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ABSTRACT

Deep neural networks are fundamental in security-critical applications such as
facial recognition, autonomous driving, and medical diagnostics, yet they are
vulnerable to backdoor attacks. Clean-image backdoor attack, a stealthy attack
utilizing solely label manipulation to implant backdoors, renders models vulnerable
to exploitation by malicious labelers. However, existing clean-image backdoor
attacks likely lead to a noticeable drop in Clean Accuracy (CA), decreasing their
stealthiness. In this paper, we show that clean-image backdoor attacks can achieve a
negligible decrease in CA by poisoning only a few samples while still maintaining
a high attack success rate. We introduce Generative Adversarial Clean-Image
Backdoors (GCB), a novel attack method that minimizes the drop in CA to less
than 1% by optimizing the trigger pattern for easier learning by the victim model.
Leveraging a variant of InfoGAN, we ensure that the trigger pattern we used
has already been contained in some training images and can be easily separated
from those feature patterns used for benign tasks. Our experiments demonstrate
that GCB can be adapted to 5 datasets—including MNIST, CIFAR-10, CIFAR-
100, GTSRB, and Tiny-ImageNet—5 different architectures, and 4 tasks, including
classification, multi-label classification, regression, and segmentation. Furthermore,
GCB demonstrates strong resistance to backdoor defenses, successfully evading all
detection methods we know. Code: anonymous.4open.science/r/GCB.

1 INTRODUCTION

Deep Neural Networks (DNNs) are widely used in applications like facial recognition (An et al.,
2023), autonomous driving (Han et al., 2022), and medical image diagnosis (Li et al., 2021a); however,
backdoor attacks threaten their trustworthiness. By poisoning a small portion of the training data (Li
et al., 2022), adversaries can inject backdoors that cause models to make erroneous predictions when
specific inputs are presented. Recent studies reveal that backdoors can be implemented without
modifying images, known as clean-image backdoors—a significant concern when data annotation is
outsourced to third parties. For instance, Chen et al. (2022a) induced a one-to-one backdoor attack
in multi-label classification by relabeling images from a source label to a target label, though this
method is less adaptable to general image classification tasks. To address this limitation, Jha et al.
(2024) proposed a label-optimization technique that constructs a surrogate poisoned-image backdoor
model and optimizes soft labels to mimic its behavior.

Although these methods achieve a high Attack Success Rate (ASR), they experience a significant
drop in Clean Accuracy (CA), limiting their stealthiness in practice. For instance, the state-of-the-art
method FLIP (Jha et al., 2024) shows a CA reduction of 1.7% and a poison rate of 2% when averaged
across all classes in a one-to-one scenario (one source and one target class). However, a closer
analysis reveals that the CA drop and poison rate are much more pronounced at the class level. As
shown in Fig. 1, 15.8% of inputs from the source class were poisoned, resulting in a 13.3% CA drop
for that class. Even in the all-to-one scenario, FLIP leads to a consistent CA drop of 4.0% across
all classes. This significant drop should alert the victim to a potential backdoor when examining the
accuracy of each class on a clean test set.

The significant drop in CA can be attributed to a phenomenon known as the natural backdoor trigger
in clean-image backdoor, first introduced in (Rong et al., 2024). When a small percentage (e.g., 5%)
of training images are relabeled to train a poisoned victim model, the i.i.d. properties of the training
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and test datasets result in approximately the same proportion of testing images (around 5% in this
example) being misclassified by the poisoned victim model. This leads to a substantial drop of about
5% in CA. Unfortunately, this effect is applicable to all types of clean-image backdoors, regardless of
the specific attack methods employed. This raises a critical question: Can we mitigate this effect to
create a more stealthy clean-image backdoor?

Figure 1: Box plot comparing clean-
image backdoors across all classes on
CIFAR-10. The SOTA method, FLIP,
has a low average clean accuracy drop
(1.7%) but can reach up to 13.3% in
maximum. In contrast, our method
shows almost no clean accuracy drop.

Our answer is affirmative. By proposing Generative Adver-
sarial Clean-Image Backdoors (GCB), we can significantly
reduce the poison rate to 0.1%. This leads to substantial mit-
igation of the CA drop, averaging only 0.2% across classes
and a maximum of 0.5% for any single class. Our key idea
is to lower the poison rate by optimizing the trigger pattern,
making it easier for the victim model to learn. However,
within the context of clean-image backdoors, optimizing
the trigger pattern is challenging because we cannot mod-
ify images; instead, we must utilize features that already
exist on benign images to construct triggers. In this context,
three main constraints arise: (1) Existence: The optimized
trigger pattern must be present in the training set. (2) Sep-
arability: Images with and without the trigger must be
easily distinguishable, enabling the victim model to learn
the backdoor more effectively and low poison rate. (3) Ir-
relevancy: The trigger should not interfere with learning
the benign task, preventing a significant CA drop.

In this paper, we develop a novel GAN framework, C-
InfoGAN, to optimize triggers while addressing three key issues. (a) To ensure existence, we employ
a GAN generator to construct a trigger function, ensuring that all generated images, including trigger
images, belong to the original image distribution. (b) To achieve separability, we adopt the concept
of InfoGAN, building the GAN generator in a two-fold manner (representing triggered and benign
images respectively) and maximizing their distance as a term in the loss function. (c) To guarantee
Irrelevancy, we incorporate the ground truth label as a prior for all components to ensure that the
trigger features are irrelevant to class features.

We conducted extensive experiments to validate the effectiveness of GCB. GCB achieved impressive
ASRs of 97.9%, 100%, 92.1%, and 94.1% with only 0.5% data poisoning per dataset, while maintain-
ing less than a 1% drop in clean accuracy. Remarkably, GCB extends to various supervised vision
tasks like multi-label classification, regression, and segmentation. Furthermore, when adversaries can
access only 10% of the total dataset and poison 1% within that portion, GCB still attains a 90.3%
ASR with only a 0.15% drop in clean accuracy on CIFAR-10. Additionally, GCB demonstrates
robustness against comprehensive backdoor defense and mitigation strategies. In addition, unlike
previous methods that struggle to scale to large datasets or transfer to advanced architectures, our
approach performs well across various datasets—including MNIST, CIFAR-10, CIFAR-100, GTSRB,
and Tiny-ImageNet—and supports different model architectures, such as ResNet, VGG, and ViT.

Our contributions are three-folded. ❶ Outstanding stealthiness: Our GCB can introduce clean-
image backdoors with tiny poison rate (≤ 1%) and minimal CA drop (≤ 1%) to achieve ASR over
90% on all tested datasets. ❷ Strong Adaptivity: Our method adapts to 5 datasets of different scales,
5 different architectures, and 4 different tasks. ❸ Novel Attack Method: We innovatively design a
variant of InfoGAN, C-InfoGAN, to solve the trigger optimization problem, which makes the trigger
easier to learn without interfering with benign task learning.

2 RELATED WORK

2.1 DATA POISONING BACKDOOR

This paper introduces GCB, a novel backdoor attack via data poisoning. Previous attacks have
evolved over time. BadNets (Gu et al., 2019) pioneered backdoor attacks in DNN models by injecting
a small set of trigger-embedded data into the training set, causing misclassification when triggers
appear during testing. Chen et al. (2017) advanced this concept using blending strategies to generate
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poisoned images, making triggers less visible but still detectable by defenders. Liu et al. (2020)
employed natural reflections as triggers, leveraging common physical phenomena to mask the attack,
thereby enhancing its real-world applicability. Turner et al. (2019) introduced clean-label backdoor
attacks, which perturb input images without altering labels, making malicious samples more stealthy.

Table 1: Comparison of Clean-Image Backdoors.
Property CIB FLIP CIBA GCB(our)

Poison rate ≤ 1% ◦ ◦ ◦ •
CA drop ≤ 1% ◦ ◦ ◦ •
ASR ≥ 90% • • ◦ •
Scalability • ◦ ◦ •
Transferability • ◦ • •
Classification ◦ • • •
Multi-label Tasks • ◦ ◦ •

Our GCB is also a clean-image backdoor attack.
Clean-image backdoors were first proposed in
CIB (Chen et al., 2022a), which is designed for
multi-label classifications. This method relabels
all images with a particular combination of la-
bels, thus failing to generalize to standard image
classification tasks and all-to-one attacks. Jha
et al. (2024) proposed FLIP to implement clean-
image backdoors in common classification tasks
by optimizing soft labels to imitate the behaviors
of poison-image backdoors. However, it heavily
relies on matching the expert model structure with that of the victim model C.1, making it impractical
in real-world situations. Additionally, due to the intuitive design of the trigger, FLIP faces significant
scalability issues. It can only achieve high ASR on CIFAR-10 and CIFAR-100 with 10 coarse labels,
failing to generalize to datasets with more labels. Rong et al. (2024) proposed CIBA to create an
invisible clean-image backdoor by minimizing trigger perturbation. However, it can achieve less than
50% ASR even on CIFAR-10, which significantly degrades its applicability. As shown in Table 1,
our method can overcome all the shortcomings mentioned in the three clean-image backdoors.

2.2 GAN-BASED REPRESENTATION LEARNING

In GCB, we employ C-InfoGAN, a GAN-based representation learning technique, to enhance our
injected backdoor’s efficiency. Significant developments have marked the evolution of GANs in
interpretable and controllable representation learning. The original GAN (Goodfellow et al., 2014) es-
tablished foundational frameworks but faced challenges with unstructured latent noise. Advancements
like cGAN (Mirza and Osindero, 2014) incorporated label information for controlled generation,
and InfoGAN (Chen et al., 2016) introduced mutual information loss to enhance interpretability.
StyleGAN (Karras et al., 2019) provided nuanced control over the noise vector, enabling precise
image adjustments. However, these models primarily manipulated generated images and had limited
ability to edit real-world images. GAN Inversion (Xia et al., 2022) tackled this by adding a network
to map real images into the GAN’s latent space, increasing complexity. In our paper, we propose a
novel architecture called C-InfoGAN, which integrates feature editing capability directly into the
GAN architecture while ensuring interpretability of the controlled features.

3 PRELIMINARY

3.1 THREAT MODEL

We adopt the same threat model as other clean-image backdoors (Jha et al., 2024; Chen et al., 2022a):
investigating the risks posed by third-party malicious annotators in the context of a large, externally
annotated dataset. In this scenario, we consider attackers to have partial or full access to view the
training dataset, but their malicious actions are limited to subtly mislabeling a small portion of
the dataset, without the ability to modify the images or influence other training aspects like the
architecture or training schedule.

3.2 NOTATION

In this study, we consider a supervised learning scenario for a model, f , defined by y = f(x),
where x is the input and y is the output label. In our GCB attack, the attacker divides the input set
X into benign (X0) and malicious (X1) subsets. The malicious subset X1 is uniformly relabeled
with a target label yt, forming (X1, Y1) = {(x, yt) : x ∈ X1}. The entire dataset then becomes
(X,Y ′) = (X0, Y0)∪ (X1, Y1), where (X0, Y0) retains the original benign labels. The cardinality of
X1 is constrained by the poison rate pr, such that |X1| = pr · |X|. The attacker’s goal is to make the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Framework of Generative Adversarial Clean-Image Backdoors (GCB). In the preparation
stage, a specific clean feature (e.g., background color here) is extracted as a backdoor trigger.

victim model learn the following two tasks simultaneously:

f∗
θ = argmin

θ
E(x0,y0)∼(X0,Y0) [ℓ(fθ(x0), y0)]︸ ︷︷ ︸

classification task

+E(x1,yt)∼(X1,Y1) [ℓ(fθ(x1), yt)]︸ ︷︷ ︸
backdoor task

(1)

During testing, a trigger function T (·) converts benign inputs x into triggered inputs x̂ = T (x),
activating the backdoor to mislead the victim model to predict the target class yt = f∗

θ (T (x)).

4 METHODOLOGY

4.1 OVERVIEW

GCB aims to minimize the CA drop while maintaining a high ASR for clean-image backdoors. In
these scenarios, a portion of training images are deliberately mislabeled, but the images themselves
remain unchanged. To select images to mislabel, we introduce a new network C-InfoGAN, that is
trained to recognize patterns present in some training images but distinct from those patterns used
for benign tasks. The GCB framework is illustrated in Fig. 2. GCB comprises three stages: attack
preparation, poisoning, and inference. During attack preparation, the C-InfoGAN is trained to identify
these specific patterns. Subsequently, we utilize the Q component of C-InfoGAN to identify training
images with the pattern and mislabel them. In the inference stage, we use the G component to convert
any image into a triggered input, misleading the victim model to predict yt.

4.2 C-INFOGAN

Essentially, given a fixed poison rate (limiting the number of mislabeled images), our goal is to
maximize both ASR and CA. However, it is a challenge in clean-image backdoor settings, as we
can only modify the labels of images, leading to a discrete hard-label issue. Even advanced discrete
optimization methods like GCG can only maximize ASR but struggle to maintain a high CA.

Our observations lead us to model this problem as a divergence maximization problem constrained
by three factors: (a) Existence: The trigger pattern must be present within the training data, enabling
backdoor injection via label manipulation alone. (b) Separability: The images with and without the
trigger must be distinctly separable, allowing easier backdoor learning and reducing the required
poison rate. (c) Irrelevancy: The trigger should not interfere with benign class features to prevent a
significant CA drop, as feature overlap can disrupt class semantics. To satisfy these constraints, we
introduce Conditional Information Maximizing GANs (C-InfoGAN). In C-InfoGAN, we introduce a
discrete random variable c following a Bernoulli distribution as the latent variable. The generator G,
conditioned on c, generates two distinct series of images depending on whether c is 0 or 1.

(a) Existence. A crucial property of clean-image backdoors is that the trigger pattern must exist
within the clean image set. To satisfy this, we employ a standard GAN framework (Goodfellow et al.,
2014). Training the discriminator D ensures that all images generated by the generator G follow
the same distribution as real images. By conditioning G on the latent variable c, we can generate
images with (c = 1) or without (c = 0) the trigger pattern. Consequently, one of the two image series
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generated, P (x̂|c = 1), becomes a subset of the real image distribution. This series, P (x̂|c = 1), can
thus be safely used as the trigger function, guaranteeing its existence within the original image set.

(b) Separability. To ensure separability, we follow the concept of InfoGAN (Chen et al., 2016),
which maximizes the mutual information between selected latent variables and the generated data to
learn interpretable and disentangled representations. The recognition network Q (originating from
InfoGAN) is tasked with distinguishing between images generated with c = 1 and c = 0 as accurately
as possible by introducing an information loss term Linfo. Q converges once it can easily determine
which series an image belongs to, indicating strong separability.

(c) Irrelevancy. Another crucial attribute of backdoors is that the trigger should not interfere with the
benign task. This indicates that the trigger pattern needs to be irrelevant to the patterns utilized for
the benign task. To ensure this, we use the input image’s ground-truth label y as an auxiliary input to
both the GAN generator G and discriminator D, along with the condition variable c, ensuring c is
independent of y. Thus, when c = 1 (triggered image), the generated image is unrelated to the input
image class, minimizing the trigger’s impact on the benign task.

Objective Function. In practice, our loss function combines the GAN loss from Wasserstein
GAN (Arjovsky et al., 2017) and the mutual information loss from InfoGAN (Chen et al., 2016). The
GAN loss is LGAN = Ex̂∼Pg [D(x̂)]− Ex∼PX

[D(x)], where PX represents the distribution of real
inputs and Pg denotes the distribution generator’s outputs, penalizing for the low consistency between
these two distributions. The mutual information loss is Linfo = −Ec∼Pc,x∼PX

[logQ(c|G(x, c))],
where Pc is the Bernoulli distribution of c, represent the negative log-likelihood for predicting c
based on generated images G(x, c). The overall loss function integrates these two components as
L = LGAN + λLinfo, where λ is the trade-off hyperparameter.

Theory Provement. We also provide a theoretical analysis for our GCB attack in Appendix A.
From the perspective of information theory, we show that minimizing information loss can maximize
the JS-Divergence between G(·, c = 0) and G(·, c = 1) (Lemma A.1). In addition, GAN ensures
that the generated images G(x, ·) and the corresponding real images x share the same distribution.
Consequently, the JS-Divergence between the real images of the two series is maximized, allowing
the Q component to distinguish them effectively. Both parts mentioned above act as a special case of
InfoGAN (Chen et al., 2016) and can be easily proved. Moreover, we prove that the total conditional
entropy of the backdoor task: H(Y ′|X) (where (X,Y ′) is the poisoned dataset), is minimized
when the divergence between real images of the two series is maximized (Proposition A.2). Such
minimizing indicates that our backdoor task is easily learned, thereby ensuring a high ASR.

4.3 ATTACK DEPLOYMENT

Poisoning Stage. We select a subset X1 from the original training set X and change their labels
to the target label yt. The key challenge is selecting which images to manipulate. We introduce a
score function to assign poison scores to each clean image, where a higher score indicates greater
suitability for label manipulation. The recognition network Q from InfoGAN effectively serves as
this score function. Q is trained to recognize the value of c in generated images x̂. Since the GAN
has converged, x and x̂ follow the same distribution, allowing Q can recognize both generated x̂
and real images x. After scoring all input images, we apply a top-k quantile threshold to select the
top-scoring images, where k is the total number of poisoned samples needed. These selected images
have their labels flipped and are then submitted to train the victim model.

Inference Stage. During the inference stage, to create a triggered image, we input any image x into
the generator G conditioned on c = 1, producing G(x, c = 1), which contains the trigger pattern. The
triggered images exactly correspond to the selected images in the poisoning stage, thereby effectively
activating the backdoor to mislead the victim model into predicting the target label yt.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets and Models. We evaluate our attacks using BackdoorBench (Wu et al., 2022) on five
datasets: MNIST (LeCun et al., 1998), CIFAR-10/100 (Krizhevsky, 2009), GTSRB (Stallkamp et al.,
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Figure 3: Performance for clean-image backdoor methods across various datasets. Poison rates are
indicated by marker size and along with texts on each point. Our method, GCB, achieves success
with less than 1% drop in clean accuracy to achieve attack success rate over 90% for all datasets.

2012), and Tiny-ImageNet (Russakovsky et al., 2015). We employ PreActResNet18 as the default
victim model with a poison rate of 1%, if not specified. All results follow an all-to-one attack scenario.
Detailed training settings for C-InfoGAN are provided in Appendix B.

Baselines. Our clean-image backdoor baselines include CIB (Chen et al., 2022a), FLIP (Jha et al.,
2024), CIBA (Rong et al., 2024), and FLIP-opt. CIBA exhibits low ASR and does not release its code,
so its performance is shown only in Appendix C.2. FLIP-opt combines FLIP and Narcissus (Zeng
et al., 2023) for trigger optimization. Specifically, we first generate an optimized trigger using
Narcissus, then determine the best label assignments for poisoning using FLIP. Additionally, we
found that FLIP is highly sensitive to the victim model’s architecture, relying on alignment between
the victim and surrogate models used in attack preparation. A detailed analysis of this effect is in
Appendix 8. To ensure a fair comparison, we report FLIP results under both aligned and unaligned
conditions, labeled as FLIP-align and FLIP.

Metrics. We use two metrics in our experiments: Clean Accuracy (CA) and Attack Success Rate
(ASR). CA measures the victim model’s accuracy on clean test data, while ASR indicates the
percentage of test instances with embedded triggers that are classified as the target class by the model.

5.2 ATTACK PERFORMANCE.

ASR VS. CA. We compare GCB with several clean-image backdoor baselines in Fig. 3. Our
experiments demonstrate that GCB significantly outperforms all baselines across all datasets. With
less than a 0.5% drop in CA, GCB achieves over 90% ASR on small datasets such as MNIST,
CIFAR-10, and CIFAR-100. For more complex datasets like GTSRB and Tiny-ImageNet, GCB
maintains over 90% ASR with a CA drop within 1%. In contrast, all tested baselines only succeed
on simple datasets like CIFAR-10 and CIFAR-100, incurring CA drops exceeding 5%. Moreover,
they fail on relatively complex datasets such as GTSRB and Tiny-ImageNet, and surprisingly even on
the simple MNIST dataset. This failure on MNIST is likely because MNIST consists of grayscale,
feature-poor images. Consequently, intuitively selected triggers (e.g., sinusoidal triggers) cannot be
effectively constructed using clean image combinations.

Convergence Speed. Our key idea is to make the trigger easier for the victim model to learn by
optimizing separability. An important question is how quickly the victim model can learn this trigger.
Fig. 4 shows that our method converges to nearly 100% ASR in just 4 epochs, whereas the simplest
backdoor attack, BadNets, requires 11 epochs to converge. This indicates that our backdoor task is
even easier for neural networks than BadNets. Compared to peer clean-image backdoor methods,
FLIP takes over 20 epochs to achieve a successful attack and remains unstable after 20 epochs.
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Figure 4: Learning curves on
CIFAR-10. Our method con-
verges even faster than BadNets.

(a) CIFAR-10 (b) CIFAR-100

Figure 5: Results with error bars under low access rates.

Table 2: Performance on Multi-Label Classifi-
cation datasets. src denotes source class. GCB
attack successfully with almost no drop in MAP.

Method Metric VOC07 VOC12

ASR ↑ 87.5±14.2 85.2±13.0
CIB MAP ↑ 91.8±1.1 91.3±1.4

MAP (src) ↑ 74.8±3.1 72.6±4.9

ASR ↑ 67.5±7.2 70.1±8.5
GCB MAP ↑ 93.9±0.3 93.7±0.4

MAP (src) ↑ 93.5±0.3 93.4±0.3

Table 3: Performance of GCB on other vision
tasks. AE: Attack Mean Square Error. CE:
Clean Mean Square Error.

Task Regression Segmentation
Dataset ColorCIFAR10 VOC2012

Metrics AE ↓ CE ↓ AE ↓ CE ↓

Clean 0.2964 0.0128 1.207 0.211
1% Poison 0.0290 0.0141 0.303 0.214
3% Poison 0.0204 0.0156 0.277 0.217

Impact of Model Architecture. As introduced in the baseline settings, FLIP is highly sensitive to the
victim model’s architecture. In contrast, GCB exhibits high ASR across four distinct architectures:
PreActResNet18, EfficientNet-B0, VGG-11, and ViT-B-16, as shown in Table 10. In our experiments,
all four architectures achieve ASR exceeding 90% on every tested dataset, with an average ASR
above 96%. This demonstrates that our method is architecture-agnostic.

Generalized Threat Model. Our threat model can be extended to weaker assumptions. We propose
a generalized threat model where attackers can access only a small portion of the entire dataset
and subsequently poison an even smaller subset of the accessed data. This extension broadens the
clean-image backdoor threat to individual annotators with very limited dataset access. As shown
in Fig. 5, when accessing only 10% of the training dataset, GCB achieves an ASR of 90.3% on
CIFAR-10 and 68.2% on CIFAR-100. In comparison, the current SOTA baseline FLIP achieves only
20.4% and 1.3% ASR on CIFAR-10 and CIFAR-100, respectively, with the same data access.

Table 4: Ablation Study.
poison rate 1% 0.5% 0.1%

CIFAR-10
(w/o LGAN ) 8.97 4.14 1.90
(w/o Linfo) 42.9 11.4 2.87

(w/o LC) 98.9 93.1 85.3
Ours 100.0 100.0 98.5

CIFAR-100
(w/o LGAN ) 3.41 1.80 0.45
(w/o Linfo) 28.7 8.12 1.34

(w/o LC) 84.7 68.4 34.6
Ours 96.7 92.1 45.9

Other Vision Tasks. Our method (GCB) is adaptable to
various supervised vision tasks because C-InfoGAN is de-
signed without specific assumptions about the target task. We
simply adjust the label condition y for different tasks—using
one-hot encoding for classification and no embedding for
regression—enabling seamless adaptation. For multi-label
classification, we compared our approach with CIB (Chen
et al., 2022a) using a 5% poison rate on the VOC07 and
VOC12 datasets. As shown in Table 3, CIB achieves approx-
imately 15% higher ASR but significantly underperforms in
Mean Average Precision (MAP), dropping by about 2% over-
all and around 20% for the source class. This reduction in
MAP compromises its stealthiness. Additionally, our method
extends to Image Regression and Semantic Segmentation
tasks, where existing clean-image backdoors are ineffective. As illustrated in Table 3, our attack
succeeds in these tasks, demonstrated by a substantial decrease in Attack Mean Square Error (AE)
compared to the clean dataset. Detailed task configurations are provided in Appendix C.4.

Ablation Study. We conducted ablation studies on three key components of our design: GAN loss
(for Existence), information loss (for Separability), and label condition (for Irrelevancy). The results
are presented in Table 4. (a) GAN Loss. We eliminate the discriminator D from C-InfoGAN and
apply an l∞-norm constraint to the generator. Experiments show that this approach completely loses
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(a) CIFAR-10 (b) Tiny-ImageNet
Figure 6: Difference from clean images. Closeness to “Clean” values indicates stealthiness.

effectiveness because, without adversarial training, the trigger feature quickly overfits and becomes
an adversarial attack on the recognition network Q, ceasing to function as an effective backdoor. (b)
Information Loss. Removing the information loss transforms our network into a standard Pix2Pix
GAN. To perform the attack, we intuitively select the darkest 1% of images in the dataset as poisoned
images to construct the trigger feature, modeling the trigger-wrapping problem as a style-transfer
scenario solvable by Pix2Pix GAN. Under this setup, GCB significantly degrades in performance,
indicating that manually designed triggers are ineffective. (c) Label Condition. We remove y as a
prior condition from all components in C-InfoGAN. The results show only a slight decrease in ASR,
likely because the UNet generator preserves the original appearance, diminishing the importance of
the label condition.

5.3 DIFFERENCE FROM CLEAN IMAGES

To study how different trigger images from clean images are, we employ seven metrics introduced
by BackdoorBench (Wu et al., 2024). Specifically, SSIM measures the structural similarity between
each poisoned sample and its corresponding clean sample. FID assesses the distance between the
distributions of poisoned samples and target-class clean samples. Additionally, BRISQUE, along with
metrics for quality, noisiness, naturalness, and realism, evaluates the quality of individual samples.
As shown in Fig. 6, clean-image backdoor attacks, such as FLIP and GCB, achieve better stealthiness
(close to “Clean” line) compared to poison-image backdoors like Blended (Chen et al., 2017) and
IA (Nguyen and Tran, 2020a). This is because clean-image backdoors utilize specific benign features
to construct the backdoor, resulting in poisoned data that closely resemble benign images in quality
and attributes. Thus reduce the effectiveness of image-quality-based detection methods including
BRISQUE, Quality, Noisy, Natural, Real and SSIM. On the other hand, FID assesses distributions
and can potentially detect differences between benign and triggered sample distributions caused by
clean-image backdoors. While, our experiments demonstrate that GCB causes triggered images to
closely resemble clean images in all tested metrics, including FID.

6 DEFENSES

6.1 EXISTING DEFENSES

We present the most representative defense methods in this section. Comprehensive evaluations of
GCB against BackdoorBench defenses are provided in Appendix D.2.

Neural Cleanse. Neural Cleanse (Wang et al., 2019) uses anomaly scores to detect backdoors in
DNN models. However, Fig. 7 shows that Neural Cleanse is hard to differentiate backdoor-attacked
datasets and clean ones, because their scores are similar and below the 2.0 threshold. This is due to
Neural Cleanse’s focus on static adversarial patches, while our attack uses a dynamic, global trigger
function, making trigger reconstruction difficult.

STRIP. STRIP (Gao et al., 2019) measures class prediction entropy through input perturbations. Fig.
8 shows a notable similarity in entropy distribution for clean and poisoned subsets. Since C-InfoGAN
uses benign features of various intensities as triggers, it can yield similar STRIP behaviors for samples
with or without trigger. Therefore, our GCB attack is resilient to STRIP defense.
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Figure 7: Neural Cleanse Figure 8: STRIP normalized entropy distribution of GCB.

Table 5: Comparison of different attack methods against preprocessing-based defenses.

Defense No defense ShrinkPad Compression Color Shift DeepSweep Average

Attack CA ASR CA ASR CA ASR CA ASR CA ASR Avg. ASR

BadNet 93.2 73.8 83.8 60.5 39.9 3.3 81.9 53.1 85.3 1.9 29.7
Blended 93.8 94.1 84.2 85.2 42.6 2.6 86.3 86.9 70.9 65.5 60.0
SIG 93.7 80.4 84.0 85.7 43.9 70.1 86.8 74.3 84.5 41.6 67.9
IA 90.5 79.6 80.8 19.4 33.0 2.6 78.7 65.1 87.6 65.9 38.3
SSBA 93.4 99.7 83.5 1.5 37.4 18.5 86.2 94.2 71.8 81.2 48.9
FLIP 91.9 86.3 89.7 84.2 72.5 86.9 83.7 83.8 70.7 26.9 70.5

Ours 92.6 100.0 82.6 100.0 40.7 100.0 84.4 98.4 77.7 93.2 97.9

Figure 9: Fine-pruning.

Figure 10: Grad-Cam.

Fine-Pruning. Fine-Pruning (Liu et al., 2018) tries to
mitigate backdoor behaviors by pruning high-activation
neurons. As shown in Fig. 9, on CIFAR-10, the ASR
remains unchanged regardless of pruning. In contrast,
for CIFAR-100, ASR initially decreases but then rapidly
increases as more neurons are pruned. Our backdoor attack
leverages natural benign features, resulting in a robust
and complex activation pattern that Fine-Pruning cannot
detect. This suggests Fine-Pruning is ineffective against
our backdoor attack.

Grad-Cam. We employ Grad-Cam (Gildenblat and con-
tributors, 2021) to visualize the regions of an image that
are most relevant to a model’s prediction. Grad-Cam can
also highlight potential trigger regions activated by differ-
ent backdoor attacks. Results in Fig. 10 reveal that GCB’s
triggers are dispersed and centrally located, whereas the
triggers of other attacks are localized and prominent. This
indicates that GCB achieves global feature dominance,
diverging from Grad-Cam’s localized focus, and thus is
more resilient to Grad-Cam-based detection.

6.2 TEST-TIME TRANSFORMATION DEFENSE

Although clean-image backdoors do not poison images
during training, triggers are still used to activate the backdoor at test time. To evaluate test-time
preprocessing defenses, we assess several prominent techniques in our experiments: 1.ShrinkPad (Li
et al., 2020b): Pads testing images with zero-valued pixels after a 2-pixel shrinkage. 2. Image
Compression (Xue et al., 2023): Applies JPEG compression to all testing images at 75% quality.
3. Color Shift (Jiang et al., 2023): Introduces a random color space shift between -0.1 and 0.1,
specifically targeting color-based backdoors in datasets like CIFAR-10. 4. DeepSweep (Qiu et al.,
2021): Uses 4 data augmentation methods in DeepSweep to fine-tune the victim model for 5 epochs
and preprocesses the testing samples accordingly.

Table 5 presents the results of these preprocessing defenses on the CIFAR-10 dataset. Additive trigger-
based attacks, such as BadNets, show reduced ASR when subjected to image transformations. Natural
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trigger-based attacks like SIG and FLIP remain robust against most defenses but are compromised by
image compression. In contrast, our GCB attack maintains nearly 100% ASR across all preprocessing
defenses. This resilience is attributed to using a dominant semantic feature as the trigger, which is
more robust than more fragile and intricate label features. Additional results on CIFAR-100 dataset
are available in Appendix E.1.

6.3 ADAPTIVE DEFENSES

Table 6: Noisy training mitigation. Data is
recorded in CA/ASR format. C10: CIFAR-10.
C100: CIFAR-100.

SPL PRL Bootstrap
C10-final 91.9/100 89.7/100 88.4/100
C10-best 36.0/6.1 59.3/65.5 26.0/0.0
C100-final 67.2/78.2 66.8/87.6 57.6/93.9
C100-best 36.5/4.9 51.3/21.6 14.0/0.8

Noisy Training. Clean-image backdoors em-
bed triggers by poisoning only labels. Con-
sequently, training techniques that are robust
to label noise might diminish the effective-
ness of these faulty labels. We evaluated three
noisy training methods: Self-Paced Learning
(SPL) (Kumar et al., 2010), Perturbation Ro-
bust Learning (PRL) (Wong and Kolter, 2020),
and Bootstrap (Reed et al., 2014). Results were
recorded at the final epoch and at the best epoch
where the ratio CA

ASR was highest. As shown in Table 6, none of these methods effectively defend
against our attack. This is likely because GCB’s incorrect labels constitute misleading knowledge
rather than random noise, which contradicts the basic assumption of noisy training.

(a) Noise label.

(b) Poison label.

Figure 11: Confidence distributions for
two different kinds of label issues.

Advanced Label Cleaning. Advanced label cleaning tech-
niques can automatically identify potentially mislabeled
data in a suspicious dataset. These methods typically in-
volve training a model and flagging images with low confi-
dence scores as having label issues. We employ CleanLab,
a widely used tool with strong community support (9.4k
GitHub stars), to evaluate its effectiveness in defending
against GCB. Using CleanLab, we analyze the confidence
score distribution, as shown in Fig. 11. Noisy labels are
easily separated because they exhibit very low confidence
scores, as their label issues are random and the DNN can-
not establish a reliable mapping between images and their
corresponding labels. In contrast, GCB selects specific
images to bind to target labels, creating a strong connec-
tion and resulting in higher confidence scores than benign
images, as illustrated in Fig. 11(b). Therefore, advanced
label cleaning techniques are ineffective against GCB.

Figure 12: Relabeling Mitigation.

Relabeling Mitigation. Relabeling is the most direct mit-
igation strategy against GCB. Since only labels are altered
in the poisoned dataset, relabeling a portion can restore its
integrity, thereby increasing CA and reducing ASR. Fig.
12 shows relabeling results on CIFAR-10 dataset, with
each data point marked by upper and lower bounds of five
independent trials. Tests at poison rates of 0.1%, 0.5%,
and 1% indicate that higher poison rates diminish relabel-
ing’s effectiveness. To ensure model security and keep
ASR below 20%, a relabeling rate above 95% is necessary,
implying that nearly the entire dataset must be relabeled.

7 CONCLUSION

We introduced Generative Adversarial Clean-Image Backdoors (GCB), a stealthy and adaptive
backdoor attack that uses C-InfoGAN to optimize trigger patterns embedded within training images.
Experiments across 5 datasets, 5 models, and 4 tasks showed high attack success rates with minimal
drop in clean accuracy and low poison rates. GCB resists existing defenses, highlighting the need for
more robust protections.
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A MATHEMATICAL ANALYSIS

In this section, our goal is to demonstrate why optimizing C-InfoGAN leads to the optimization of our
clean-image backdoor task. It is worth noting that this proof is primarily based on the standard GAN
loss; however, in practice, we utilize the Wasserstein GAN loss for more stable training.

A.1 ANALYSIS ON C-INFOGAN

Lemma 1 C-InfoGAN’s loss function is equivalent to maximize weighted Jensen–Shannon
divergence between p(x̂0) and p(x̂1), where x̂0 = G(x, c = 0) and x̂1 = G(x, c = 1),
G(x, c) = p(x̂) = p(x̂0) ∪ p(x̂1), and x ∈ X is original image data.

Proof C-InfoGAN derives its loss function directly from InfoGAN, where the mutual information
loss I(c,G(x, c)) is maximized. Mutual information loss is defined by:

I(c,G(x, c)) =
∑
c

∑
x̂

p(c, x̂) log
p(c|x̂)
p(c)

=
∑
x̂

∑
c

p(c)p(x̂|c) log p(x̂|c)
p(x̂)

Assume that p(c) is a known Bernoulli distribution with p(c = 1) = pr and p(c = 0) = 1 − pr
respectively. I(c,G(x, c)) can be expanded in two terms.

I(c,G(x, c)) =
∑
x̂

[
p(c = 0)p(x̂|c = 0) log

p(x̂|c = 0)

p(x̂)
+ p(c = 1)p(x̂|c = 1) log

p(x̂|c = 1)

p(x̂)

]
= (1− pr)KL (p(x̂|c = 0) ∥ p(x̂)) + pr KL (p(x̂|c = 1) ∥ p(x̂))

= (1− pr)KL (p(G(x, c = 0)) ∥ p(x̂)) + pr KL (p(G(x, c = 1)) ∥ p(x̂))

= (1− pr)KL (p(x̂0) ∥ p(x̂)) + pr KL (p(x̂1) ∥ p(x̂))

Where KL denotes Kullback-Leibler divergence. Noticed that p(x̂) = p(x̂0)(1− pr) + p(x̂1)pr, so
the above equation aptly fit the format of weighted Jensen–Shannon divergence.

I(c,G(x, c)) = JSD1−pr,pr
(p(x̂0) ∥ p(x̂1))

So, maximizing mutual information term I(c,G(x, c)) is equivalent to maximizing JS divergence
between two series of generated images p(x̂0) and p(x̂1) with weight exactly equals to poison rate
pr.

Lemma 2 When C-InfoGAN is sufficiently converged, both JSD(p(x̂1) ∥ p(x1)) and JSD(p(x̂0) ∥
p(x0)) will be minimized to the limit of zero, where x̂0 = G(x, c = 0) and x̂1 = G(x, c = 1) denote
two series of generated data. p(x0) = {x ∈ X|s(x) < 0} and p(x1) = {x ∈ X|s(x) ≥ 0} denote
real data partitioned by s(x).

Proof We first take GAN term into consideration

min
G

max
D

LGAN(G,D) = Ex∼p(x)[logD(x)] + Ex̂∼p(x̂)[log(1−D(x̂))]

According to original GAN’s preposition, when the discriminator is optimal, the equation can be
re-expressed using the logistic sigmoid function σ as follows:

D∗(x) =
p(x)

p(x) + p(x̂)

Substitute D∗(x) into the GAN objective function LGAN (D,G) gives:

LGAN(G,D∗) =
∑
x

p(x) log

(
p(x)

p(x) + p(x̂)

)
+ p(x̂) log

(
p(x̂)

p(x) + p(x̂)

)
This expression can then be recognized as the standard Jensen-Shannon divergence (JSD):

JSD(p(x)||p(x̂)) = 1

2
KL(p(x)||M) +

1

2
KL(p(x̂)||M)

M =
1

2
(p(x) + p(x̂))
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So, minG LGAN(G,D∗) is just equivalent to minimize JSD(p(x)||p(x̂)). When sufficient convergence
occurs, the generated data distribution is infinitely close to the real data distribution, which means
JSD(p(x)||p(x̂)) → 0. Moreover, considering the mutual information term and its variational lower
bound LI(G,Q)

I(c;G(x, c)) ≥ LI(G,Q) = Ex̂∼G(x,c)[Ec′∼p(c|x̂)[logQ(c′|x̂)]] +H(c)

is exactly maximizing log likelihood to accurately estimate P (c|x̂) using Q(c|x̂). So when Q is
optimal,

Q∗(c = 1|x̂) = P (c = 1|x̂) = P (c = 1|G(z, c)) =

{
1, if x̂ ∼ p(x̂1)
0, if x̂ ∼ p(x̂0)

Q∗(c = 0|x̂) =
{

0, if x̂ ∼ p(x̂1)
1, if x̂ ∼ p(x̂0)

We further define s(x) as subtracting the above two term and we have:

s(x) = Q∗(c = 1|x)−Q∗(c = 0|x) =
{

1, if x ∼ p(x̂1)
−1, if x ∼ p(x̂0)

Then, both the p(x̂1) and p(x1) can be regarded as a sub-distribution of p(x̂) and p(x) that partitioned
by a function s(x). For p(x̂1),

x̂1 = G(x, c = 1) = {x ∼ p(x̂)|s(x) ≥ 0}

For p(x1), it is defined as p(x1) = {x ∼ p(x)|s(x) ≥ 0}. Finally, we can multiplying a step function
1(s(x) ≥ 0) for all possible x in p(x̂) and p(x) and get:

JSD(p(x1)||p(x̂1)) =
1

2
λ
∑
x

1(s(x) ≥ 0)

(
p(x) log

(
2p(x)

p(x) + p(x̂)

)
+ p(x̂) log

(
2p(x̂)

p(x) + p(x̂)

))
≤ 1

2
λ
∑
x

p(x) log

(
2p(x)

p(x) + p(x̂)

)
+ p(x̂) log

(
2p(x̂)

p(x) + p(x̂)

)
= λ · JSD(p(x)||p(x̂))

where λ > 1 denotes a normalization factor so that λ · 1(s(x) ≥ 0)p(x) can still be a distribution.
The result shows that λ · JSD(p(x)||p(x̂)) is exactly the upper bound of JSD(p(x1)||p(x̂1)). This
bound is tight because JSD(p(x)||p(x̂)) → 0 during optimization and JSD(p(x1)||p(x̂1)) ≥ 0. Thus
minimizing JSD(p(x)||p(x̂)) to a limit of zero would also minimize JSD(p(x1)||p(x̂1)) to a limit of
zero. Similar process can be applied to JSD(p(x0)||p(x̂0)) and get the same result.

Proposition 1 When C-InfoGAN gets well-trained and converged. Then, the following hold: (a)
JSD(p(x1) ∥ p(x0)) is maximized. (b) JSD(p(x̂1) ∥ p(x1)) is minimized to a limit of zero. where
x̂0 = G(x, c = 0) and x̂1 = G(x, c = 1) denote two series of generated data. p(x0) = {x ∈
X|s(x) < 0} and p(x1) = {x ∈ X|s(x) ≥ 0} denote real data partitioned by s(x).

Proof (b) has already been proved in Lemma 2. (a) can be easily proved since the triangle inequality
holds for the square root of JSD (Osán et al., 2018). Apply the triangle inequality to square root of
JSD(p(x1) ∥ p(x0)) and we get:√

JSD(p(x1) ∥ p(x0)) ≥
√

JSD(p(x̂1) ∥ p(x̂0))−
√

JSD(p(x0) ∥ p(x̂0))−
√

JSD(p(x1) ∥ p(x̂1))

According to lemma 1, JSD(p(x̂1) ∥ p(x̂0)) is maximized. According to lemma 2, JSD(p(x0) ∥
p(x̂0)) and JSD(p(x1) ∥ p(x̂1)) is minimized to a limit of zero. The bound is tight because as
JSD(p(x0) ∥ p(x̂0)) → 0 and JSD(p(x1) ∥ p(x̂1)) → 0, it follows that JSD(p(x1) ∥ p(x0)) →
JSD(p(x̂1) ∥ p(x̂0)). Therefore, JSD(p(x1) ∥ p(x0)) is maximized.

Corollary 1 When C-InfoGAN’s generator G, discriminator D, and mutual information estimator
Q are trained conditional on ground truth label y, and it get well-trained and converged. Then, the
following hold: (a) JSD(p(x1|y) ∥ p(x0|y)) is maximized. (b) JSD(p(x̂1|y) ∥ p(x1|y)) is minimized.
This is because all G, D, and Q will be given y as a part of input that irrelevant to c, so they all model
the conditional distribution p(x|y) instead of p(x). As a result, all the conclusions in Proposition 1
can be adapted to the conditional distribution version under this setting.
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A.2 ANALYSIS ON CLEAN-IMAGE BACKDOOR

Proposition 2 In clean-image backdoor, if 1) poison rate given, and 2) poison strategy is flipping
all labels of selected images to target class; then maximize Jensen–Shannon divergence between
selected/unselected images max JSD(p(x1|y) ∥ p(x0|y)) can result in minimize conditional entropy
minH(Y ′|X). where p(x1) denotes the distribution of inputs selected for label modification. p(x0)
denotes the unselected input distribution. Y ′ denotes poisoned label distribution.

Proof Enhancing performance of Image Classification problem can be regarded as minH(Y ′|X),
which means maximizing information that can be inferred from input X to poisoned label Y ′. It can
be transformed into label conditional entropy:

H(Y ′|X) = −H(X) +H(X|Y ′) +H(Y ′)

where in Clean-Image Backdoor, H(X) is always a constant, and H(Y ′) reaches its lower bound in
our strategy that flips all labels of selected images toward the target class. As a result, the problem
becomes minH(X|Y ′), meaning maximizing information that can be inferred from label Y ′ to input
X .

For further convenience, we denote a split variable c as follows:

c(x) =

{
1 if x ∼ p(x1)

0 if x ∼ p(x0)

where we have p(x) = p(c = 0)p(x0) + p(c = 1)p(x1) = prp(x1) + (1− pr)p(x0) based on this
definition. Moreover, based on assumption 2) in this section, the relationship between poisoned label
y′ and true label y can be given as follows:

y′ =

{
yt if c = 1

y if c = 0

Here yt denotes target label, and this equation means if c = 1 (images in X1), the label will be
directly flipped to target class, otherwise it will follows the original label offered by the dataset.
Therefore, y′ can be fully determined given c and y, which means H(Y ′|C, Y ) = 0. We further
conclude that H(C, Y, Y ′) = H(C, Y ).

Using the above condition, the conditional entropy of original problem H(X|Y ′) can be expanded
into this form:

H(X|Y ′) = H(X|C, Y ) +H(X,Y ′)−H(Y ′)−H(X,Y,C) +H(C, Y )

= H(X|C, Y ) +H(X,Y ′)−H(X,Y, Y ′, C)−H(Y ′) +H(C, Y, Y ′)

= H(X|C, Y )−H(C, Y |X,Y ′) +H(C, Y |Y ′)

≤ H(X|C, Y ) +H(C, Y |Y ′)

where H(C, Y |Y ′) is a constant information loss term from C, Y to Y ′. Since c is independent to y,
H(X|C, Y ) can be directly transformed to Jensen-Shannon Divergence by definition:

H(X|C, Y ) = −
∑
x

1∑
c=0

p(c)

N∑
y=1

p(y)p(x|c, y) log p(x|c, y)

= −
∑
x1

pr

N∑
y=1

p(y)p(x1|y) log p(x1|y)−
∑
x0

(1− pr)

N∑
y=1

p(y)p(x0|y) log p(x0|y)

= H(X|Y )− JSDpr,1−pr
(p(x1|y) ∥ p(x0|y))

where H(X|Y ) is a constant in Clean-Image Backdoor. As a result, max JSD(p(x1|y) ∥ p(x0|y))
will minimize the upper bound of H(Y ′|X). Moreover, this bound is tight once the JSD is optimized.
H(C|X) → 0 when JSD is optimized, at this time C can be nearly fully determined given X . Based
on this, we induce that H(C, Y |X,Y ′) → 0, which proved the tightness of this bound when optimal.

The major goal of a clean-image backdoor is to maximize the Attack Success Rate (ASR) of the
victim model on triggered test set, denoted as follows:

max
X1,T

Ex∼p(x)1[f
∗(T (x)) = yt]
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f∗(x) = argmin
f

[
∑

(x0,y0)∈(X0,Y0)

L(f(x0), y0) +
∑

x1∈X1

L(f(x1), yt)]

where X1 and X0 denote partitioned poison dataset and benign dataset respectively, yt denotes
target class, T (·) denotes trigger function, L denotes loss function for victim model f(·). Let us
try to solve this problem using C-InfoGAN. Let T (x) = G(x, c = 1), X1 = {x ∈ X|s(x) ≥ 0},
X0 = {x ∈ X|s(x) < 0} We can consider this optimization problem in two steps:

1. optimize X1: As discussed in Proposition 2, the problem of optimizing classification performance
of Clean-Image Backdoor in image classification minH(Y ′|X) can be transformed into divergence
format max JSD(p(x1|y) ∥ p(x0|y)). This JS divergence can be exactly optimized by InfoGAN
according to Corollary 1. As a result, we proved GCB to be effectively learned by the victim model
from the perspective of Information Theory.

2. optimize T : The main goal of optimizing T is to make T (x) similar to X1 to effectively activate
the implanted backdoor. Meanwhile, T (x) should preserve original semantic class information y, so
the optimization problem could be rewrite as:

min
T

JSD(p(T (x)|y) ∥ p(x1|y))

Here according to our definition of T (·), p(T (x)|y) can be computed as:
p(T (x)|y) = p(G(x, c = 1)|y) = p(x̂1|y)

Then according to Corollary 1. JSD(p(x̂1|y) ∥ p(x1|y)) would be minimized if C-InfoGAN con-
verges. As a result, T (·) also reaches its optimality.

B HYPERPARAMETER SETTINGS

B.1 C-INFOGAN SETTINGS

In our model, the ground-truth label y is combined with the poison condition c, and integrated into the
image feature map through cross-attention mechanisms (Vaswani et al., 2017) at each convolutional
layer in the UNet structure. For all experiments, we apply batch normalization after most layers
and set the random seed to 42 to ensure reproducible results. The temperature of the Gumbel
Softmax (Jang et al., 2016) is set at 0.5. The batch size for all experiments is 256, with a weight
decay of 1e-5. We use the Adam optimizer with betas of 0.5 and 0.999 for training for 100 epochs on
each dataset. Both the generator and discriminator steps are set to 1. The gradient penalty weight
for the Wasserstein GAN is consistently set at 10, adhering to the original setting in the Wasserstein
GAN (Arjovsky et al., 2017). Following InfoGAN (Chen et al., 2016), we identified that certain
parameters, such as the learning rate and information loss weight, are crucial for convergence. The
hyperparameters for the learning rate and information loss weight for different structures are presented
in Table 7. It is important to note that the provided hyperparameters are not the only set that can
achieve convergence, but they demonstrate how to produce the results in this paper. All models are
trained on Nvidia A100 for no more than 2 hours to get converged.

Table 7: Important hyperparameters setting in our experiment.

Dataset lr G lr D λ

MNIST 5e-4 1e-4 0.5
CIFAR-10 4e-5 4e-5 0.25
CIFAR-100 4e-4 2e-4 0.25
GTSRB 4e-5 4e-5 0.25
ColorCIFAR10 4e-5 4e-5 0.25
CelebA 4e-4 4e-4 0.1
VOC2012 4e-4 4e-4 0.1

B.2 VICTIM MODEL SETTING

Unless specified, we use PreActResNet18 as default victim model, 0.01 as default poison rate. For
training victim model, SGD with momentum of 0.9 is used under batch size of 128 and weight
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decay of 0.0005. A cosine learning rate scheduler with an initial learning rate of 0.01 is also used
for stable convergence. For CIFAR-10 and CIFAR-100, we use 100 epoch as default setting. For
simpler datasets like MNIST or GTSRB, we use 20 and 50 as default epochs for quicker testing. All
experiments on GCB are carried out in an all-to-one fashion.

C ADDITIONAL EVALUATIONS

C.1 FLIP EVALUATION

FLIP Experiment Setup. We carry out our experiment based on the official code of FLIP and
BackdoorBench [3]. In FLIP, the source class is set to all classes and the target class to class 0, aiming
for an all-to-one attack. Poisoned labels for all samples are generated using FLIP and then sent to
BackdoorBench for a fair comparison.

Weakness of FLIP. The major weakness of FLIP is that it is extremely sensitive to different ar-
chitectures of victim models, as shown in Table 8. FLIP and our proposed method, GCB, were
tested on different victim model architectures using CIFAR10 dataset. FLIP uses 3% poison rate
and GCB uses 1% poison rate. Since FLIP’s expert model defaults to PreActResNet34, it performs
well on similar architectures like PreActResNet18. However, FLIP fails in poisoning for all other
architectures, making it impractical in real scenarios because adversaries are unlikely to anticipate
the victim model’s structure.

Table 8: FLIP and our attack’s performance on different architectures. FLIP only works well when
victim model architecture is aligned with surrogate model architecture (e.g., PreActResNet18 in this
case). On the contrary, our model works well on all architectures.

Metrics EfficientNet-B0 PreActResNet18 ResNet18 VGG19 Vit-B-16

FLIP (3%) ACC 74.9% 91.9% 83.4% 88.6% 95.2%
ASR 3.8% 86.3% 4.9% 5.6% 3.4%

GCB (1%) ACC 73.0% 92.6% 84.3% 89.5% 94.5%
ASR 99.93% 100.0% 100.0% 100.0% 100.0%

Ablation Study of FLIP. Note that all experiments in this paper are carried out in BackdoorBench
under an all-to-one manner, so the result is slightly different from FLIP’s official result (Appendix
C.2.1 in their paper), which is tested under a one-to-one setting. We carried out an ablation study on
attack mode (one-to-one / all-to-one) and victim model (r32p / VGG19). We use the official code
from FLIP to implement all the experiments in this section. For one-to-one setting, the source class is
set to 9 and target class of 4, while for all-to-one setting, the source class is set to all except 4 and
target class of 4. We use an initial learning rate of 0.01 and 0.1 for VGG19 and r32p respectively.
Note that VGG19 is treated as a large image model in FLIP’s code so that input image is first resized
to 224 and then passed to VGG19, while we directly pass it to VGG19 with size 32 for faster training.
In FLIP’s default setting, r32p is used for training expert models, so if the victim model also uses
this or some similar architectures, the performance will be largely enhanced. As shown in Table 9,
experiments with victim model r32p are much better than that of VGG19. The result becomes even
worse when the attack mode is set to all-to-one attack, which means larger difficulty will be in this
task. Here the ASR of (1), (3), (4) are very close to that of the original paper of FLIP. To conclude,
the major reason for the inconsistency between our result and FLIP’s official result is that the main
experiments of our paper are carried out on the most difficult scenario (all-to-one and unaligned
victim model), which is not studied in their official paper’s results.

C.2 ASR VS POISON RATES

We provide the Attack Success Rate versus poison rate as an additional result, particularly for
positioning the CIBA attack on CIFAR-10 (see Fig. 13(b)). Since they do not release their code, we
can only replicate their results here rather than directly compare them in the same benchmark as other
attack methods in Fig. 3.
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Table 9: Ablation Study of FLIP. (3) is used as the baseline in their original paper. (2) (4) are used as
FLIP baseline (FLIP & FLIP-align respectively) in our paper. FLIP does not provide their model
under scenario (2).

ID Attack Mode Victim Model Performance (ours) Performance (original paper)

CA ASR CA ASR

(1) one-to-one vgg19 87.92% 52.2% 90.63% 63.0%
(2) all-to-one vgg19 88.17% 18.3% N/A N/A
(3) one-to-one r32p 89.23% 99.9% 89.87% 99.8%
(4) all-to-one r32p 89.57% 91.6% 90.14% 95.6%

(a) MNIST (b) CIFAR-10 (c) CIFAR-100 (d) GTSRB

Figure 13: ASR - poison rates for different attack methods

C.3 DIFFERENT ARCHITECTURES

We evaluated our attack’s robustness across various target model structures, including PreActRes-
Net18(He et al., 2016), EfficientNet B0(Tan and Le, 2019), VGG11(Simonyan and Zisserman, 2015),
and ViT-B-16(Dosovitskiy et al., 2020), chosen for their unique efficiencies, accuracies, and scalabil-
ity. As Table 10 shows, our attack consistently achieves high ASR across these different architectures,
implying model-agnostic traits. PreActResNet18, maintaining good CA while reaching the lowest
ASR, is chosen as the basic architecture for all other experiments.

Table 10: Clean Accuracy (CA) and Attack Success Rate (ASR) of different architectures of poison
rate 1%. Our model shows high ASR across all tested datasets and models.

Architecture PreActResNet18 VGG11 EfficientNet B0 ViT-B-16

Dataset CA ASR CA ASR CA ASR CA ASR

MNIST 98.50 100.0 98.39 100.0 98.64 100.0 98.56 100.0
CIFAR10 92.55 100.0 88.31 100.0 72.95 99.93 94.48 100.0
CIFAR100 70.14 96.70 58.56 92.97 52.86 93.76 84.12 95.26
GTSRB 95.86 95.99 93.74 96.21 85.04 91.19 98.01 95.17
Average 89.26 98.17 84.75 97.30 77.37 96.22 93.79 97.60

C.4 UNIVERSAL COMPUTER VISION TASK DETAILS

CIB Details. We carried out our multi-label experiment based on the official code of CIB (Chen
et al., 2022a). We find that CIB can be highly sensitive to various source classes. To provide a more
statistically significant result, we systematically tested each possible source class within the training
dataset, calculating both the mean and standard deviation. For CIB one-to-one setting, we considered
all label combinations with proportion of 5±1% as potential source classes.

Dataset. Image Regression: We introduce ColorCIFAR-10, derived from CIFAR-10 (Krizhevsky,
2009), with labels representing continuous features: hue, saturation, and illumination. Cyclic en-
coding is used for hue, resulting in four labels (sin hue, cos hue, saturation, illumination), each
scaled to [-1, 1] with added Gaussian noise (N (0, 0.12) and clipped to [-1, 1].Semantic Segmentation:
VOC2012 (Everingham et al., 2015) is used with a focus on samples with semantic segmentation anno-
tations, totaling 2,330 training and 583 testing images.Multi-label Binary Classification: CelebA (Liu
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et al., 2015) is utilized with five balanced and independent binary labels: Attractive, Mouth Slightly
Open, High Cheekbones, Smiling, Wavy Hair.

Architecture. In training InfoGAN, cross-attention is employed for class feature encoding in all tasks.
For Image Regression and Multi-label Binary Classification, labels are directly fed to cross-attention
without preprocessing. For Semantic Segmentation, label images are added to the UNet image
channels, bypassing cross-attention. Victim models are trained using PreActResNet18 for Image
Regression and Multi-label Binary Classification, and UNet for Semantic Segmentation. All models
undergo 100 epochs of training with SGD, an initial learning rate of 0.01, weight decay of 0.0005,
and a standard cosine scheduler.

D POISON SAMPLES DISPLAY

D.1 POISON SAMPLES IN IMAGE CLASSIFICATION

(a) selected train images (b) clean test images (c) triggered test images (d) trigger in differences

Figure 14: Sample images from MNIST, CIFAR-10, CIFAR-100, GTSRB, and ImageNet-1K. The
selected training images are unmodified, representing a subset of clean images.

As shown in Fig. 14, in our experiments, C-InfoGAN predominantly identified color as the trigger
feature for all datasets except MNIST for its irrelevance to class information. Occasionally, this color
trigger was combined with positional or global contrast features. For the MNIST dataset, where
images are grayscale and normalized, the model adapted by learning more semantic features, such as
the weight or thickness of digits, as triggers. Thus, C-InfoGAN is effective in identifying dominant
semantic features unrelated to class labels as triggers.

D.2 POISON SAMPLES IN OTHER TASKS

Analyzing the triggered features generated for each dataset reveals interesting distinctions. As shown
in Fig. 15, VOC2012 retains color features similar to image classification tasks. In contrast, CelebA,
where color might be label-relevant, learns background color as the triggered feature. Most notably,
ColorCIFAR-10 selects image borders as the trigger, attributed to the prevalence of bordered images
in the dataset. This suggests that InfoGAN can be directed to specific features by incorporating
relevant priors, thereby avoiding unwanted feature learning.
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(a) Selected Training Images

(b) Clean Testing Images

(c) Triggered Testing Images

Figure 15: Image samples from different datasets. From left to right are ColorCIFAR10, VOC2012,
CelebA respectively. The selected training images are unmodified, representing a subset of clean
images.

E ADDITIONAL DEFENSES

In this section, we compare the resilience of GCB attack to various influential attack methods on
BackdoorBench, including BadNets (Gu et al., 2019), Blended (Chen et al., 2017), SIG (Barni
et al., 2019), IA (Nguyen and Tran, 2020a), LF (Zeng et al., 2021b), SSBA (Li et al., 2021c),
WaNet (Nguyen and Tran, 2020b), BPP (Wang et al., 2022), and FLIP (Jha et al., 2024).

E.1 PREPROCESSING-BASED DEFENSE

Preprocessing-Based Defense Results on CIFAR100: We continue to utilize the baseline defense
setting from BackdoorBench, employing the same category of defenses. As shown in Table 11, our
method still achieves the highest average ASR among all tested attack methods, which shows that our
proposed GCB has universal sustainability towards preprocessing based defenses.

E.2 ADVANCED BACKDOOR DEFENSES

We evaluate the resilience of GCB attack against 14 state-of-the-art Backdoor defense strategies (Chen
et al., 2019; Tran et al., 2018; Li et al., 2021b; Huang et al., 2021; Zheng et al., 2022b; Zhao et al.,
2020; Zheng et al., 2022c; Zeng et al., 2021a; Zheng et al., 2022a; Wei et al., 2024; Zhu et al., 2024;
Chen et al., 2022b; Liu et al., 2023). These defenses are implemented using default settings from
BackdoorBench and are designed to secure models and cleanse datasets from poisoning.

Advanced Backdoor Defenses Results on CIFAR-10: Table 12 shows our method outperforms
previous attacks in 7 out of 14 defenses, with a higher average ASR. Notably, DBD is most effective
against our attack, likely due to its self-supervised learning for reclassifying suspicious labels.
However, DBD has a high computational cost and over 20% drop in benign accuracy, which makes it
impractical in real-world scenarios. For new defense methods in the past two years, we show their
results in Table 13. In these methods, four methods (I-BAU, BNP, SAU, NPD) would use clean data
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Table 11: Comparison of different attack methods against preprocessing-based defenses on CIFAR-
100.

Defense No defense ShrinkPad Compression Color Shrink Smoothing Color Shift Avg.

Attack CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR ASR

BadNets 70.7 35.6 68.7 20.3 56.3 33.5 66.2 4.0 70.2 31.7 63.6 23.0 22.5
Blended 70.9 91.5 68.5 86.3 56.2 72.0 65.5 59.7 70.5 90.1 64.2 84.5 78.5
SIG 70.4 77.7 62.8 91.3 53.5 80.9 65.6 13.7 24.1 91.5 64.3 67.3 69.0
IA 65.3 78.8 61.6 77.7 50.0 60.3 59.2 87.5 64.5 78.5 57.1 85.2 77.9
LF 70.0 38.9 68.0 36.7 55.8 54.1 66.1 3.2 69.9 37.5 63.9 33.5 33.0
SSBA 70.7 98.8 63.9 98.9 52.7 4.0 65.1 4.0 24.6 90.6 64.6 91.8 57.9
WaNet 63.7 92.7 11.7 97.6 38.7 77.4 60.8 0.1 2.0 98.3 58.5 82.9 71.3
BPP 65.0 66.1 63.5 0.6 56.7 0.1 63.6 62.7 64.6 42.5 59.2 71.1 35.4

GCB (Ours) 70.1 96.7 53.7 85.5 57.4 96.7 30.4 72.8 25.3 67.1 63.7 95.7 83.6

Table 12: Comparison of attacks against backdoor defenses on CIFAR-10 in ACC/ASR format.

Defense AC SS ABL DBD CLP MCR EP Avg. ASR

BadNets 89.1/11.7 92.7/52.5 41.0/72.5 81.5/1.7 91.5/4.5 90.5/2.0 92.8/12.7 22.5
Blended 89.9/90.5 92.8/93.3 58.6/0.0 79.2/98.7 93.1/91.6 91.4/41.7 92.5/95.6 73.1
SIG 89.7/82.7 91.8/84.5 54.3/50.1 76.0/66.3 93.1/79.0 90.9/31.8 92.1/83.6 68.3
LF 89.3/74.3 92.9/83.3 57.2/83.6 75.0/10.2 93.4/13.3 90.6/24.2 91.1/91.1 54.3
SSBA 90.0/93.6 93.1/99.0 59.8/82.6 74.0/9.2 93.2/1.1 90.8/39.3 92.2/99.9 60.7
WaNet 89.8/4.4 91.5/13.3 77.3/26.2 78.5/2.8 90.5/0.8 93.4/1.7 89.9/63.3 16.1
BPP 89.7/14.9 92.4/39.8 49.3/18.3 80.9/8.6 91.6/3.4 93.5/83.9 90.5/10.5 25.6
*FLIP 87.6/54.0 90.5/84.0 50.0/99.0 85.6/2.9 92.2/20.6 90.2/0.4 90.0/80.9 48.8

GCB 89.2/100.0 90.7/100.0 69.3/100.0 76.6/5.4 92.4/100.0 90.8/78.0 90.6/100.0 83.3

of 5%. All the attacks except FLIP are on CIFAR10 with 1% poison rate. FLIP has a 3% poison
rate for its insufficient performance. Among all these defense methods, I-BAU, SAU, and D-ST are
particularly effective in our proposed attack, while other attacks remain ineffective.

Table 13: Comparison of different advanced defense methods against attacks on CIFAR-10. * denotes
3% poison rate.

Defense I-BAU BNP SAU NPD D-BR D-ST NAB Avg. ASR

BadNets 90.9/2.4 93.2/75.1 90.6/2.2 91.1/0.9 81.3/5.0 87.2/1.7 86.3/0.3 12.5
Blended 87.0/59.5 93.8/93.0 91.2/32.2 91.5/74.2 81.0/31.8 88.6/62.0 88.8/43.8 56.6
SIG 86.4/21.2 93.7/80.6 85.8/0.8 91.3/63.6 80.4/44.2 89.1/58.5 90.1/82.1 50.1
IA 91.6/2.6 90.6/79.2 91.2/2.8 85.5/2.6 82.9/76.5 87.5/40.4 90.2/74.4 39.8
LF 90.9/68.5 93.4/86.5 91.2/13.7 90.1/52.3 81.5/70.6 87.5/6.7 88.0/79.8 54.0
SSBA 86.8/25.3 93.3/99.7 86.7/2.6 91.2/8.8 83.9/97.8 88.4/1.1 88.9/49.1 40.6
WaNet 89.6/1.4 55.5/82.4 90.9/0.6 90.9/0.9 82.7/12.5 88.3/1.7 89.9/11.7 15.9
BPP 91.6/4.2 91.4/79.6 91.6/4.4 53.0/0.0 90.2/58.6 88.9/43.5 84.5/79.4 38.5
*FLIP 90.1/0.4 92.0/85.9 91.2/0.5 90.1/0.0 77.5/40.7 87.1/3.0 79.3/70.2 28.7

GCB (Ours) 90.6/2.2 92.3/100.0 90.6/5.4 90.6/97.4 87.1/100.0 83.8/37.5 88.8/100.0 63.2

Advanced Backdoor Defenses Results on CIFAR100: As shown in Table 14, our method shows
the highest effectiveness against all the testing defenses except DBD. The ASR reaches best under
defenses like AC (Activation Clustering) and ABL (Anti-Backdoor Learning). For the other methods,
the ASR decreases a little but is still effective. This once again confirms that only self-supervised
learning-based defenses like DBD (Decoupling-based Backdoor Defense) can effectively defend
against our attack because our poisoned labels are totally unused in self-supervised learning.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 14: Comparison of different attack methods against other defenses on CIFAR-100.

Defense AC SS ABL DBD CLP EP Avg.

Attack CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR ASR

BadNets 60.4 36.5 66.6 42.2 46.7 0.8 61.0 0.2 61.8 23.5 66.7 24.2 21.2
Blended 60.2 81.7 67.7 91.1 49.9 0.0 61.5 97.3 63.0 52.0 66.8 82.7 67.5
SIG 61.0 72.1 65.8 71.3 51.4 0.0 62.4 92.2 65.9 81.3 67.8 78.3 65.9
IA 60.6 63.3 67.0 69.1 61.1 63.3 61.7 0.1 64.2 1.1 62.7 0.6 32.9
LF 60.8 35.5 66.4 45.6 61.5 4.6 60.9 0.4 69.0 29.0 66.6 47.0 27.0
SSBA 61.1 94.5 67.1 98.5 50.9 0.0 62.0 0.4 69.9 99.2 68.6 98.9 65.2
WaNet 59.9 4.5 66.7 10.0 56.8 4.7 63.3 0.2 62.2 1.2 61.8 16.0 6.1
BPP 60.3 6.2 67.1 24.8 53.2 13.5 60.5 0.2 59.4 0.2 62.8 0.1 7.5

GCB (Ours) 60.3 95.2 67.1 97.6 60.1 96.2 62.1 1.3 68.4 95.9 65.9 94.3 80.1

F COMMON CONCERNS FROM THE REVIEWERS

F.1 ADDITIONAL RESULTS ON IMAGENET-1K

To further validate the effectiveness of GCB on larger-scale datasets, we conduct experiments on
ImageNet-1K (Deng et al., 2009), which consists of 1,281,166 training images and 50,000 validation
images across 1,000 classes. All images are resized to 3× 256× 256 pixels since GANs typically
require resolutions that are powers of 2 to adapt to the network architecture. The sample selection
results of our C-InfoGAN are illustrated in Fig. 14.

Figure 16: Training visualization of C-InfoGAN on ImageNet-1K. High-quality results are achieved
within 3 epochs.

As shown in Fig. 16, GCB generates visually realistic and effective triggers within 3 epochs of
training on the ImageNet-1K training set. This effectively addresses the scalability issues commonly
associated with GANs. The primary reason for this efficiency is that our C-InfoGAN utilizes a U-Net
architecture as the generator, which takes real images as input. This allows many benign features to
be directly passed through skip connections in the U-Net. In contrast, other GANs that map random
noise to real images are generally more difficult and slower to train compared to our approach.

We further evaluate our generated trigger in a deployment attack scenario. Utilizing a pretrained
ResNet-50 as the backbone, we fine-tuned the model for 5 epochs to expedite the process. The results
presented in Table 15 demonstrate that our attack is highly effective on large-scale datasets like
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Table 15: GCB Performance on ImageNet-1K Under Various Poison Rates

Poison Rate 0.0% 0.1% 0.3% 0.5% 1.0% 3.0% 5.0%

Clean Accuracy (CA) 73.5% 73.4% 73.1% 72.8% 72.2% 71.2% 69.5%
Attack Success Rate (ASR) 0.1% 23.0% 63.0% 88.7% 97.9% 99.6% 99.9%

ImageNet-1K. With only a 1% poison rate, our attack achieves an ASR of 97.9% while incurring only
a 1.3% drop in CA. These findings validate the strong scalability and effectiveness of our method.

G ADDITIONAL EXPERIMENTS FOR REVIEWER MA12.

G.1 ADDITIONAL ABLATION STUDY ON IRRELEVANCE

Figure 17: Metric design for irrelevancy: The
closer the Triggered Accuracy (TA) is to the Clean
Accuracy (CA), the higher the irrelevance between
the generated images and the benign features.

In this section, we provide further clarification
and empirical evidence to demonstrate the ir-
relevance between the trigger condition c and
the benign classification task y | x. Specifi-
cally, we investigate whether the introduction of
the trigger affects the classification accuracy of
clean images when predicting their ground truth
labels.

Verification of Irrelevance: To assess the irrel-
evance, we compare the classification accuracy
of clean images with that of triggered images
under the ground truth labels. Formally, we eval-
uate P (y | x) and P (y | x, c). As illustrated in
Fig. 17. Similarity between these probabilities
indicates that the trigger does not interfere with
the benign classification task, thereby satisfying
the irrelevance condition.

Experimental Design:

1. Clean Accuracy (CA): Measures the accuracy of classifying clean images x to their ground
truth labels y, denoted as P (y | x, c = 0).

2. Triggered Accuracy (TA): Measures the accuracy of classifying triggered images x′ to
their ground truth labels y, denoted as P (y | x, c = 1).

We conducted experiments by adding triggers to all images in both the training and testing datasets
while preserving the original labels. Models with the same architecture as those used in the benign
setting were trained, and each experiment was replicated five times to ensure statistical significance.

Table 16: Classification Accuracy on CIFAR-10 and CIFAR-100 Datasets
CIFAR-10 (Mean ± Std) CIFAR-100 (Mean ± Std)

CA 93.9%± 0.3% 71.0%± 0.2%
TA without LC 14.3%± 8.7% 3.8%± 2.5%
TA (Our Method) 91.2%± 1.6% 67.4%± 1.1%

The results, presented in Table 16, indicate that without label conditioning (LC), the triggered accu-
racy (TA) significantly decreases, suggesting that the trigger interferes with the benign classification
task and violates the irrelevance condition. Conversely, with label conditioning, the TA remains
comparable to the CA, thereby confirming that our method maintains irrelevance between the trigger
and the benign task.

Upon further examination of images without Label Conditioning (LC), we observed a collapse
into patterns resembling a single class, akin to mode collapse commonly observed in Generative
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Figure 18: One example of our GCB without Label Condition (LC). All triggers collapse into one
pattern. This can still achieve a high ASR but results in a very low irrelevance score.

Adversarial Networks (GANs). This phenomenon leads to the markedly low TA observed. As
illustrated in Fig. 18, all triggered images collapse into a single pattern. Although these collapsed
patterns can still exhibit high ASR in attacks because they retain similar features to the selected
training images, their irrelevance scores are very low.

(a) CIFAR-100 (b) GTSRB (c) Tiny-ImageNet

Figure 19: Learning speed comparison of our attack method (GCB), BadNets, and clean samples on
CIFAR-100, GTSRB, and TinyImageNet datasets.

G.2 ADDITIONAL STUDY ON LEARNING SPEED

In this section, we provide an analysis of the learning speed of backdoor samples across three
additional datasets: CIFAR-100, GTSRB, and Tiny-ImageNet. Our experiments demonstrate that
backdoor samples generated using our proposed method, GCB, converge faster than those generated
by BadNets and clean features across all evaluated datasets (Fig. 19).

Figure 20: Learning curve on CIFAR-
10 without data augmentation. Bad-
Nets converges faster than GCB in
this case.

Explanation: The superior convergence speed of GCB back-
door samples can be attributed to the inherent design and
robustness of the GCB triggers. (1) GCB Triggers: Our
GCB triggers are global, predominantly color-based patterns
that are resilient to common data augmentations such as crop-
ping, rotation, and flipping. This robustness ensures that the
trigger remains effective throughout the training process, fa-
cilitating quicker learning. (2) BadNets Triggers: In contrast,
BadNets utilize a static patch typically placed in a fixed posi-
tion (e.g., the bottom-right corner of an image). Such patches
are more susceptible to disruption by data augmentations,
which can alter or remove the patch, thereby hindering the
learning process and resulting in slower convergence.

Since our victim models’ training strategies all use data aug-
mentations, BadNets’ trigger would likely be affected. To
further validate this explanation, we conducted additional experiments without applying any data
augmentations. Under these conditions, BadNets’ backdoor samples converged faster than those of
GCB, as depicted in Fig. 20. This observation supports our hypothesis that the robustness of GCB
triggers to data augmentations is a key factor contributing to their faster convergence in augmented
settings.
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H ADDITIONAL EXPERIMENTS FOR REVIEWER MLTR.

H.1 ANALYSIS OF GCB

Our experimental results demonstrate that GCB achieves excellent attack performance, evidenced by
high Clean Accuracy (CA) and Attack Success Rates (ASR) (see Figures 3, 4, and 5). Additionally,
GCB exhibits robustness and resilience against defenses, as shown in Table 5 and Figures 7, 8, 9, and
10.

Achieving both high ASR and robustness is particularly intriguing because, typically, attacks that
converge quickly and attain high ASR are more easily detected by simple defense methods. The
primary reason for GCB’s effectiveness in both metrics is that it is inherently an asymmetric backdoor
attack. During the poisoning stage, the images of poisoned samples contain relatively weak trigger
information, which makes training-stage defenses less effective. In contrast, during the inference
stage, the generated triggered images carry very strong trigger information, resulting in a high ASR.

We provide a visualization of this phenomenon in Figure 21, which illustrates how we select samples
to poison and add triggers in the two stages from the perspective of the latent space.

Figure 21: UMAP visualization of the latent space for three classes in CIFAR-10. Left: Poisoning
Stage—We select samples with unique features to poison; these samples are undetachable from clean
samples, making them hard to detect. Right: Inference Stage—We use a trigger function to map
benign images into the poisoned boundary to trigger the backdoor. Triggered images are mapped to a
small area within the poisoned boundary, making them far from benign images and resulting in a
high ASR.

In the poisoning stage, we use a score function to evaluate all samples and select those with the
highest scores for poisoning. These selected images carry varying degrees of trigger information
(depending on their scores), resulting in a gradual change in trigger information. This gradual change
makes the poisoned samples undetachable from benign samples, making them harder to detect (Qi
et al., 2022). This characteristic ensures robustness against common defenses.

During the inference stage, we apply a trigger function to generate triggers. The generated triggers
follow a slightly different distribution from the selected samples in the poisoning stage. They are
significantly distant from benign samples in the latent space, which increases the likelihood of
activating the backdoor and causing misclassification to the target label.

This inherent asymmetric design of triggers in our GCB attack enables it to maintain both high ASR
and robustness simultaneously.

H.2 DEFENSES BASED ON QUICK BACKDOOR LEARNING

H.2.1 ABL

In our original paper, we evaluated GCB against the ABL defense, as shown in Tables 12 and 14.
The results indicate that GCB fully evades ABL, achieving ASR of 100% and 96.2% on CIFAR-10
and CIFAR-100, respectively. This seems to contradict the finding in Fig. 4 that our attack converges
very quickly.
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However, upon detailed examination, we found the reason for this apparent contradiction. We plotted
the full training and testing CA and ASR curves to validate our findings, as shown in Fig. 22. The
test ASR converges to 100% within 3 epochs, but the training ASR remains very low and increases
gradually during training. This means that while the test ASR converges rapidly, the training ASR
converges slowly—even slower than benign features. Since defenses like ABL only examine the
training set, they are ineffective against our attack.

Figure 22: Training and testing CA/ASR curves for GCB. The test ASR converges rapidly, while the
training ASR increases slowly.

H.2.2 FT-SAM

The scenario in FT-SAM differs from that of ABL. Under the fine-tuning technique proposed by
FT-SAM, our attack fails on all datasets. The primary reason is that FT-SAM assumes the defender
has access to 5% of clean training data. The selected poisoned samples are likely to be included in
this clean training data and are effectively unlearned during fine-tuning. The results are summarized
in Table 17.

Table 17: Effectiveness of FT-SAM defense against GCB attack on various datasets.
CIFAR-10 CIFAR-100 GTSRB Tiny-ImageNet

CA (%) 92.7 67.6 97.9 51.6
ASR (%) 1.8 16.5 6.8 0.3

We also evaluated our attack against six advanced defenses proposed in the last two years (2023–
2024). The results in Table 18 show that three out of four clean-data-based defenses successfully
defend against our attack, while all poison-data-based defenses failed. This indicates that our attack
is vulnerable to defenses that leverage clean data, especially when the clean data contains the features
selected by the adversary.

I ADDITIONAL EXPERIMENTS FOR REVIEWER WKUK.

I.1 ANOMALY DETECTION MITIGATION

In this section, we evaluate the robustness of our proposed method against defenses that rely on
detecting abnormal samples. Specifically, we employ Uniform Manifold Approximation and Projec-
tion (UMAP) to visualize the distribution of intermediate features in the victim model, a standard
approach in backdoor detection research (Qi et al., 2022; Wu et al., 2022).

We investigate two key aspects:

I.1.1 DETECTABILITY OF POISONED TRAINING SAMPLES

We assess whether poisoned training samples can be detected as outliers when compared to clean
samples. By visualizing the feature distributions of poisoned and clean samples using UMAP, we
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find that the poisoned samples generated by our method exhibit a distribution highly consistent with
that of clean images. As shown in Figure 23, the poisoned samples are indistinguishable from clean
samples in the feature space of the victim model.

The primary reason for this indistinguishability is that our GAN-based trigger generator produces
poisoned samples that carry subtle and natural-looking modifications. These modifications result
in poisoned features that are in-distribution, making them difficult to separate using UMAP. This
characteristic outperforms existing backdoor methods in evading detection. Similar observations
have been reported in previous studies (Qi et al., 2022).

I.1.2 DETECTABILITY OF TRIGGERED TEST SAMPLES

We also evaluate whether triggered test samples can be detected as outliers during inference. By
applying our GAN-based triggers to test samples and analyzing their feature distributions across
various neural network layers, we observe that the triggered samples align closely with the distribution
of clean images. Figure 23 illustrates that the triggered test samples are embedded in the same
manifold as clean samples at different layers of the network.

The GAN framework ensures that the triggers mimic the real image distribution, effectively evading
anomaly detection methods that rely on distributional differences. The triggered test samples exhibit
similar distributions to poisoned training samples across all examined layers, making simple outlier
detection infeasible in such cases.

(a) No Poison (b) BadNets (c) Blend (d) Input-Aware (e) Low-Frequency

(f) SSBA (g) WaNet (h) FLIP (i) GCB (Ours)

Figure 23: UMAP Visualization of different backdoor attack methods in the CIFAR-10 dataset.

I.1.3 IMPACT OF NETWORK LAYERS ON UMAP VISUALIZATION

We further explore the impact of different network layers on the UMAP visualization of our method.
As shown in Figure 24, we visualize the feature distributions at various layers (e.g., Layer1, Layer2,
Layer3, Layer4) of the PreActResNet-18 model. In all cases, both poisoned training samples and
triggered test samples exhibit in-distribution properties similar to clean samples. This consistent
behavior across layers reinforces the challenge of detecting our method using simple outlier detection
techniques.

(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Figure 24: UMAP Visualization of different layers on PreActResNet in GCB.
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J ADDITIONAL EXPERIMENTS FOR REVIEWER XAJA.

J.1 EVALUATION ON RECENT DEFENSES

J.1.1 ADVANCED BACKDOOR DEFENSES IN THE LAST TWO YEARS

We have incorporated six more recent backdoor defenses (in recent 2 years) into our evaluation:

• NAB (Non-Adversarial Backdoor) (Liu et al., 2023)

• NPD (Neural Polarizer Defense) (Zhu et al., 2024)

• SAU (Shared Adversarial Unlearning) (Wei et al., 2024)

• ASD (Adaptively Splitting Dataset-Based Defense) (Gao et al., 2023)

• RNP (Reconstructive Neuron Pruning for Backdoor Defense) (Li et al., 2023)

• FT-SAM (Fine-Tuning with Sharpness-Aware Minimization) (Zhu et al., 2023)

We have compiled the results of our attack against these defenses. As shown in Table 18, our attack
can withstand all the poison-data-based defenses (NAB and ASD) and one clean-data-based defense
(NPD). However, the other three methods (SAU, RNP, and FT-SAM) effectively defend against our
attack.

Table 18: Performance of different attack methods against recent backdoor defenses on CIFAR-10.
CA: Clean Accuracy (%), ASR: Attack Success Rate (%). * denotes use extra 5% clean data.

Defense → NAB NPD * SAU * ASD RNP * FT-SAM * Avg.

Attack ↓ CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR ASR

BadNet 86.3 0.3 91.1 0.9 90.6 2.2 92.0 2.1 58.5 0.0 92.8 1.7 1.2
Blended 88.8 43.8 91.5 74.2 91.2 32.2 93.0 5.3 78.5 81.9 93.2 51.8 48.2
SIG 90.1 82.1 91.3 63.6 85.8 0.8 92.2 99.5 70.5 3.1 92.9 49.5 49.8
IA 90.2 74.4 85.5 2.6 91.2 2.8 92.3 19.8 67.6 5.0 93.4 5.4 18.3
SSBA 88.9 49.1 91.2 8.8 86.7 2.6 93.3 7.1 93.4 99.7 92.8 60.3 37.9
WaNet 89.9 11.7 90.9 0.9 90.9 0.6 91.7 8.8 77.8 17.0 93.5 0.9 6.7
BPP 84.5 79.4 53.0 0.0 91.6 4.4 92.5 99.4 81.7 6.9 93.7 49.0 39.9
FLIP 79.3 70.2 90.1 0.0 91.2 0.5 86.9 62.2 80.8 0.0 93.0 0.5 22.2

GCB (Ours) 88.8 100.0 90.6 97.4 90.6 5.4 90.9 100.0 73.2 6.7 92.7 1.8 51.9

We also conducted additional experiments on three other datasets: CIFAR-100, GTSRB, and TinyIm-
ageNet. The results are summarized in Table 19. The results on other datasets are similar to those on
CIFAR-10, indicating that our method is vulnerable to advanced clean-data-based defenses such as
SAU, RNP, and FT-SAM.

Table 19: Performance of our attack against recent backdoor defenses on different datasets. CA:
Clean Accuracy (%), ASR: Attack Success Rate (%). * denotes use extra 5% clean data.

Defese → NAB NPD * SAU * ASD RNP * FT-SAM * Avg.

Dataset ↓ CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR ASR

CIFAR-10 88.8 100.0 90.6 97.4 90.6 5.4 90.9 100.0 73.2 6.7 92.7 1.8 51.9
CIFAR-100 58.9 82.4 62.0 42.1 65.8 12.2 66.4 76.0 60.8 0.0 67.6 16.5 38.2
GTSRB 62.5 94.7 97.2 58.8 96.0 4.0 96.1 88.1 94.6 2.5 97.9 6.8 42.5
TinyImageNet 52.1 80.4 42.2 37.2 51.0 3.8 51.1 82.8 42.6 1.6 51.6 0.3 34.4

J.1.2 ADVANCED LABEL-NOISE TRAINING APPROACHES

We conducted experiments on two advanced label-noise training approaches: DivideMix (Li et al.,
2020a) and MentorMix (Jiang et al., 2020). The results, presented in Table 20, show that they are
both ineffective against our attack.
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Table 20: Performance of our attack against label-noise training approaches. CA: Clean Accuracy
(%), ASR: Attack Success Rate (%).

DivideMix MentorMix

Metrics CA ASR CA ASR

CIFAR-10 92.1 100.0 89.9 100.0
CIFAR-100 73.4 86.7 69.0 92.7

After a deeper examination, we plotted the clean accuracy (CA) and attack success rate (ASR) over
epochs and found that the backdoor is already learned during the warmup epochs (see Figure 25).
Both DivideMix and MentorMix use a warmup phase to build an initial weak model, causing them to
become infected from the beginning.

Figure 25: Clean accuracy (CA) and attack success rate (ASR) over epochs for DivideMix and
MentorMix.

This significant difference arises from the fundamental distinction between noise and poisoned
images. Noise samples are typically classified with very low confidence, whereas poisoned samples
are classified with very high confidence. This renders methodologies designed to handle noise
ineffective against poisoned data, even when the poison is clean-image-based. This is because clean-
image backdoor attacks maliciously select certain images to relabel, while label noise is randomly
selected. Consequently, malicious knowledge is introduced into the model from the outset.

J.2 CLIP-BASED RELABELING MITIGATION

We also attempted to use CLIP as a relabeler to mitigate clean-image backdoor attacks. However,
CLIP may not be sufficiently accurate on some datasets for label cleaning. For example, a pretrained
CLIP ViT-B/16 model achieves only 50.6% zero-shot classification accuracy on GTSRB, whereas
the standard classification accuracy on this dataset exceeds 97%. Forcibly relabeling all images can
incorrectly relabel many correctly labeled images, leading to a significant drop in clean accuracy.

To validate this, we used CLIP with the ViT-B/16 architecture as the zero-shot classifier to assign
new labels to all images. We then fine-tuned the victim model on the images with the new labels for
10 epochs using SGD. The results are summarized in Table 21.

The results show that CLIP-based relabeling mitigation is very effective in reducing ASR. However,
this comes at the cost of a significant drop in clean accuracy, especially on datasets where CLIP
does not perform well (e.g., GTSRB). The clean accuracy on GTSRB drops from 97.8% to 56.6% (a
41.2% decrease), rendering the model practically unusable.

We believe that vision-language models like CLIP have significant potential as tools for backdoor
mitigation. However, simple relabeling with CLIP does not work well, and specific designs and
methodologies are needed to make it effective.
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Table 21: Performance of CLIP-based relabeling mitigation. “Original” refers to the model trained
without relabeling. “Relabel” refers to the model trained after CLIP-based relabeling. “Drop”
indicates the decreases in performance metrics. CA: Clean Accuracy (%), ASR: Attack Success Rate
(%). CLIP-based relabeling will cause a large drop in CA.

Original Relabel Drop

Dataset CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%)

CIFAR-10 93.9 100.0 91.0 9.4 3.0 90.6
CIFAR-100 71.0 96.7 59.9 3.1 11.1 93.6
GTSRB 97.8 96.0 56.6 6.5 41.2 89.5

CLIP’s Accuracy 89.8 58.2 50.6

J.3 HYPERPARAMETER SENSITIVITY

To validate the hyperparameter sensitivity of our method, we conducted experiments on two key
parameters: the learning rate and the weight factor of the information loss λ. These two terms
are also considered crucial in the original InfoGAN paper (Chen et al., 2016). We evaluated the
training outcomes based on three aspects: (1) ASR, (2) visualization of triggered test images, and (3)
visualization of selected training images.

(a) Effect of Learning Rate We tested five different learning rates: 1× 10−5, 3× 10−5, 1× 10−4,
3 × 10−4, and 1 × 10−3. We found that the ASR remained high (over 90%) across all learning
rates. However, when the learning rate was very low or very high (1× 10−5 or 1× 10−3), strong
artifacts were observed in the triggered test images, making these samples easier to detect at test time.
Interestingly, we also found that different learning rates sometimes converged to different trigger
patterns. At a learning rate of 3× 10−4, the trigger became a frame around the image, while other
learning rates resulted in triggers with special colors. This finding—that different learning rates result
in different patterns—was also observed in the original InfoGAN (Chen et al., 2016).

Figure 26: Effect of learning rate on the trigger patterns and artifacts in the generated images. Each
column corresponds to a different learning rate.

(b) Effect of Weight Factor λ We tested five values for the weight of the information loss λ: 0.05,
0.1, 0.25, 0.5, and 1.0. We observed that the ASR dropped significantly at lower weights (0.05 and
0.1). This is because when the weight is very small, the network focuses less on identifying whether
an image contains a trigger, making the trigger pattern less prominent and harder to learn. Conversely,
when the weight is very high, the discriminator focuses too much on identifying whether an image
has a trigger, neglecting the realism of the generated images. This results in images with noticeable
artifacts and a large distribution gap between real and fake images.

In conclusion, both the learning rate and the weight factor λ are robust within a certain range.
However, when these parameters become too high or too low, their effects differ. The learning rate
affects the amount of artifacts in the generated images but does not significantly impact the ASR. On
the other hand, the weight factor λ has a large impact on the ASR.
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Figure 27: Effect of the information loss weight factor λ on ASR and image quality. Each column
corresponds to a different value of λ.

K LIMITATIONS

While our proposed GCB (Generated Clean-image Backdoor) attack demonstrates strong effectiveness
in the image domain, extending it to other data modalities presents certain limitations and challenges
that we acknowledge.

K.1 EXTENSION TO THE AUDIO DOMAIN

GANs have been successfully applied to continuous data types like audio. We believe that our GCB
attack can be adapted to the audio domain by redefining the generator and discriminator architectures
to process temporal data—for instance, by replacing convolutional neural networks (CNNs) with
temporal convolutional networks (TCNs) or recurrent neural networks (RNNs). This adaptation
would allow the generator to create audio signals with embedded backdoor triggers while maintaining
the naturalness of the audio. However, this process is non-trivial and requires careful handling of
the unique characteristics of audio data, such as temporal dependencies and frequency components.
Additionally, designing imperceptible yet effective triggers in the audio domain poses its own set of
challenges, including ensuring that the triggers do not distort the audio quality or become detectable
by human listeners or automated detection systems.

K.2 CHALLENGES IN TEXT AND GRAPH DOMAINS

Adapting the GCB attack to discrete data domains like text and graphs is more complex due to the
inherent discreteness of these data types and the limitations of GANs in generating discrete outputs.
In the text domain, generating coherent and semantically meaningful sentences that contain backdoor
triggers without altering the original intent or raising suspicion is particularly challenging. Similarly,
in graph data, which often represent relationships or network structures, modifying graphs to include
backdoor triggers without disrupting their fundamental properties requires sophisticated techniques.

One potential approach to address these challenges involves a two-stage process:

1. Identify Poison Domain: Examine the latent representations in language models or graph
neural networks to find label-irrelevant features that define a “poison domain.” This involves
analyzing embeddings or node features that can be manipulated without affecting the primary
task performance.

2. Design Trigger Function: Develop encoder-decoder models or use style transfer techniques
to incorporate specific features into data samples, effectively creating a trigger effect. For
text, this could involve subtle stylistic changes or synonymous substitutions; for graphs,
it might include adding or reweighting edges in a way that is imperceptible to standard
analysis.

This approach requires extensive exploration and the adaptation of representation learning techniques
suitable for discrete data. The effectiveness and stealthiness of such triggers in these domains remain
to be thoroughly investigated.
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K.3 COMPUTATIONAL AND PRACTICAL CONSIDERATIONS

Another limitation is the reliance on GANs, which are known to be challenging to train due to issues
like mode collapse and training instability. The computational resources required for training GANs,
especially on extremely large datasets or complex data modalities, may limit the practicality of the
GCB attack in real-world scenarios. Exploring alternative generative models or more efficient training
strategies could be necessary to overcome these barriers.

K.4 ETHICAL CONSIDERATIONS

Finally, we acknowledge the ethical implications of developing more advanced backdoor attacks.
While our work aims to highlight vulnerabilities to improve defense mechanisms, there is a risk that
such methods could be misused. It is imperative that research in this area is conducted responsibly,
with a focus on enhancing the security and robustness of machine learning systems rather than
exploiting them.

K.5 FUTURE WORK

Addressing these limitations offers avenues for future research. Extending the GCB framework to
other data modalities would enhance our understanding of backdoor vulnerabilities across different
types of machine learning models. Additionally, developing more robust defense strategies that can
detect and mitigate such advanced backdoor attacks remains a critical area of investigation.
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