and Hanabi (Bard et al., 2020). These environments share a common
characteristic: they lack direct communication but agents must collaboratively make decisions to
achieve shared rewards. This setting introduces significant challenges, including sparse and delayed
reward feedback, along with difficulty in credit assignment both temporally and among agents. De-
spite these hurdles, our experiments on Guessing Number and Revealing Goals demonstrate that
ICP significantly enhances performance, through more efficient information transmission, compared
to baseline methods. In Hanabi, which is a popular card game played by humans, our approach
achieved an average score of 24.91 out of 25, which surpasses the best available learning algorithm
who obtains 23.81.

2 BACKGROUND AND RELATED WORK

Decentralized Partially Observable Markov Decision Process Cooperative multi-agent prob-
lem can be formulated as a Dec-POMDP game (Bernstein et al., 2002), which is described by the
tuple G = (S,U,N, T , O,R, γ), where S represents the true global state of the environment. At
each discrete time step t, every agent i ∈ N := {1, . . . , n} selects an action ui from its action space
Ui. The state transition function T (s′|s, u) : S × U × S → P (S) governs the transition of states,
where u = (u1, . . . , un) denotes the joint action. In POMDP, the global state remains inaccessible,
and each agent i can only perceive its individual observation oi through the observation function
Oi(s) : S×N → O. Ri(s, ui) : S×Ui → R represents the reward function for each agent i. In the
cooperative scenarios, all agents share a common reward function R(s, u) : S × U → R, known as
team reward. The objective for each agent is to maximize the expected return, which makes effective
cooperation among all agents necessary.

Learning to Communicate Communication among agents is critical for effective collaboration
in MARL. Most researches in this field focused on explicit communication protocols (Tucker et al.,
2022; Peng et al., 2017; Kong et al., 2017; Pesce & Montana, 2020; Kim et al., 2019; Wang et al.,
2020; Freed et al., 2020b;a; Gupta et al., 2023; Foerster et al., 2016), where agents exchange mes-
sages containing critical information. Additionally, techniques like attention mechanisms or graph-
based methods that used to build more effective communication connection (Jiang & Lu, 2018; Das
et al., 2019; Jiang et al., 2018; Sukhbaatar et al., 2016; Chen et al., 2024; Tucker et al., 2022) and in-
tention sharing or theory of mind (ToM) reasoning to transmit more useful information (Wang et al.,
2021; Kim et al., 2020; Qu et al., 2021), further enhancing the effectiveness of MARL systems.

Explicit communication on direct channel often incurs significant communication overhead and may
not be available in environments with limited bandwidth or high communication costs. Implicit
communication, where agents convey information through their behaviors, has been explored as an
alternative approach (Li et al., 2024; Tian et al., 2023; Li et al., 2021; Shaw et al., 2022; Grupen
et al., 2022). Theory of mind (ToM)-based methods represent one main research strand for implicit
communication, where agents infer the intentions and beliefs of others to anticipate actions and
adjust strategies accordingly. Methods in Rabinowitz et al. (2018); Tian et al. (2020); Nguyen et al.
(2020); Zhao et al. (2023) aim to enhance coordination by modeling and predicting others’ behavior
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based on observed actions. However, ToM-based approaches can be computationally intensive and
may struggle to accurately infer intentions in complex environments.

3 SETTING

Consider in a fully cooperative Dec-POMDPs, where no direct communication channel is available.
Each agent maintains a joint action-observation history τt,i = {o0,i, u0, r1, ..., rt, ot,i} and makes
decisions and executes actions based on it. Within this setting, we define a subset of actions as
scouting actions Us which have no or uniform effects on the state st or reward rt and mainly affect
the observation function Oi(st). The remaining actions are defined as regular actions Ur.

In an idealized situation, scouting actions serve to influence the observation mapping function, which
allows the agents to gather critical information from the environment to improve their decision-
making and coordination. A scouting action might reveal information about an agent’s surroundings
or the state of other agents without changing environment unpredictably. For instance, in the game
of Hanabi, Hint actions reveal information to other players while consuming an information token,
thereby uniformly altering the game state. Similarly, in StarCraft II, scouting the map with Scan
from Terrans requires depleting energy, which impacts the environment and provides new informa-
tion in the agent’s observations.

We are interested in this setting because agents generally need to employ scouting actions to collect
sufficient information before taking other actions to obtain rewards. Both the information collection
phase and the reward acquisition phase may require cooperation among agents. For example, agents
will only receive positive rewards if one agent scouts the correct information for another agent, and
the latter correctly utilizes this information. In this context, sparse and delayed reward feedback,
along with the credit assignment problem both temporally and among agents, poses significant chal-
lenges for agents to learn optimal strategies.

4 INFORMATION CARRIED BY SCOUTING ACTIONS

Scouting actions carry two types of information:

1. Information reflected through the environment: When an agent performs a scouting
action, it influences the observation function, and the resulting observations provide in-
formation. This type of information depends on the observation function, states, and the
joint actions of all agents. All scouting action will change observation function and bring
information.

2. Information reflected through the choice of the scouting action: The specific scouting
action chosen by an agent can carry intentional meaning. This type of information only
depends on other agents’ scouting action policy. But while receiver agent can’t understand
sender agent’s intention, no information will be transmitted.

General multi-agent reinforcement learning (MARL) methods tend to focus more on the first type
of information. In Dec-POMDPs without model other agents’ strategies, both partial observation
of states and other agents’ policy introduce uncertainty. And in exploration phase of online MARL
training, second type of information can’t be utilized due to unknown policies of others. Therefore,
MARL methods mostly learn to use the information reflected through the environment.

For second type of information which is not limited by observation function and states, when agents’
intention is understand correctly, it is more fixable and could be more useful for decision making
and cooperation. Theory of mind (ToM) methods utilized second type of information by modeling
strategies or inferring intention of other agents. By estimating the internal states of others, an agent
can interpret the intentional choices behind their scouting actions. One approach is to build an
explicit belief model that infers the state from observed actions to achieve communication. However,
this method incurs a computational cost that grows exponentially with the size of the game and the
number of agents. Moreover, the precise state distribution information is often difficult to fully
utilize. Another approach involves training a neural network to map actions to states or intentions,
which requires exponentially more data compared to action policy training. Since this method does
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not produce explicit inferences, the resulting information is inherently biased, and this bias can
negatively impact the agent’s decision-making process.

To take advantage of second type information conveyed by scouting actions and to mitigate the
computational overhead and inaccuracies of ToM methods, we propose a simpler and more effective
solution. By establishing a shared communication protocol where all agents follow the same strategy
for selecting scouting actions, the intended information can be easily decoded from the chosen
scouting action. This approach eliminates the need for state estimation and intention inference
required in ToM methods. In our setting, this communication protocol has following benefits:

1. Low Computational Overhead and Accurate Information Transmission: By having all
agents follow the same strategy for selecting scouting actions, there is no need for addi-
tional computational inference or training of a separate inference model to deduce inten-
tions. The inverse of the strategy can be used to directly interpret the information, resulting
in low computational overhead and accurate transmission of intentions.

2. Efficient Communication Enabled by Broadcasted Information: Scouting actions are
observable by all agents in the system, allowing any information conveyed through these
actions to be inherently broadcasted. This characteristic facilitates the use of efficient em-
bedding techniques, such as the hat mapping method, to achieve more effective communi-
cation.

3. Independence from Observation-Based Information: When different embeddings are
used, the information conveyed by altering the observation function may differ, making the
information carried by scouting actions not necessarily correlated with the environment-
based information. Both types of information can be optimized concurrently to enhance
cooperation and decision-making.

5 STRATEGY TRAINING ON CONSTRUCTED IMPLICIT CHANNEL

To establish a shared communication protocol, we propose Implicit Channel Protocol (ICP), a new
framework for agents’ implicit communication. In this framework, at each step, an agent chooses
whether to send information. If not, a regular action ur is taken according to the action policy.
If otherwise the agents wish to convey message mi ∈ M , it maps mi through the centralized
mapping mechanism P , which outputs a scouting action us = P(mi). This mechanism P needs
to be decodable, which provides an output message from scouting actions. By allowing agents to
send information through encoded scouting actions and other agents to find the message from the
globally observed scouting actions, an implicit communication channel is constructed.

As the agent needs to decide whether to send information, the new action space becomes U ′ = {U−
Us, send info}, then agents sample actions ui ∈ U ′ from new action policy ui ∼ πi(· | τt,i,m−i),
where m−i is decoded messages transmitted from other agents. For message mi, it is selected by
the message strategy mi ∼ ϕi(· | τt,i,m−i). Based on this process, we can formulate agents’ value
function as V πi,ϕi,P(s) := E[

∑T
t=1 γ

t−1rt(st, ut, st+1) | s1 = s], for st+1 ∼ T (· | st, ut) and
ut = (ut,1, ..., ut,n),

and ut,i =

us = P(mi ∼ ϕi(· | τt,i,m−i)) if send info,

ur ∼ πi(· | τt,i,m−i) else.
(1)

Equation (1) highlights three essential components of the framework: the agents’ action policy π,
the message strategy ϕ, and the centralized mapping mechanism P . To develop these components,
we investigate two different methodologies: The training with random initial information map and
the training with delayed information map. Both approaches construct an implicit communication
channel within the environment, with which the agents exchange information and achieve implicit
coordination. In the rest of the section, we will discuss the details of these approaches.
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5.1 STRATEGY TRAINING WITH RANDOM INITIAL MAP

In this approach, we first establish a one-to-one mapping between information and actions using a
randomly initialized embedding, that makes the size of the message same as the size of the scouting
action space M = {1, ..., |Us|}. Once this one-to-one mapping is set, the inverse of P will obtain
the original message mi = P−1(us

i ).

In our implementation, we use a value based method for training the action policy, in-
corporating parameter sharing and value decomposition techniques to facilitate effective co-
ordination among agents. For the information strategy, we use the communication gradi-
ent method (Foerster et al., 2016), which is designed to optimize communication protocols
within a predefined channel. Both the action policy and the information strategy are parame-
terised as Q-networks, for action policy πi(τt,i) = argmax Qθ1,i(τt,i, ui), and message strat-
egy ϕi(τt,i) = argmax Qθ2,i(τt,i,mi). Given the value function V πi,ϕi,P(s), the Q-functions
are defined by Qπi(τt,i, ui) := Em∼ϕ,P [rt(st, ut, st+1) + γV πi,ϕi,P ], and Qϕi(τt,i,mi) :=
Eur∼π,P [rt(st, ut, st+1) + γV πi,ϕi,P ], where π = (π1, ..., πn), ϕ = (ϕ1, ..., ϕn) and m =
(m1, ...,mn).

Parameter Sharing and Value Decomposition Parameter sharing enables different agents with
the same observation and action spaces to learn from a shared network. Despite using the same
network, agents evolve different hidden states and receive distinct observations, allowing them to
behave differently. We incorporate the agent index i into the network input, allowing for specializa-
tion through rich representations in deep Q-networks.

To further enhance learning efficiency, we apply value decomposition (Sunehag et al., 2018) for the
action policies π. The joint action-value function Qπ

tot(τ, u) is expressed as the sum of individual
value functions: Qπ

tot(τ, u) =
∑N

i=1 Q
π(τt,i, ui; θ1,i), where τ = (τi, ..., τN ). This decomposition

simplifies learning by allowing the gradients to propagate through individual agents’ policies while
maintaining a shared reward structure, which accelerates the overall training process.

Communication Gradient Since our message space is M = {1, . . . , |Us|}, which is discrete and
non-binary, we introduce the Gumbel-Softmax technique (Havrylov & Titov, 2017; Jang et al., 2016)
to sample one-hot vector messages m⃗. The Gumbel-Softmax method enables us to generate dis-
crete samples that are differentiable, facilitating end-to-end training with gradient descent. Specif-
ically, we sample the one-hot vector message m⃗ such that m⃗i = 1 if i = argmaxj∈M (log(ϕ(· |
τt,i,m−i) + gj)), and m⃗i = 0 otherwise, where gj = − log(− log(uj)) and uj ∼ U(0, 1).

This method ensures a continuous relaxation between ϕ and m⃗. As a result of this relaxation, the
game becomes fully differentiable and can be trained using the backpropagation algorithm. By
enabling gradients to flow smoothly through the communication process, this approach facilitates
more effective and efficient training of the agents. Compare the communication gradient implemen-
tation in DIAL (Foerster et al., 2016), we adopt this Gumbel-Softmax technique to replace the Dis-
cretize/Regularize Unit (DRU). This substitution allows the agents to send discrete and non-binary
messages during the learning phase, thereby enhancing the richness and accuracy of the information
exchanged.

5.2 STRATEGY TRAINING WITH DELAYED MAP

In the training process with delayed map, we begin by learning the information strategy and action
policy using an direct communication channel. This initial phase provides agents with a flexible
environment that allows for direct communication, enabling them to develop their strategies more
effectively. Once these strategies are well-established, we then define the mapping mechanism that
maps the messages to actions. Finally, we fine-tune both the action policies and information strate-
gies in ICP framework to ensure optimal performance within the constraints of the final environment.

Given that the information strategy was initially trained using an direct communication channel,
there may be discrepancies between this channel and the implicit communication channel con-
structed by scouting actions, particularly in terms of capacity and whether the channel is discrete
or noiseless. To minimize any potential performance loss resulting from these differences, we can
limit the capacity of the direct channel or apply efficient embedding techniques (such as hat map-
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ping method) during the message-to-action mapping process. These steps help to align information
strategies developed in the direct channel with the constraints of the implicit channel and ensure
messages are decodable.

During implementation, we utilize standard explicit communication algorithms designed for direct
channels, such as RGMComm, to pre-train the information strategy. Then we use two kinds of map-
ping methods, including simple one-to-one mapping and the hat mapping method (Brown & Tanton,
2009; Bushi, 2012; Butler et al., 2009; Feige, 2004; Havil, 2011; Winkler, 2002) to obtain new in-
formation strategies. The one-to-one mapping ensures that each message corresponds directly to an
action, while the hat mapping allows an agent to communicate efficiently with multiple receivers.
Finally, we fine-tune both the information strategy and the action policy to optimize performance
within the implicit communication framework.

Pre-training with Direct Channel In the pre-training phase, we utilize an direct communication
channel to facilitate the learning of the communication strategy. During this phase, the message size
can be larger than the scouting action space, allowing for more complex and detailed communication
between agents. This flexibility enables the agents to explore a wider range of communication strate-
gies and coordination behaviors, which are crucial for solving complex tasks in partially observable
environments. However, after pre-training, the message strategy needs to transition to the implicit
communication framework and it is necessary to lossless compress these messages. For one-to-one
mapping, this mapping requires that message size match the scouting action space exactly. It ensures
a direct and consistent mapping between the learned messages and the corresponding actions.

Hat Mapping Implementation When the local observations of different agents’ have large over-
laps, hat principle-based mapping method utilizes broadcast channels to achieve a single transmis-
sion of messages to multiple receivers. The method is inspired by the multi-color hat guessing game,
where players use logical deduction based on limited communication to maximize team success. In
this game, players can observe the hat colors of others but not their own, and they must guess their
own hat color using a pre-defined strategy. A well-known strategy involves each player leveraging
the sum of the hat colors they observe, modulo the total number of possible colors. For example,
in an 8-color version of the game, each player can compute the sum of the colors they observe (as-
signed numerical values) and use a pre-determined rule, such as calculating the sum modulo 8, to
make a logical deduction about their own hat color.

In our implementation, at each step, each agent computes local messages intended for every other
agent. These local messages are derived from the shared information strategy and the observations
that the target agent cannot see but are overlapped with other agents—much like the “hat” in the
hat guessing game. When an agent sends information, it transmits a structured public message
that combines all these local messages using a sum modulo operation. As a result, each receiving
agent can also use the sum modulo operation to combine the received public message with the local
messages of all agents except themselves and the sender. This allows them to infer their own specific
local message from the combined public message. This method enables a single broadcast to convey
individualized information to multiple agents simultaneously, enhancing communication efficiency
even when explicit communication is not possible.

6 EXPERIMENTS

In this section, we explore the application of the ICP across various environments where no direct
communication is available. ICP plays a vital role in these settings by constructing an implicit
communication channel that enhances the agents’ ability to share and interpret information. We
will demonstrate how ICP facilitates effective collaboration and decision-making in 3 tasks, namely
Guessing Number, the Revealing Goals, and the Hanabi card game. The first two tasks are designed
by us and can be reused by future works as testing environments. The Hanabi game is a popular
card game played by humans, and is described as The Hanabi Challenge (Bard et al., 2020) by the
community. Each of these environments presents unique challenges, and we will show how ICP
optimizes the use of scouting actions to improve overall performance and strategy.
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Figure 1: Left: Guessing Number Environment . Agents can’t see their own digits, but can reveal
others’ segments’ state, by collaboratively give hints, they can deduce their own digit and obtain
shared rewards. Right: Revealing Goals Environment. Each agents are positioned a random posi-
tion in a grid world and are assigned a unique target. However, they can only observe others’ targets
which not include themselves. By revealing each other’s targets in the nearby grid, they can eventu-
ally find their own targets and reach them.

6.1 GUESSING NUMBER

In the Guessing Number Game, we present a collaborative, turn-based multi-agent reinforce-
ment learning environment involving N agents. Each agent i is uniquely assigned a digit di ∈
{0, 1, . . . , 9}, which is visible to all other agents j ̸= i but remains unknown to agent i themselves.
The primary objective for each agent is to deduce and correctly guess their own digit di. During each
turn, an agent can choose to either guess their own digit by selecting d̂i ∈ {0, 1, . . . , 9} or provide
a hint about another agent’s digit using the Radioland Slim font—a seven-segment digital display
representation. Specifically, hints involve revealing the state (“on” or “off”) of one of the seven seg-
ments of another agent’s digit, and these hints are public and observable by all agents. Each agent’s
action space comprises 10+ 7× (N − 1) actions: 10 options for guessing their own digit and 7 hint
options for each of the N − 1 other agents. The game encourages strategic collaboration, as agents
must balance between gathering information to deduce their own digit and assisting others through
informative hints, aiming for the collective success of all agents correctly guessing their digits.

In this game, successfully guessing their digit rewards an agent with 10, while performing a hint
action incurs a small penalty of −0.1 to encourage efficient communication and collaboration. The
game imposes a limit l on the number of hint actions, and each agent is allowed only 1 guess. The
game concludes when all agents have made their guesses, with the goal being to accurately guess all
digits within these constraints.

In the Guessing Number experiment, we evaluated the performance of 5 approaches: VDN-on-
policy, VDN-off-policy, ICP with the random initial map approach (ICN-DIAL-RM), ICP with the
delayed map approach (ICN-DIAL-DM), and a cheating approach where an direct communication
channel is available (DIAL-Cheat). Each approach is evaluated over 1k episodes with 6 random
seeds, and running on a Linux metal machine with 256 GB RAM and 3090Ti GPU for 36 hours.

For VDN-off-policy, we begin by warming up the replay buffer until its size exceeds the batch size.
During each training step, we add 10 episodes to the replay buffer and randomly sample batch-size
episodes from the buffer for training. In contrast, for VDN-on-policy and our proposed method, we
utilize a vectorized environment to sample batch size episodes at each training step and use these
samples for training.

Despite differences in network architecture, these approaches share similar hyperparameters. Specif-
ically, we set the hidden size of the MLP and GRU to 256, use 2 layers in the GRU, and set the
learning rate to 5 × 10−4, batch size to 256. The target network update rate is set to 10, γ is set to
0.99, ϵ is set to 0.1, and we apply gradient clipping with a threshold of 10.

The results is presented in Figure 2. All algorithms are capable of eventually guessing their own digit
correctly, but the differences of number of hit actions needed is significant among the algorithms. By
examining the saved models and averaging over 10k episodes, we found that ICN-DIAL-RM has an
average episode length of approximately 8.63, while VDN-on-policy and VDN-off-policy have
average episode lengths of around 12.4. This observation further demonstrates that ICN achieves
more efficient information transfer by using scouting actions to construct implicit channels.
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(a) (b)

Figure 2: (a): The training curves of Guessing Number over total 100k train steps with N = 3, l =
11. (b): Average episode length running by different algorithms in Guessing Number.

6.2 REVEALING GOALS

In the Revealing Goals task, we present a non-sequential collaborative that emphasizes information
sharing among agents. The environment consists of N agents operating within an H×H grid world.
Each agent i starts at a random position and is assigned a unique goal location gi that is at least two
grid units away from its starting position. Critically, agents cannot perceive their own goal locations;
they can only observe the goal locations of other agents j ̸= i. At each time step, agents select from
a fixed action space of eight actions: moving up, down, left, or right, and reveal information about
the adjacent grid cells in these directions. When an agent performs a reveal action, the adjacent grid
cell in the specified direction becomes revealed, and all agents gain information about whether their
own goals are located in that cell. The grid world features wrap-around edges, creating a toroidal
topology where, for example, moving left from cell (0, y) leads to cell (H − 1, y).

An agent observes the locations of all agents, the goal points of other agents, and any goals on the
revealed grids. Since they cannot directly perceive their own goals, agents must rely on information
revealed by themselves and others to infer the locations of their own goals. The objective is for each
agent to navigate to its designated goal location gi, upon which all agents receive a shared reward of
1. When an agent reaches its goal, a new goal is randomly assigned to it but is at least two grid units
away from its current position. The game proceeds for a total of T time steps. This environment
encourages strategic collaboration, as agents must balance between exploring the grid to find their
own goals and assisting others by revealing grid cells that may contain teammates’ goals. The agents
will need to communicate implicitly, using the fixed action space of size 8.

In the experiments for the Revealing Goals task, we used the same training hyperparameters and
model architecture as in the Guessing Number experiments. We also compared the performance of 5
approaches: DIAL-Cheat, ICN-DIAL-DM, ICN-DIAL-RM, VDN-on-policy and VDN-off-policy.
The experimental result is shown in Figure 3(a). ICN-DIAL-RM significantly outperforms the
baseline methods by achieving an average score 2.17 times of the baselines. One reason for its
effectiveness is that, in each round, each of the N agents can engage in N broadcast communications
through implicit channels, which significantly enhances information efficiency compared to relying
solely on environmental feedback. This result further validates the effectiveness of ICP in more
complicated grid world tasks.

6.3 HANABI

To demonstrate ICP’s broader applicability, we also evaluate it in the game of Hanabi. Hanabi is
a fully cooperative card game where players work together to play cards in a specific order to form
sequences, aiming to achieve the highest possible score. When it is played by humans, people will
mute themselves and coordinate only through taking and observing actions. This game requires
effective implicit communication and strategic information sharing among the agents.

Because the game rule of Hanabi is quite involved, we refer it to a popular website https://
hanabi.github.io/ that discusses both rules and human-play strategies. The action space for

8
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Figure 3: (a): The training curves of Revealing Goals over total 100k train steps with N = 4, H =
5, T = 50. (b): The training curves of 4-players Hanabi with on-policy algorithms take around 150
hours and off-policy algorithms take around 20 hours.

each agent includes three options: playing a card out of their 5-card hand, discarding a card, or
giving a hint towards another player’s 5-card hand. The hint could reveal all cards in a player’s hand
of a specific color or rank. Since they cannot see their own cards, agents must rely on hints from
others to infer what cards they hold. The success of the game heavily depends on the agents’ ability
to use these hints effectively to coordinate their actions and play the correct cards in order.

In our experiments, we focused on the 4-player full version of Hanabi. Since hint actions in Hanabi
are natural scouting actions, we selected them to serve as information carriers for our ICP imple-
mentation. We implemented several baseline algorithms, including VDN-off-policy and the original
version of SAD (Hu & Foerster, 2019), as well as a variant of SAD with the hint action masks re-
moved. For the ICP algorithm, we explored several variations, including ICN-DIAL-RM-on-policy,
which involves strategy training with a random initial map using DIAL’s communication gradient
technique resulting in an on-policy learning method. We also implemented ICN-DIAL-RM-cut-
gradient-off-policy, similar to ICN-DIAL-RM-on-policy but with the communication gradient chain
cut off to enable off-policy learning. Additionally, we used ICN-RGMComm-DM, which is strategy
training with a delayed map using RGMComm (Chen et al., 2024), an off-policy MARL commu-
nication algorithm, and ICN-RGMComm-DM-hat-mapping, an extension of ICN-RGMComm-DM
that utilizes the hat mapping method for improved communication.

Our presented results are based on the best runs selected from more than three random seeds. From
the results shown in Figure 3(b), we observe that the ICP method using the hat mapping approach,
ICN-RGMComm-DM-hat-mapping, achieved the best performance. The score achieved by ICP is
24.91, which surpasses the best available learning algorithm (SAD, 23.81 points) and vastly
outperforms theory of mind-based methods (Fuchs et al. (2021) 19.13 points) and average
human players (17 points, reported in Kantack (2021)). It is worth remarking that the state-of-
the-art strategy in the Hanabi game is a search-based algorithm, WTFWThat+search, which reports
an averaged score of 24.96 points (Lerer et al., 2020). With the maximum score of the game being
25, and there are certain deals that prevent the players to win 25 points in any way, both ICP and
WTFWThat+search are close to solving the game.

For additional details on our implementation, please refer to Appendix A. A comparison between
ICP and Hanabi human conventions is provided in Appendix B, along with a detailed analysis of the
Hanabi results in Appendix C.

7 DISCUSSION

7.1 COMPATIBILITY OF ICP WITH OTHER TRAINING METHODS

In the ICP framework, action policy allows for the use of various algorithms for training. For
instance, the action policy can be trained using value-based methods like VDN (Sunehag et al.,
2018) or policy-based methods such as MADDPG (Lowe et al., 2017). This compatibility ensures

9
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Figure 4: By shuffling the embedding of information into scouting action, even if the information
strategy stays the same, environment information will also change. After fine-tuning, the perfor-
mance of implementation with the same information strategy but different embedding varies.

that ICP can be tailored to various problem settings and agent dynamics, allowing researchers to
choose the most suitable algorithm depending on the specific characteristics of the environment and
the agents involved.

The communication strategy within the ICP framework is also versatile. It can be implemented using
a variety of direct channel communication algorithms that support discrete channels. These include
well-established methods like DIAL or RGMComm, which are designed to optimize communication
under different constraints and requirements. The flexibility in choosing both the action policy
and the communication algorithm highlights the comparability and broad applicability of the ICP
framework, making it a general approach for multi-agent reinforcement learning scenarios.

7.2 POTENTIAL OF FURTHER UTILIZING THE ENVIRONMENT INFORMATION

As described in Section 4, we analyzed that scouting actions carry two types of information. The
ICP framework utilizes the information reflected through the choice of the scouting action (choice
information) to establish an implicit communication channel. However, even when we leverage this
information, the information reflected through the environment (environment information) does not
disappear. Although in most cases the constructed implicit channel transmits more stable and useful
information, in some situations the environment information is also significant. For example, in the
Revealing Goals environment, a revealing action intended to transmit embedded information might
also reveal other agents’ goals, which helps agents to make better decisions.

To verify the impact of this environmental information on performance, we randomly shuffled 6
different embeddings on the ICN-RGMComm-hat-mapping policy saved from the previous Hanabi
experiment. We then fine-tuned the action policy while keeping the information strategy fixed. The
results are shown in Figure 4, where, under a fixed information strategy, some randomly shuffled em-
beddings enjoy improved performance. This suggests that one could further utilize the environment
information for more effective communication. We leave this research problem for future works.

8 CONCLUSION AND FUTURE WORK

The Implicit Channel Protocol (ICP) introduced in this paper is an advancement in implicit commu-
nication through multi-agent reinforcement learning (MARL). By mapping information to scouting
actions to construct implicit channels and optimizing both action and communication strategies, ICP
facilitates communication protocols to be established even without explicit channels. The experi-
mental results validate the protocol’s effectiveness across various MARL scenarios and demonstrate
its capacity to significantly improve both coordination among agents and performance in the tasks.

A possible direction for future work is extending ICP to environments that lack inherent scouting
actions. In such settings, identifying appropriate actions to serve as information carriers becomes
challenging, as these actions must both convey information effectively and interact with the environ-
ment beneficially. Future research could focus on developing algorithms that dynamically identify
or design such actions, balancing effective communication with minimal impact on the environment.
These advancements would enhance the applicability of ICP across a wider range of scenarios, mak-
ing it a more versatile tool in multi-agent communication.

10
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REPRODUCIBILITY STATEMENT

The code and our designed environments is freely available in the supplementary material. The de-
tails of the implementation can be found in Appendix A. The hyper-parameters used in experiments
also mentioned in Section 6.
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A TRAINING DETAILS

A.1 ICP IMPLEMENTATION WITH DIAL AND VDN

In our implementation, we employ a 2-head input and 2-head output Implicit Channel Net (ICN)
to parameterize all Q functions. Specifically, at each time step t, for agent i, observation-action
pairs (ot,i, ut−1) are input to one Multilayer Perceptron (MLP) and Rectified Linear Unit (ReLU)
layer. Additionally, the last message vectors from other agents (m⃗k,l, where k = max(j | m⃗j,l ∈
M⃗)) for l ∈ (1, . . . , N) are stacked together along with each message sender’s ID, then input to
another MLP and ReLU layer. The outputs of these two layers are summed and input to a Gated
Recurrent Unit (GRU) network (Chung et al., 2014). This process approximately achieves the Q
function input with action-observation history τ and other agents’ messages m−i by utilizing hidden
states and inputs at each time step.

Subsequently, the output of the GRU is directed to two distinct heads: an action head and a message
head. The action head generates logits for actions, with an output dimension of |U −Us|+1, while
the message head is specialized to handle the agent’s communication behavior, producing logits for
messages. Specifically, the output dimension of the message head is set to |Us| + 1, where the
additional dimension represents the NOOP (no operation) action. This design ensures that the agent
refrains from sending a message when the action sampled from the action logits does not correspond
to send info. To enforce this behavior, a mask is applied to the output of the message head. When
the action sampled from the action logits is send info, the mask restricts Gumbel-Softmax sampling
to select the NOOP action. If the agent decides to send a message, the sampled one-hot vector of
messages m⃗ directly maps to the j-th information action uinfo, where j = argmaxl∈(1,...,|Us|)m⃗l.

During centralized training sessions, action sampling follows an ϵ-greedy policy to ensure explo-
ration, while we maintain the gradient of the one-hot vector of messages m⃗ to ensure gradients pass
through the communication process. However, since gradient information becomes inaccurate for
updated policies, we can only use sampled episodes once, making our method on-policy. In de-
centralized execution sessions, we simply utilize the shared parameter network to manage greedy
actions and one-hot vector messages sampled from Gumbel-Softmax.

A.2 ICP IMPLEMENTATION WITH RGMCOMM AND VDN

In the pre-training phase of this approach, we used RGMComm, which utilized Regularized Infor-
mation Maximization loss (Chen et al., 2024) to generate discrete messages. This method represents
the latest state-of-the-art explicit communication algorithm in multi-agent reinforcement learning
(MARL).

RGMComm itself is based on the MADDPG (Multi-Agent Deep Deterministic Policy Gradient)
framework (Lowe et al., 2017). Initially, a full observability centralized actor-critic model (Konda
& Tsitsiklis, 1999) is trained to develop a policy with access to global information. This centralized
policy serves as a reference to guide the communication strategy for each agent. During this stage,
the agents use a centralized critic with a complete view of the environment to assess the action-value
functions and optimize the communication strategy. After training this full-observability policy,
RGMComm samples different information sets based on local observations. It then clusters these
sampled information sets (Harsanyi, 1967) to assign specific messages to each cluster. By doing so,
RGMComm derives a discrete communication protocol tailored to each agent’s local observations,
optimizing their joint policy under partial observability.

In our implementation, instead of using MADDPG, we employed an RDQN (Recurrent Deep Q-
Network) (Hausknecht & Stone, 2015) to train the policy with full observability. For example, in
environments like Hanabi, the difference between the full observation (global view) and the local
observation is minimal, with only additional knowledge of the agent’s own hand being considered.
Using this full-observation policy, we performed clustering on the information sets, similarly to the
RGMComm approach, to obtain the message strategy.

Following the pre-training phase, we proceed to the fine-tuning phase. This phase involves using
VDN (Value Decomposition Network) to train the action policy. During this process, the communi-
cation strategy is embedded into the scouting action space and is fine-tuned to adapt to the environ-
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Algorithm 1: ICP implementation with DIAL and VDN
Input: environment env, max-train-step, max-episode-length, target-update-rate, γ, exploration constant ϵ, learning rate α, selection of

information action space Uinfo
Output: Trained model parameters

1 Initialize shared RNN network weights (θ1, θ2) for each agent i and centralized Mapping Mechanism P , target net weights
(θ′

1, θ
′
2)← (θ1, θ2);

2 for Train step N = 1, 2, . . . , max-train-step do
3 Reset environment, o0 = env.reset();
4 Reset buffer B;
5 Initialize empty one-hot messages m0 and target empty one-hot messages m′

0, 2 RNNs’ hidden states (h1, h2) and 2 target
RNNs’ hidden states (h′

1, h
′
2);

6 for time step t = 1, 2, . . . , max-episode-length do
7 Initialize empty one-hot messages mt;
8 for each agent i do
9 Sample message and update hidden state: msample, h2 = GumbelSoftmax(φθ2

(ot,i,mt−1,−i, h2));
10 Sample a random action urandom ∈ Unon-info;
11 Compute greedy action and update hidden state: ugreedy, h1 = argmaxu(πθ1

(ot,i,mt−1,−i, h1));
12 ϵ-greedy sample action ut,i ← ϵ · urandom + (1− ϵ) · ugreedy;
13 Get action ut,i’s q: qt,i = Qθ1

(ut,i | ot,i,mt−1,−i, h1);
14 if ut,i = | Unon-info − 1 | (send info) then
15 Update action ut,i ← uinfo = P(msample,

⋂
i∈N τt,i);

16 Update message mt,i = msample;

17 Sample target message and update hidden state: m′
sample, h

′
2 = GumbelSoftmax(φθ′2

(ot,i,m
′
t−1,−i, h

′
2));

18 Compute target greedy action’s q and update hidden state: q′t,i, h
′
1 = maxu(πθ′1

(ot,i,m
′
t−1,−i, h

′
1));

19 if argmaxu(πθ′1
(ot,i,m

′
t−1,−i, h

′
1)) = | Unon-info − 1 | (send info) then

20 Update message m′
t,i = m′

sample;

21 Step environment, ot+1, rt = env.step(ut);
22 Store (qt, q

′
t, rt) into buffer B;

23 Use samples in buffer to compute sum-q’s TD-error: δt = rt + γ ·
∑

i(q
′
t+1,i)−

∑
i(qt,i);

24 Update network weights θ1, θ2 using Adam Optimizer with loss δ2t,i;
25 if Train step N mod target-update-rate == 0 then
26 Update target network weights (θ′

1, θ
′
2)← (θ1, θ2);

ment. By freezing the RGMComm-generated communication strategy during the initial stages of
fine-tuning, we ensure stability and later adjust the embedding to better align with the action policy.

A.3 IMPLEMENTATION OF DIAL-CHEAT AND ICN-DIAL-DM

DIAL with a Direct Communication Channel (DIAL-Cheat): In this approach, we added a discrete
direct channel to the original environment, with the message size matching the size of the scouting
action space. This channel allows agents to broadcast information while simultaneously taking
actions.

ICP Implemented with the Delayed Map Approach (ICN-DIAL-DM): For this method, we first
removed scouting actions from the environment and introduced a discrete direct channel (with the
same message size as the scouting action space). Using this modified environment, we pre-trained
the agents with DIAL to learn the information strategy. The learned information strategy was then
transferred back to the original environment for fine-tuning, where both the information strategy and
action policy were optimized.

B HUMAN CONVENTION IN HANABI

Hanabi serves as a compelling platform for studying cooperation and ad-hoc teamwork, particularly
within the MARL community, while also being an engaging game in its own right. Beyond its
academic appeal, many players have developed highly sophisticated strategies, as detailed in the
referenced H-Group conventions 1. These conventions outline a framework that enables players to
achieve high scores by adhering to agreed-upon strategies.

1For more detailed information on these strategies, please refer to the H-Group’s conventions and learning
path at https://hanabi.github.io/.
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Interestingly, some of these strategies embed elements of ToM reasoning into the conventions them-
selves. For example, techniques like Delayed Play Clues explicitly define the information that cer-
tain actions are intended to convey when teammates perform specific moves. Even the Basic and
Advanced Strategies, such as misleading bluffs, leverage second-order ToM reasoning to facilitate
more effective collaboration.

In a manner similar to ICP, the H-Group conventions construct a stable implicit communication
channel by explicitly codifying the ToM reasoning into the actions. When all players follow these
conventions, actions serve as reliable carriers of information, ensuring a consistent and effective
communication channel within the game.

Compare with H-Group conventions, our ICP framework differs in that the communication strategy
itself is learned as part of the training process, rather than being predefined. The communication
through informative actions becomes akin to following a learned convention where agents develop
their own patterns for encoding and transmitting information during the training phase. This allows
agents to use scouting or informative actions as explicit communication mechanisms, while regu-
lar actions are selected through an online decision-making policy during gameplay. Notably, our
method achieves a score of approximately 24.91 in the Hanabi game, which significantly surpasses
the average human score of around 17 (Kantack, 2021). Thus, ICP offers a dynamic communica-
tion framework where the convention of communication emerges from the agents’ learning process,
enabling more flexible and adaptive strategies depending on the environment and task at hand.

C ANALYSIS OF HANABI RESULTS

In Figure 3(b), we present a comparison between our proposed method and SAD, focusing on dif-
ferences in average score. While the difference in average score appears minimal in the figure,
a detailed analysis provided below reveals that our method achieves a substantial improvement in
overall performance.

According to the results reported in the original SAD paper, SAD achieved an average score of
23.81/25 with a win rate of 41.45%. In contrast, our proposed method achieved an average score of
24.91/25 with a win rate of 91%. This represents a more than twofold increase in the win rate. The
relatively small difference in average scores, despite the significant improvement in win rates, can
be attributed to the score ceiling of 25 in Hanabi.

Hanabi imposes inherent constraints on scoring due to its game structure. Certain starting hands,
such as those with multiple high-value cards (e.g., 4s and 5s), can make achieving the maximum
score of 25 impossible. Considering these limitations, achieving a win rate of 91%—and scores close
to 24 in the remaining 9% of games—demonstrates that our method performs near the theoretical
maximum.
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