
Enhancing Reasoning Capabilities of Small Language Models with
Blueprints and Prompt Template Search

Dongge Han 1 Menglin Xia 1 Daniel Madrigal Diaz 1 Samuel Kessler 1 Ankur Mallick 1 Xuchao Zhang 1

Mirian Del Carmen Hipolito Garcia 1 Jin Xu 1 Victor Rühle 1 Saravan Rajmohan 1

Abstract

Small language models (SLMs) offer promising
and efficient alternatives to large language mod-
els (LLMs). However, SLMs’ limited capacity
restricts their reasoning capabilities and makes
them sensitive to prompt variations. To address
these challenges, we propose a novel framework
that enhances SLM reasoning capabilities through
LLM generated blueprints. The blueprints pro-
vide structured, high-level reasoning guides that
help SLMs systematically tackle related problems.
Furthermore, our framework integrates a prompt
template search mechanism to mitigate the SLMs’
sensitivity to prompt variations. Our framework
demonstrates improved SLM performance across
various tasks, including math (GSM8K), cod-
ing (MBPP), and logic reasoning (BBH). Our
approach improves the reasoning capabilities of
SLMs without increasing model size or requir-
ing additional training, offering a lightweight
and deployment-friendly solution for on-device
or resource-constrained environments.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities across a wide range of real-world applica-
tions. However, deploying LLMs often requires substantial
computational resources, posing challenges in efficiency
and their general applicability (Wan et al., 2023; Chowdh-
ery et al., 2023; Du et al., 2022). Small language models
(SLMs) (OpenAI, 2024b; Jiang et al., 2023) such as Phi3-
mini with only 3.8B parameters (Abdin et al., 2024), offer
promising alternatives by providing efficient solutions that
are also more accessible in resource-constrained environ-

1Microsoft. Correspondence to: Dongge Han <dongge-
han@microsoft.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ments.

Despite these advantages, SLMs still face challenges that
hinder their broader adoption. Due to their limited ca-
pacity, SLMs exhibit less reasoning capabilities such as
in chain-of-thought (CoT) and in-context learning, as re-
ported by (Magister et al., 2022; Wei et al., 2023; Brown,
2020). For example, unlike LLMs, which can effectively
extract abstract chain-of-thought reasoning patterns from
the in-context examples and apply to new problems, SLMs’
limited reasoning capacity sometimes make it challenging
for them to effectively extract and transfer insights from
the examples to new problems, limiting their generalization
capabilities.

To address these challenges, we propose a novel frame-
work that enhances SLM problem-solving via blueprints.
A blueprint is a reusable, step-by-step reasoning guide de-
signed to help SLMs solve a class of related problems. The
blueprint is generated with an LLM by extracting high-level,
abstract reasoning instructions from concrete examples, fa-
cilitating SLMs with a clear and actionable plan for tack-
ling complex problems. Unlike CoT or in-context learning,
where SLMs may struggle to come up with, or extract from
the examples correct reasoning steps and generalize to new
problems, blueprints provide explicit reasoning guidance to
bridge this gap. By outlining high-level reasoning steps and
sometimes incorporating illustrative examples, blueprints
facilitate SLMs with the abstract reasoning steps and how
to apply them to solve new problems. Moreover, we tailor
the blueprint to each problem class and SLM by selecting
from diverse blueprint styles and refining it using Automatic
Prompt Optimization (APO) (Pryzant et al., 2023). In addi-
tion to blueprint generation, our framework incorporates a
prompt template search mechanism as a further contribution
to enhance the consistency of SLM performance, addressing
their sensitivity to prompt variations.

We evaluate our approach on various SLMs - GPT4o-
mini (OpenAI, 2024b), Mistral-7B (Jiang et al., 2023) and
Phi3-mini, across a diverse set of tasks, including math
(GSM8K Cobbe et al. (2021)), coding (MBPP Austin et al.
(2021)), and logic reasoning (BBH Suzgun et al. (2022)).
The experimental results demonstrate that our framework

1

mailto:donggehan@microsoft.com
mailto:donggehan@microsoft.com

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

Inference

Training Examples

Task Description

Bullet Points
Concrete Example
Detailed Pattern

Blueprint Styles
Blueprint (Style 1)

Blueprint (Style 2)
Blueprint

(Detailed Pattern)

Select best
blueprint

Blueprint

Step 2. Refine Blueprint via Automatic
Prompt Optimization (APO)

Evaluate

APO Refined
BlueprintSLM

+

Step 1. Generate Blueprint

Prompt Template SearchBlueprint Generation

Successive Halving Search

Training
Examples

LLM

SLM

SLM

SLM

Question 2Question 1

Prompt

…
Template Parameters:
num_examples = [0,1,2,3]
Task before examples = [,✗]
Include Blueprint = [,✗]
Include CoT = [,✗]

Chosen Prompt Template:
<task-description>
<2-in-context-examples>
<Blueprint><Question>

Chosen Prompt Template

Task Description

APO Refined
Blueprint Question 1

In-context Examples
Generate

blueprints

Figure 1. Illustration of our framework. During training, for each SLM and task category, an LLM is used to generate blueprints using
various input styles, from which the best blueprint is picked, and refined via APO. Then we perform template search to find the best
prompt template. During inference, the chosen blueprint and template are reused across problems within the task category to form the
input prompt to the SLM.

1. Understand the Question: Read the question carefully to …
2. Extract Relevant Data: Locate the relevant data from the table ...
3. Apply Conditions and Constraints: Apply any conditions mentioned …
4. Perform Necessary Calculations or Comparisons: …
….
Example Question and Solution Process
Example Question: … How many penguins are more than 5 years old …
Solution Process:
1. Understand the Question: The question asks for the number of ...
2. Extract Relevant Data: The table includes the following penguins …
3. Apply Conditions and Constraints: Filter penguins that are more than …
4. Perform Necessary Calculations or Comparisons: Count the penguins …
….
Final Answer: The correct answer is (A)

Blueprint for Solving Questions about a Table of Penguins (category from BBH dataset)

Figure 2. Example LLM generated blueprint. The blueprint in-
cludes high-level reasoning steps, and optionally an in-context
example question and solution process as a guide for how to apply
the reasoning steps.

consistently improves SLM performance, outperforming
state-of-the-art methods. These findings highlight the effec-
tiveness of blueprint-guided reasoning and prompt template
optimization in overcoming the inherent limitations in the
reasoning capabilities and sensitivity of SLMs.

2. Related Work
Prompt engineering is an efficient way to enhance LLMs,
including methods like CoT (Wei et al., 2022), ReAct (Yao
et al., 2022), ToT (Long, 2023), and few-shot prompt-
ing (Brown, 2020), as well as automatic prompt engineering
methods (Lester et al., 2021; Deng et al., 2022; Ma et al.,
2024; Yang et al., 2024) such as APO (Pryzant et al., 2023),
APE (Zhou et al., 2022), PromptBreeder (Fernando et al.,
2023), and PromptWizard (Agarwal et al., 2024). These
methods primarily focus on refining a short, high-level task
description for an LLM. In contrast, our framework specifi-
cally targets the unique challenges of SLMs, such as limited

reasoning capacity and prompt sensitivity, by generating
reusable and structured blueprints from example problems
and prompt template optimization. These blueprints provide
explicit multi-step guidance tailored to SLM needs, offer-
ing detailed clarification and actionable reasoning support.
While we used APO for blueprint refinement in our exper-
iments, our framework is also versatile to integrate other
aforementioned prompt refinement methods.

3. Method
In this section, we present our framework designed to en-
hance the reasoning capability of SLMs with blueprints and
prompt template search.

3.1. Problem Formulation

Fig. 1 shows an overview of our framework. We refer
to a task T as a collection of related problems (e.g., a
math question) within the same category (e.g., causal
judgement, math reasoning). During training, for each task
category T and SLM model Mslm (e.g., Phi3-mini), we
use a small set of examples to generate a blueprint that is
tailored to guide the SLM with problem-solving for prob-
lems within T ; we also generate a prompt template (e.g.,
<task-description><2-in-context-examples>
<blueprint><question>, which defines the prompt
components and their ordering). During inference, the
blueprint and prompt template can be efficiently reused to
form prompts to Mslm across incoming problems within
task T .

3.2. Blueprint Generation and Optimization

To address the limited reasoning capabilities of SLMs, we
leverage an LLM Mllm (we use GPT4o (OpenAI, 2024a)
in this work) to generate a reusable blueprint tailored per
SLM per task. The blueprint serves as a structured guide,

2

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

task_first examples_first
0.2

0.4

0.6

0.8

Me
an

 A
cc

ur
ac

y

MBPP

task_first examples_first

0.4

0.5

0.6

0.7

0.8

Me
an

 A
cc

ur
ac

y

Snarks

task_first examples_first
0.4

0.5

0.6

0.7

Me
an

 A
cc

ur
ac

y

Sports understanding

task_first examples_first

0.4

0.6

0.8

1.0

Me
an

 A
cc

ur
ac

y

Temporal sequences

task_first examples_first

0.5

0.6

0.7

0.8

0.9

Me
an

 A
cc

ur
ac

y

Tracking shuffled objects
SLM Model

GPT4o-mini
Mistral-7B
Phi3-mini

Figure 3. Sensitivity of SLMs to prompt variations across tasks - Even simple changes in the template, like swapping the order of
<task-description> and <in-context-example>, can significantly affect performance, with impacts varying per SLM and
task, e.g., in Sports understanding (Snarks, Sports understanding and Temporal sequences are sub-categories from the BBH dataset),
GPT4o-mini performed better with examples before the task description, while Mistral-7B and Phi3-mini preferred the opposite. There is
no universal best prompt template for all tasks and SLMs, making task and model-specific prompt optimization necessary.

outlining the general pattern of steps the SLM should follow
to arrive at the correct solution, which can be reused across
problems within the task category.

As shown in Fig. 1, we first generate the blueprint, then
refine it via automatic prompt optimization (APO). An ex-
ample generated blueprint is shown in Appendix Fig. 2.
To generate the blueprint, we begin by sampling M exam-
ple problems from DT

train, each consisting of a question
and its step-by-step solution. These examples are concate-
nated into a single prompt to Mllm to generate the ini-
tial blueprint that encapsulates the shared reasoning pattern
across the example problems. Since different SLMs may
prefer different prompt styles (Fernando et al., 2023; Agar-
wal et al., 2024) depending on the task, we personalize the
blueprint for each SLM by preparing K distinct blueprint
generation styles S = {S1, ...SK}. These styles, such as
concise-highlevel, bullet-points, vary in as-
pects such as the level of detail and formatting. To identify
Mslm’s preferred blueprint style on task T , we augment the
blueprint to the Mslm prompt and compare its performance
on sampled training examples. The blueprint which yields
the highest performance is selected. More details about
the styles and blueprint generation prompts are included in
Appendix A.

To further refine the blueprint according to Mslm’s behav-
ior on task T , we employ Automatic Prompt Optimization
(APO) (Pryzant et al., 2023). APO iteratively improves the
blueprint by evaluating Mslm on training examples and
identifying errors, which are compiled into an error mes-
sage. The LLM generates error analyses from this message
to update and paraphrase the blueprint, which are then re-
evaluated, with the best-performing version selected for
the next round of refinement. More details on the APO
refinement procedure and prompts used are included in Ap-
pendix A.2.

3.3. Prompt Template Search

SLMs are often sensitive to the prompt format, such as the
template and style variations. As shown in Fig. 3, we ob-
served that simply interchanging the task description and
in-context examples have a large effect on SLM perfor-
mance. Furthermore, the effects of prompt format changes
vary across different SLMs and tasks, indicating that there’s
not a universally optimal prompt template for all SLMs and
tasks.

Motivated by this sensitivity of SLMs to prompt templates
and the variability across different SLMs and tasks, we per-
form prompt template search to systematically identify the
optimal prompt template for each SLM and task, as shown in
Fig. 1. To begin with, we define a search space encompass-
ing key prompt template parameters such as whether or not
to include a blueprint. To efficiently search the space, We
adopt a simplified successive halving search (Pryzant et al.,
2023): we begin with evaluating all N possible templates on
k sampled training examples, then iteratively narrow down
the search space with a reduction factor f (e.g., f = 2), i.e.,
retain the ⌊N

f ⌋ top scoring candidates and re-evaluate, until
one prompt template remains. By progressively narrowing
down the template candidates, successive halving efficiently
identifies the top prompt template for each SLM and task.

4. Experiments
In the experiments, we demonstrate the effectiveness of
our proposed framework across various reasoning tasks and
SLM models. Followed by the main findings, we present
a qualitative example to illustrate the blueprint following
behavior, to understand how the blueprint helps guide the
SLM. Finally, we present an interesting finding about the
different preferences of SLMs to the various blueprint styles.

3

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

BBH GSM8K MBPP

GPT4o-miniMistral7BPhi3-miniGPT4o-miniMistral7BPhi3-miniGPT4o-miniMistral7BPhi3-mini

Baseline
CoT (1-shot) 0.839 0.449 0.678 0.940 0.400 0.807 0.813 0.202 0.642
CoT (3-shot) 0.850 0.53 0.686 0.923 0.347 0.780 0.821 0.233 0.658
APO 0.825 0.435 0.651 0.930 0.407 0.797 0.837 0.288 0.658

Ours
BP (w.o. APO) 0.882 0.539 0.743 0.947 0.450 0.817 0.821 0.440 0.689
BP (w. APO) 0.884 0.559 0.738 0.943 0.480 0.840 0.829 0.401 0.681
BP (w. APO) + TS 0.884 0.572 0.722 0.953 0.490 0.820 0.833 0.424 0.696

Table 1. Performance comparison of different methods (rows) across various SLMs and datasets (GSM8K, MBPP, BBH). The table
highlights the accuracy improvements of blueprint-based methods (BP) over CoT and APO (with task description) baselines. BP (w.
APO) and BP (w.o. APO) refer to blueprint generation with/without further APO refinement, respectively. Both methods consistently
outperform the CoT and APO baselines. The BP (w. APO) + TS (Template Search) variant demonstrates the best overall performance,
showing optimal task accuracy in 5 out of 9 SLM/dataset combinations and near-optimal performance in the remaining ones.

4.1. Setup

We evaluate the effectiveness of our proposed framework for
enhancing SLM reasoning across various reasoning tasks,
using three different SLM models GPT4o-mini, Phi3-mini,
and Mistral-7B on three widely used different domains:

• GSM8K (Mathematical reasoning)

• MBPP (Python coding)

• BBH task suite (Logic reasoning, comprising over 20
different task categories)

We measured the SLMs’ solution accuracy on all datasets.
For GSM8K and BBH, we measure the accuracy of the SLM
answer compared with ground truth answer. For MBPP, the
SLM generated code is correct if it passes all test cases. The
compared methods are: 1. CoT (1-shot) and 2. CoT (3-shot):
chain-of-thought prompting including ”Let’s think step by
step”, and 1 (or 3) in-context learning examples; 3. APO:
baseline APO method which refines the task description,
and 3 variants of our method: 4. BP (w.o. APO): where
the SLM uses the top scoring blueprint style without further
APO. (BP refers to blueprint); 5. BP (w. APO): using
the blueprint refined with APO. Both variants use 1-shot
example and no CoT; 6. BP (w. APO) + Template Search,
using the APO refined blueprint and prompt template found
via template search. For fair comparison, we use the same in-
context examples and held-out test set (200 - 300 datapoints
for GSM8K, MBPP and each BBH sub-category) across all
compared methods. More details on experiment setup can
be found in Appendix E

4.2. Main Results

Table 1 summarizes the performance comparison of the
methods for different SLMs across GSM8K, MBPP and
BBH. In comparison, our method BP (w.o. APO) already
outperforms both CoT and APO baselines across almost

all datasets and SLMs, e.g., compared with CoT (3-shot),
improving accuracy of +20% for Mistral-7B on MBPP,
+5.7% for Phi3-mini on BBH, and +3.2% for GPT4o-mini
on BBH. With APO, the BP (w. APO) variant slightly im-
proves performance over the non-APO variant in only some
categories, e.g., +2% for Mistral-7B on BBH, and +3%
on GSM8K. The BP (w. APO) + Template Search variant
shows best performance across all variants, outperforming
all other methods in 5 out of 9 SLM/task combinations, and
competitive performance in the rest. Note that the template
search variant does not always provide the best result due to
the small number of examples used to compare the template
candidates during template search. These results demon-
strate the effectiveness of our proposed framework across a
wide range of reasoning tasks and various SLM models.

4.3. Example Blueprint and SLM Response following
Blueprint Steps

To understand the format of the generated blueprint and
how the SLM follows the blueprint, we show a qualita-
tive example in Fig. 4. In the figure, we show an example
blueprint generated for the logical reasoning tasks for geo-
metric shapes reasoning category (from BBH) for GPT4o-
mini, and example responses from GPT4o-mini before and
after following the blueprint, respectively. As shown in the
figure, the blueprint starts by listing the reasoning steps,
including first defining the goal, then break down the infor-
mation provided, clarifying the goal and decision criteria,
and detailed step-by-step solutions, followed by a conclu-
sion. Each high-level step is illustrated with a description of
how to carry out the step, helping the SLM to clearly follow
the instruction. After presenting the high-level steps, the
blueprint also shows an example application, which guides
the SLM on how to apply the blueprint to solve a concrete
example problem.

To see the effectiveness of the blueprint, we show the re-
sponse from GPT4o-mini with (in the green box) and with-

4

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

BLUEPRINT:
Step 1: Define the Goal - **Goal**: Identify the geometric shape drawn by the given SVG path element.
Step 2: Break Down the Information Provided - **SVG Path Element**: Analyze the commands and coordinates in the SVG path. - **Commands**: Identify the types of
commands used (e.g., `M`, `L`, `A`). - **Coordinates**: Extract the coordinates associated with each command.
Step 3: Clarify the Goal and Decision Criteria - **Goal Clarification**: Determine the type of geometric shape based on the path commands and coordinates. - **Decision
Criteria**: - **Number of Sides**: Count the number of line segments to determine the number of sides. - **Shape Properties**: Use properties such as side lengths, angles, and
parallelism to distinguish between shapes with the same number of sides. - **Special Commands**: Recognize special commands like `A` for arcs to identify shapes like circles and
ellipses.
Step 4: Step-by-Step Solution
1. **Identify Commands and Coordinates**: - Parse the SVG path to list all commands and their associated coordinates.
2. **Classify the Shape**: - **Count Line Segments**: Count the number of `L` commands to determine the number of sides. - **Analyze Properties**: For shapes with the same

number of sides, analyze side lengths and angles to distinguish between them. - **Special Shapes**: Identify special shapes like circles and ellipses using the `A` command.
3. **Match with Options**: - Compare the identified shape with the given options to select the correct answer.
Example Application:
1. **Identify Commands and Coordinates**: - Example: `<path d="M 64.00,63.00 L 44.00,63.00 L 44.00,50.00 L 64.00,50.00 L 64.00,45.00 L 85.00,57.00 L 64.00,68.00 L

64.00,63.00"/>` - Commands: `M`, `L`, `L`, `L`, `L`, `L`, `L`, `L` - Coordinates: `(64.00,63.00)`, `(44.00,63.00)`, `(44.00,50.00)`, `(64.00,50.00)`, `(64.00,45.00)`,
`(85.00,57.00)`, `(64.00,68.00)`, `(64.00,63.00)`

2. **Classify the Shape**: - **Count Line Segments**: 7 `L` commands indicate a seven-sided shape. - **Analyze Properties**: No need for further analysis as "heptagon" is the
only seven-sided option.

3. **Match with Options**: - The shape is a heptagon. - **Answer**: (B) heptagon
Conclusion - Follow the blueprint to systematically identify the geometric shape drawn by the SVG path element. - Ensure each step aligns with the defined goal and decision
criteria for accurate identification.

EXAMPLE SLM RESPONSE WITH BLUEPRINT (GPT4o-mini): To identify the geometric shape drawn by the given SVG path element `<path d="M 15.44,15.80 L 22.07,7.46 M 22.07,7.46
L 33.15,7.17 L 43.50,16.57 M 43.50,16.57 L 41.48,29.32 M 41.48,29.32 L 36.23,36.66 M 36.23,36.66 L 21.22,33.46 L 15.44,15.80"/>`, let's follow the blueprint step by step.
Step 1: Define the Goal - **Goal**: Identify the geometric shape drawn by the SVG path.
Step 2: Break Down the Information Provided - **SVG Path Element**: The path contains multiple commands. - **Commands**: `M` (move to), `L` (line to). - **Coordinates**:
- Start at `(15.44, 15.80)`. - Line to `(22.07, 7.46)`. - Line to `(33.15, 7.17)`. - Line to `(43.50, 16.57)`. - Line to `(41.48, 29.32)`. - Line to `(36.23, 36.66)`. - Line to `(21.22, 33.46)`. -
Finally, return to `(15.44, 15.80)`.
Step 3: Clarify the Goal and Decision Criteria - **Goal Clarification**: Determine the type of geometric shape based on the path commands and coordinates. - **Decision
Criteria**: - **Number of Sides**: Count the number of line segments to determine the number of sides. - **Shape Properties**: Analyze properties such as side lengths and angles.
Step 4: Step-by-Step Solution 1. **Identify Commands and Coordinates**: - The path consists of 7 line segments (from the `L` commands). - The path starts and ends at the
same point, indicating a closed shape. 2. **Classify the Shape**: - **Count Line Segments**: There are 6 `L` commands, which means there are 7 vertices (including the starting
point). - **Analyze Properties**: The shape is closed and has 7 sides, which corresponds to a heptagon. 3. **Match with Options**: - The shape is a heptagon. - **Answer**: (B)
heptagon
Conclusion Following the blueprint, the identified geometric shape drawn by the SVG path element is a heptagon. The answer is (B).

EXAMPLE SLM RESPONSE WITHOUT BLUEPRINT (GPT4o-mini): Let's think step by step. This SVG path element contains "M" and "L" commands. The "M" command moves the
current point to the specified coordinates, while the "L" command draws a line from the previous point to the new coordinates. This path can be decomposed into several commands:
1. **M 15.44,15.80**: Move to (15.44, 15.80). 2. **L 22.07,7.46**: Draw a line to (22.07, 7.46). 3. **M 22.07,7.46**: Move to (22.07, 7.46) again (this is a new starting point). 4. **L
33.15,7.17**: Draw a line to (33.15, 7.17). 5. **L 43.50,16.57**: Draw a line to (43.50, 16.57). 6. **M 43.50,16.57**: Move to (43.50, 16.57). 7. **L 41.48,29.32**: Draw a line to (41.48,
29.32). 8. **M 41.48,29.32**: Move to (41.48, 29.32). 9. **L 36.23,36.66**: Draw a line to (36.23, 36.66). 10. **M 36.23,36.66**: Move to (36.23, 36.66). 11. **L 21.22,33.46**: Draw a
line to (21.22, 33.46). 12. **L 15.44,15.80**: Draw a line back to the starting point (15.44, 15.80). Now, let's analyze the shape: - The path starts at (15.44, 15.80) and ends back at the
same point, indicating a closed shape. - The path consists of multiple lines, but it also has several "M" commands, which indicate that the drawing is not a simple polygon but rather a
more complex shape. To determine the type of shape: - The path does not create a simple polygon with a specific number of sides (like a triangle, rectangle, pentagon, etc.) due to the
multiple moves and lines. - The shape appears to be more complex and does not fit neatly into the categories of regular polygons. Given the options: (A) circle (B) heptagon (C) hexagon
(D) kite (E) line (F) octagon (G) pentagon (H) rectangle (I) sector (J) triangle The best fit for this complex shape, which does not conform to a simple polygon, is likely to be a **kite** due
to its irregularity and the way it connects back to the starting point. So the answer is (D).

Figure 4. Example blueprint from the BBH geometric shape reasoning task, and example GPT4o-mini responses without and with
blueprint, respectively. We can observe that the blueprint listed the reasoning steps, as well as showing an example application, which
guides the SLM how to apply the blueprint to example problems. The SLM with blueprint indeed followed the reasoning steps as
demonstrated in the blueprint. For each high-level step, the SLM first stated the high-level step provided by the blueprint, followed by its
application of the abstract step to the concrete problem.

out (in the orange box) the blueprint. Note that without using
the blueprint, the SLM answered the problem incorrectly
even with chain-of-thought reasoning, while the response
from GPT4o-mini using the blueprint answered the problem
correctly. Comparing the answers, the response without
blueprint directly dives into the detailed problem-solving
steps, while the response following the blueprint presents
better structured reasoning. We can observe that the SLM
indeed followed the reasoning steps as demonstrated in the
blueprint. Instead of diving into the detailed problem solu-
tion directly, the SLM starts by defining the problem goal,
breaks down information gathered, then performs step-by-
step solution.

4.4. SLM performance with different blueprint styles

To explore the underlying preferences of different SLMs
with various blueprint styles, Fig. 5 presents the blueprint
styles alongside the average SLM performance when using
the blueprints, averaged over all task categories (i.e., 10
examples per blueprint style per category, for a total of 28
categories, including GSM8K, MBPP and all BBH sub-
categories).

Overall, GPT4o-mini is demonstrated the highest level of
robustness to the blueprint styles, with 3% performance dif-
ference between the best and worst performing styles, while
Phi3-mini and Mistral-7B are slightly more sensitive, show-
ing a 11% and 12% performance differences, respectively.

Interestingly, each SLM has different preferences for the
blueprint styles – GPT4o-mini slightly prefers instructions

5

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average Accuracy

Bullet Points
Workflow

Concrete Example
Reflective Refinement

Detailed Pattern
Instruction Focus

Plan And Solve
Abstract Example

Decision Making
Concise Highlevel

Plain Pattern
Contextual Explanation

0.88
0.88
0.87
0.87
0.87
0.87
0.87
0.86
0.86
0.85
0.85
0.85

(a) GPT4o-mini

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average Accuracy

Decision Making
Instruction Focus

Abstract Example
Detailed Pattern

Workflow
Concrete Example

Reflective Refinement
Concise Highlevel

Plain Pattern
Plan And Solve

Contextual Explanation
Bullet Points

0.50
0.50

0.49
0.48
0.47
0.46
0.45

0.44
0.43
0.43
0.42

0.38

(b) Mistral-7B

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average Accuracy

Instruction Focus
Plain Pattern

Concrete Example
Contextual Explanation

Abstract Example
Concise Highlevel

Decision Making
Detailed Pattern

Workflow
Reflective Refinement

Bullet Points
Plan And Solve

0.75
0.74

0.72
0.72
0.72

0.71
0.69

0.67
0.67
0.66
0.66

0.64

(c) Phi3-mini

Figure 5. Accuracy of SLM task performance across blueprint styles. For each blueprint style and SLM, the performance is averaged over
280 examples (10 samples per task category for a total of 28 task categories spanning the GSM8K, MBPP and BBH datasets.)

in bullet pointed format and illustration with workflows
or concrete examples, while it was slightly less effective
with contextual-explanation, plain-pattern
and concise-highlevel. In contrast, Phi3-mini pre-
ferred instruction-focus, plain-pattern and
concrete-example, which put stronger focus on clear
and actionable guidance, while it was less effective with the
multi-step styles such as reflective-refinement
and plan-and-solve, and bullet-points
formatted instructions. Finally, Mistral-7B pre-
ferred blueprint styles with decision-making,
instruction-focus and abstract-example,
which provide Mistral-7B with clear and actionable guid-
ance, while it was less effective with plan-and-solve,
contextual-explanation and bullet-points.

The above findings show that the SLMs tend to prefer dif-
ferent styles, e.g., bullet pointed format works better with
GPT4o-mini while less well with Phi3-mini and Mistral-7B.
Therefore, it is important to match the prompt styles with
the preferred format of the SLMs. This observation may
extend beyond just blueprints and provide insights to gen-
eral prompting techniques of SLMs. For the list of detailed

descriptions of all blueprint styles and the corresponding
prompts, please refer to Appendix A.1.

5. Conclusion
We presented a blueprint generation and prompt template
search framework designed to improve the reasoning capa-
bilities of SLMs and addressing their sensitivity to prompt
variations. By providing structured guidance, our approach
has shown consistent improvements to SLM capabilities
across multiple domains (math, coding, reasoning). Our
approach effectively improves the reasoning capabilities
of SLMs, offering a lightweight solution for on-device or
resource-constrained environments. Future works include
extending to more domains and SLMs, with the goal of
enhancing SLMs on a wide range of applications.

Impact Statement
This work contributes to the growing effort to make gen-
erative AI more efficient, accessible, and sustainable by
enhancing the reasoning capabilities of SLMs without re-

6

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

quiring additional training or model size increases. Our
lightweight, training-free framework aligns closely with
the mission by enabling more effective use of SLMs in
resource-constrained settings. By demonstrating how struc-
tured prompting and template selection can significantly
boost performance, we help advance the broader goal of
achieving competitive, efficient, and privacy-aware alterna-
tives to LLMs. We believe this approach supports responsi-
ble, scalable deployment of AI across diverse applications.

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

Agarwal, E., Dani, V., Ganu, T., and Nambi, A. Promptwiz-
ard: Task-aware agent-driven prompt optimization frame-
work. arXiv preprint arXiv:2405.18369, 2024.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T.,
Song, M., Xing, E. P., and Hu, Z. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. arXiv
preprint arXiv:2205.12548, 2022.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:
Efficient scaling of language models with mixture-of-
experts. In International Conference on Machine Learn-
ing, pp. 5547–5569. PMLR, 2022.

Fernando, C., Banarse, D., Michalewski, H., Osindero,
S., and Rocktäschel, T. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Long, J. Large language model guided tree-of-thought.
arXiv preprint arXiv:2305.08291, 2023.

Ma, R., Wang, X., Zhou, X., Li, J., Du, N., Gui, T., Zhang,
Q., and Huang, X. Are large language models good
prompt optimizers? arXiv preprint arXiv:2402.02101,
2024.

Magister, L. C., Mallinson, J., Adamek, J., Malmi, E., and
Severyn, A. Teaching small language models to reason.
arXiv preprint arXiv:2212.08410, 2022.

OpenAI. Hello gpt-4o. https://openai.com/
index/hello-gpt-4o/, 2024a.

OpenAI. Gpt-4o mini: Advancing cost-efficient in-
telligence. https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/,
2024b.

Pryzant, R., Iter, D., Li, J., Lee, Y. T., Zhu, C., and Zeng, M.
Automatic prompt optimization with” gradient descent”
and beam search. arXiv preprint arXiv:2305.03495, 2023.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi,
E. H., Zhou, D., et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Wan, Z., Wang, X., Liu, C., Alam, S., Zheng, Y., Qu, Z.,
Yan, S., Zhu, Y., Zhang, Q., Chowdhury, M., et al. Effi-
cient large language models: A survey. arXiv preprint
arXiv:2312.03863, 1, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen,
X., Liu, H., Huang, D., Zhou, D., et al. Larger language
models do in-context learning differently. arXiv preprint
arXiv:2303.03846, 2023.

7

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

Yang, S., Zhao, H., Zhu, S., Zhou, G., Xu, H., Jia, Y., and
Zan, H. Zhongjing: Enhancing the chinese medical capa-
bilities of large language model through expert feedback
and real-world multi-turn dialogue. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 19368–19376, 2024.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. arXiv preprint arXiv:2211.01910,
2022.

8

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

A. Appendix: Blueprint Generation and Optimization
A.1. Blueprint Generation Styles

Fig. 6 shows the blueprint generation prompt, accompanied by the 12 blueprint generation styles and their correspond-
ing instruction prompts. The styles are chosen to reflect a diverse selection of different reasoning styles and for-
mats. For example, the blueprints generated with styles concrete-example and abstract-example will use
concrete examples or synthesized examples to illustrate detailed reasoning steps for solving a problem according to
the general pattern of problem-solving for the task category. The styles detailed-pattern, plain-pattern,
and concise-highlevel present the SLM with the instruction of pattern of steps of reasoning, in decreasing
level of details, moreover, bullet-points will present the guidance in detailed steps and in bullet-pointed format.
instruction-focus and contextual-explanation will focus on clarity by providing clarified and unambigu-
ous instructions for the SLM to understand the problem context and reasoning steps. The reflective-refinement,
decision-making and plan-and-solve blueprints aim to guide an SLM to perform multi-step reasoning in a single
turn, such as reflection and refinement, or planning steps before formulating the solution.

In our experiments, the blueprint style selection is performed with 10 training examples for each of the 12 blueprint styles.
Therefore, the number of SLM calls performed during blueprint style selection is 10× 12 = 120 SLM calls.

A.2. More details on Blueprint APO Refinement

In this section, we include more details on the blueprint APO refinement procedure, as well as the detailed prompts used by
Mllm for generating and refining the blueprint.

For a given task category T and SLM Mslm, each APO round starts with an initial blueprint B (or a set of candidate
blueprints) and works as follows:

1. Initial blueprint evaluation: Evaluate Mslm using the initial blueprint on sampled training data (in our experiments,
we used 25 training examples).

2. Compile error message: Examples that Mslm answered incorrectly are compiled as an error message e with the
questions, Mslm responses and correct solutions.

3. Textual gradient: Prompt Mllm with the task description, blueprint B, and error message e to generate a list of textual
gradients {gj}

Ngrad

j=0 , i.e., each textual gradient is an error analysis of how the blueprint may have caused the error
examples.

4. Edit: For each gradient gj , prompt Mllm with the initial blueprint B, the error message e and gradient gj to generate a
refined blueprint Bedit

j .
5. Paraphrase: Prompt Mllm to write a paraphrased blueprint Bpara

j for each refined blueprint Bedit
j .

6. Select: Evaluate Mslm with the initial blueprint and all refined and paraphrased blueprints on sampled training data,
selecting the best performing candidate(s).

The APO round can be repeated for multiple iterations with beam search, where the expansion steps (Step 1 to 5) expand
from the initial blueprint candidates, followed by the selection step (Step 6) narrowing down to Nbeams blueprint candidates
for the next round.

In our experiments, we perform 1 round of APO, starting with the blueprint with the best style from the blueprint generation
step. For Step 1 (initial blueprint evaluation), we perform evaluation of the Mslm on 25 training examples, and sample
a maximum of 5 error examples for compiling the error message in Step 2. For Step 3, we generate 2 textual gradients,
thereby obtaining 2 refined blueprints in Step 4, and 2 new paraphrased blueprints. In Step 6 of selection, we perform
selection of the one top scoring blueprint. Due to the relatively small candidate size, the selection is performed with 20
training examples per blueprint candidate. The total number of SLM calls in the APO process is then 25 + 20× 5 = 125
SLM calls. And the total number of LLM calls in the APO process is 6, with 2 calls per Step 3-5.

This optimization procedure can help us to obtain a blueprint that is refined according to the behaviors of Mslm on task
T . All prompts used for generating the textual gradient, editing and updating the blueprint, as well as paraphrasing the
blueprint are included in Fig. 8. For more details on APO please refer to (Pryzant et al., 2023).

9

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

B. More Details on Template Search
To perform prompt template search, we define the search space as shown in Fig. 1, with 4 template parameters:

• Number of In-context examples = [0,1,2,3]
• Placing Task Description before In-context Examples = [True, False]
• Include Blueprint = [True, False]
• Include CoT = [True, False]

Specifically, the in-context examples are provided by the respective datasets, which includes step-by-step solutions. The
inclusion of CoT (chain-of-thought) means the inclusion of the sentence Let’s think step-by-step. In total the prompt template
parameters produce 32 combinations of different prompt templates. For example, if we choose 3 in-context examples,
place task description before in-context examples, include the blueprint and not include CoT, then the prompt template
produced is the following: <task-description><3-in-context-examples> <blueprint><question>.
In our experiments, we perform the successive halving template search with a reduction factor of f = 2, (i.e., we evaluate
32 templates in the initial iteration, then successively reduce by half in subsequent iterations until we obtain the top
performing candidate). At each iteration, we sample 5 training examples for evaluating each of remaining the prompt
template candidates, by applying each prompt template to form the SLM prompt. In total, the number of SLM calls incurred
during prompt template search per task category per SLM model is 310 SLM calls.

C. Detailed Per-category Results on BBH
Fig. 9 shows a detailed comparison of the different method variants on each sub-category of the BBH dataset. Each plot
corresponds to a task category, which shows the performance of the three SLM models (GPT4o-mini, Mistral-7B, Phi3-mini)
using different method variants.

Overall we can observe a trend where the mean accuracy increase from left to right (the leftmost two bars corresponds
to the CoT (1-shot) and CoT (3-shot) baselines, while the other three bars correspond to our methods, BP w.o. APO, BP
w. APO and BP w. APO + Template Search, respectively). Comparing our method with CoT (3-shot), we can observe
significant task improvement in several categories. For example, on Dyck Languages (Fig. 9e), GPT4o-mini shows 25%
performance improvement with BP (w. APO) and a further 4% improvement with template search. On Geometric Shapes
(Fig. 9g), Mistral-7B shows a 14% with BP (w. APO) and 10.5% improvement with BP (w. APO) + Template Search.
On Logical Deduction Three Objects (Fig. 9k), Phi3-mini shows a 12.5% improvement with BP (w. APO) and a further
2% improvement with template search. Sometimes template search may not find the optimal template with the highest
average accuracy across all variants, as a result of limited number of training data for evaluating the templates. Nevertheless,
the template search procedure can usually identify a template with near-optimal performance as well as preventing low
performing templates. Therefore we observe that it displays the most robust and overall best performance across all task
categories and SLMs.

D. More Probing Experiment Results on Prompt Sensitivity
Apart from observing that the changing the ordering of task description and in-context examples can significantly change task
performance, we also present the effect of varying the number of in-context examples on the task performance on a subset
of BBH datasets. In Figure 7, we observe that increasing the number of in-context examples from 0 to 3 often results in
improved performance, for example, on MBPP both GPT4o-mini and Mistral-7B shows improved performance while Phi3-
mini’s performance is relatively stable. For Sports Understanding (BBH), all SLMs show significantly improved performance
with increasing number of examples. Sometimes increasing number of examples may results in lower performance, for
example, in Temporal Sequence (BBH), Phi3-mini shows increasing performance as we increase the number of examples
from 0 to 1, while we see decreasing performance as we increase the number of examples from 1 to 3, whereas Mistral-7B
displays opposite trends.

E. More Details on Experiment Setup
The sizes of the SLMs are: Phi3-mini has 3.8B parameters, Mistral-7B has 7B parameters, we do not know the size of
the GPT4o-mini model. For each SLM model, we use the same hyper-parameter of temperature=0 and top-p=1. For a
fair comparison, we use the same hyper-parameters across all the APO variants (including our variants that optimize the

10

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

blueprint and the baseline variant that optimizes the task description), details on the APO steps, hyper-parameters, and
number of LLM/SLM calls are presented in Section A.2. Details on template search are presented in Section B. For each
dataset within GSM8K, MBPP, and each sub-category of BBH, we use 50 training examples, and evaluate all variants
on the same held-out test set. For efficient evaluation on a wide task diversity, we use 200-300 evaluation datapoints
across a total of 28 task categories and report the average accuracy across all datapoints for each category (except for BBH
which we report the average over all sub-categories in Table 1), therefore, the total datapoints evaluated for each SLM and
method variant is around 5600). In detail, for GSM8K, we used the same 300 evaluation datapoints from Huggingface for
evaluating all SLM/method combinations. For MBPP, we used the sanitized release of MBPP dataset from Huggingface,
including 257 evaluation datapoints. For BBH, we use the dataset from Huggingface, with 50 training datapoints, and
200 evaluation datapoints per sub-category (for two sub-categories with fewer than 200 evaluation datapoints, we use all
available datapoints). We used regular expressions for efficient evaluation on multiple-choice and calculation problems (26
out of 27 BBH sub-categories), where the expected answers are well-defined. The word sorting category was excluded due
to the variability in natural language responses that could not be evaluated reliably using regular expressions.

11

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

o concrete_example: Provide a blueprint using one or a few specific example questions, detailing each step of
the solution process with clear, explicit instructions and thorough explanations for how to carry out each step.

o abstract_example: Generate a blueprint using an abstract example, detailing each step of the solution
process with clear, explicit instructions and thorough explanations for how to carry out each step.

o detailed_pattern: Create a detailed blueprint that outlines a common pattern of steps used to solve the
similar problems of this type, with explanations and rationale for each step."

o plain_pattern: Please generate a blueprint (without markdown) within 300 words which shows a general
pattern of steps for solving tasks like these.

o concise_highlevel: Develop a concise, high-level guide for solving this particular type of problem, focusing on
the key steps without detailed solutions.

o instruction_focus: Generate a blueprint with a strong focus on instructional clarity, breaking down the task
into distinct instructions that are easy to follow and minimize ambiguity.

o contextual_explanation: Generate a blueprint that guides the small language model to clarify the contexts for
the problem, providing a detailed explanation to help the small language model to understand the problem
better.

o reflective_refinement: Develop a blueprint that guides the small language model to first attempt a solution
and then critically reflect on each step to identify potential errors or areas of improvement. The model should
assess the correctness of the solution then propose refined solution based on the reflection.

o workflow: Generate a blueprint that provides a structured workflow for solving this type of problems, detailing
each step in a sequence that logically progresses from the beginning to the end, outlining the process in a
systematic and organized manner.

o bullet_points: Provide a blueprint using a bullet point format to list the key considerations, steps, and
important details to keep in mind when solving a problem.

o decision_making: Generate a blueprint that guides the small language model on how to systematically break
down a similar task into smaller components, reason through each part, and how to make decisions at each
step based on analysis and criteria.

o plan_and_solve: Generate a blueprint that guides the small language model to first clearly define the goal of
the problem, break down the information provided, and clarify the goal and decision criteria. Once this plan is
established, the model should use it to guide a step-by-step solution, ensuring each step aligns with the
defined goal and criteria.

Blueprint Generation Prompt:
You are helping a small language model to solve some tasks: <task_description_placeholder>. The
following are some examples:\n<examples_placeholder>\n<style_instruction_placeholder>
Wrap your generated blueprint with tokens <START> and <END>.

Blueprint styles and corresponding instructions

Figure 6. Blueprint generation prompt, blueprint styles and their corresponding generating instructions. When generating a blueprint, take
a blueprint style and the corresponding generating instruction, which replaces the <style-instruction-placeholder> to form
part of the blueprint generation prompt. The prompt is then used as an input to the LLM for generating the blueprint.

12

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

0 1 2 3
Number of Shots

0.0

0.2

0.4

0.6

0.8

Me
an

 A
cc

ur
ac

y

MBPP

0 1 2 3
Number of Shots

0.4

0.6

0.8

Me
an

 A
cc

ur
ac

y

Snarks

0 1 2 3
Number of Shots

0.2

0.4

0.6

0.8

Me
an

 A
cc

ur
ac

y

Sports understanding

0 1 2 3
Number of Shots

0.4

0.6

0.8

1.0

Me
an

 A
cc

ur
ac

y

Temporal sequences

task_first examples_first

0.5

0.6

0.7

0.8

0.9

Me
an

 Ac
cu

rac
y

Tracking shuffled objects
SLM Model

GPT4o-mini
Mistral-7B
Phi3-mini

Figure 7. Sensitivity of SLMs to prompt variations across tasks - the number of in-context examples can significantly impact the SLM
performance across different tasks. For instance in the temporal sequences dataset (BBH), GPT4o-mini shows relatively stable a d slightly
improved performance with increasing number of examples, Mistral-7Bperformance dropped from 0-shot to 1-shot, while the performance
improved from 1-shot to 3-shot, whereas Phi3-miniperformed best with 1-shot example and its performance dropped from 1-shot to
3-shot examples. In contrast, on Sports understanding dataset (BBH), all models show improved performance with increasing number of
in-context examples.

Gradient Prompt: (blueprint error analysis based on SLM error)
Here is a blueprint in a prompt for a small language model (SLM) to solve a set of tasks on
<task_description_placeholder>:<blueprint_placeholder>.
But the prompt gets the following examples wrong.<error_msg_placeholder>.
Identify <num_of_gradients> specific reasons why the prompt is incorrect or ineffective. For each reason,
consider: 1. pinpoint the error: Describe exactly what part of the blueprint or approach is causing the mistake.
Mention if there is a misunderstanding, a missing step, or an incorrect interpretation of the task. 2. provide
actionable suggestions: For each identified reason, suggest a specific change or addition to the blueprint that
could help correct the error. Wrap each reason with <START> and <END>.

Edit Prompt: (blueprint update based on error analysis)
Here is a blueprint in a prompt for a small language model (SLM) to solve a set of tasks on
<task_description_placeholder>:<blueprint_placeholder>.
However the SLM gets the following examples wrong.<error_msg_placeholder>.
Here is one reason why the prompt is wrong and how it can be improved:
<gradient_placeholder>.
Generate an improved blueprint for the SLM to solve the tasks in general, addressing the issues mentioned in
the gradient. Ensure the new blueprint includes clear, specific instructions or steps that rectify the identified
errors. Focus on improving clarity and precision rather than paraphrasing. Wrap your generated blueprint with
tokens <START> and <END>.

Paraphrase Prompt: (simple blueprint paraphrasing)
Here is a blueprint in a prompt for a small language model (SLM) to solve a set of tasks on
<task_description_placeholder>:<blueprint_placeholder>. Rephrase the blueprint to make it more concise
and clear, while retaining all critical steps and details necessary for the SLM to perform the tasks effectively.
The rephrased blueprint should use straightforward language to ensure clarity and ease of understanding for
the SLM. Avoid losing any important information or instructions that are essential for solving the tasks. Wrap
your generated blueprint with tokens <START> and <END>.

Figure 8. Prompts used for blueprint refinement via Automatic Prompt Optimization (APO). During each APO round, the LLM first
performs error analysis and generates a textual gradient using the Gradient Prompt, then refines and updates the blueprint according to the
textual gradient with the Edit Prompt. Finally, the LLM paraphrase the blueprint with the Paraphrase Prompt. During execution, the
placeholders are replaced with their actual values.

13

Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

1.0

Me
an

 Ac
cu

ra
cy

Web Of Lies
Variant

CoT (1-shot)
CoT (3-shot)
BP (w.o. APO)
BP (w. APO)
BP (w. APO) + Template Search

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Boolean Expressions

(a) Boolean Expressions
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

M
ea

n
Ac

cu
ra

cy

Causal Judgement

(b) Causal Judgement
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Date Understanding

(c) Date Understanding

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Disambiguation Qa

(d) Disambiguation QA
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

M
ea

n
Ac

cu
ra

cy

Dyck Languages

(e) Dyck Languages
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Formal Fallacies

(f) Formal Fallacies
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

M
ea

n
Ac

cu
ra

cy

Geometric Shapes

(g) Geometric Shapes

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Hyperbaton

(h) Hyperbaton
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Logical Deduction Five Objects

(i) Logical Deduction (five)
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Logical Deduction Seven Objects

(j) Logical Deduction (seven)
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Logical Deduction Three Objects

(k) Logical Deduction (three)

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Movie Recommendation

(l) Movie Recommendation
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Multistep Arithmetic Two

(m) Multistep Arithmetic Two
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Navigate

(n) Navigate
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Object Counting

(o) Object Counting

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Penguins In A Table

(p) Penguins In A Table
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Reasoning About Colored Objects

(q) Reasoning Colored Objects
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Ruin Names

(r) Ruin Names
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

M
ea

n
Ac

cu
ra

cy

Salient Translation Error Detection

(s) Salient Translation

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

cu
ra

cy

Snarks

(t) Snarks
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Sports Understanding

(u) Sports Understanding
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Temporal Sequences

(v) Temporal Sequences
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Tracking Shuffled Objects Five Objects

(w) Tracking Shuffled Five

GPT4o-mini Mistral-7B Phi3-mini
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Tracking Shuffled Objects Seven Objects

(x) Tracking Shuffled Seven
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Tracking Shuffled Objects Three Objects

(y) Tracking Shuffled Three
GPT4o-mini Mistral-7B Phi3-mini

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Web Of Lies

(z) Web of Lies

Figure 9. Per-category Performance on the BBH dataset

14

