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Abstract

Explainability has become a crucial concern in
today’s world, aiming to enhance transparency
in machine learning and deep learning mod-
els. Information retrieval is no exception to
this trend. In existing literature on explainabil-
ity of information retrieval, the emphasis has
predominantly been on illustrating the con-
cept of relevance concerning a retrieval model.
The questions addressed include why a doc-
ument is relevant to a query, why one docu-
ment exhibits higher relevance than another,
or why a specific set of documents is deemed
relevant for a query. However, limited atten-
tion has been given to understanding why a
particular document is not favored (e.g., not
within top-K) with respect to a query and a
retrieval model. In an effort to address this
gap, our work focuses on the question of what
terms need to be added within a document to
improve its ranking. This, in turn, answers
the question of which words in the document
played a role in not being favored by a re-
trieval model for a particular query. We use a
counterfactual framework to solve the above-
mentioned research problem. To the best of
our knowledge, we mark the first attempt to
tackle this specific counterfactual problem (i.e.
examining the absence of which words can af-
fect the ranking of a document). Our experi-
ments show the effectiveness of our proposed
approach in predicting counterfactuals for both
statistical (e.g. BM25) and deep-learning-
based models (e.g. DRMM, DSSM, Col-
BERT, MonoTS5). The code implementation of
our proposed approach is available in https:
//anonymous. 4open.science/r/CfIR-v2.

1 Introduction

The requirement of transparency of Artificial In-
telligence (AI) models has made explainability
crucial, and this applies to Information Retrieval
(IR) models as well (Anand et al., 2022). The tar-
get audience plays a significant role in achieving

explainability for an IR model, as the units of ex-
planation or questions may differ based on the end
user. For instance, a healthcare specialist, who is
a domain expert but not necessarily an IR special-
ist, might want to understand the reasons behind a
ranked suggestion produced by a retrieval model
in terms of words used (Singh and Anand, 2019).
On the other hand, an IR practitioner may be more
interested in understanding whether different IR
axioms are followed by a retrieval model or not
(Bondarenko et al., 2022).

This study focuses on the perspective of IR
practitioners. To be more specific, we introduce
a counterfactual framework designed for retrieval
models, catering to the needs of IR practition-
ers. Existing literature in explainable IR (ExIR)
addressed questions like why a particular docu-
ment is relevant with respect to a query (Singh
and Anand, 2019), between a pair of documents
why one document is more relevant to the query
(Penha et al., 2022) compared to the other and why
a list of documents relevant to a query (Lyu and
Anand, 2023). Broadly speaking, all the above-
mentioned questions mainly focus on explaining
the relevance of a document or a list of documents
from different perspectives.

However, there is limited attention to explain
the question like the absence of which words ren-
ders a document unfavorable to a retrieval model
(i.e. not within top-K) remains unexplored. The
above-mentioned explanation can give an idea to
an IR practitioner about how to modify a retrieval
model. For example, if it is observed that a re-
trieval model (e.g. especially neural IR models
(Rekabsaz and Schedl, 2020)) does not favor doc-
uments because of not having certain gender spe-
cific words then the setting of the retrieval model
needs to be debiased.

With the motivation described above, the funda-
mental research question which we address in this
research work is described as follows.
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¢ RQ1: What are the terms that should be
added to a document which can push the doc-
ument to a higher rank with respect to a par-
ticular retrieval model?

We would like to note that we have framed RQ1
as a counterfactual setup in our research scope.
Similar to existing research in counterfactual ex-
planations in Al (Kanamori et al., 2021; Van Loov-
eren and Klaise, 2021), we also attempt to change
the output of model with the provided explana-
tions (i.e. change the rank of a document in IR
models). Our experimental results show that on
an average in 70% cases the solution provided by
the counterfactual setup improves the ranking of
a document with respect to a query and a ranking
model.

Our Contributions The main contributions of
this paper are as follows.

* Propose a model-agnostic novel counterfac-
tual framework for retrieval models.

» Estimated a set of terms that can explain why
a document is not within top-K with respect
to a query and a retrieval model.

* Provide a comprehensive analysis with exist-
ing state-of-the-art IR models.

The rest of the paper is organized as follows.
Section 2 describes Related work. Section 3 de-
scribes the counterfactual framework used in our
work, Section 4 describes the experimental setup
and Section 5 discuss about results and ablation
study. Section 6 concludes with this paper.

2 Related Work

2.1 Counterfactual Explanations

The xAl field gained significant momentum with
the development of the Local Interpretable Model-
agnostic Explanations (LIME) method (Ribeiro
et al., 2016), which offers a way to explain any
classification model. While models like LIME
explain why a model predicts a particular out-
put, counterfactual explainers address the ques-
tion of what changes in input features would be
needed to alter the output. Counterfactual xAl
was first brought into the limelight in early 2010s
with seminal work of Pearl (2018). The study in
Karimi et al. (2020) provided a practical frame-
work named Model-Agnostic Counterfactual Ex-

planations (MACE) for any model. Later se-
ries of models (Kanamori et al., 2021; Van Loov-
eren and Klaise, 2021; Parmentier and Vidal,
2021; Carreira-Perpifnian and Hada, 2021; Pawel-
czyk et al.,, 2022; Hamman et al., 2023) were
proposed for counterfactual explanation based on
different optimization frameworks. In our re-
search scope, we use Counterfactual Explanation
framework proposed in (Mothilal et al., 2020) (ex-
plained in detail in Section 3).

2.2 Explainability in IR

Pointwise Explanations shows the important fea-
tures responsible for the relevance score pre-
dicted by a retrieval model for a query-document
pair. Popular techniques include locally approx-
imating the relevance scores predicted by the re-
trieval model using a regression model (Singh and
Anand, 2019).

Pairwise Explanations predict why a particular
document was favored by a ranking model com-
pared to others. The work in (Xu et al., 2024)
proposed a counterfactual explanation method to
compare the ranking of a pair of documents with
respect to a particular query.

Listwise Explanations focus on explaining the
key features for a ranked list of documents and a
query. Listwise explanations (Yu et al., 2022; Lyu
and Anand, 2023) aim to capture a more global
perspective compared to pointwise and pairwise
explanations. The study in (Lyu and Anand, 2023)
proposed an approach which combines the output
of different explainers to capture the different as-
pects of relevance. The study in (Yu et al., 2022)
trained a transformer model to generate explana-
tion terms for a query and a ranked list of docu-
ments.

Generative Explanations (Singh and Anand,
2020; Lyu and Anand, 2023) generally leverage
natural language processing to create new text
content, like summaries or justifications, that di-
rectly address the user’s query and information
needs. Model-agnostic approaches (Singh and
Anand, 2020) have been proposed to interpret the
intent of the query as understood by a black box
ranker.

From the above mentioned category of expla-
nations in IR, we focus on pointwise explana-
tion in our research scope. In pointwise expla-
nation, rather than explaining what are the words
which are relevant in a document for a particular
query we address the research question what are



the words which are required to improve the rank-
ing of the document with respect to a query.

Search Engine Optimization techniques (Egri
and Bayrak, 2014; Erdmann et al., 2022) gener-
ally uses different features like commercial cost,
links to optimize the performance of the search
engine. A major difference of the work in (Egri
and Bayrak, 2014; Erdmann et al., 2022) with our
work is we only consider the words present in a
document as a feature. Our objective is to improve
the ranking of a particular document concerning a
specific query and a retrieval model rather than im-
proving the ranking of a document concerning any
query belonging to a particular topic.

3 Counterfactual Framework for
Information Retrieval (CFIR)

Problem Statement Let d represents a target
document that does not appear in the top-K re-
trieved results of a query ¢ and retrieval model M.
The objective in CFIR is to identify a set of terms
w; which, when added to d, improve its ranking
with respect to ¢ and model M.

The above mentioned setup for CFIR is for-
mally defined in Equation 1 where CFIR, employs
a counterfactual document generator cx(f{s,q}, d)
which takes as input a classifier fas, and the doc-
ument d to construct an counterfactual document
d' such that d’ is likely to get a higher rank (within
top-K) than d for model M and query g. The ob-
jective of frarq : RVl — {0,1} ( where V is
the vocabulary, described in detail in Section 3.1)
is to predict given a query ¢ and a retrieval model
M if a particular document d will be within top-K
or not. The counterfactual explanation is defined
as the set of words present in d’ but not in d (i.e.
output of Equation 1).

CFIR(q,M,d) = c(f{r,qy,d) — d
=d —d=U {w} e

3.1 Building Classifier (f{M7q})

Similar to existing XAl (Ribeiro et al., 2016) ap-
proaches, the classifier f{js,) in our research
scope essentially locally approximates the behav-
ior of a retrieval model M, for a query ¢ and
a subset of documents retrieved for the query gq.
However, in contrast to the regression model in
(Ribeiro et al., 2016), we build a binary classifi-
cation model to predict whether a document d will

be ranked within the top- K results or not for a spe-
cific query ¢ and retrieval model M.

For each document d for which we want to gen-
erate counterfactuals, we train a separate classifier.
In the classifier setup, the top-K documents for
a query ¢ and retrieval model M represent class
1 and any other document not belonging to this
class represents class 0. Theoretically speaking, if
a corpus had N number of documents, then there
will be N — K documents which should have class
label 0 and N — K is a very large number in gen-
eral which can cause class imbalance issue. To
avoid this issue, for the class 0, for each document
d for which we want to generate a counterfactual,
we choose a set of closest neighbors in the set of
N — K documents and the size of the neighbor-
hood should be similar to K. K serves as a pre-
defined threshold, typically set to values such as
10, 20, or 30. For f{M7q}, each document d is rep-
resented as a word term frequency based feature
vector, denoted as dyec.

Formally, Feature Vector for Classifier f\r o)
(L tfg ot f
where t fid represents the term frequency of the
word w; in d. Using all the words from all the
documents retrieved for a query to construct the
vocabulary set V' can pose challenges. Conse-
quently, we take the union of the most significant
n words from each document d using a function
named Imp(d) (explained in detail in Section 4)
to construct V. V = Ufil{U?:ijelmp(di)wj}.
Appendix D depicts a step-by-step algorithm to
construct the feature vector for the classifier and
Figure 6 in Appendix D shows one sample feature
vector for the classifier.

is represented as dye. =

Counterfactual Document Generator
ck(fmq,d) in Equation 1 follows an ap-
proach similar to that of Mothilal et al. (2020).
Specifically, ci(far,q,d) generates k candidate
counterfactuals ~cpaztier cmazlter | cmazlter
(where maxlter is the maximum number of
iterations upto which loss function is optimized)
for each document d, from which we randomly
select a single counterfactual (d’ in Equation 1)
that involves only insertion of new words without
modifying or deleting existing ones in d (step 5
in Algorithm 1). We fix k to a sufficiently large
constant in our experiments. Similar to (Mothilal
et al.,, 2020), the objective of cx(farq,d) is to
minimize three different criteria described as
follows.
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Figure 1: Schematic Diagram for Counterfactual Explanation Framework (CFIR)

¢ Criteria 1: Minimizing the distance between
the desired outcome 3’ (within top-K’) and
the prediction of the classifier model fiar gy
for a counterfactual example (c;).

e Criteria 2: Minimizing the distance be-
tween any generated counterfactual (c;) and
the original document d. Broadly speaking, a
counterfactual example closer to the original
input should be more useful for a user.

* Criteria 3: Increasing diversity between
generated counterfactuals.

Based on the above-mentioned criteria the loss
function to generate cjrasiter . cmazlier jg de-

scribed as follows.

arg min
c1,.--Ck

<% S yloss(far,a(er)s ')+
= @
)\1 k
- jfldiSt(Ci’ d) — Aadiv(eq, ..., Ck))
In Equation 2, yloss(.) takes care of Criteria
1, dist(c;, d) takes care of the Criteria 2 and div
takes care of the Criteria 3 as discussed above.
A1 and Ay in Equation 2 are hyperparameters that
balance the contribution of second and third parts
of loss function (i.e. controlling diversity and sim-
ilarity). The detailed description of the computa-
tion of yloss, dist and div function in Equation
2 is given in Equations 4, 5 and 6 respectively in
Appendix F. The loss function in Equation 2 is op-
timized using the gradient descent method.
Algorithm 1 shows step by step execution of the
counterfactual document generator ci(fiaz,q}d)-
In Algorithm 1 we show how the counterfactual
examples (cy, . . . ¢i) are randomly initialized. The

generated counterfactual examples (i.e. c;mf terg)

should change the prediction of classifier f{as )
from O to 1 (i.e. modified document should be
within top K). The set of words corresponding
to the counterfactual explanation of d are the new
words that have been added to d, .. (i.e. feature
vector representation of d’ in Equation 1) com-
pared to dye.. Figure 1 shows the schematic di-
agram for counterfactual setup with the workflow
between the different components (i.e. classifier

and counterfactual document generator) within it.

Algorithm 1: CF Document Generator ck(fiar,qy>d)
Input

: Classifier function: fyas, 4}, Feature Vector:
dyec = {tfl stfa, ..., tf‘v‘ }, Number of
Counterfactuals:k

Output 2 {di,, € RV

Initialization:

for i < 1to kdo

for j < 1to |V|do
c; . =r ~ Random(.)

is the ;"

i,j

/% c?yj coordinate of

c; at 0" iteration */
end for

end for

1 fort < 0to maxlter do

2 Compute the loss % Zle yloss(fM,q(cf), y) +

AL Sk dist(ct, d) — Dadiv(ct, ..., ct))

Update ('f ’s using gradient descent

end for

5 return d’

vec?

oW

d. .. is a |V| dimensional vector randomly chosen

from the subset of ¢} *“1*"s for which

epartier > pdyi =1, [V

4 Experiment Setup

Dataset We use three ranking datasets for our
experiments: MS MARCO passage dataset for
passage ranking (Bajaj et al., 2016) and MS
MARCO document ranking dataset for longer
documents (Craswell et al., 2023) and TREC Ro-
bust (Voorhees, 2005) dataset. The MS MARCO
passage and document ranking datasets contain



queries from Bing' and the queries of TREC Ro-
bust are manually chosen. For each dataset, we
randomly selected 100 queries from the test set
and chose 5 documents not ranked in the top 10
results for each query, resulting in a test set of 500
query-document pairs. The details of the dataset
are given in Table 4 in Appendix C.

We use five different retrieval models BM25,
DRMM Guo et al. (2016), DSSM (Huang et al.,
2013), ColBERT Khattab and Zaharia (2020),
MonoT5 (Nogueira et al., 2020) and Splade (For-
mal et al., 2021) in our experiments. The details
of each retrieval model is given in Appendix A.

Baselines To the best of our knowledge, this is
the first work which attempts to provide counter-
factual explanations in IR. Consequently, there ex-
ists no baseline for our proposed approach. How-
ever we have used a query word and top-K word
based intuitive baseline to compare with our pro-
posed approach. In query word baseline (QW),
we use query words not originally present in a
document to enhance its ranking. For Top-K’
(Top — K') baseline we use the top &’ words ex-
tracted from top 5 documents corresponding to a
query as relevance set. Words appearing in the
relevance set but not appearing in a document are
added to the document to improve its ranking. For
different retrieval models we have corresponding
versions of QW and Top — K’ baselines.

Evaluation Metrics There exists no standard
evaluation framework for exIR approaches. The
three different evaluation metrics in our experi-
ment setup are described as follows.

Fidelity (FD): Existing xAl approaches in IR
use Fidelity (Anand et al., 2022) as one of the met-
rics to evaluate the effectiveness of the proposed
explainability approach. Intuitively speaking, Fi-
delity measures the correctness of the features ob-
tained from a xAl approach. In the context of the
CFIR setup described in this work, we define this
fidelity score as the number of times the words
predicted by the counterfactual algorithm could
actually improve the rank of a document. Let n be
total number of query document pairs in our test
case and x be number of query document pairs for
which the the rank of the document improved after
adding the counterfactuals obtained from the opti-
mization setup described in Equation 2. Then the

"https://bing.com

Fidelity score is mathematically defined with re-
spect to a test dataset D and retrieval model M is
defined as follows.

FD(D, M) = < %100 3)

n

Avg. New Words: Here we compute the av-
erage number of new words added by the counter-
factual approach for a set of query document pairs.

Avg. Query Overlap: Here we report on an
average how many of the words suggested by
the counterfactual algorithm come from the query
words.

Parameters and Implementation Details The
details of implementation about retrieval models
are shown in Appendix B. We employed two pop-
ular classical machine learning methods, Logis-
tic Regression (LR) and Random Forest (RF) for
the classifier described in Section 3.1. For Lo-
gistic Regression, the learning rate was set to
0.001. For Random Forest, the number of es-
timators was set to 100. As described in Sec-
tion 3.1, all the words present in a document are
not used as input to the classifier. We use the
top 10 (n’ = 10) most important words from a
document. As described in Section 3.1, we ex-
plored three different ways to implement I'mp(d)
function a) TF-IDF weight based word extraction,
b) BERT based keyword extraction (Grootendorst,
2020) and c) Similarity between the BERT repre-
sentation of query and the document tokens. We
found that BERT representation-based similarity
computation worked the best for our approach.
More details on the implementation of I'mp(d)
function are shown in Appendix I. The value of
K’ for Top — K’ baseline was set to 5. More de-
tails on the parameter configuration are shown in
Appendix G.

5 Results

Table 1 shows the performance of the counter-
factual approach across different retrieval models
(i.e. BM25, DRMM, DSSM, ColBERT, MonoT5
and Splade). We conducted experiments on MS
MARCO passage and document ranking dataset
and TREC Robust dataset to observe the effective-
ness of our proposed explanation approach for dif-
ferent types of documents. Mainly four different
observations can be made from Table 1. Firstly, It
can be clearly observed that the CFIR model for
each retrieval model has performed better com-
pared to its corresponding query word or top-K’
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Model Description MS MARCO Passag MS MARCO Do« t Trec Robust
Retrieval Model Classifier | FD(%) Avwg(.nl:liesw Ar)g;gf:, ;ry FD(%) A;g(.nl:lesw A‘S;\"e?llzll i)ry FD(%) A:g(.)ll:l;;w A‘(I)g;gll; i)ry
QWan2s NA 50% 5.61 100% 48% 6.14 100% 56% 6.12 100%
Top — Kios NA 42% 11.28 100% 40% 9.61 100% 41% 12.34 100%
CFIRBM25 RF 65% 10.64 66% 52% 16.81 56% 64% 11.12 57%
CFIRBM2s LR 69 % 17.14 58% 57% 14.15 56% 58% 13.25 56%
QWprMmMm NA 48% 5.12 100% 47% 6.14 100% 49% 7.12 100%
Top — Kpryum NA 42% 15.11 100% 31% 14.12 100% 33% 16.12 100%
CFIRprMM RF 72% 11.31 48% 56% 8.12 46% 62% 12.56 47%
CFIRprMM LR 68% 12.37 62% 62% 14.53 45% 65% 13.47 43%
QWhsnnm NA 9% 532 100% 5% 6.64 100% 52% 7.12 100%
Top — Kipssar NA 35% 12,51 100% 32% 12.62 100% 34% 13.14 100%
CFIRpssu RF 57% 11.52 58% 46% 18.14 57% 59% 12.46 100%
CFIRpssm LR 62% 15.78 54% 53% 18.52 63% 58% 17.24 64%
QWcoBERT NA 56% 478 100% 34% 5.64 100% 38% 6.14 100%
Top — K&oBERT NA 48% 15.63 100% 36% 13.42 100% 38% 11.32 100%
CFIRcoiBERT RF 72% 12.41 56% 72% 11.05 49% 1% 10.35 52%
CFIRcoBERT LR 75% 14.12 61% 71% 10.23 62% 74% 16.45 65%
QWhtonors NA 52% 10.15 100% 54% 12.23 100% 63% 10.15 100%
Top — Kijonors NA 75% 14.11 100% 68% 10.13 100% 75% 11.12 100%
CFIRMonoTs RF 80% 12.13 64% 72% 11.23 61% 73% 10.95 66%
CFIRwMonots LR 82% 13.15 65% 74% 12.23 63% 75% 1145 68%
QWsplade NA 49% 10.15 100% 51% 11.51 100% 62% 11.11 100%
Top — Kspiaae NA 71% 13.05 100% 65% 9.23 100% 74% 12.22 100%
CFIRsplade RF 78% 11.23 62% 69% 12.11 60% 71% 9.81 65%
CFIRsplade LR 80% 12.15 63% 71% 14.11 64% 73% 10.55 67%

Table 1: CFIR model Performance for BM25, DRMM, DSSM, ColBERT, MonoT5 and Splade in MSMARCO
Passage and Document Collection and TREC Robust. The Best Performing Counterfactual Explanation Method
for every retrieval model is boldfaced; the overall best performance across all rows is underlined. All the results
reported in Table 1 are statistically significant with p < 0.05.

Retrieval Model Query Text docld Explanation Terms

. working, strict, Maine, 1929, law, resentment, New York City,
DRMM What law repealed prohibition ? 3686955 Irish, immigrgant, prohibition, repeal, fall, Portland, temperance, ri())/t, visit
DSSM What is the role of lipid in the cell? 6159679 phospholipid, fluidity, storage, triglyceride, fatty receptor
ColBERT what type of wave is electromagnetic? 5217641 directly ,oscillations, medium, wave, properties, speed
MonoT5 what is a caret? 6338711 display, diamond, weight
Splade which vitamins help heal bruises? 3465680 minerals, body, eat, cut

Table 2: CFIR explanation terms for DRMM, DSSM, ColBERT, MonoT5 and Splade in MS MARCO passage.

words baseline in terms of Fidelity score(FD).
The above-mentioned observation is consistent for
both passages and long documents (i.e. in MS-
MARCO passage, Document and TREC Robust).
Secondly, it can be observed from Table 1 that
mostly CFIR approach provided the highest num-
ber of new terms (terms not already present in the
documents) as part of the explanation to improve
ranking. Consequently, we can say the overall set
of explanation terms are more diverse for CFIR
approach compared to others. It can also be also
observed from Table 1 that the Fidelity scores are
generally better in the MS MARCO passages com-
pared to MSMARCO document and TREC Ro-
bust dataset. One likely explanation for this phe-
nomenon is that documents in MSMARCO docu-
ment and TREC Robust are longer in length com-
pared to passages. Consequently, it is easier for
shorter documents to change the ranking com-
pared to longer documents. Thirdly, another in-
teresting observation from Table 1 is that the max-
imum query word overlap by our proposed ap-

proach is 68%. This implies that the counterfac-
tual algorithm is suggesting new words that are
not even present in a query. Fourthly, the perfor-
mance of representation learning based retrieval
models (i.e. ColBERT, MonoTS5) are significantly
better than the other models for Fidelity metric.
One potential reason can be that, the counterfac-
tual generator suggests words which are similar
to the content of the document. Because of us-
ing better embedding representation (BERT (De-
vlin et al., 2019) and TS5 compared to Word2Vec
(Mikolov et al., 2013) in DRMM) these retrieval
models give more priority to similar words than
other retrieval models.

Prior work in information retrieval has explored
adversarial attacks, where document content or
embeddings are perturbed to manipulate rankings
with malicious intent (Liu et al., 2023; Wu et al.,
2022a). In contrast, the goal of counterfactual
explanations is to provide interpretability for IR
models by revealing how document rankings can
be improved. A key distinction lies in the nature of
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Figure 2: Average Rank shift by CFIR for BM25,
DRMM, DSSM, ColBERT, MonoT5 and Splade

intervention: adversarial methods typically aim to
introduce minimal perturbations often by substi-
tuting content, including important terms to pre-
serve the original semantics while deceiving the
model. In our case, CFIR explicitly seeks to iden-
tify new terms that, when added to a document,
improve its rank, thereby highlighting what infor-
mative aspects were absent. Replacing important
terms is not useful in counterfactual setup, as it
fails to address what the document was lacking
from the model’s perspective. This formulation is
particularly relevant for understanding model be-
havior, including uncovering potentially problem-
atic model preferences (e.g., prior studies have ob-
served gender bias in ranking systems). By iden-
tifying helpful additions, such as gendered terms,
CFIR can reveal latent model sensitivities. Impor-
tantly, unlike adversarial attacks, the size of the
added term set is also not constrained in CFIR
(Avg. New Words column in Table 1 shows maxi-
mum 16.81 new words per explanation), as the fo-
cus is on explanatory sufficiency rather than min-
imality. However, for comparison, we have evalu-
ated the performance of CFIR against the PRADA
(Wu et al., 2022a) model which replaces certain
words in a document to improve its ranking. Table
8 in Appendix H shows that CFIR performs better
than PRADA for both ColBERT and MonoT?5 in
terms of Fidelity score.

Table 2 shows a sample of example terms ex-
tracted by our proposed approach. The words
shown in Table 2 have improved the ranking of a
docID with respect to the queries shown.

Further Analysis Figure 2 shows the average

mmm MSMARCO Passage
MSMARCO Document
TREC Robust

0.0 ‘ | |

BM25 DRMM DSSM  Colbert
Retrieval Models

o o o
ES o ©

Cosine Similarity (Doc vs. Exp. Terms)

=3
S
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Figure 3: Average Semantic Similarity between orig-
inal documents and the corresponding counterfactual
explanation Terms for BM25, DRMM, DSSM, Col-
BERT, MonoT5 and Splade

change in rank after introducing the explanation
terms suggested by the CFIR setup. Figure 2 es-
sentially demonstrates the actionability introduced
by the counterfactual explanation terms. The two
things to observe from Figure 2 are firstly, the av-
erage rank shift is greater for documents than for
passages. Table 1 shows that ColBERT achieved
a significantly higher fidelity score (16" row)
and a larger average rank shift compared to the
other models, as also seen in Figure 2. Figure 3
shows the average cosine similarity computed be-
tween documents and the corresponding explana-
tion terms. For both documents and the expla-
nation terms we use pretrained BERT represen-
tations to compute the similarity. It can be ob-
served from Figure 3 that the cosine similarity for
the representation learning based retrieval models
(i.e. ColBERT, MonoTS5) are higher than the other
retrieval models in general.

Parameter Sensitivity Analysis In Table 1, we
observed that for most of the retrieval models the
performance of the counterfactual explainer fol-
lows similar trend both in MSMARCO passage
and document dataset (i.e. the best performing
model in terms of fidelity score is same in most
of the cases). As a result, we conducted param-
eter sensitivity experiments only on MSMARCO
passage dataset. Figure 4 (a) shows the variance
in Fidelity score with respect to the K value in
Top-K. In Figure 4 (b) we show the variance of
FD score with respect to the number of most sig-
nificant words (i.e. n) used to construct the doc-
ument vector. It is clearly visible from Figure 4
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Figure 4: Counterfactual Classifier Performance Variance with Top-K and Counterfactual Performance Variance

with variation of number of Counterfactuals

(b) that with an increase in the number of coun-
terfactuals, there is a decrease in the performance
of the counterfactual classifier. It can be observed
that for n = 10 the best performance is achieved.
Intuitively, as the number of words increases, the
feature vector grows exponentially, making it chal-
lenging to train the classifier effectively.

Qualitative Evaluation of Explanations We
conducted a user study involving three researchers
with doctoral degrees in IR to estimate the qual-
ity of explanations. Each annotator was pro-
vided with 30 documents from the MS MARCO
passage collection, along with the corresponding
queries, ranked lists, and explanation terms gen-
erated by CFIR applied to the best-performing
model, MonoT5 (shown in Table 1). Further de-
tails about the experiment setup is given in Ap-
pendix J.

Users were asked to assess the quality of ex-
planations across six dimensions: (a) Intuitive-
ness how intuitive the explanation terms appeared
given the query, document, and ranking con-
text, with knowledge of the retrieval model; (b)
Non-intuitiveness the extent to which explana-
tions felt unexpected or misaligned with the query-
document pair; (c) Query Relatedness whether the
explanation terms were semantically related to the
query; (d) Document Relatedness whether the ex-
planation terms aligned with the overall topic of
the document; (e) Informativeness whether the
terms were meaningful and content-rich rather
than generic or uninformative (e.g. mostly stop
words); and (f) Diversity whether the explanation
terms covered varied semantic aspects. For each
aspect the users were asked to put a score between
0 to 5. Figure 5 shows that in general the ex-
planation terms are intuitive and more similar to
the document topic compared query topic (as ex-

N w >
L L L

Average Score

Juy
L

O j
a b c d e f
Different Aspects of User Study

Figure 5: Qualitative Assessment of Generated Ex-
planations over a) Intuitiveness b) Non-Intuitiveness
¢) Query Relatedness d) Document Relatedness
e)Informativeness f) Diversity)

pected due to use of document similarity criteria in
the loss function in Equation 1). The explanation
terms are also quite diverse. The non-intuitiveness
score is quite low which shows that most of expla-
nation terms follow an IR practitioner’s intuition.

6 Conclusion

In this paper, we propose a counterfactual setup for
a query-document pair and a retrieval model. Our
experiments show that the proposed approach on
an average 70% cases for both in short and long
documents could successfully improve the rank-
ing. In the future, we would like to explore differ-
ent explanation units for the counterfactual setup.

7 Limitations

One of the limitations of this work is that we as-
sume that top 10 or 20 words (based on tf-idf



weights) within a document play the most impor-
tant part in improving the rank of a document.
However, theoretically speaking we should con-
sider all the words present in a document to de-
termine the most influential words for a retrieval
model. We have used top tf-idf words (Similar
to statistical retrieval models) to reduce the com-
putational complexity of our experiments and we
have seen that increasing the number of top words
doesn’t affect the performance of the model that
much.

8 Ethical Considerations

In this work, we have used publicly available
search query log and document collection to
demonstrate counterfactual explanation. No sen-
sitive data was used in this experiment. As a result
of this there is no particular ethical concern asso-
ciated with this work. If there is any kind of bias
present in the search log data that effect can be ob-
served within our approach. However mitigating
that bias was beyond the scope of this work
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A Retrieval Models

The five different retrieval models used in our ex-
periment are described as follows.

BM25: BM25? is a statistical retrieval model
where the similarity between a query and a doc-
ument is computed based on the term frequency
of the query words present in the document, doc-
ument frequency of the query words and also the
document length.

DRMM: Deep Relevance Matching Model
(DRMM) Guo et al. (2016) is a neural retrieval
model where the semantic similarity between each
pair of tokens corresponding to a query and a doc-
ument is computed to estimate the final relevance
score of a document.

DSSM: Deep Semantic Similarity Model
(DSSM) Huang et al. (2013) is another neural
retrieval model which uses word hashing tech-
niques to compute the semantic similarity between
a query and a document.

CoIlBERT: Contextualized Late Interaction
over BERT (ColBERT) (Khattab and Zaharia,
2020), is an advanced neural retrieval model
which exploits late interaction techniques based
on BERT (Devlin et al., 2019) based representa-
tions of both query and document for retrieval.

MonoTS5: MonoT5 (Nogueira et al., 2020) is a
sequence-to-sequence model fine-tuned to predict
the relevance of a query-document pair.

Splade: Splade (Formal et al., 2021)(Sparse
Lexical and Expansion Model for Information Re-
trieval) combines the sparse interpretability of tra-
ditional IR models (like BM25) with the seman-
tic power of deep learning. Unlike dense retrieval
models that rely on vector similarity in embedding
space, SPLADE encodes queries and documents
into sparse high-dimensional vectors—essentially
performing learned term expansions in a way that
mimics the inverted index structure used in classic
IR systems.

B Retrieval Performance of IR Models

We use Lin et al. (2021) toolkit for implementing
BM25 and MonoT5 and Splade. For DRMM and
DSSM, we use the implementation released by the
study in Guo et al. (2019). For passage ranking
we varied the parameters in a grid search and we
took the configuration producing best MRR@10
value on TREC DL (Craswell et al., 2021) test

2h’ctps ://en.wikipedia.org/wiki/Okapi_BM25

set. For both DRMM and DSSM experiments
on MSMARCO data, the parameters were set as
suggested in (Wu et al., 2022b). The MRR@10
values are reported in Table 7 in Appendix B.
For DRMM and DSSM, we use randomly chosen
100K query pairs from the MSMARCO training
dataset to train the model.

The machine used to run counterfactual experi-
ments on retrieval model has 1 A100 GPU and 40
GB memomry.

MRR@10
Model MSMARCO Passage | MSMARCO Document
BM25 0.1874 0.2184
DRMM 0.1623 0.1168
DSSM 0.1320 0.1168
ColBERT 0.3481 0.3469
MonoT5 0.3904 0.3827
Splade 0.3813 0.3721

Table 3: Retrieval Model Performance on MSMARCO
passage and document

C Dataset Statistics

The dataset statistics for all the experiments are
given in Table 4

MS MARCO | MS MARCO | TREC

Passage Document Robust
Query Avg Length 5.9 6.9 7.18

Document | Avg Length 64.9 1134.2 150.12
Query #Instances 100 100 100
Document | #Instances 500 500 500

Table 4: Dataset Details for Counterfactual Setup

D Example of Input and Output to
Classifier

Given an input query, we employ a Lucene-
Searcher with MSMARCO Index to retrieve the
Top-K documents. The feature vector construction
process follows these steps:

For each document, we:

1. Extract the top n words based on their Imp(d)
values

2. Construct a vocabulary V' as the union of all
top 10 words across documents

3. Note that |V/| typically falls in the range of
150-180 words

The feature vector for each document has di-
mension |V|, where each component represents
the value from the Imp(d) of the corresponding
word from the vocabulary. Formally:
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dvec S R|V|
Labels are assigned according to the following
criterion:

1
label = {
0

Example feature vectors and their correspond-
ing counterfactuals generated using (Mothilal
et al., 2020) are shown in Table 6. Since IVl is 150
in our experiments, hence in Table 6 we have only
shown the term frequencies of the words present
in each document. For other words the terms
freaquency values will be zero in dye,.

for top /X documents

for remaining documents

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 5: Comparison of CFIR with Existing ExIR Ap-
proaches

E Existing EXIR approaches vs. CFIR

The existing literature aims to explain the signifi-
cance of a document, a set of documents, or a pair
of documents through various explanation meth-
ods. Nonetheless, our proposed approach diverges
fundamentally from prior work in that we seek to
demonstrate how the absence or frequency of cer-
tain tokens impacts document relevance. In this
section, we examine whether there is any intersec-
tion between the two sets of tokens described ear-
lier.

Pointwise Explanation Approach As outlined
in Section 2.2, existing pointwise explanation
methods elucidate why a specific document aligns
with a given query within a retrieval model. Sim-
ilarly, our proposed approach operates on individ-
ual documents and queries, albeit with a distinct
objective. Here, we analyze the overlap between
the explanations generated by the pointwise expla-
nation method and those derived from our model,
as presented in Table 7. This comparison was con-
ducted on 50 pairs of documents.

Listwise Explanation Approach In Section 2,
it is explained that listwise explanations typically
aim to demonstrate the relevance of a list of docu-
ments to a given query. In listwise setup, one set of
explanation terms are extracted for a list of docu-
ments, a query, and a retrieval model. Conversely,
in our approach, we generate distinct explanations
for each query-word pair. Therefore, to compare
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listwise explanations with our method, we aggre-
gate all individual explanations obtained for each
document-query pair in the list to create a unified
explanation set for the entire list corresponding to
a query. The resulting overlap is presented in Ta-
ble 7.

F Counterfactual Optimization
Framework

The different parts of Equation 2 are described
here. The yloss in Equation 2 is a hinge loss
function as defined in Equation 4. In Equation
4 z is —1 when y 0 otherwise, z 1.
logit(f{ar,qy(ci)) is the logit values obtained from
the classifier (f{as,4)) when the counterfactual c;
is given as input.

yloss = max (0,1 — z * logit(fiarq(ci))) (4

The distance function (dist(c;, d)) in Equation
2 is computed using the formula given in Equation
5. In Equation 5, V represents the vocabulary set
used to represent the document vectors (dye.). In
Equation 5, the value of [ is equal to 1 if the corre-
sponding term is present in both the counterfactual
input ¢ and the original input d, otherwise it is set
to 0.

%
dist(c,d) =Y I(cy # dp) (5)
p=1
The diversity in above equation is defined by the
formula described in Equation 6. In equation 6,
. 1 .
K j is equal to 1. dist(c;, cj) calculates
(Zh]

the distance between two counterfactuals ¢; and
Cj.

div(cl, N ,Ck) = Z det(K@j) (6)
1,J

G Parameters for Counterfactual Setup

The value of Ay and \g is set to 1 and 0.5 re-
spectively in Equation 2. The value of &k in Equa-
tion 2 is set to k = 3. In all our experiments in
Table 1, we have observed that for K = 3 and
onward we have always found a counterfactual
explanation for each query-document pair where
only words were added for the desired counterfac-
tual outcome.

H Adversarial Attacks vs.
Counterfactual Explanation

Here we show the performance of our proposed
counterfactual explanation approach with an exist-



docID

Feature Vector

3686955
6159679
5217641

[prohibition:2.0, amendment:2.0, under:1.0, dwindled: 1.0, eighteenth:1.0, repeal:1.0, repealed:3.0, states:1.0, 1933: 1.0, ratification: 1.0]
[membrane:5.0, lipids:3.0, remainder:2.0, proteins:3.0, biochemical:2.0, 80:2.0, role:2.0, percent:2.0]
[waves:6.0, transverse:5.0, electromagnetic:3.0, oscillations:2.0, vibrations:2.0, travel:2.0, radiation:2.0, angles:2.0, transfer:2.0, types:3.0]

Table 6: Sample Feature Vector Corresponding to three different documents

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 7: Comparison of CFIR with Existing EXIR Ap-
proaches

Retrieval Model | FD in PRADA | FD in CFIR
ColBERT 74% 75%
MonoT5 80% 82%

Table 8: Performance of CFIR vs. Adversarial Attack
Model PRADA (Wu et al., 2022a)

ing adversarial model named PRADA (Wu et al.,
2022a). We use the MSMARCO passage dataset
as the target corpus. We use same test set (as de-
scribed in Table 4) as used in the first column of
Table 1 in this experiment. Table 8 shows the re-
sults in terms of Fidelity score.

I Implementation of Imp(d)

We explored three ways to compute the top n
words from each document. Each one of them is
described as follows.

TF-IDF Approach: In this approach we choose
top n words from a document based on their TF-
IDF weight.

KEYBERT Approach: In this approach we use
the model proposed in (Grootendorst, 2020) to ex-
tract keywords from a string.

BERT-Based Similarity(BERTSim): In this
approach we compute the similarity between the
BERT based representation of the query text and
each token of the document and then we sort all
the tokens based on the similarity.

Table 9 shows the performance of the above-
mentioned three approaches in MSMARCO pas-
sage dataset and ColBERT retrieval model. n
10 for the experiments shown in Table 9. From
Table 9, we can conclude that the BERT-based
similarity approach works the best for the Imp(d)
function. hence for all the results reported in Table
1, we use the BERTSim approach in the Imp(d)
function.

13

Imp(d) Approach | FD
TFIDF 74%
KeyBERT 70%
BERTSim 75%

Table 9: Performance of Different Approaches in
Imp(d).

J User Study

In the user study we didn’t record any personal in-
formation of any of the users. We only recorded
their judgment about the output of the proposed
methodology for the study. We have also used data
which is publicly available for IR research. Hence
no ethics approval was required for the study. All
the researchers were made aware of the of the use
of their assessment in this research.
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