
Published as a conference paper at ICLR 2023

STASIS: REINFORCEMENT LEARNING SIMULATORS
FOR HUMAN-CENTRIC REAL-WORLD ENVIRONMENTS

Georgios Efstathiadis, Patrick Emedom-Nnamdi, Jukka-Pekka Onnela, Junwei Lu
Department of Biostatistics, Harvard T.H. Chan School of Public Health
Boston, MA 02115, USA
{gefstath,patrickemedom,onnela,junweilu}@hsph.harvard.edu

Arinbjörn Kolbeinsson
Evidation Health
London, UK
arinbjorn@evidation.com

ABSTRACT

We present on-going work toward building Stasis, a suite of reinforcement learn-
ing (RL) environments that aim to maintain realism for human-centric agents op-
erating in real-world settings. Through representation learning and alignment with
real-world offline data, Stasis allows for the evaluation of RL algorithms in offline
environments with adjustable characteristics, such as observability, heterogene-
ity and levels of missing data. We aim to introduce environments the encourage
training RL agents that are capable of maintaining a level of performance and ro-
bustness comparable to agents trained in real-world online environments, while
avoiding the high cost and risks associated with making mistakes during online
training. We provide examples of two environments that will be part of Stasis and
discuss its implications for the deployment of RL-based systems in sensitive and
high-risk areas of application.

1 INTRODUCTION

Reinforcement Learning (RL) is becoming increasingly popular for a variety of tasks, ranging from
robotic control and autonomous driving to artificial intelligence in the gaming domain. Despite
its potential, the lack of realistic simulators for RL agents operating in the real-world is a major
limitation for the development of reliable agents. Current simulators lack the capability to model
real-world applications of RL. This includes missing key components such as accounting for het-
erogeneity within the environment (specifically within the reward function) and observability, as all
real-world environment are inherently perceived as partially observable. Furthermore, these simu-
lators often lack the ability to handle missing data, either irregularly sampled data or observations
missing at random (due design of the data collection tool used or observed features) and missing
not-at-random (due to outcomes). Lastly, they lack the ability to generate observed data, as sim-
ulators should be thought of as a generative model of the real-world, where we want to generate
samples close to the observed data.

The lack of realistic simulators for RL agents hinders the development of agents that can be suc-
cessfully deployed to real-world tasks. The high cost and risk associated with inaccurate predictions
during online training makes it an important problem to address. To this end, we introduce Stasis1,
a suite of RL environments that aim to maintain realism for human-centric agents operating in real-
world environments. Through representation learning and alignment with real-world offline data,
Stasis allows RL systems to be trained in offline environments with tunable characteristics, such
as observability, heterogeneity and levels of missing data. The resulting RL agents are capable of
maintaining a level of performance and robustness that is comparable to agents trained in real-world
online environments, while avoiding the high cost and risk associated with making mistakes during
online training.

1We plan on releasing the code for Stasis and for the two environments later this year.
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Related Work. The most similar work to the one we present here is the Gymnasium, formerly
known as OpenAI gym as seen in Brockman et al. (2016), and the Safety Gym by Ray et al. (2019).
Both of these are suites of environments where RL agents can be trained without requiring real-
world deployment. However, they both place emphasis on robotics and control, with Safety Gym
making use of MuJoCo (Todorov et al., 2012) with a focus on constrained RL. The Stasis library
which we introduce here will focus on open problems related to RL in healthcare, including partial
observability, heterogeneity, missing data and make use of labelled real-world data through offline
RL (Levine et al., 2020).

2 UNDERLYING FRAMEWORK & CONSIDERATIONS

On-going efforts to build simulated environments for benchmarking conventional and emerging RL
algorithms center on emulating the realism and practicality of real-world settings. Evaluating al-
gorithms in this fashion affords practitioners the ability to rigorously examine the suitability of an
algorithm before initial deployment in the real world. In this paper, we identify four core themes
that are important for representing human-centric real-world settings. Specifically, settings where
the decision-making policy directly interacts with a human, or provides actions for a human to exe-
cute within their own environment.

Observability. Observability determines the full-range of information from the environment avail-
able to the agent for decision-making. In real-world settings, environments are typically partially
observable; the agent only has access to a limited view of the current state of the environment
(Littman, 2009). This can make it difficult to learn an optimal policy, as the agent may be missing
important information or have to rely on incomplete observations to determine its actions. There-
fore, a well-designed observability mechanism that captures the relevant information is critical for
learning a good policy. However, increasing observability can also lead to higher computational and
memory requirements, making it important to strike a balance between having enough information
to make informed decisions and keeping the complexity manageable.

Heterogeneity. In real-world settings, the reward signal may vary between agents operating within
a single environment. As such, learning a single policy that aims to optimize the reward for all
agents is often difficult, leading to sub-optimal performance for select agents (Chen et al., 2022; Jin
et al., 2022). Generally, this can result in a situation where some agents learn different, unintended
behaviors. In multi-agent systems, this can lead to a lack of coordination, potentially hampering the
functioning of the overall system. In applications such as healthcare where data from heterogeneous
subjects are often used to make decisions for single subject, failing to account for heterogeneity in
the reward signal can lead to an alignment problem, severely impacting the relevancy of the learned
policy. Mitigating these challenges may require algorithms to leverage techniques from areas of
research such as multi-agent reinforcement learning, or to directly modify the reward functions to
account for the heterogeneity between agents.

Missing Data. The effectiveness of a policy in reinforcement learning is closely tied to the quality
and quantity of data used to train the model. If the agent encounters missing data, such as incom-
plete or unavailable state or reward information, it may be unable to accurately estimate the value of
different actions, leading to suboptimal decisions (Awan et al., 2022; Lizotte et al., 2008; Shortreed
et al., 2011). Missing data can happen due to irregular sampling, where data is missing at random,
which can occur due to various factors such as technical failures or data collection constraints. Addi-
tionally, data may be missing not at random, such as when specific actions or states are more likely
to be absent. In healthcare application, this can be due to phenomena such as self-selection bias,
where participants in the study exercise control over whether or not they participate in the study or
how much data they provide. Therefore, it is essential to consider the consequences of missing data
and address it using techniques such as imputation, data-augmentation, or other advanced methods
for handling missing data in reinforcement learning (Shortreed et al., 2011; Awan et al., 2022).

Offline Data. Previously collected experiential data from agents interacting within a given en-
vironment can be used to enhance the robustness and reliability of the simulated environment. We
envision that offline data can be used to improve the following aspects of the simulated environment:
(1) state representation – offline data can be used to provide more accurate state representations for
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the agent, including information about the environment, objects, and other agents (Zang et al., 2022);
(2) model dynamics – the interactions between objects and agents in the environment can be modeled
more accurately using offline data, allowing for a more realistic representation of the environment’s
dynamics Kidambi et al. (2020). Lastly, in most real-world environments, decision-making policies
are rarely trained from scratch, rather offline data is commonly used to learn policies that achieve an
acceptable level of performance (Levine et al., 2020). As such, incorporating available offline data
into simulated environments allows for a pre-training phase, where policies are first initialized using
offline data before being deployed within the environment.

3 THE SIMULATOR

The structure of the simulator is similar to the structure of the Gymnasium API (Brockman et al.,
2016). An environment is pulled from the library’s collection and then any type of agent can be
trained using the simulated environment. Each environment has the same method structure, in order
for the users to be able to switch among environments and train on different scenarios with ease.

The difference to the Gymnasium API is that the environments also share parameters related to
problems found in real world applications, in order to make the environments more realistic and
thus the agents more robust to real world data. When initializing an environment, the complexity of
the problem will be specified, but also some parameters that are important in a healthcare context
(Awrahman et al., 2022) and which are problematic in the collection and curation of healthcare data
(Pezoulas et al., 2019). The shared parameters, when it is possible for an environment, will be able
to tune aspects such as the heterogeneity of the simulation (Angus & Chang, 2021), incorporate
missing data or have partial observability and add stochasticity or noise to the simulation. This can
look different for every environment, but the purpose of the parameters is shared.

3.1 HEALTHY TRAVELING SALESMAN

The first environment is a simulated weighted travelling salesman problem (Lu et al., 2020). Studies
have shown that certain environmental exposures are associated with healthcare bio-markers, e.g.
greenspace exposure is associated with lower levels of depression (Klein et al., 2022). The problem
this environment represents is finding the optimal routes to maximize or minimize a certain exposure
related to the health of an individual. The environment is initialized by providing a set of coordinates,
each of which has to be visited once, and an exposure type (e.g. greenspace or bars). Then, the
environment will collect information on the possible routes that can be taken to visit each coordinate
using the OpenRouteService API (Neis & Zipf, 2008) and the exposures around the locations of
interest using the Overpass API (Olbricht, 2015) which both use data collected from OpenStreetMap
or OSM for short (OpenStreetMap contributors, 2017). In the current implementation, one of the
coordinates to be provided is the starting location and the rest of the coordinates are the ones that
are visited, with the agent ultimately returning to the starting point. The task is thus finding the
optimized circle in a graph, with complexity of the problem being increased by simply adding more
coordinates.

The reward for each action is a weighted average between the distance covered and the time spent
at exposure at each route, which is also tunable at input depending on what the agent should focus
on optimizing. The possible exposure information is limited only by the possible types of locations
that are collected from OSM. In terms of the parameters mentioned before on making the simula-
tions more realistic to collected data, possible concepts discussed include modifying heterogeneity
by adding different constraints in the possible actions of different simulated users. Some users have
trouble moving large distances or want to avoid certain trigger areas, which can be encompassed in
the reward function. In terms of missing data and stochasticity we can tune the amount of informa-
tion and noise we see in the possible routes. They can also be encompassed in a way that matches
what we see from GPS collecting devices like smartphones and smartwatches, where missing data
are not missing at random, but there are certain time-periods for which data are not being collected
by the smart devices (Barnett & Onnela, 2018).

The following figures 1 and 2 are examples of rendering of the environment, where the green areas
are greenspace locations (Novack et al., 2018) collected by the Overpass API, the blue arrows are
the coordinates of the locations to be visited and the red home arrow indicates the coordinates of the
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starting and ending location. This is the visualization after an episode has been run using a Deep-QN
agent (Mnih et al., 2013) trained on maximizing greenspace exposure on a set of 8 coordinates in
Boston, MA (Figure 1) and a set of 6 coordinates in Bronx, NY (Figure 2).

Figure 1: Map Environment rendering
(Boston, MA)

Figure 2: Map Environment rendering
(Bronx, NY)

Researchers that want to use this environment and possess offline GPS data can also encompass
them to enrich the information in the environment and make it even more realistic (Gur et al., 2022).
Using GPS trajectories, information can be collected on areas that people want to avoid or areas
with more traffic and this information is reflected in the reward function of the environment. The
GPS data can also be used to gain information of people’s home and work locations or locations
they like to visit frequently, thus making the environment adjust to a specific person’s patterns and
visit locations.

3.2 RESOURCE ALLOCATION IN CLINICAL SETTINGS

The second environment model in the Stasis library demonstrates a common problem encountered in
clinical settings: dynamic resource allocation. This environment’s properties can be highly complex
due to the sophistication of modern clinical settings. In order to efficiently and operationally allocate
resources, decision-making must be carried out on a case-by-case basis, considering the resources
available, the individual conditions of multiple patients, and the associated costs and durations of
the resources in question.

This environment’s properties can be highly complex due to the sophistication of modern clinical
settings. However, for its first iteration, it will be limited to a general setting. The state space includes
the set of available resources and their characteristics, the occupancy of the clinical section, the time
and date, other features that help forecast future occupancy, and relevant patient features, outcomes
of utilized resources, and further diagnosis. The action space involves selecting resources from a
given available set, which can be adjusted through domain expertise to incorporate best practices.
The main goal of this framework is to understand the relationship between resources and patient
outcomes and allow the agent to explore different strategies in the safe, non-destructive environment
of the simulator.

4 FUTURE DIRECTIONS

As the initiative grows, it will be important to focus on community building. This can be accom-
plished by creating a leaderboard, hosting workshops, and adding existing standalone environments.
Another focus of the library will be taking advantage of existing data to build more realistic envi-
ronments. By leveraging existing offline data, the library could potentially use algorithms such as
pretraining or initialization phases to further refine the environment and help it to behave in the most
realistic way possible. Finally, there should be an active goal to make the environments relevant and
useful in a medical or clinical context. To do this, researchers and developers will seek to collaborate
with medical professionals to ensure the simulators are based on real world observations and are as
accurate as possible. By doing so, Stasis can become a valuable tool for medical professionals.
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