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Abstract

Explainability has become a crucial concern in001
today’s world, aiming to enhance transparency002
in machine learning and deep learning mod-003
els. Information retrieval is no exception to004
this trend. In existing literature on explainabil-005
ity of information retrieval, the emphasis has006
predominantly been on illustrating the con-007
cept of relevance concerning a retrieval model.008
The questions addressed include why a doc-009
ument is relevant to a query, why one docu-010
ment exhibits higher relevance than another,011
or why a specific set of documents is deemed012
relevant for a query. However, limited atten-013
tion has been given to understanding why a014
particular document is not favored (e.g., not015
within top-K) with respect to a query and a016
retrieval model. In an effort to address this017
gap, our work focuses on the question of what018
terms need to be added within a document to019
improve its ranking. This, in turn, answers020
the question of which words in the document021
played a role in not being favored by a re-022
trieval model for a particular query. We use a023
counterfactual framework to solve the above-024
mentioned research problem. To the best of025
our knowledge, we mark the first attempt to026
tackle this specific counterfactual problem (i.e.027
examining the absence of which words can af-028
fect the ranking of a document). Our experi-029
ments show the effectiveness of our proposed030
approach in predicting counterfactuals for both031
statistical (e.g. BM25) and deep-learning-032
based models (e.g. DRMM, DSSM, Col-033
BERT, MonoT5). The code implementation of034
our proposed approach is available in https:035
//anonymous.4open.science/r/CfIR-v2.036

1 Introduction037

The requirement of transparency of Artificial In-038

telligence (AI) models has made explainability039

crucial, and this applies to Information Retrieval040

(IR) models as well (Anand et al., 2022). The tar-041

get audience plays a significant role in achieving042

explainability for an IR model, as the units of ex- 043

planation or questions may differ based on the end 044

user. For instance, a healthcare specialist, who is 045

a domain expert but not necessarily an IR special- 046

ist, might want to understand the reasons behind a 047

ranked suggestion produced by a retrieval model 048

in terms of words used (Singh and Anand, 2019). 049

On the other hand, an IR practitioner may be more 050

interested in understanding whether different IR 051

axioms are followed by a retrieval model or not 052

(Bondarenko et al., 2022). 053

This study focuses on the perspective of IR 054

practitioners. To be more specific, we introduce 055

a counterfactual framework designed for retrieval 056

models, catering to the needs of IR practition- 057

ers. Existing literature in explainable IR (ExIR) 058

addressed questions like why a particular docu- 059

ment is relevant with respect to a query (Singh 060

and Anand, 2019), between a pair of documents 061

why one document is more relevant to the query 062

(Penha et al., 2022) compared to the other and why 063

a list of documents relevant to a query (Lyu and 064

Anand, 2023). Broadly speaking, all the above- 065

mentioned questions mainly focus on explaining 066

the relevance of a document or a list of documents 067

from different perspectives. 068

However, there is limited attention to explain 069

the question like the absence of which words ren- 070

ders a document unfavorable to a retrieval model 071

(i.e. not within top-K) remains unexplored. The 072

above-mentioned explanation can give an idea to 073

an IR practitioner about how to modify a retrieval 074

model. For example, if it is observed that a re- 075

trieval model (e.g. especially neural IR models 076

(Rekabsaz and Schedl, 2020)) does not favor doc- 077

uments because of not having certain gender spe- 078

cific words then the setting of the retrieval model 079

needs to be debiased. 080

With the motivation described above, the funda- 081

mental research question which we address in this 082

research work is described as follows. 083
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• RQ1: What are the terms that should be084

added to a document which can push the doc-085

ument to a higher rank with respect to a par-086

ticular retrieval model?087

We would like to note that we have framed RQ1088

as a counterfactual setup in our research scope.089

Similar to existing research in counterfactual ex-090

planations in AI (Kanamori et al., 2021; Van Loov-091

eren and Klaise, 2021), we also attempt to change092

the output of model with the provided explana-093

tions (i.e. change the rank of a document in IR094

models). Our experimental results show that on095

an average in 70% cases the solution provided by096

the counterfactual setup improves the ranking of097

a document with respect to a query and a ranking098

model.099

Our Contributions The main contributions of100

this paper are as follows.101

• Propose a model-agnostic novel counterfac-102

tual framework for retrieval models.103

• Estimated a set of terms that can explain why104

a document is not within top-K with respect105

to a query and a retrieval model.106

• Provide a comprehensive analysis with exist-107

ing state-of-the-art IR models.108

The rest of the paper is organized as follows.109

Section 2 describes Related work. Section 3 de-110

scribes the counterfactual framework used in our111

work, Section 4 describes the experimental setup112

and Section 5 discuss about results and ablation113

study. Section 6 concludes with this paper.114

2 Related Work115

2.1 Counterfactual Explanations116

The xAI field gained significant momentum with117

the development of the Local Interpretable Model-118

agnostic Explanations (LIME) method (Ribeiro119

et al., 2016), which offers a way to explain any120

classification model. While models like LIME121

explain why a model predicts a particular out-122

put, counterfactual explainers address the ques-123

tion of what changes in input features would be124

needed to alter the output. Counterfactual xAI125

was first brought into the limelight in early 2010s126

with seminal work of Pearl (2018). The study in127

Karimi et al. (2020) provided a practical frame-128

work named Model-Agnostic Counterfactual Ex-129

planations (MACE) for any model. Later se- 130

ries of models (Kanamori et al., 2021; Van Loov- 131

eren and Klaise, 2021; Parmentier and Vidal, 132

2021; Carreira-Perpiñán and Hada, 2021; Pawel- 133

czyk et al., 2022; Hamman et al., 2023) were 134

proposed for counterfactual explanation based on 135

different optimization frameworks. In our re- 136

search scope, we use Counterfactual Explanation 137

framework proposed in (Mothilal et al., 2020) (ex- 138

plained in detail in Section 3). 139

2.2 Explainability in IR 140

Pointwise Explanations shows the important fea- 141

tures responsible for the relevance score pre- 142

dicted by a retrieval model for a query-document 143

pair. Popular techniques include locally approx- 144

imating the relevance scores predicted by the re- 145

trieval model using a regression model (Singh and 146

Anand, 2019). 147

Pairwise Explanations predict why a particular 148

document was favored by a ranking model com- 149

pared to others. The work in (Xu et al., 2024) 150

proposed a counterfactual explanation method to 151

compare the ranking of a pair of documents with 152

respect to a particular query. 153

Listwise Explanations focus on explaining the 154

key features for a ranked list of documents and a 155

query. Listwise explanations (Yu et al., 2022; Lyu 156

and Anand, 2023) aim to capture a more global 157

perspective compared to pointwise and pairwise 158

explanations. The study in (Lyu and Anand, 2023) 159

proposed an approach which combines the output 160

of different explainers to capture the different as- 161

pects of relevance. The study in (Yu et al., 2022) 162

trained a transformer model to generate explana- 163

tion terms for a query and a ranked list of docu- 164

ments. 165

Generative Explanations (Singh and Anand, 166

2020; Lyu and Anand, 2023) generally leverage 167

natural language processing to create new text 168

content, like summaries or justifications, that di- 169

rectly address the user’s query and information 170

needs. Model-agnostic approaches (Singh and 171

Anand, 2020) have been proposed to interpret the 172

intent of the query as understood by a black box 173

ranker. 174

From the above mentioned category of expla- 175

nations in IR, we focus on pointwise explana- 176

tion in our research scope. In pointwise expla- 177

nation, rather than explaining what are the words 178

which are relevant in a document for a particular 179

query we address the research question what are 180
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the words which are required to improve the rank-181

ing of the document with respect to a query.182

Search Engine Optimization techniques (Egri183

and Bayrak, 2014; Erdmann et al., 2022) gener-184

ally uses different features like commercial cost,185

links to optimize the performance of the search186

engine. A major difference of the work in (Egri187

and Bayrak, 2014; Erdmann et al., 2022) with our188

work is we only consider the words present in a189

document as a feature. Our objective is to improve190

the ranking of a particular document concerning a191

specific query and a retrieval model rather than im-192

proving the ranking of a document concerning any193

query belonging to a particular topic.194

3 Counterfactual Framework for195

Information Retrieval (CFIR)196

Problem Statement Let d represents a target197

document that does not appear in the top-K re-198

trieved results of a query q and retrieval model M .199

The objective in CFIR is to identify a set of terms200

wi which, when added to d, improve its ranking201

with respect to q and model M .202

The above mentioned setup for CFIR is for-203

mally defined in Equation 1 where CFIR, employs204

a counterfactual document generator ck(f{M,q}, d)205

which takes as input a classifier fM,q and the doc-206

ument d to construct an counterfactual document207

d′ such that d′ is likely to get a higher rank (within208

top-K) than d for model M and query q. The ob-209

jective of f{M,q} : R|V | → {0, 1} ( where V is210

the vocabulary, described in detail in Section 3.1)211

is to predict given a query q and a retrieval model212

M if a particular document d will be within top-K213

or not. The counterfactual explanation is defined214

as the set of words present in d′ but not in d (i.e.215

output of Equation 1).216

CFIR(q,M, d) = ck(f{M,q}, d)− d217

= d
′ − d = ∪m

i=1{wi} (1)218

3.1 Building Classifier (f{M,q})219

Similar to existing xAI (Ribeiro et al., 2016) ap-220

proaches, the classifier f{M,q} in our research221

scope essentially locally approximates the behav-222

ior of a retrieval model M , for a query q and223

a subset of documents retrieved for the query q.224

However, in contrast to the regression model in225

(Ribeiro et al., 2016), we build a binary classifi-226

cation model to predict whether a document d will227

be ranked within the top-K results or not for a spe- 228

cific query q and retrieval model M . 229

For each document d for which we want to gen- 230

erate counterfactuals, we train a separate classifier. 231

In the classifier setup, the top-K documents for 232

a query q and retrieval model M represent class 233

1 and any other document not belonging to this 234

class represents class 0. Theoretically speaking, if 235

a corpus had N number of documents, then there 236

will be N−K documents which should have class 237

label 0 and N −K is a very large number in gen- 238

eral which can cause class imbalance issue. To 239

avoid this issue, for the class 0, for each document 240

d for which we want to generate a counterfactual, 241

we choose a set of closest neighbors in the set of 242

N − K documents and the size of the neighbor- 243

hood should be similar to K. K serves as a pre- 244

defined threshold, typically set to values such as 245

10, 20, or 30. For f{M,q}, each document d is rep- 246

resented as a word term frequency based feature 247

vector, denoted as dvec. 248

Formally, Feature Vector for Classifier f{M,q} 249

is represented as dvec = {tfd
1 , tf

d
2 . . . , tfd

|V |} 250

where tfd
i represents the term frequency of the 251

word wi in d. Using all the words from all the 252

documents retrieved for a query to construct the 253

vocabulary set V can pose challenges. Conse- 254

quently, we take the union of the most significant 255

n words from each document d using a function 256

named Imp(d) (explained in detail in Section 4) 257

to construct V . V = ∪K
i=1{∪n

j=1,wj∈Imp(di)
wj}. 258

Appendix D depicts a step-by-step algorithm to 259

construct the feature vector for the classifier and 260

Figure 6 in Appendix D shows one sample feature 261

vector for the classifier. 262

Counterfactual Document Generator 263

ck(fM,q,d) in Equation 1 follows an ap- 264

proach similar to that of Mothilal et al. (2020). 265

Specifically, ck(fM,q, d) generates k candidate 266

counterfactuals cmaxIter
1 , cmaxIter

2 , . . . , cmaxIter
k 267

(where maxIter is the maximum number of 268

iterations upto which loss function is optimized) 269

for each document d, from which we randomly 270

select a single counterfactual (d′ in Equation 1) 271

that involves only insertion of new words without 272

modifying or deleting existing ones in d (step 5 273

in Algorithm 1). We fix k to a sufficiently large 274

constant in our experiments. Similar to (Mothilal 275

et al., 2020), the objective of ck(fM,q, d) is to 276

minimize three different criteria described as 277

follows. 278
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Query(q) D1

Dk
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D’Document for which 
counterfactual will be generated

tfd11, tfd12,….,tfd1|V|
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Not (1/0)
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Algorithm)
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K neighborhood 
of D’ outside Top-
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Class 0 

Retrieval 
Model (M)

Term Frequency vector 𝐷 %&'

Extract New 
words in d’

Counterfactual Explanation Terms

Figure 1: Schematic Diagram for Counterfactual Explanation Framework (CFIR)

• Criteria 1: Minimizing the distance between279

the desired outcome y′ (within top-K) and280

the prediction of the classifier model f{M,q}281

for a counterfactual example (ci).282

• Criteria 2: Minimizing the distance be-283

tween any generated counterfactual (ci) and284

the original document d. Broadly speaking, a285

counterfactual example closer to the original286

input should be more useful for a user.287

• Criteria 3: Increasing diversity between288

generated counterfactuals.289

Based on the above-mentioned criteria the loss290

function to generate cmaxIter
1 , . . . cmaxIter

k is de-291

scribed as follows.292

argmin
c1,...ck

(
1

k

k∑
i=1

yloss(fM,q(ci), y
′
)+

λ1

k

k∑
i=1

dist(ci, d)− λ2div(c1, . . . , ck)

) (2)293

In Equation 2, yloss(.) takes care of Criteria294

1, dist(ci, d) takes care of the Criteria 2 and div295

takes care of the Criteria 3 as discussed above.296

λ1 and λ2 in Equation 2 are hyperparameters that297

balance the contribution of second and third parts298

of loss function (i.e. controlling diversity and sim-299

ilarity). The detailed description of the computa-300

tion of yloss, dist and div function in Equation301

2 is given in Equations 4, 5 and 6 respectively in302

Appendix F. The loss function in Equation 2 is op-303

timized using the gradient descent method.304

Algorithm 1 shows step by step execution of the305

counterfactual document generator ck(f{M,q}, d).306

In Algorithm 1 we show how the counterfactual307

examples (c1, . . . ck) are randomly initialized. The308

generated counterfactual examples (i.e. cmaxIter
i s)309

should change the prediction of classifier f{M,q} 310

from 0 to 1 (i.e. modified document should be 311

within top K). The set of words corresponding 312

to the counterfactual explanation of d are the new 313

words that have been added to d′vec (i.e. feature 314

vector representation of d′ in Equation 1) com- 315

pared to dvec. Figure 1 shows the schematic di- 316

agram for counterfactual setup with the workflow 317

between the different components (i.e. classifier 318

and counterfactual document generator) within it.

Algorithm 1: CF Document Generator ck(f{M,q}, d)

Input : Classifier function: f{M,q}, Feature Vector:
dvec = {tf1, tf2, . . . , tf|V |}, Number of
Counterfactuals:k

Output : {d′
vec ∈ R|V |}

Initialization:
for i← 1 to k do

for j ← 1 to |V | do
c0i,j = r ∼ Random(.)

/* c0i,j is the jth coordinate of

ci at 0th iteration */

end for
end for

1 for t← 0 to maxIter do
2 Compute the loss 1

k

∑k
i=1 yloss(fM,q(c

t
i), y) +

λ1
k

∑k
i=1 dist(cti, d)− λ2div(ct1, . . . , c

t
k))

3 Update cti’s using gradient descent
4 end for
5 return d′

vec, d′
vec is a |V | dimensional vector randomly chosen

from the subset of cmaxIter
i ’s for which

cmaxIter
i,j ≥ tfd

j ∀j = 1, . . . , |V |

319

4 Experiment Setup 320

Dataset We use three ranking datasets for our 321

experiments: MS MARCO passage dataset for 322

passage ranking (Bajaj et al., 2016) and MS 323

MARCO document ranking dataset for longer 324

documents (Craswell et al., 2023) and TREC Ro- 325

bust (Voorhees, 2005) dataset. The MS MARCO 326

passage and document ranking datasets contain 327
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queries from Bing1 and the queries of TREC Ro-328

bust are manually chosen. For each dataset, we329

randomly selected 100 queries from the test set330

and chose 5 documents not ranked in the top 10331

results for each query, resulting in a test set of 500332

query-document pairs. The details of the dataset333

are given in Table 4 in Appendix C.334

We use five different retrieval models BM25,335

DRMM Guo et al. (2016), DSSM (Huang et al.,336

2013), ColBERT Khattab and Zaharia (2020),337

MonoT5 (Nogueira et al., 2020) and Splade (For-338

mal et al., 2021) in our experiments. The details339

of each retrieval model is given in Appendix A.340

Baselines To the best of our knowledge, this is341

the first work which attempts to provide counter-342

factual explanations in IR. Consequently, there ex-343

ists no baseline for our proposed approach. How-344

ever we have used a query word and top-K word345

based intuitive baseline to compare with our pro-346

posed approach. In query word baseline (QW ),347

we use query words not originally present in a348

document to enhance its ranking. For Top-K’349

(Top − K ′) baseline we use the top k′ words ex-350

tracted from top 5 documents corresponding to a351

query as relevance set. Words appearing in the352

relevance set but not appearing in a document are353

added to the document to improve its ranking. For354

different retrieval models we have corresponding355

versions of QW and Top−K ′ baselines.356

Evaluation Metrics There exists no standard357

evaluation framework for exIR approaches. The358

three different evaluation metrics in our experi-359

ment setup are described as follows.360

Fidelity (FD): Existing xAI approaches in IR361

use Fidelity (Anand et al., 2022) as one of the met-362

rics to evaluate the effectiveness of the proposed363

explainability approach. Intuitively speaking, Fi-364

delity measures the correctness of the features ob-365

tained from a xAI approach. In the context of the366

CFIR setup described in this work, we define this367

fidelity score as the number of times the words368

predicted by the counterfactual algorithm could369

actually improve the rank of a document. Let n be370

total number of query document pairs in our test371

case and x be number of query document pairs for372

which the the rank of the document improved after373

adding the counterfactuals obtained from the opti-374

mization setup described in Equation 2. Then the375

1https://bing.com

Fidelity score is mathematically defined with re- 376

spect to a test dataset D and retrieval model M is 377

defined as follows. 378

FD(D,M) =
x

n
∗ 100 (3) 379

Avg. New Words: Here we compute the av- 380

erage number of new words added by the counter- 381

factual approach for a set of query document pairs. 382

Avg. Query Overlap: Here we report on an 383

average how many of the words suggested by 384

the counterfactual algorithm come from the query 385

words. 386

Parameters and Implementation Details The 387

details of implementation about retrieval models 388

are shown in Appendix B. We employed two pop- 389

ular classical machine learning methods, Logis- 390

tic Regression (LR) and Random Forest (RF) for 391

the classifier described in Section 3.1. For Lo- 392

gistic Regression, the learning rate was set to 393

0.001. For Random Forest, the number of es- 394

timators was set to 100. As described in Sec- 395

tion 3.1, all the words present in a document are 396

not used as input to the classifier. We use the 397

top 10 (n′ = 10) most important words from a 398

document. As described in Section 3.1, we ex- 399

plored three different ways to implement Imp(d) 400

function a) TF-IDF weight based word extraction, 401

b) BERT based keyword extraction (Grootendorst, 402

2020) and c) Similarity between the BERT repre- 403

sentation of query and the document tokens. We 404

found that BERT representation-based similarity 405

computation worked the best for our approach. 406

More details on the implementation of Imp(d) 407

function are shown in Appendix I. The value of 408

K ′ for Top −K ′ baseline was set to 5. More de- 409

tails on the parameter configuration are shown in 410

Appendix G. 411

5 Results 412

Table 1 shows the performance of the counter- 413

factual approach across different retrieval models 414

(i.e. BM25, DRMM, DSSM, ColBERT, MonoT5 415

and Splade). We conducted experiments on MS 416

MARCO passage and document ranking dataset 417

and TREC Robust dataset to observe the effective- 418

ness of our proposed explanation approach for dif- 419

ferent types of documents. Mainly four different 420

observations can be made from Table 1. Firstly, It 421

can be clearly observed that the CFIR model for 422

each retrieval model has performed better com- 423

pared to its corresponding query word or top-K’ 424

5
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Model Description MS MARCO Passage MS MARCO Document Trec Robust

Retrieval Model Classifier FD(%) Avg. New
Words

Avg. Query
Overlap FD(%) Avg. New

Words
Avg. Query

Overlap FD(%) Avg. New
Words

Avg. Query
Overlap

QWBM25 NA 50% 5.61 100% 48% 6.14 100% 56% 6.12 100%
Top−K′

BM25 NA 42% 11.28 100% 40% 9.61 100% 41% 12.34 100%
CFIRBM25 RF 65% 10.64 66% 52% 16.81 56% 64% 11.12 57%
CFIRBM25 LR 69% 17.14 58% 57% 14.15 56% 58% 13.25 56%
QWDRMM NA 48% 5.12 100% 47% 6.14 100% 49% 7.12 100%
Top−K′

DRMM NA 42% 15.11 100% 31% 14.12 100% 33% 16.12 100%
CFIRDRMM RF 72% 11.31 48% 56% 8.12 46% 62% 12.56 47%
CFIRDRMM LR 68% 12.37 62% 62% 14.53 45% 65% 13.47 43%
QWDSMM NA 49% 5.32 100% 45% 6.64 100% 52% 7.12 100%
Top−K′

DSSM NA 35% 12.51 100% 32% 12.62 100% 34% 13.14 100%
CFIRDSSM RF 57% 11.52 58% 46% 18.14 57% 59% 12.46 100%
CFIRDSSM LR 62% 15.78 54% 53% 18.52 63% 58% 17.24 64%
QWColBERT NA 56% 4.78 100% 34% 5.64 100% 38% 6.14 100%
Top−K′

ColBERT NA 48% 15.63 100% 36% 13.42 100% 38% 11.32 100%
CFIRColBERT RF 72% 12.41 56% 72% 11.05 49% 71% 10.35 52%
CFIRColBERT LR 75% 14.12 61% 71% 10.23 62% 74% 16.45 65%
QWMonoT5 NA 52% 10.15 100% 54% 12.23 100% 63% 10.15 100%
Top−K′

MonoT5 NA 75% 14.11 100% 68% 10.13 100% 75% 11.12 100%
CFIRMonoT5 RF 80% 12.13 64% 72% 11.23 61% 73% 10.95 66%
CFIRMonoT5 LR 82% 13.15 65% 74% 12.23 63% 75% 11.45 68%
QWSplade NA 49% 10.15 100% 51% 11.51 100% 62% 11.11 100%
Top−K′

Splade NA 71% 13.05 100% 65% 9.23 100% 74% 12.22 100%
CFIRSplade RF 78% 11.23 62% 69% 12.11 60% 71% 9.81 65%
CFIRSplade LR 80% 12.15 63% 71% 14.11 64% 73% 10.55 67%

Table 1: CFIR model Performance for BM25, DRMM, DSSM, ColBERT, MonoT5 and Splade in MSMARCO
Passage and Document Collection and TREC Robust. The Best Performing Counterfactual Explanation Method
for every retrieval model is boldfaced; the overall best performance across all rows is underlined. All the results
reported in Table 1 are statistically significant with p < 0.05.

Retrieval Model Query Text docId Explanation Terms

DRMM What law repealed prohibition ? 3686955 working, strict, Maine, 1929, law, resentment, New York City,
Irish, immigrant, prohibition, repeal, fall, Portland, temperance, riot, visit

DSSM What is the role of lipid in the cell? 6159679 phospholipid, fluidity, storage, triglyceride, fatty receptor
ColBERT what type of wave is electromagnetic? 5217641 directly ,oscillations, medium, wave, properties, speed
MonoT5 what is a caret? 6338711 display, diamond, weight
Splade which vitamins help heal bruises? 3465680 minerals, body, eat, cut

Table 2: CFIR explanation terms for DRMM, DSSM, ColBERT, MonoT5 and Splade in MS MARCO passage.

words baseline in terms of Fidelity score(FD).425

The above-mentioned observation is consistent for426

both passages and long documents (i.e. in MS-427

MARCO passage, Document and TREC Robust).428

Secondly, it can be observed from Table 1 that429

mostly CFIR approach provided the highest num-430

ber of new terms (terms not already present in the431

documents) as part of the explanation to improve432

ranking. Consequently, we can say the overall set433

of explanation terms are more diverse for CFIR434

approach compared to others. It can also be also435

observed from Table 1 that the Fidelity scores are436

generally better in the MS MARCO passages com-437

pared to MSMARCO document and TREC Ro-438

bust dataset. One likely explanation for this phe-439

nomenon is that documents in MSMARCO docu-440

ment and TREC Robust are longer in length com-441

pared to passages. Consequently, it is easier for442

shorter documents to change the ranking com-443

pared to longer documents. Thirdly, another in-444

teresting observation from Table 1 is that the max-445

imum query word overlap by our proposed ap-446

proach is 68%. This implies that the counterfac- 447

tual algorithm is suggesting new words that are 448

not even present in a query. Fourthly, the perfor- 449

mance of representation learning based retrieval 450

models (i.e. ColBERT, MonoT5) are significantly 451

better than the other models for Fidelity metric. 452

One potential reason can be that, the counterfac- 453

tual generator suggests words which are similar 454

to the content of the document. Because of us- 455

ing better embedding representation (BERT (De- 456

vlin et al., 2019) and T5 compared to Word2Vec 457

(Mikolov et al., 2013) in DRMM) these retrieval 458

models give more priority to similar words than 459

other retrieval models. 460

Prior work in information retrieval has explored 461

adversarial attacks, where document content or 462

embeddings are perturbed to manipulate rankings 463

with malicious intent (Liu et al., 2023; Wu et al., 464

2022a). In contrast, the goal of counterfactual 465

explanations is to provide interpretability for IR 466

models by revealing how document rankings can 467

be improved. A key distinction lies in the nature of 468
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Figure 2: Average Rank shift by CFIR for BM25,
DRMM, DSSM, ColBERT, MonoT5 and Splade

intervention: adversarial methods typically aim to469

introduce minimal perturbations often by substi-470

tuting content, including important terms to pre-471

serve the original semantics while deceiving the472

model. In our case, CFIR explicitly seeks to iden-473

tify new terms that, when added to a document,474

improve its rank, thereby highlighting what infor-475

mative aspects were absent. Replacing important476

terms is not useful in counterfactual setup, as it477

fails to address what the document was lacking478

from the model’s perspective. This formulation is479

particularly relevant for understanding model be-480

havior, including uncovering potentially problem-481

atic model preferences (e.g., prior studies have ob-482

served gender bias in ranking systems). By iden-483

tifying helpful additions, such as gendered terms,484

CFIR can reveal latent model sensitivities. Impor-485

tantly, unlike adversarial attacks, the size of the486

added term set is also not constrained in CFIR487

(Avg. New Words column in Table 1 shows maxi-488

mum 16.81 new words per explanation), as the fo-489

cus is on explanatory sufficiency rather than min-490

imality. However, for comparison, we have evalu-491

ated the performance of CFIR against the PRADA492

(Wu et al., 2022a) model which replaces certain493

words in a document to improve its ranking. Table494

8 in Appendix H shows that CFIR performs better495

than PRADA for both ColBERT and MonoT5 in496

terms of Fidelity score.497

Table 2 shows a sample of example terms ex-498

tracted by our proposed approach. The words499

shown in Table 2 have improved the ranking of a500

docID with respect to the queries shown.501

Further Analysis Figure 2 shows the average502

Figure 3: Average Semantic Similarity between orig-
inal documents and the corresponding counterfactual
explanation Terms for BM25, DRMM, DSSM, Col-
BERT, MonoT5 and Splade

change in rank after introducing the explanation 503

terms suggested by the CFIR setup. Figure 2 es- 504

sentially demonstrates the actionability introduced 505

by the counterfactual explanation terms. The two 506

things to observe from Figure 2 are firstly, the av- 507

erage rank shift is greater for documents than for 508

passages. Table 1 shows that ColBERT achieved 509

a significantly higher fidelity score (16th row) 510

and a larger average rank shift compared to the 511

other models, as also seen in Figure 2. Figure 3 512

shows the average cosine similarity computed be- 513

tween documents and the corresponding explana- 514

tion terms. For both documents and the expla- 515

nation terms we use pretrained BERT represen- 516

tations to compute the similarity. It can be ob- 517

served from Figure 3 that the cosine similarity for 518

the representation learning based retrieval models 519

(i.e. ColBERT, MonoT5) are higher than the other 520

retrieval models in general. 521

Parameter Sensitivity Analysis In Table 1, we 522

observed that for most of the retrieval models the 523

performance of the counterfactual explainer fol- 524

lows similar trend both in MSMARCO passage 525

and document dataset (i.e. the best performing 526

model in terms of fidelity score is same in most 527

of the cases). As a result, we conducted param- 528

eter sensitivity experiments only on MSMARCO 529

passage dataset. Figure 4 (a) shows the variance 530

in Fidelity score with respect to the K value in 531

Top-K. In Figure 4 (b) we show the variance of 532

FD score with respect to the number of most sig- 533

nificant words (i.e. n) used to construct the doc- 534

ument vector. It is clearly visible from Figure 4 535
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(a) (b)

Figure 4: Counterfactual Classifier Performance Variance with Top-K and Counterfactual Performance Variance
with variation of number of Counterfactuals

(b) that with an increase in the number of coun-536

terfactuals, there is a decrease in the performance537

of the counterfactual classifier. It can be observed538

that for n = 10 the best performance is achieved.539

Intuitively, as the number of words increases, the540

feature vector grows exponentially, making it chal-541

lenging to train the classifier effectively.542

Qualitative Evaluation of Explanations We543

conducted a user study involving three researchers544

with doctoral degrees in IR to estimate the qual-545

ity of explanations. Each annotator was pro-546

vided with 30 documents from the MS MARCO547

passage collection, along with the corresponding548

queries, ranked lists, and explanation terms gen-549

erated by CFIR applied to the best-performing550

model, MonoT5 (shown in Table 1). Further de-551

tails about the experiment setup is given in Ap-552

pendix J.553

Users were asked to assess the quality of ex-554

planations across six dimensions: (a) Intuitive-555

ness how intuitive the explanation terms appeared556

given the query, document, and ranking con-557

text, with knowledge of the retrieval model; (b)558

Non-intuitiveness the extent to which explana-559

tions felt unexpected or misaligned with the query-560

document pair; (c) Query Relatedness whether the561

explanation terms were semantically related to the562

query; (d) Document Relatedness whether the ex-563

planation terms aligned with the overall topic of564

the document; (e) Informativeness whether the565

terms were meaningful and content-rich rather566

than generic or uninformative (e.g. mostly stop567

words); and (f) Diversity whether the explanation568

terms covered varied semantic aspects. For each569

aspect the users were asked to put a score between570

0 to 5. Figure 5 shows that in general the ex-571

planation terms are intuitive and more similar to572

the document topic compared query topic (as ex-573

Figure 5: Qualitative Assessment of Generated Ex-
planations over a) Intuitiveness b) Non-Intuitiveness
c) Query Relatedness d) Document Relatedness
e)Informativeness f) Diversity)

pected due to use of document similarity criteria in 574

the loss function in Equation 1). The explanation 575

terms are also quite diverse. The non-intuitiveness 576

score is quite low which shows that most of expla- 577

nation terms follow an IR practitioner’s intuition. 578

6 Conclusion 579

In this paper, we propose a counterfactual setup for 580

a query-document pair and a retrieval model. Our 581

experiments show that the proposed approach on 582

an average 70% cases for both in short and long 583

documents could successfully improve the rank- 584

ing. In the future, we would like to explore differ- 585

ent explanation units for the counterfactual setup. 586

7 Limitations 587

One of the limitations of this work is that we as- 588

sume that top 10 or 20 words (based on tf-idf 589
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weights) within a document play the most impor-590

tant part in improving the rank of a document.591

However, theoretically speaking we should con-592

sider all the words present in a document to de-593

termine the most influential words for a retrieval594

model. We have used top tf-idf words (Similar595

to statistical retrieval models) to reduce the com-596

putational complexity of our experiments and we597

have seen that increasing the number of top words598

doesn’t affect the performance of the model that599

much.600

8 Ethical Considerations601

In this work, we have used publicly available602

search query log and document collection to603

demonstrate counterfactual explanation. No sen-604

sitive data was used in this experiment. As a result605

of this there is no particular ethical concern asso-606

ciated with this work. If there is any kind of bias607

present in the search log data that effect can be ob-608

served within our approach. However mitigating609

that bias was beyond the scope of this work610
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A Retrieval Models805

The five different retrieval models used in our ex-806

periment are described as follows.807

BM25: BM252 is a statistical retrieval model808

where the similarity between a query and a doc-809

ument is computed based on the term frequency810

of the query words present in the document, doc-811

ument frequency of the query words and also the812

document length.813

DRMM: Deep Relevance Matching Model814

(DRMM) Guo et al. (2016) is a neural retrieval815

model where the semantic similarity between each816

pair of tokens corresponding to a query and a doc-817

ument is computed to estimate the final relevance818

score of a document.819

DSSM: Deep Semantic Similarity Model820

(DSSM) Huang et al. (2013) is another neural821

retrieval model which uses word hashing tech-822

niques to compute the semantic similarity between823

a query and a document.824

ColBERT: Contextualized Late Interaction825

over BERT (ColBERT) (Khattab and Zaharia,826

2020), is an advanced neural retrieval model827

which exploits late interaction techniques based828

on BERT (Devlin et al., 2019) based representa-829

tions of both query and document for retrieval.830

MonoT5: MonoT5 (Nogueira et al., 2020) is a831

sequence-to-sequence model fine-tuned to predict832

the relevance of a query-document pair.833

Splade: Splade (Formal et al., 2021)(Sparse834

Lexical and Expansion Model for Information Re-835

trieval) combines the sparse interpretability of tra-836

ditional IR models (like BM25) with the seman-837

tic power of deep learning. Unlike dense retrieval838

models that rely on vector similarity in embedding839

space, SPLADE encodes queries and documents840

into sparse high-dimensional vectors—essentially841

performing learned term expansions in a way that842

mimics the inverted index structure used in classic843

IR systems.844

B Retrieval Performance of IR Models845

We use Lin et al. (2021) toolkit for implementing846

BM25 and MonoT5 and Splade. For DRMM and847

DSSM, we use the implementation released by the848

study in Guo et al. (2019). For passage ranking849

we varied the parameters in a grid search and we850

took the configuration producing best MRR@10851

value on TREC DL (Craswell et al., 2021) test852

2https://en.wikipedia.org/wiki/Okapi_BM25

set. For both DRMM and DSSM experiments 853

on MSMARCO data, the parameters were set as 854

suggested in (Wu et al., 2022b). The MRR@10 855

values are reported in Table 7 in Appendix B. 856

For DRMM and DSSM, we use randomly chosen 857

100K query pairs from the MSMARCO training 858

dataset to train the model. 859

The machine used to run counterfactual experi- 860

ments on retrieval model has 1 A100 GPU and 40 861

GB memomry.

MRR@10
Model MSMARCO Passage MSMARCO Document
BM25 0.1874 0.2184
DRMM 0.1623 0.1168
DSSM 0.1320 0.1168
ColBERT 0.3481 0.3469
MonoT5 0.3904 0.3827
Splade 0.3813 0.3721

Table 3: Retrieval Model Performance on MSMARCO
passage and document

862

C Dataset Statistics 863

The dataset statistics for all the experiments are 864

given in Table 4

MS MARCO
Passage

MS MARCO
Document

TREC
Robust

Query Avg Length 5.9 6.9 7.18
Document Avg Length 64.9 1134.2 150.12
Query #Instances 100 100 100
Document #Instances 500 500 500

Table 4: Dataset Details for Counterfactual Setup

865

D Example of Input and Output to 866

Classifier 867

Given an input query, we employ a Lucene- 868

Searcher with MSMARCO Index to retrieve the 869

Top-K documents. The feature vector construction 870

process follows these steps: 871

For each document, we: 872

1. Extract the top n words based on their Imp(d) 873

values 874

2. Construct a vocabulary V as the union of all 875

top 10 words across documents 876

3. Note that |V | typically falls in the range of 877

150-180 words 878

The feature vector for each document has di- 879

mension |V |, where each component represents 880

the value from the Imp(d) of the corresponding 881

word from the vocabulary. Formally: 882
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dvec ∈ R|V |883

Labels are assigned according to the following884

criterion:885

label =

{
1 for top K documents

0 for remaining documents
886

Example feature vectors and their correspond-887

ing counterfactuals generated using (Mothilal888

et al., 2020) are shown in Table 6. Since |V| is 150889

in our experiments, hence in Table 6 we have only890

shown the term frequencies of the words present891

in each document. For other words the terms892

freaquency values will be zero in dvec.

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 5: Comparison of CFIR with Existing ExIR Ap-
proaches

893

E Existing EXIR approaches vs. CFIR894

The existing literature aims to explain the signifi-895

cance of a document, a set of documents, or a pair896

of documents through various explanation meth-897

ods. Nonetheless, our proposed approach diverges898

fundamentally from prior work in that we seek to899

demonstrate how the absence or frequency of cer-900

tain tokens impacts document relevance. In this901

section, we examine whether there is any intersec-902

tion between the two sets of tokens described ear-903

lier.904

Pointwise Explanation Approach As outlined905

in Section 2.2, existing pointwise explanation906

methods elucidate why a specific document aligns907

with a given query within a retrieval model. Sim-908

ilarly, our proposed approach operates on individ-909

ual documents and queries, albeit with a distinct910

objective. Here, we analyze the overlap between911

the explanations generated by the pointwise expla-912

nation method and those derived from our model,913

as presented in Table 7. This comparison was con-914

ducted on 50 pairs of documents.915

Listwise Explanation Approach In Section 2,916

it is explained that listwise explanations typically917

aim to demonstrate the relevance of a list of docu-918

ments to a given query. In listwise setup, one set of919

explanation terms are extracted for a list of docu-920

ments, a query, and a retrieval model. Conversely,921

in our approach, we generate distinct explanations922

for each query-word pair. Therefore, to compare923

listwise explanations with our method, we aggre- 924

gate all individual explanations obtained for each 925

document-query pair in the list to create a unified 926

explanation set for the entire list corresponding to 927

a query. The resulting overlap is presented in Ta- 928

ble 7. 929

F Counterfactual Optimization 930

Framework 931

The different parts of Equation 2 are described 932

here. The yloss in Equation 2 is a hinge loss 933

function as defined in Equation 4. In Equation 934

4 z is −1 when y = 0 otherwise, z = 1. 935

logit(f{M,q}(ci)) is the logit values obtained from 936

the classifier (f{M,q}) when the counterfactual ci 937

is given as input. 938

yloss = max(0, 1− z ∗ logit(f{M,q}(ci))) (4) 939

The distance function (dist(ci, d)) in Equation 940

2 is computed using the formula given in Equation 941

5. In Equation 5, V represents the vocabulary set 942

used to represent the document vectors (dvec). In 943

Equation 5, the value of I is equal to 1 if the corre- 944

sponding term is present in both the counterfactual 945

input c and the original input d, otherwise it is set 946

to 0. 947

dist(c, d) =
V∑

p=1

I(cp ̸= dp) (5) 948

The diversity in above equation is defined by the 949

formula described in Equation 6. In equation 6, 950

Ki,j is equal to 1
1+dist(ci,cj)

. dist(ci, cj) calculates 951

the distance between two counterfactuals ci and 952

cj . 953

div(c1, . . . , ck) =
∑
i,j

det(Ki,j) (6) 954

G Parameters for Counterfactual Setup 955

The value of λ1 and λ2 is set to 1 and 0.5 re- 956

spectively in Equation 2. The value of k in Equa- 957

tion 2 is set to k = 3. In all our experiments in 958

Table 1, we have observed that for K = 3 and 959

onward we have always found a counterfactual 960

explanation for each query-document pair where 961

only words were added for the desired counterfac- 962

tual outcome. 963

H Adversarial Attacks vs. 964

Counterfactual Explanation 965

Here we show the performance of our proposed 966

counterfactual explanation approach with an exist- 967
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docID Feature Vector
3686955 [prohibition:2.0, amendment:2.0, under:1.0, dwindled:1.0, eighteenth:1.0, repeal:1.0, repealed:3.0, states:1.0, 1933: 1.0, ratification: 1.0]
6159679 [membrane:5.0, lipids:3.0, remainder:2.0, proteins:3.0, biochemical:2.0, 80:2.0, role:2.0, percent:2.0]
5217641 [waves:6.0, transverse:5.0, electromagnetic:3.0, oscillations:2.0, vibrations:2.0, travel:2.0, radiation:2.0, angles:2.0, transfer:2.0, types:3.0]

Table 6: Sample Feature Vector Corresponding to three different documents

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 7: Comparison of CFIR with Existing ExIR Ap-
proaches

Retrieval Model FD in PRADA FD in CFIR
ColBERT 74% 75%
MonoT5 80% 82%

Table 8: Performance of CFIR vs. Adversarial Attack
Model PRADA (Wu et al., 2022a)

ing adversarial model named PRADA (Wu et al.,968

2022a). We use the MSMARCO passage dataset969

as the target corpus. We use same test set (as de-970

scribed in Table 4) as used in the first column of971

Table 1 in this experiment. Table 8 shows the re-972

sults in terms of Fidelity score.973

I Implementation of Imp(d)974

We explored three ways to compute the top n975

words from each document. Each one of them is976

described as follows.977

TF-IDF Approach: In this approach we choose978

top n words from a document based on their TF-979

IDF weight.980

KEYBERT Approach: In this approach we use981

the model proposed in (Grootendorst, 2020) to ex-982

tract keywords from a string.983

BERT-Based Similarity(BERTSim): In this984

approach we compute the similarity between the985

BERT based representation of the query text and986

each token of the document and then we sort all987

the tokens based on the similarity.988

Table 9 shows the performance of the above-989

mentioned three approaches in MSMARCO pas-990

sage dataset and ColBERT retrieval model. n =991

10 for the experiments shown in Table 9. From992

Table 9, we can conclude that the BERT-based993

similarity approach works the best for the Imp(d)994

function. hence for all the results reported in Table995

1, we use the BERTSim approach in the Imp(d)996

function.997

Imp(d) Approach FD
TFIDF 74%
KeyBERT 70%
BERTSim 75%

Table 9: Performance of Different Approaches in
Imp(d).

J User Study 998

In the user study we didn’t record any personal in- 999

formation of any of the users. We only recorded 1000

their judgment about the output of the proposed 1001

methodology for the study. We have also used data 1002

which is publicly available for IR research. Hence 1003

no ethics approval was required for the study. All 1004

the researchers were made aware of the of the use 1005

of their assessment in this research. 1006
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