23
24
25
26
27
28
29
30

32
33

35
36
37
38
39
40
41
42
43
44

Toward Explainable Physical Audiovisual Commonsense
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ABSTRACT

For Al systems to be safely and reliably grounded in the real world,
they should possess the ability of physical commonsense reason-
ing, i.e. they are desired to understand the physical properties,
affordances, and maneuverability of objects in everyday life. Physi-
cal commonsense reasoning is essentially a multisensory task as
physical properties of objects are manifested through multiple per-
ception modalities, including both visual and auditory. In this study,
we constructed two new benchmarks, called PACS-Reason and
PACS-Reason+, for explainable physical audiovisual commonsense
reasoning (EPACS), in which each datapoint is accompanied by a
golden detailed rationale (intermediate reasoning path) to explain
the answer selection. Moreover, we present PAVC-Reasoner, a mul-
timodal large language model (LLM) designed to reason about phys-
ical commonsense attributes. The model aligns different modali-
ties with the language modality by integrating three different per-
ceivers for cross-modal pretraining and instruction finetuning at
multiple granularities. It utilizes an LLM as a cognitive engine to
process multimodal inputs and output convincing intermediate
reasoning paths as justification for inferring answers. Numerous
experiments have demonstrated the effectiveness and superiority
of PAVC-Reasoner as a baseline model for studying EPACS. Most
attractively, PAVC-Reasoner is capable of reasoning and obtaining
strong interpretable explicit reasoning paths, signifying a signifi-
cant stride towards real-world physical commonsense reasoning.

CCS CONCEPTS

« Computing methodologies — Knowledge representation
and reasoning,.

KEYWORDS

multimodal commonsense reasoning, commonsense reasoning, ex-
plainable reasoning, physical audiovisual commonsense reasoning

1 INTRODUCTION

Physical commonsense represents a ubiquitous comprehension of
the physical properties and affordances of everyday objects [5].
Humans effortlessly acquire physical commonsense and engage in
commonsense reasoning through daily life experiences and obser-
vations, whether it is to infer properties of objects (e.g. “one might
tap the rind of a watermelon to assess the sound because people know

Unpublished working draft. Not for distribution.
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/{ Problem

Question:

Which object would break into
more pieces if dropped from the
top of a house? :

Options:
(A) [Object1] (B) [Object2]

.

Rationale: [Object1], despite e in the video, judging from the
audio, is ceramic, known for its brittler Ce uld shatter into multiple pieces
due to their brittle nat hen dropped from a height. [Object2], also reliant on both
video frames and audio, is foam and would tend to compress and deform upon impact,
maintaining its structure rather than breaking into numerous pieces.

L Answer: The answer is [Object1]

Figure 1: Illustration of two datapoints from PACS-Reason.
Each datapoint contains a pair of objects and a question. Here
Object1 is made of ceramic and Object2 is made of foam.

that ripe watermelons make a resonant sound while unripe watermel-
ons make a dull thumping sound.”) or solve unique problems (e.g.
“in the absence of using a hammer to break the window, should I use
a suitcase or a pillow?”) [51]. How can artificial intelligence (AI)
systems reason about the physical world without experiencing it
firsthand? The answer to this question may well be the key to mov-
ing towards general artificial intelligence (GAI). Undoubtedly, to
ensure the safe and reliable deployment of Al systems in real-world
scenarios such as robot navigation and autonomous driving, they
must understand the physical properties, affordances of everyday
objects, interactions with other objects, and how to manipulate these
objects [5, 16, 51].

Physical commonsense reasoning is, by its very nature, a multi-
sensory task as physical properties can be expressed through mul-
tiple modalities, including vision and acoustic [21, 23, 40, 42, 46].
If two objects appear visually similar, audio can provide valuable
information for distinguishing the physical characteristics between
them. As illustrated in Fig. 1, based on visual observation alone,
Object1 may be mistaken for plastic or even paper, while Object2
may be misidentified as wax. That is, the lack of necessary audio
information may lead to an inaccurate answer to question (Q1),
which involves the query about the fragility of Object2 relative
to Object1 when dropped from a certain height. Thus, to endow
machines with physical commonsense reasoning, they must first
possess the ability to perceive and understand multimodal signals.

Human cognition, when addressing commonsense questions,
harnesses information from both the auditory and visual modalities
to construct coherent and comprehensive chains of thought. For
instance, when responding to Fig. 1 Q1, individuals initially need
to discern the composition of Object1 and Object2 from the au-
diovisual content provided by the video pair. Subsequently, based
on the intrinsic physical properties of the objects, one can infer
that Object1 (ceramic) would fragment into more pieces when

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116


https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ACM MM, 2024, Melbourne, Australia

dropped from the top of a house compared to Object2 (foam). How
can we enable machines to replicate, or at least manifest, such explicit
reasoning processes akin to human cognition? A straightforward idea
is to articulate the cognitive thought chains of the human brain in
natural language and then use them to teach machines. Adhering to
this idea, we have established two novel benchmarks, PACS-Reason
and PACS-Reason+, building upon the original PACS [51], which
stands as the pioneer in audiovisual benchmarks for the annotation
of physical commonsense attributes. Each datapoint in PACS [51]
is a value tuple (g, 01, 02, ), representing the question, two objects,
and a binary label indicating which object is the correct answer.
We augment each data point in PACS by appending a detailed ratio-
nale (natural language explanation) for each question-answer pair.
In PACS-Reason, we offer these rationales (i.e. intermediate rea-
soning paths) as new ground truth, as illustrated in Fig. 1. These
rationales undergo careful human scrutiny and serve as explicit
reasoning paths, dramatically boosting the model’s understanding
of the physical commonsense attributes in each datapoint.

To sum up, the main contributions of this work are as follows:
(1) We establish two enhanced benchmarks, namely PACS-Reason
and PACS-Reason+, for explainable physical commonsense reason-
ing (EPACS). These benchmarks offer meticulously crafted detailed
explanations for answer choices, allowing for a comprehensive
evaluation of the physical commonsense reasoning capabilities of
multimodal models. This signifies a significant stride in reason-
ing about the physical world. (2) We introduce PAVC-Reasoner, a
multimodal foundation large model for audio-visual commonsense
reasoning. This model simultaneously considers modality synergy
and specificity, leveraging a large language model (LLM) as the
core for processing multimodal signals and generating natural lan-
guage rationales. Specifically, the model integrates three perceivers
to bridge multimodal inputs and LLM and achieves alignment be-
tween different modalities and the language modality through multi-
grained cross-modal pretraining and instruction fine-tuning. (3)
Extensive experiments demonstrate the effectiveness and superi-
ority of PAVC-Reasoner. It demonstrates a precise understanding
of the material composition, physical attributes, and availability of
objects in videos, and achieves state-of-the-art performance on the
two newly constructed EPACS benchmarks.

2 RELATED WORK

2.1 Enhanced Reasoning with Explanations

An increasing number of vision-language reasoning tasks demand
models not only capable of inferring answers to questions but
also possessing robust explanatory capabilities [7, 9, 26, 30, 32, 45].
Among them, Explanatory Visual Question Answering (EVQA) [9]
emerges as a burgeoning multimodal reasoning task, aiming to
require models to generate multimodal explanations about the an-
swers while answering visual questions. In contrast to traditional
VOQA tasks, EVQA emphasizes offering user-friendly explanations
to enhance the interpretability and reliability of reasoning models.
Methods for enhancing vision-language reasoning with explana-
tions be summarized as follows: 1) Symbolic rule-based explanatory
model [7, 49]: Yi et al. introduced a model that entirely decouples
vision-language understanding from reasoning. Here, deep repre-
sentation learning is employed for vision-language understanding,
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while executable symbolic programs are utilized for reasoning. 2)
Natural language explanatory model [9, 32]: Explanations in natural
language form offer high-level, intuitive interpretations that are
easily understandable to humans, supplementing low-level interpre-
tations based on visual perception and semantics. One of the repre-
sentative works is the Rationale Transformer [32], which integrates
pretrained language models with object recognition, grounded vi-
sual semantic frames, and visual commonsense graphs to learn
to generate explanations in free-text form. 3) Causal explanation-
augmented models[30, 33, 45]: Methods along this line aim to iden-
tify true causal relationships between question-answer pairs or
answer-explanations, or among object features, through causal
models. For example, Lv et al. introduced a counterfactual learning
module to enhance the model’s commonsense reasoning abilities
by simulating physical knowledge relationships between different
objects under counterfactual interventions.

2.2 Multimodal Large Language Model

Recent advances in Large Language Models (LLMs), exemplified
by ChatGPT [34] and GPT-4 [1], have demonstrated remarkable
language understanding and reasoning capabilities. The flourishing
development of LLMs has spurred advancements in multimodal
learning and given rise to the emergence of Modal Large Language
Models (MLLMs) [12, 25, 28, 29, 31, 47, 55, 60]. These models typi-
cally adhere to the following paradigm: initially transforming multi-
modal inputs into text or mapping them into text embedding spaces,
then leveraging LLMs as the brain/controller for processing multi-
modal information and providing reasoning results. MLLMs inherit
three key capabilities of LLMs - In-Context Learning (ICL) [6], In-
struction Following [35], and Chain-of-Thought (CoT) [44], demon-
strating outstanding performance in intricate multimodal tasks.
For instance, Flamingo [2] enables multimodal ICL, adapting to
new tasks with minimal demonstrations. LLaVA [29] achieves GPT-
4-like instruction following capabilities through vision-language
instruction fine-tuning, while PaLM-E [14] demonstrates a range
of multimodal capabilities related to robotics, including percep-
tion and planning, through zero-shot multimodal chain-of-thought
(CoT) reasoning. These emerging capabilities of MLLMs shed light
on our journey towards interpretable physical world reasoning.

3 RATIONALE GENERATION WITH
PAVC-REASONER

Preliminary Recent works [27, 50, 56] confirm the rich common-
sense and world knowledge embedded within LLMs. This study
aims to leverage the commonsense knowledge and text-generation
capabilities of LLMs to provide detailed explanations for physical
audiovisual commonsense reasoning (PACS) tasks. Considering the
multimodal nature of the PACS task, we employ outputs from three
distinct perceiver branches to enhance the input of LLMs, thereby
improving their multimodal perception and understanding abilities.

3.1 Framework of PAVC-Reasoner

Fig. 2 shows that the perception module of PAVC-Reasoner primar-
ily consists of three perceivers, i.e., the vision-language perceiver, the
audio-language perceiver, and the audiovisual-language perceiver.
Below, we delve into the construction details of each perceiver.
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3

1) J
v [Object2], also reliant on both video frames
and audio, is foam and would tend to compress and deform upon
impact, maintaining its structure rather than breaking into numer-
ous pieces. Therefore, the correct answer is [object1].

I

990
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### Assistant:

\ ‘Q

i ion: Which object would |
> M) (W W) : break into more pieces if dropped |

i from the top of a house? :
Object1 Toke Object? Tok H H
oot Tokens  ORJectZ TOKSDS | Options: (A) Object1 (B) Objeot? |

Figure 2: Overall architecture of PAVC-Reasoner, which comprises three perceivers and a frozen LLM. Specifically, the visual-
language (V-L) perceiver consists of a frozen visual encoder, a trainable Video Resampler, and a linear projection layer. This
branch is responsible for extracting a fixed number of visual token representations and mapping them to the text embedding
space of the LLM. The structure of the audio-language perceiver mirrors that of the V-L perceiver. The audiovisual-language
perceiver contains the two frozen unimodal encoders, a trainable Audiovisual Resampler, and a linear projection layer, aiming
to extract a fixed number of joint audiovisual representations and map them to the text embedding space of the LLM.
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Figure 3: Architecture of Video/Audio Perceiver.

3.1.1 Vision-Language Perceiver. The aim of the vision-language
perceiver is to endow LLM with visual perceptual capabilities. Specif-
ically, for a given audible video, we sample T frames from it. The
image encoder maps each frame i to a frame feature v; € RMoXdo
yielding a set of video frame features v=[v1, vy, ..., 0r]. Similar to
ViT [13], we add learnable position embeddings to the frame fea-
tures. Subsequently, a flattening operation is performed on the set
of video frame features v € RT*"2*% t obtain the video represen-
tation VeR(TX"0)Xdv_Next, we input the position-encoded video
representation V into the Video Resampler. Fig. 3 illustrates the
architectural details of the Video Resampler. Similar to the role
of Q-Former in BLIP [24], Video Resampler uses g, video queries
to obtain the video query embeddings Q, € R%*do of dimension
dyp. To align the dimension of the video representations with the
dimension of the LLM text input (denoted as d;), we introduce a

linear projection layer to convert the video query embedding Q,
into the video prompt embedding Q, € R92%

3.1.2  Audio-Language Perceiver. The audio-language perceiver aims
to endow LLM with the capability to process and comprehend audio
inputs. Given a piece of raw audio, it is first partitioned into M audio
segments of ¢ seconds. For each segment, the audio spectrogram is
obtained by computing a 128-dimensional log Mel filterbank, using
a 25 ms Hamming window sliding every 10 ms intervals, resulting
in a 128 X 100¢-dimensional spectrogram. Then, the spectrogram
is sliced into ng 16 X 16 patches, with temporal and frequency
dimension strides both set to 10. Here, ng = 12[(100¢ — 16)/10]
represents the number of patches and the effective input sequence
length for the Transformer. Subsequently, each audio spectrogram
m is fed into a frozen audio encoder to generate an audio seg-
ment feature a,, € R”aXd“, thus creating a set of audio features
a=[aj, ay,...,ap]. Similar to the processing of video resampler,
learnable positional embeddings [13] are added to audio segment
features to enhance their temporal coherence. After flattening the
set of the audio segment features @ € RM*"aXda _an audio represen-
tation A € R(M*"a)Xda i5 obtained. The remaining processing flow
is similar to that of the visual-language perceiver.

3.1.3 Audiovisual-Language Perceiver. Recent research in audio-
visual scene understanding has underscored the importance of
learning joint audiovisual representations for enhancing compre-
hension of free-form video content[18, 57, 58]. The goal of the
audiovisual-language perceiver is to endow LLM with the capability
to understand joint audiovisual content. As shown in Fig. 3, the
video and audio representations V and A processed by the unimodal
encoders and positional encoding layers are concatenated and fed
into Audiovisual Resampler, which employs g joint queries to
learn the audiovisual query embedding Qy €R9*dk of dimension
d. A linear layer is then used to map the audiovisual query embed-
ding into the audiovisual prompt embedding Qi € RI%% to keep
the same dimension as the text embedding of the LLM.
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3.2 Cross-modal Pretraining and Instruction
Finetuning

We train our PAVC-Reasoner in two stages. Stage I, cross-modal
pretraining, aims to bridge the gap between the multimodal out-
put space and the embedding space of the LLM, achieving alignment
between vision/audio and language to endow the large language
model with foundational multimodal perception and comprehen-
sion capabilities. Stage II, instruction finetuning, seeks to
enhance the model’s instruction-following abilities, providing ap-
propriate responses based on different instructions, as well as im-
proving its reasoning and explanatory abilities in tasks involving
understanding of audiovisual physical commonsense attributes.

3.2.1 Stage I: Cross-modal Pretraining. The pretraining objective
in this stage entails autoregressive language modeling, wherein the
model learns to generate subsequent predictions of textual tokens
based on multimodal contexts, maximizing the log-likelihood of
generating textual tokens. In this stage, we consider x, and x, as
a video clip and an audio clip input into the PAVC-Reasoner, re-
spectively. Let xq and x, denote the questions (instructions) and
ground-truth answers (responses) associated with audible videos,
respectively, which can be represented by sequences of discrete
textual tokens. We conduct cross-modal pretraining separately for
three perceivers. Specifically, for the vision-language perceiver, the
probability of generating x, of a sequence of length L can be com-
puted as follows:

L
p(xlx, xq) = [ | po (il xq, %0<0), (1)
i=1
where 6 denotes trainable parameters, and x,, <; represents the pre-
ceding answer tokens before the current prediction token x;. Two
types of pretraining tasks are performed: video-description genera-
tion and image-caption generation. We treat images as single-frame
videos. We leverage the Webvid-2M dataset [4], a large-scale collec-
tion of video clips sourced from the web, annotated with captions.
In addition, we apply the LLaVA-CC3M-Pretrain-595K [29], a sub-
set of the CC3M [39] image-text dataset. Compared to its original
dataset, LLaVA-CC3M-Pretrain-595K has been curated to ensure
a more balanced coverage of visual concepts. During pretraining,
only the parameters of the Video Resampler, position embedding
layer, and linear projection layer are trainable.
To pretrain the audio-language perceiver and generate an answer
xr with textual tokens of length L, the probability is as follows:

L
P(Xt[Xa, Xq) = l_lpql(xilxaa Xq, Xr,<i), (2

i=1
where ¢ denotes the trainable parameters of the Audio Resampler,
position embedding layer, and linear projection layer. Note that
we employ LanguageBind [59] as the frozen audio encoder, which
learns a unified embedding space for all modalities by regarding
the language as the bind across different modalities. This encoder is
trained on a large-scale audio-text dataset VIDAL-10M [59], achiev-
ing alignment between audio and text modalities. This suggests the
inherent capability of our audio-language perceiver in interpreting
audio signals. In this stage, we aim to enhance the ability of LLM
to understand audio content details by maximizing Eq. (2). To this
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end, we leverage several existing environmental sound datasets to
construct an audio-language instruction tuning dataset.

Specifically, we consider the AVE [43], Audio Set [17], VGG-
Sound [8], and ESC-50 [36] datasets. Given an audio clip and its
associated audio event class (x,, X¢), our objective is to generate a
set of instructions X to prompt the LLM to accurately articulate
the content conveyed by the audio. We curate a list of instructions
by GPT-4 [1] and randomly select an instruction x4, such as “Briefly
describe the audio." With the following prompts, we convert audio-
label pairs into instruction-tuning versions: ### Human: x, <EOC>
Question: Xq <EOC> ### Assistant: This audio describes x;
<EOC>. Here, x; denotes the description of the audio event class,
e.g., “door knocking” or ”glass breaking®. <EOC> serves as a special
token indicating the end of a chunk.

To pretrain the audiovisual-language perceiver, we maximize the
generation probability of an answer sequence x, as follows:

L
PO, X0, %q) = | | g Cxilxys xa g, %1, <0), 3)
i=1

where ¢ are learnable parameters of the Audiovisual Resampler,
position embedding layer and linear projection layer. We pretrained
this perceiver using the auxiliary task PACS-Material from the PACS
benchmark. The PACS-Material task focuses on comparing the
material composition of objects. Given a pair of objects described
in two audible videos, the task is to determine which object is more
likely to be made of a specific material, e.g. “Which object is more
likely to be made of glass?” To facilitate autoregressive training,
we annotated each data point in the PACS-Material training set in
the form (g, 01,02, ) and converted it into a version in instruction
format (g, 01, 02, tp). Here, ty represents the textual description of
the binary label ¢, such as “The correct answer is Object1.”

3.2.2  Stage Il: Instruction Finetuning. After the pretraining stage,
we integrate the trainable LoRA [22] modules into the LLM and
optimize the weights of the three perceivers and the LoRA modules
in an end-to-end manner on the PACS-Reason dataset collected in
Sec. 3.3. In this stage, the training objective remains autoregressive
(AR) language modeling. In order to train the PAVC-Reasoner to
both output the answer to a question and give a rationale for de-
riving the answer, we suffixed the questions in the PACS-Reason
dataset with some instructions that can trigger an explanation.
These questions, once posed, ask PAVC-Reasoner to generate de-
tailed intermediate reasoning steps (i.e., rationales) about the answer
in a specific format. For example, a question such as “Which object
would hurt more to step on? Why?” requires the model to infer the
answer and generate a rationale based on the audible video inputs
and instructions.

3.3 Establishing New Benchmarks for PACS

To advance research in multimodal commonsense reasoning, we
leveraged the original data points from PACS and employed founda-
tional visual models and templates (see Sup. A) to prompt GPT-4 to
generate rationales, thereby constructing a new explainable physi-
cal audiovisual commonsense benchmark, namely PACS-Reason
and PACS-Reason+.

We begin by introducing PACS, a video-based multimodal com-
monsense benchmark designed specifically to evaluate the ability
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a house?

)
* Question: Which object would break into more pieces if dropped from the top of
Options: (A) (B) [Object2

|

Rationale: is likely composed of , discerned from the combina-

tion of visual patterns and corresponding audio cues. Ceramic materials are known

for their brittleness, meaning they tend to shatter into multiple pieces upon impact.
bject2] is potentially foam, identified through the integration of sound and visual

information. Foam s less likely to break into numerous pieces compared to ceramic.

when dropped from a height due to its flexible and resilient nature.

Answer: The correct answer is

intact?

?) Question: If left in an oven at high heat, which object would be less likely to stay
Options: (A) (B) [Object2]

|

Rationale: is likely composed of , as inferred from the combina-
=] tion of visual patterns and corresponding audio cues. Ceramic materials are known
for their high heat resistance, [Object2] is potentially foarm, discered from the inte-
gration of sound and visual information. Foam s less heat-resistant than ceramic,
prone to melting or deforming under high temperatures;

Answer: The correct answer is (05
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ground?

?
~ Question: Which abject would take more time to pick up if you dropped it on the
Options: (A) (B) [Ot

Rationale: is likely composed of lass, discerned from the combination
of visual cues and corresponding audio cues. Glass is fragile and can shatter into
numerous small pieces when dropped, making it time-consuming to pick up safely.

bject2] is potentially a met , identified through the integration of sound
and visual information. Metal tubes are generally more durable and less likely to
break into multiple pieces when dropped, thus requiring less time to pick up.

Answer: The correct answer is [Object?]

to take more friends out to eat with the money contained therein?

) Question: f both objects were filed with pocket change, which would allow you
Options: (A) (B) [OF

Rationale: is likely a , identified through the combination of
visual cues and corresponding audio cues, with a larger aperture compared to

, potentially a metal tube, discerned through the integration of sound and
visual information. Given their shapes, , being a ,likely has a
larger capacity for holding pocket change than [Object2], a metal tube, thus allow-

ing for more money to be stored
Answer: The correct answer is [Object2].

Figure 4: Illustration of four datapoints from PACS-Reason, a new benchmark for interpretable physical audiovisual common-
sense reasoning: Each datapoint consists of a pair of objects 01, 02, a question g, a binary label ¢ indicating which object is the
correct answer, and a natural language rationale r for explaining the answer selection.
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Figure 5: Statistics of PACS-Reason and PACS-Reason+.

Table 1: Statistics of the datasets used in our experiments.

Benchmark Partition Datapoints Videos Rationale
train 11,044 1,224
PACS-QA[51] val 1,192 150 X
test 1,164 152
777777777777 train 3460 1224
PACS-Material[51] val 444 150 X
test 445 152
777777777777 train 11,044 1224
PACS-Reason ™ val 1,192 150 v
test 1,164 152
777777777777 train 44176 1224
PACS-Reason+ & val 2,384 150 v
test 2,328 152

of Al systems to reason about physical commonsense using audio
and visual modalities. Its proxy task is binary question answering,
where given a question q and objects 01 and 02, the model must
select the more appropriate object to answer the question. Each

object is represented by a video v showing interactions with the
object, the corresponding audio a, and a bounding box b drawn
around the object in the intermediate frames of v. Hence, each data
point in PACS is a tuple (g, (b1,v1, al), (b2,v2, a2), ), representing
the question, two objects, and a binary label indicating which object
is the correct answer.

PACS-Reason®: It extends PACS-QA by augmenting each dat-
apoint in its task with an additional thought chain, i.e., detailed
intermediate reasoning steps, serving as golden explanations for an-
swer selection. Specifically, each data point in PACS-QA is expanded
into a new five-tuple (g, 01, 02, ¢,r), where r represents the ratio-
nale derived by the model for the answer. Hence, the proxy task for
PACS-Reason can be defined as follows: given a pair of objects and
a question, the model must select the more appropriate object
to answer the question and offer a step-by-step thought chain
for deducing the answer, as illustrated in Fig. 4.

PACS-Reason+ & : Following the protocol of the original PACS,
this benchmark introduces entirely new question-rationale pairs.
Leveraging some foundational visual tools and GPT-4, this bench-
mark expands the original samples in the PACS dataset. To construct
new physical commonsense questions, for a given pair of objects
described in videos, we provide GPT-4 with detailed descriptions
of two videos (videol, video2), the material compositions of ob-
jectl and object2, and the physical attributes associated with these
objects. We prompt GPT-4 to generate new questions, answers,
and their corresponding rationales based on these provided textual
contexts and designed principles for new questions (see Sup. B),
thus extending the original PACS benchmark in terms of physical
attribute coverage and interoperability.

In Fig. 5, we illustrate the distribution of question lengths (in
terms of word count) in PACS-Reason and PACS-Reason+. The
questions in PACS-Reason have an average of 16.6 words, while
those in PACS-Reason+ contain 18.4 words on average. Fig. 5 depicts
the distribution of physical attributes involved in our questions.
Compared to PACS-Reason, PACS-Reason+ demonstrates a more
balanced distribution of physical attributes, largely mitigating the
impact of data bias on models. Additionally, questions in PACS-
Reason+ are more complex for the same pair of objects compared to
PACS-Reason, desiring more intricate intermediate reasoning steps
to derive the answers. Table 1 presents the statistical information
of the PACS benchmarks used in our experiments.
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Table 2: Parameter counts of PAVC-Reasoner variants.

Frozen Parameters Trainable Parameters ¢

Models Language Vision Audio Video- Audio- Audiovisual- Count
Model = Encoder [G] Encoder @ Resampler Resampler Resampler
V1 FlanT5xy (3B) ViT-L/14 (303M) AST (303M)  103M 103M 194M 4.1B
V2 FlanT5x (3B) ViT-G/14 (1.0B) AST (303M)  107M 107M 194M 4.8B
V3 Vicuna (7B) ViT-L/14 (303M) AST (303M)  103M 103M 194M 8.1B
V4  Vicuna (7B) ViT-G/14 (1.0B) AST (303M)  107M 107M 194M 8.8B

Table 3: Performance comparisons among diverse multimodal
baselines on the PACS-Material/QA benchmarks. Results are
reported as the mean and standard deviation of five runs.

Accuracy (%)

Baseline Model Subset b5 Material PACS-QA A
Simple Late Fusion Baseline

- val 67.8+0.8 55.5+0.3 12.3
Qel+A+V [51] test 67.4+15 550611 124

Multimodal Foundation Large Models

) ‘ val 81.9+1.2 61.6+0.9 188
AudioCLIP [20] test 75.9+1.1 60.0£0.9  15.0
. val 90.1+1.0 67.240.8  22.9

Merlot Reserve (B) [52] (ot 85.2+1.4 66514 187
, val 90.620.9 70.8+09  19.8

Merlot Reserve (L) [52] test 87.3+1.5 70.1£1.0 172

Multimodal Large Language Models

R - TR T
wowp B B
Video-ChatGPT [31] ol 83111 614212 187
-
PAVC-Reasoner-V2 tveaslt ;ggigg ;ggﬂg }?Z
PAVC-Reasoner-V4 tveaslt g‘;gigg ;ggzég }gg

4 EXPERIMENT
4.1 Model Setup

We compare two advanced pre-trained visual Transformer models
as frozen visual encoders: (1) ViT-L/14 from CLIP [37], and (2) ViT-
G/14 from EVA-CLIP [15]. Regarding the selection of frozen audio
encoders, we investigate the audio encoders in ImageBind [19] and
LanguageBind [59]. For frozen language models, we consider two
different architectures of large language models: (1) FlanT5 [11],
which is a large language model based on the encoder-decoder
architecture, fine-tuned from T5 [38], and (2) Vicuna [10], which
is a large language model based on a pure decoder architecture,
fine-tuned from LLaMA instructions. We set the number of layers
for the Video Resampler and Audio Resampler to 6, each con-
taining 64 learnable queries with a dimension of 768. The number
of layers for the Audiovisual Resampler is also set to 6, with
64 learnable queries with a dimension of 1,536. It is worth noting
that during cross-modal pre-training and instruction fine-tuning
stages, only the parameters of 3 perceivers and the LoRA module of
the LLM are trainable. Table 2 summarizes the various model vari-
ants of PAVC-Reasoner along with their corresponding parameter
counts. All experiments of PAVC-Reasoner are conducted on four
Nvidia A100 (80GB) GPUs. Consistent pretraining hyperparameters
were employed across all model variants. For more details on data
preprocessing and training, we sincerely refer readers to Sup. B.

Anonymous Authors

4.2 Automatic Evaluation with GPT-4

To comprehensively evaluate the quality of explanations generated
by the model, we employed GPT-4 [1] for automatic assessment.
Specifically, drawing inspiration from [10, 29], we input the model-
generated explanations for a particular sample in specific testing
scenarios, along with the gold standard annotations for the sam-
ple’s explanation and a textual description of the visual context of
the sample (encompassing detailed video descriptions, fine-grained
object categories, and relevant physical attributes), into GPT-4. This
prompts GPT-4 to score the model-generated explanations in terms
of accuracy, helpfulness, relevance, and granularity. Scores range
from 1 to 10, with higher scores indicating superior performance.
We recorded the results of GPT-4’s responses to the same explana-
tion generated five times. To ensure the reliability of the scores, we
also invited five human annotators to individually rate the explana-
tions generated by the model under different testing scenarios (e.g.
w/ audio and w/o audio) on a scale of 1-10 for extra assessment.

4.3 Baseline Methods

We considered three different types of baseline methods. Firstly,
the simple late fusion (Q+I+V+A [51]) concatenates the embed-
dings of images, audio, video, and questions obtained from each
single-modal encoder to form question-object embeddings. Subse-
quently, these question-object embeddings are concatenated and fed
into an MLP to generate binary classification outputs. The second
category comprises advanced multimodal foundation large Mod-
els such as AudioCLIP [20] and MERLOT Reserve [53]. It’s worth
noting that the first two categories of methods do not provide ex-
planations. Lastly, we explored MLLMs as robust baselines, given
their perceptual and cognitive abilities demonstrated in multimodal
tasks. Specifically, the following MLLMs were considered: Open-
Flamingo [3], LLaVA [29], mPLUG-Owl [47], VideoChat [25], Video-
LLaMA [54], Video-ChatGPT [31], PandaGPT [41], and Video-
LLaVA [28]. For most MLLM-style competitors, we employed an
in-context learning multimodal prompt similar to that used in GPT-
3 [6] and Flamingo [2] to achieve task adaptation, rather than fine-
tuning them on instruction-following data. Due to limited space,
we defer the implementation details of these methods to Sup. C.

4.4 Main Results

4.4.1 Results on PACS-Material. Table 3 presents the evaluation
results of all comparison models on the PACS-Material and PACS-
QA tasks. Firstly, we observe that the performance of all models on
the PACS-Material, a binary classification task to identify object
materials, surpasses that on the PACS-QA task by a considerable
margin, with a performance gain (A) ranging between 10% and 20%.
Considering the primary difference between these two tasks lies
in the content of the questions, we can attribute this performance
gap to the implicit queries about physical properties of objects and
multi-hop reasoning about physical commonsense in the PACS-QA
questions, which increases the difficulty to select correct answers.
Secondly, PAVC-Reasoner outperforms all competitors in terms of
accuracy, achieving new state-of-the-art on the two PACS tasks.

4.4.2 Results on PACS-Reason. Table 4 illustrates the fine-grained
evaluation results of PAVC-Reasoner and baseline methods on
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Table 4: Performance comparisons among diverse multimodal large language model (MLLM)-based baselines on the PACS-Reason
benchmark. Results are reported as the mean and standard deviation of five runs.

Accuracy (%) Helpfulness (%)

Baseline Model

Relevance (%) Granularity (%) HumanEval (%)

+audio —audio +audio —audio +audio —audio +audio —audio +audio —audio

OpenFlamingo [3] - 65.6+1.3 - 71.6+1.2 - 75.2+1.3 - 72.4+1.9 - 63.7+1.2
LLaVA [29] - 65.3+1.2 - 68.7+1.5 - 72.3+1.1 - 70.4+1.3 - 61.3+1.7
mPLUG-OwI2 [48] - 67.3+£1.5 - 72.3+1.8 - 77.4+1.6 - 74.8+1.6 - 64.5+1.0
VideoChat [25] - 62.8+1.2 - 70.5+1.7 - 73.1+1.3 - 72.6+1.5 - 62.1+1.5
Video-ChatGPT [31] - 64.5+£1.6 - 71.2+0.6 - 74.3+1.2 - 73.2+1.1 - 62.9+1.3
Video-LLaVA [28] - 66.6+£1.6 - 71.9+0.7 - 75.3+1.1 - 73.5+0.8 - 63.8+1.8
Video-LLaMA [54] 63.4+1.5 62.9+£0.3 75.5+£1.9 70.2+0.2 77.4+£0.9 75.1+£0.8 76.2+0.7 73.5+1.2 65.6+1.2 62.6+1.1
PandaGPT [41] 64.1+1.4 63.5+1.9 76.7+2.4 70.9+1.4 78.3+1.8 75.7+1.8 76.9+1.6 74.6+1.9 66.2+1.1 63.3+14
Video-LLaMA-2 [54] 64.0+0.9 63.8+1.0 76.9+1.3 70.9+1.4 79.7+£1.4 76.6+1.5 76.3+1.3 73.7£2.0 66.1+1.2 64.5+1.4
PAVC-Reasoner-V2 76.2+1.5 73.8+1.6 77.7£1.0 72.6+1.1 80.4+0.8 78.3+0.5 76.7+2.1 74.2+0.6 68.8+1.3 64.6+0.5
PAVC-Reasoner-V4 78.9+0.9 75.4+1.8 80.6+1.4 77.3+1.6 88.2+0.9 86.3+0.6 84.3+1.8 81.2+0.3 74.5+1.2 66.3+0.6
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Figure 6: Ablation experiments on various perception branches (x-language perceivers) of PAVC-Reasoner.

—— ImageBind LanguageBind —— ImageBind LanguageBind

Accuracy Accuracy

HumanEval Helpfulness HumanEval Helpfulness

Granularity Relevance
PAVC—Reasoner—FlanT5y

Granularity Relevance
PAVC-Reasoner-Vicuna-7B

Figure 7: Ablations on different frozen audio encoders.

Table 5: Ablation studies of varying vision encoders and num-
ber of video sampling frames. The LLM is FlanT5xy, [11].

Branch Visual Encoder Frames Accuracy (%) HumanEval (%)
ViT-L/14 2 73.6 66.4
V-L ViT-L/14 4 74.1 66.9
Branch ViT-G/14 2 75.5 68.1
ViT-G/14 4 76.2 68.8

the PACS-Reason task. Overall, PAVC-Reasoner demonstrates out-
standing performance across all evaluation metrics, indicating its
effectiveness and superiority. Specifically, among our comparative
methods, we include approaches similar to GPT-3 [6], which adapt
MLLMs to the PACS task using in-context learning, as well as meth-
ods that fine-tune MLLMs using LoRA [22] on the same instruction
data as PAVC-Reasoner. It is evident that our PAVC-Reasoner out-
performs the competing MLLMs in terms of accuracy and the details
of model-generated explanations. This can be attributed to i) the
unique design of the audiovisual-language perceiver for capturing
joint audiovisual information, which may be useful for identify-
ing and understanding the physical properties of objects; ii) the
multi-grained cross-modal pre-training significantly reduces the

gap between the visual/audio modalities and language modality.
Similar trends can be found in Sup. D Table 1.

4.5 Ablation Study

4.5.1 Effect of Three Perceivers. To elucidate the contribution of
each perceiver in PAVC-Reasoner, we conduct ablation experiments
on the PACS-Reason task. As shown in Fig. 6, we start with a sep-
arate visual-language (V-L) perceiver. Given that images convey
basic semantics such as object categories and shapes, the V-L per-
ceiver empowers the LLM with basic visual content perception and
comprehension capabilities. Subsequently, we find that the addi-
tion of an audio-language perceiver (A-L) improves the model’s
reasoning performance (acc. T ~3%). This may be due to the fact the
introduction of audio data enables LLM to utilize auditory informa-
tion to assist in recognizing objects in an image that are difficult
to distinguish visually. Using only the audiovisual-language (AV-L)
perceiver yields a modest performance improvement. Finally, the in-
sertion of an AV-L perceiver further enhances the PAVC-Reasoner’s
understanding of joint audiovisual input signals, allowing it to more
accurately discern physical properties between a pair of objects.

4.5.2  Impact of Audio Encoders. Fig. 7 compares the quality of
predictions generated by model variants employing different frozen
audio encoders. Specifically, we ablate ImageBind [19] (ViT-L/16,
307M) and LanguageBind [59] (ViT-L/14, 303M). The former aligns
the embedding of each modality to the image embedding, while the
latter directly aligns all modalities to the language space. The results
on PACS-Reason show that the models equipped with the two dif-
ferent audio encoders produce negligible differences in predictions,
with LanguageBind performing slightly better. This observation
is because the audio-language perceiver in PAVC-Reasoner already
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Anonymous Authors

System Message

Object2

You are a PAVC-Reasoner, a large physi-
cal audiovisual commonsense reasoning
model trained with video-instruction
data. Please answer the question direct-
ly and provide a detailed explanation
step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

9

- Which object would you be able to spot in dense forest o>
Y ground-covering the fastest? Y it on the ground?
.. Options: (A) Object 1(B) Object 2 .. Options: (A) Object 1(B) Object 2

Which object would take more time to pick up if you dropped J @

allow you to take more friends out to eat with the money
Sh contained therein?

If both objects were filled with pocket change, which would
Options: (A) Object 1(B) Object 2 ]

object. While Object 2 has a smaller visual shape compared to Object
1, it is still relatively small, which could make it difficult to spot in a
dense forest ground-covering. Object 1, being visually larger due to its
cup shape, would be easier to spot. Therefore, the correct answer is
(A) Object 1.

PAVC-R wilo audio PAVC-R wilo audio
=) Object 1is likely a plastic cup and Object 2 is likely a metal cylindrical =) Object 1is likely a plastic cup, which is visually larger in size com-

pared to Object 2, which may be a metal cylindrical object. Larger
objects generally require less precision to grasp, making them quick-
er to pick up compared to smaller, more intricate objects. Object 2,
being a metal cylindrical object, may have a narrower profile, poten-
tially making it more difficult and time-consuming to pick up from the
ground. Therefore, the correct answer is (B) Object 2, x

wi/o audio

PAVC-R
=) Object 1is likely a plastic cup and Object 2 is probably a small metal
tube. Object 1 has a larger size visually compared to Object 2, indicat-
ing that Object 1 may be able to hold more pocket change. Object 2,
due to its tubular shape, may have a larger capacity to hold pocket
change compared to a glass cup. Therefore, the correct answer is

(B) Object 2. %

J

PAVC-Reasoner w/ audio (full) ———————
Object 1is possibly a glass cup, and Object 2 might be a metal tube.
The glass cup is visually larger, which means it would likely have a
higher contrast against the forest floor. Larger objects are generally
easier to spot, especially if they have a distinctive shape like a cup.
Object 2 is likely a smaller metal tube, and its shape is visually smaller
compared to Object 1. In a dense forest, a smaller and more cylindri-
cal object might be harder to spot among the foliage. Therefore, the
correct answer is (A) Object 1

PAVC-Reasoner w/ audio (full)

Object 1is probably a glass cup and Object 2 is potentially a metal
tube. Glass is generally more fragile and can break upon impact. And
metal is typically more durable and less prone to breakage. Due to its
larger size and fragility, Object 1 might experience a more significant
impact upon hitting the ground, possibly leading to a more scattered
arrangement of broken pieces. Object 2, being smaller and more du-
rable, may experience less impact damage. Retrieving a shattered
glass may take more time and effort due to the need to gather broken
pieces carefully. Therefore, the correct answer is (A) Object 1. J

PAVC-Reasoner w/ audio (full)

Object 1is possibly a glass cup, and Object 2 is likely a metal tube.
While Object 1 may be larger in size, the volume it can hold is limited
by its shape. The volume of the glass cup may not hold a substantial
amount of pocket change. However, when it comes to pocket
change, the shape of the coins is a critical factor. The shape of coins
may also affect the number of coins that can fit into the objects. Since
Object 2 is a tube, it has the potential to hold a larger amount of
pocket change within a smaller physical volume. Therefore, the cor-
rect answer is (B) Object 2.

J

Figure 8: Demonstration of the model-generated responses from the two variants of PAVC-Reasoner (i.e., PAVC-Reasoner-
Vision & (w/o audio as input) and PAVC-Reasoner-V4 €5 (full model, with audio as input)) on the PACS-Reason test set.

aligns the audio with the language modality via cross-modal pre-
training. We adopt LanugeBind as the default audio encoder.

4.5.3 Impact of Vision Encoders. Table 5 records the results of
model variants equipped with different frozen visual encoders and
sampling frame numbers on the PACS-Reason task. A more power-
ful visual encoder can extract finer details from images. It is evident
that upgrading the visual encoder from ViT-L [37] to ViT-G[15]
significantly improves both the accuracy of model inference (accu-
racy T ~2%) and the quality of generated explanations. Additionally,
we observe that decent inference performance can be achieved
with fewer frames (e.g. 2-4). This is because the focus of PACS-
Reason’s questions is more on examining the material composition
and physical properties of objects rather than emphasizing video
action recognition. The former only requires a few key frames for
judgment, while the latter demands more temporal information.

4.6 Case Study

Fig. 8 illustrates the physical commonsense reasoning capability of
the PAVC-Reasoner variants in both non-audio and audible video
scenarios, where PAVC-Reasoner-Vision & is equipped solely
with a visual-language perceiver. PAVC-Reasoner-V4 €5 includes
the complete set of three perceivers. Both model variants use ViT-
G/14 [15] as the visual encoder and Vicuna-7B [10] as the LLM.
Observing Fig. 8, the leftmost question only involves visual clues,
where PAVC-Reasoner-Vision is capable of predicting the correct
answer but generating erroneous explanations, such as incorrectly
identifying Object1 as a plastic cup instead of a glass one (GT). This
misidentification of object material can lead to incorrect predictions
when answering questions involving auditory clues. For the middle
question in Fig. 8, PAVC-Reasoner-Vision fails to be aware that
glass objects can break and take longer to pick up from the ground.

Additionally, both models struggle to answer the rightmost ques-
tion, which subtly inquires about the size and shape of two objects.
While PAVC-Reasoner-Vision produces the correct rationale, it de-
duces the wrong answer. Conversely, PAVC-Reasoner-V4 generates
incorrect explanations. We demonstrate more prediction exam-
ples of PAVC-Reasoner on PACS-Reason and the more challenging
PACS-Reason+ in Sup. E Figs. 1-6. From these visualizations, we
affirm three compelling features of PAVC-Reasoner: (i) the ability
to decompose complex questions, discerning the requisite physical
commonsense knowledge necessary to answer them; (ii) demon-
strating a common understanding of the physical attributes and
affordances of objects in videos; and (iii) performing complex com-
monsense reasoning based on joint audiovisual information-the
ability to generate explanations for different types of questions.

5 CONCLUSION

We propose two augmented benchmarks, PACS-Reason and PACS-
Reason+, for interpretable physical audio-visual reasoning. These
benchmarks provide detailed explanations as rationales for each
sample, enabling the assessment of the physical commonsense
reasoning capability of multimodal models from multiple dimen-
sions. Additionally, we introduce PAVC-Reasoner, a multimodal
foundation model for reasoning about physical commonsense at-
tributes. PAVC-Reasoner considers the collaboration and specificity
of modalities, using three distinct perceivers to bridge vision/audio
and language modalities via multi-grained cross-modal pretraining
and instruction finetuning. It utilizes an LLM as a cognitive engine
to comprehend multimodal inputs and generate convincing inter-
mediate reasoning paths. Extensive experiments demonstrate the
outstanding performance and effectiveness of PAVC-Reasoner.
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