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Abstract001

Transformer language models have driven sig-002
nificant progress across various fields, includ-003
ing natural language processing and computer004
vision. A central component of these models005
is the self-attention (SA) mechanism, which006
learns rich vector representations of tokens by007
modeling their relationships with others in a008
sequence. However, despite extensive research,009
transformers continue to suffer from training010
instability – often manifesting as spikes or di-011
vergence in the training loss during a run.012

In this work, we identify one source of this013
instability: SA’s limited ability to capture short-014
range dependencies, especially in tasks like015
language modeling, where almost every token016
heavily relies on its nearby neighbors. This017
limitation causes the pre-softmax logits of SA018
to grow rapidly, destabilizing training. To ad-019
dress this, we propose decomposing the SA020
into local (short-range) and global (long-range)021
attention heads. This decomposed attention, re-022
ferred to as Long Short-attention (LS-attention),023
mitigates logit explosion and results in more024
stable training compared to an equivalent multi-025
head self-attention (MHSA). Empirical com-026
parisons with two alternative training stabiliza-027
tion methods show that LS-attention reduces028
the validation perplexity to nearly 2/5 of that029
achieved by one method and reaches a similar030
perplexity as the other method using only 1/20031
of the GPU hours. Additionally, our experi-032
ments demonstrate that LS-attention reduces033
inference latency by up to 36% compared to034
a state-of-the-art implementation of equivalent035
MHSA.036

1 Introduction037

Transformer language models have become the back-038
bone of modern machine learning systems, achieving039
remarkable success across diverse domains such as nat-040
ural language processing (Vaswani et al., 2017; Devlin041
et al., 2019; Radford et al., 2018, 2019), computer vi-042
sion (Chen et al., 2020; Yu et al., 2022; Pippi et al.,043
2025; Chang et al., 2022), and speech (Baevski et al.,044
2020; Hsu et al., 2021; Ao et al., 2022; Gulati et al.,045
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(a) Plot of training loss over training steps.
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(b) Plot of maximum absolute pre-softmax logit from atten-
tion operations over training steps.

Figure 1: Mitigation of training instability and logit ex-
plosion using LS-attention. The upper plots show that
the training loss of an autoregressive transformer model
with Flash-attention begins to diverge after some train-
ing steps, whereas the same model with LS-attention
remains stable. The bottom plots compare the maxi-
mum absolute pre-softmax logits of vanilla MHSA and
LS-attention during training. LS-attention prevents logit
explosion by reducing the maximum logit magnitude to
less than one-twentieth that of vanilla MHSA.

2020). These models have enabled state-of-the-art re- 046
sults in applications like machine translation, document 047
summarization, code generation, image captioning, and 048
multimodal reasoning. Their scalability and adaptability 049
have made them the default choice for both academic 050
research and industry-scale deployments. From BERT 051
(Devlin et al., 2019) and GPT (Radford et al., 2018) to 052
recent large-scale models, transformer language mod- 053
els have demonstrated exceptional abilities to model 054
complex data distributions, generalize across tasks, and 055
benefit from massive pretraining on unlabeled data. 056

Despite their success, transformer language mod- 057
els often exhibit training instability, particularly dur- 058
ing large-scale pretraining or when processing long 059
sequences (Molybog et al., 2023; Chowdhery et al., 060
2023; Li et al., 2022; Wortsman et al., 2024; Zhai et al., 061
2023; Dehghani et al., 2023; Nishida et al., 2024; Wang 062
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et al., 2025; Kedia et al., 2024). This instability typi-063
cally manifests as spikes or divergence in the training064
loss. Several explanations and solutions for this train-065
ing instability have been proposed in the literature. For066
instance, Liu et al. (2020) attribute instability to the067
amplification of small parameter perturbations due to re-068
liance on the residual branch. Others, such as Molybog069
et al. (2023), implicate the Adam optimizer (Kingma070
and Ba, 2015) as a contributing factor. The use of long071
sequences during training has also been linked to insta-072
bility, prompting strategies like progressive sequence073
length increase (Li et al., 2022, 2021) during training.074
Several studies (Wortsman et al., 2024; Zhai et al., 2023;075
Dehghani et al., 2023; Kedia et al., 2024) associate the076
issue with logit explosion and propose normalization077
techniques (e.g., QK-norm Henry et al. (2020)) to sta-078
bilize training, though the root cause of the explosion079
remains unclear. Nishida et al. (2024) identify norm080
imbalance among parameters as a source of instability081
and introduce reparameterization methods to address it.082
Additional techniques such as learning rate warm-up,083
weight decay, and µParam (Yang et al., 2022) have also084
been explored. However, a clear understanding of the085
underlying causes – particularly those stemming from086
the behavior of the attention mechanism – and their087
effective mitigation remains an active area of research.088

Cause of Instability: Although several studies (e.g.,089
Wortsman et al. (2024); Zhai et al. (2023); Dehghani090
et al. (2023); Kedia et al. (2024)) have identified the ex-091
plosion of pre-softmax logits in SA as a key contributor092
to training instability, the underlying cause of this phe-093
nomenon remains largely unexplained. In this work, we094
attribute the logit explosion to SA’s limited capacity to095
model local or short-range dependencies – especially in096
tasks such as natural language processing, where almost097
every token typically relies heavily on its neighboring098
tokens. To elaborate, let X = [x0, . . . ,xn−1]

T ∈ Rn×d099
represents a sequence of n input tokens. The self-100
attention mechanism transforms X into new representa-101
tions Y = [y0, . . . ,yn−1]

T ∈ Rn×d, computed as:102

Y = PXWv,103

where Wv ∈ Rd×d is a trainable weight matrix, and104
P ∈ Rn×n is the attention matrix encoding the token105
dependencies. Each row of P is a probability distribu-106
tion, where a high P[i, j] implies that the representation107
yi strongly incorporates information from xj . The at-108
tention matrix is computed via: P = softmax(S) =109
softmax(QKT ) = softmax(XWQW

T
KXT )1, where110

Q,K ∈ Rn×d are the query and key matrices, respec-111
tively, and S ∈ Rn×n contains the pre-softmax logits.112
To model arbitrary dependencies between n tokens, the113
attention matrix P ideally requires O(n2) degrees of114
freedom. However, because P is derived from the prod-115
uct of two n×d matrices, its degree of freedom remains116

1Without loss of generality, we ingore the logit scaling
factor for simplicity.

bounded above by nd. When n ≫ d, this becomes a 117
significant bottleneck. In tasks where all tokens depends 118
on a small set of “keyword” tokens, the attention matrix 119
becomes low-rank. However, in tasks requiring dense 120
local dependencies – where nearly every token depends 121
on its immediate neighbors – the attention matrix must 122
be effectively high-rank. The inability of the low-rank 123
structure to approximate such high-rank patterns forces 124
the model to compensate by inflating the logits S, lead- 125
ing to instability during training. 126

Our Solution: The key idea behind our approach to 127
mitigating logit explosion stems from the observation 128
that local dependencies typically span only a small 129
window around each token. As a result, they can be 130
effectively captured using O(nl) degrees of freedom, 131
where l ≪ n denotes the local window size. In contrast, 132
global attention attempts to model interactions between 133
all pairs of n tokens in the input sequence, requiring 134
the representation of O(n2) attention weights. This 135
demand often exceeds the expressive capacity of the 136
attention mechanism, since its parameterization is lim- 137
ited to O(nd) degrees of freedom. A sliding-window 138
local attention mechanism, which restricts each query 139
token’s attention span to a small neighborhood of l′ to- 140
kens (l′ ≪ n), reduces the number of attention scores 141
to be represented to O(nl′), making it more compatible 142
with the available degrees of freedom. Local attention is 143
therefore more effective than global attention for captur- 144
ing short-range dependencies. However, local attention 145
alone is insufficient for modeling long-range dependen- 146
cies, which remain essential for strong performance 147
for many tasks. To meet both needs, we propose de- 148
composing the SA into local (short-range) and global 149
(long-range) attention heads. This decomposed atten- 150
tion, referred to as LS-attention, enables transformer 151
models to effectively capture both short- and long-range 152
dependencies while reducing the risk of logit explosion 153
during training (as illustrated in Figure 1). A compari- 154
son with two alternative training stabilization methods 155
shows that LS-attention either achieves significantly 156
lower perplexity (as low as 2/5 that of one method) or 157
requires substantially fewer GPU hours (less than 1/20) 158
to reach comparable performance. 159

Efficiency of Our Solution: In addition to improving 160
training stability, LS-attention offers computational ef- 161
ficiency during both training and inference. For longer 162
sequences, the computational overhead of a transformer 163
model is dominated by the MHSA module, which uses 164
global attention heads with quadratic computational 165
complexity in the sequence length n. In contrast, a 166
local attention head with attention span l ≪ n exhibits 167
nearly linear complexity with respect to n. In practice, 168
we find that LS-attention, with only a few global atten- 169
tion heads and the remaining heads as local attention, 170
performs very well, which reduces both training and in- 171
ference time significantly. In our experiments, we found 172
LS-attention to be upto 36% more efficient during in- 173
ference compared to Flash-attention (Dao et al., 2022; 174
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Dao, 2024), the state-of-the-art efficient implementation175
of MHSA.176

Summary of Contributions: The contributions of177
this work are summarized as follows:178

• We identify a key limitation of SA: its inability to179
model dense local dependencies in long sequences180
effectively. This limitation leads to logit explosion181
during training, contributing to instability in trans-182
former models, particularly in tasks like language183
modeling.184

• We propose Long Short-attention (LS-attention),185
which decomposes MHSA into long-range and186
short-range attention heads. Through extensive ex-187
perimentation, we validate the effectiveness of LS-188
attention in mitigating logit explosion and training189
instability. Additionally, LS-attention offers im-190
proved computational efficiency on long sequences191
compared to vanilla MHSA.192

• We empirically compare LS-attention with two193
alternative training stabilization methods. One194
method converges to a poor local optimum, with195
validation perplexity nearly 2.5× higher than LS-196
attention after significant training progress. The197
other requires over 2.5× more training steps and198
more than 20× the GPU hours to achieve compa-199
rable performance.200

2 Background201

In this section, we provide a brief overview of the SA202
mechanism and introduce the notations used throughout203
this work.204

Self-Attention For an input sequence X =205
[x0, . . . ,xn−1]

T ∈ Rn×d, where n is sequence length206
and d is the embedding dimension, the SA computes an207
output sequence Y = [y0, . . . ,yn−1]

T ∈ Rn×d such208
that yi is a convex combination of the input tokens, i.e.,209

yi =

n−1∑
j=0

αijvj =

n−1∑
j=0

αijWV xj (1)210

where vj = WV xj ∈ Rdv is a value representa-211
tion of token xj and WV is a learnable projection ma-212
trix. For each i ∈ {0, . . . , n − 1}, the set of weights213
{αi0, . . . , αi(n−1)} form a probability distribution. The214
weight αij determines the component of input token xj215
in the output token yi, thus their dependency. In SA,216
the O(n2) weights {αij}ij are also learned as a pair-217
wise function of the input tokens x0, . . . ,xn−1. More218
precisely, αij is computed as219

αij =
exp

(
qT
i kj/

√
dk

)∑n−1
j′=0 exp

(
qT
i kj′/

√
dk

) (2)220

where the query and key representation of each xi221
is computed as qi = WQxi and ki = WKxi with222

WQ,WK ∈ Rdk×d being two learnable projection ma- 223
trices. 224

As stated in the introduction section, this operation 225
can be written in matrix form as: 226

Y = softmax
(
QKT /

√
dk

)
V 227

where Q,K ∈ Rn×dk and V ∈ Rn×dv are the matrices 228
of all query, key, and value vectors. 229

Causal Attention In autoregressive decoding, the task 230
is to predict the next token in a sequence given the pre- 231
ceding tokens. Formally, for an input sequence of tokens 232
{x0, . . . , xn−1}, each token xi for i = 1, . . . , n− 1 is 233
predicted based on the sequence {xj}j<i. In such tasks, 234
the attention for each query token is restricted to tokens 235
that come before it in the sequence. More precisely, 236
each yi is computed as 237

yi =
∑
j≤i

αijWV xj (3) 238

where each αij is computed as in Eq. (2). Such atten- 239
tion is called causal attention. 240

Local Attention The above attention is sometimes re- 241
ferred to as global attention, as a query token can attend 242
to another token across the full sequence (satisfying 243
other restrictions like causality). It is also referred to 244
as long-range attention because it can capture depen- 245
dencies between tokens that are far apart. In contrast, 246
local or short-range attention restricts each query token 247
to attend only to its nearby neighbors. More precisely, 248
in local attention, we compute yi as 249

yi =

r∑
j=l

αi(i+j)WV xi+j (4) 250

where each αij is computed as in Eq. (2) and l and 251
r are small values compared to n. Therefore, in local 252
attention each query token only attends to its nearby 253
token within the range {i+ l, . . . , i+ r} For two sided 254
local attention, l takes negative value and r takes a 255
positive value. Local attention can be combined with 256
causal attention by setting l to a small negative value 257
and r to 0. 258

All SAs which restrict the attention to be computed 259
to a subset S ⊆ {(i, j) : 0 ≤ i, j ≤ n− 1} of all token 260
pairs can be represented compactly by the following 261
matrix notation 262

Y = softmax
(
(QKT +MS)/

√
dk

)
V (5) 263

where MS is a mask matrix defined as MS [i, j] = 264
0 if (i, j) ∈ S and −∞ otherwise. For example, in 265
causal attention, S = {(i, j) : j ≤ i}. For local causal 266
attention with local attention span l, S = {(i, j) : 0 ≤ 267
i− j ≤ l}. 268
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Figure 2: Comparison of representing dense local dependencies by local and global attention. (a) Global attention
attempts to represent O(n2) attention scores (shown in blue) using only O(nd) degrees of freedom. (b) Local
attention focuses on O(nl′) attention scores, where l′ ≪ n, making it a better fit for the available O(nd) capacity.
(c) In a synthetic dense local dependency learning task, local attention achieves lower training loss. (d) Local
attention is more resilient to logit explosion.

Multi-Head Attention Multi-head attention extends269
the self-attention mechanism by computing multiple270
attention operations in parallel, each with its own set of271
projection matrices. Specifically, given H heads, each272
head i computes:273

Q(i) = XW
(i)
Q , K(i) = XW

(i)
K , V(i) = XW

(i)
V274

where W
(i)
Q ,W

(i)
K ∈ Rd×dk , W(i)

V ∈ Rd×dv and typi-275
cally dk = dv = d/h. Each head produces an output:276

O(i) = softmax
(
Q(i)K(i)T /

√
dk

)
V(i).277

The outputs from all heads are concatenated and pro-278
jected back to the original dimensionality:279

MHSA(X) = Concat
(
O(0), . . . ,O(H−1)

)
WO,280

where WO ∈ RHdv×d is a learnable output projec-281
tion matrix. Multi-head attention enables the model to282
jointly attend to information from different representa-283
tion subspaces at different positions, which enhances284
the model’s expressiveness.285

3 Understanding the Limitation of286

Self-Attention287

In this section, we analyze the ability of (global) self-288
attention to learn dense local dependensy. To this end,289
consider a causal next-token prediction task over se-290
quences of length n, where the prediction of the next291
token depends only on the immediately preceding l to-292
kens, with l ≪ n. Let Q = [q0, . . . ,qn−1]

T ∈ Rn×d293
and K = [k0, . . . ,kn−1]

T ∈ Rn×d be the query and294
key matrices, where qi and ki denote the query and295
key vectors for the i-th token, respectively. For this296
task, the ideal attention matrix P ∈ Rn×n would satisfy297
P[i, j] > 0 for 0 ≤ i− j ≤ l, and P[i, j] = 0 otherwise.298

When attempting to learn this dependency pattern299
using causal (global) attention, the model aims to ap-300
proximate a matrix P′ such that P′[i, j] = P[i, j] for301

i − j ≥ 0, and treats P′[i, j] as a “don’t care” term 302
for i − j < 0 (since these terms are masked in causal 303
attention). An illustration of such an attention pattern is 304
shown in Figure 2a, where n = 6 and l = 2; red entries 305
represent masked (don’t care) terms. Importantly, P′ 306
is a matrix of rank n, which grows linearly with the 307
sequence length. As a result, it is difficult to find a low- 308
rank parameterization that accurately captures this struc- 309
ture. During training, the attention mechanism attempts 310
to replicate P′ using softmax((QKT +MS)/

√
dk), but 311

doing so requires representing O(n2) non-masked en- 312
tries in P′ using only O(nd) degrees of freedom from 313
QKT . This mismatch becomes a critical bottleneck in 314
settings where n ≫ d, leading to logit explosion and 315
training instability. 316

A sliding window local attention does not suffer from 317
the same limitations when capturing such local depen- 318
dencies. It attempts to reconstruct the ideal attention 319
matrix P only for the subset of entries {(i, j) : 0 ≤ 320
i− j ≤ l′}, where the local attention span l′ ≪ n and 321
is on the same order as l. An example of an attention 322
pattern learned by a sliding window local attention is 323
shown in Figure 2b. In this case, the attention mecha- 324
nism needs to learn only O(nl′) entries, which is sig- 325
nificantly smaller than O(n2) for global attention. As a 326
result, local attention is better suited for learning dense 327
local dependencies compared to global attention. 328

3.1 Validation through a Synthetic Task 329

Our synthetic task is designed to evaluate the represen- 330
tational power of the softmax operation, i.e., in cap- 331
turing local dependencies when Q and K are allowed 332
to freely take any values. The goal is to predict the 333
output O = [o0, . . . ,on−1]

T ∈ Rn×d of a sequence 334
given the input V = [v0, . . . ,vn−1]

T ∈ Rn×d, such 335
that O satisfies O = PV for a predefined attention ma- 336
trix P ∈ Rn×n. The matrix P is constructed to encode 337
dense local dependencies, typically as a banded matrix 338
where only entries within a fixed window l around the di- 339
agonal can be non-zero. Therefore, predicting O from V 340
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using an attention mechanism effectively requires learn-341
ing Q and K such that P ≈ softmax((QKT +MS)) is342
satisfied, where MS denotes the appropriate masking343
matrix for global and local attention.344

To that end, we generated a 2500 × 2500 attention345
matrix P such that346

P [i, j] =

{
pij , if 0 < i− j ≤ 50
0, otherwise347

where each pij is independently drawn from a Bernoulli348
distribution with probability 0.5. The matrix P is then349
row-normalized to ensure it represents a valid atten-350
tion distribution. We set V to be the identity matrix351
of size 2500× 2500, so that each oi can be expressed352
as a unique linear combination of the vjs. This setup353
guarantees the uniqueness of P in the relation O = PV.354

We trained both global and local attention operations355
for 100K steps using the Adam optimizer, with the356
key/query dimensionality dk set to 25. For the local357
attention, we used a sliding window of span 50. The358
training losses for both models are shown in Figure 2c.359
As illustrated, local attention leads to faster convergence360
and achieves significantly lower training loss compared361
to global attention after 100K steps, indicating its su-362
perior ability to model dense local dependencies. Ad-363
ditionally, we tracked the maximum pre-softmax logit364
value (i.e., ||QKT ||∞) throughout training for both at-365
tention types, which is shown in Figure 2d. The figure366
reveals that while the logit values increase for both cases367
as training progresses, they rise much more sharply for368
global attention, indicating its higher susceptibility to369
the logit explosion problem when attempting to model370
local dependencies.371

4 Long-Short Attention: Proposed372

Solution373

As argued in the previous section, local attention mecha-374
nisms are more effective than global attention in model-375
ing dense local dependencies. However, local attention376
cannot capture long-range dependencies. To address377
this limitation, our approach combines both local and378
global attention mechanisms to jointly model short- and379
long-range dependencies. We rely on the assumption380
that the overall attention matrix P can be approximately381
decomposed as382

P ≈ PS0 + · · ·+ PSHs−1 + PL0 + · · ·+ PLHl−1

where each PSi
captures local dependencies within a383

small attention span p ≪ n, and each PLj
captures long-384

range dependencies and is assumed to be low-rank. This385
assumption is motivated by the observation that, in many386
applications, only a small number of “keyword” tokens387
receive attention in long-range interactions, resulting in388
low-rank attention patterns.389

Given such a decomposition, the attention output can390
be approximated as:391

Y = PV ≈
Hs−1∑
i=0

PSiV+

Hl−1∑
i=0

PLiV 392

≈
Hs−1∑
i=0

softmax
((

QSiK
T
Si

+Ms

)
/
√

dk
)
V 393

+

Hl−1∑
i=0

softmax
((

QLiK
T
Li

+Ml

)
/
√

dk
)
V 394

where Ms and Ml are the attention masks for short- 395
range and long-range attention, respectively. In prac- 396
tice, we implement this combined mechanism using 397
a (s + l)-head attention module, referred to as Long 398
Short-attention (LS-attention), with s short-range (lo- 399
cal) attention heads and l long-range (global) attention 400
heads. Therefore, the output of LS-attention is given 401
by: 402

LS-attn(X) = Concat(O(0), . . . ,O(H−1))WO 403

such that 404

O(i) = softmax
(
(Q(i)K(i)T +M(i))/

√
dk

)
V(i) 405

= softmax
(
(XW

(i)
Q W

(i)
K

T
XT +M(i))/

√
dk

)
XW

(i)
V 406

where H = s+ l and M(i) is the attention mask matrix 407
for the i-th attention, and set to local attention mask for 408
the first s heads and to the global attention mask for 409
the last l heads. In practice, we do not implement the 410
LS-attention using the above parallel form. Rather, we 411
use the efficient SA implementation of (Dao et al., 2022; 412
Dao, 2024; Shah et al., 2024). 413

Runtime and Memory Requirements 414

A global attention head requires O(n2dk) FLOPs. In 415
contrast, a local attention head with an attention span 416
of p requires only O(npdk) FLOPs. Therefore, an LS- 417
attention module with s local heads and l global heads 418
requires approximately O(n(sp+ nl)dk) ≈ O(n2ldk) 419
FLOPs, assuming p ≪ n. In comparison, a vanilla 420
(s+ l)-head attention requires O((s+ l)n2dk) FLOPs, 421
which is roughly (s+ l)/l times more than LS-attention. 422

During inference in a transformer model with auto- 423
regressive generation, the KV-cache (Pope et al., 2023; 424
Zhang et al., 2023) is used to store the key and value vec- 425
tors of previous tokens to compute the attention scores 426
for the future queries in the MHSA operation. The 427
size of the KV-cache for a global attention head grows 428
linearly with sequence length. In contrast, it remains 429
nearly constant for a local attention head. Therefore, if 430
the total number of attention heads remains the same, 431
LS-attention reduces the KV-cache size by a factor of 432
approximately (s + l)/l compared to MHSA during 433
long-sequence generation. 434

5 Experimental Results and Analysis 435

This section investigates the relationship between se- 436
quence length and the training instability of transformer 437
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Figure 3: Training instability and logit explosion in Flash-attention at longer sequence lengths.
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Figure 4: Mitigation of logit explotion and training instability using LS-attention.

models on a natural language modeling task, where local438
dependencies are typically dense. We also empirically439
validate the effectiveness of the proposed LS-attention440
in mitigating logit explosion and training instability. LS-441
attention is compared with two alternative methods for442
stabilizing transformer training. Finally, we compare443
the inference time of LS-attention with that of a state-444
of-the-art implementation of vanilla MHSA and provide445
an ablation study.446

5.1 Experimental Setup447

Model Architecture For experimental validation, we448
used a small-scale model with around 6.5M parameters.449
Our architecture is based on a GPT-2-style decoder,450
trained with an autoregressive loss. We set the number451
of layers to 6 and the embedding dimension d to 192.452
By default, the number of attention heads H was set to453
6, and the inner dimension of the feedforward (FFN)454
layer, denoted by dffn, was set to 4d = 768. In some455
experiments, we reduced the number of attention heads456
while keeping the per-head dimension fixed at d/H =457
32. To maintain a similar number of parameters in these458
cases, we increased dffn accordingly (following Shazeer459
(2019); Ainslie et al. (2023)). As the baseline attention,460
we used the CUDA implementation of Flash-attention,461
specifically the FlashAttention2 implementation from462
Dao (2024).463

Hyperparameters of LS-Attention In experiments464
with LS-attention, we replaced the MHSA module with465

our proposed LS-attention. For an H-head LS-attention 466
configuration, one head was allocated for global (long- 467
range) attention, while the remaining H − 1 heads were 468
used for local (short-range) attention. The attention span 469
for each local head was fixed at 50 for sequence lengths 470
n ≤ 2048 and 100 for longer sequences. 471

Optimization Hyperparameters We trained all mod- 472
els using the AdamW optimizer with a weight decay 473
of 1e−1, β1 = 0.9, and β2 = 0.95. Gradient clipping 474
was applied with a maximum norm of 1.0. The learn- 475
ing rate followed a cosine decay schedule with linear 476
warmup: the maximum learning rate was set to 6e−4, 477
the minimum to 6e−5, with 2000 warmup steps and a 478
total of 600,000 decay steps. Across all experiments, 479
we fixed the total number of tokens per batch to 219. 480
Consequently, when using longer sequence lengths, we 481
proportionally reduced the number of sequences per 482
batch to maintain a constant token budget. 483

Dataset All experiments were conducted on the PG- 484
19 dataset (Rae et al., 2020), which consists of full- 485
length books. The dataset has a significantly high aver- 486
age document length, making it well-suited for evaluat- 487
ing long-range dependencies in language models. The 488
text was normalized using NMT NFKC normalization 489
and tokenized using a SentencePiece tokenizer with a 490
unigram model and a vocabulary size of 10K. 491

All experiments were conducted on an NVIDIA A40 492
GPU. Unless stated otherwise, we used mixed-precision 493
training with the bfloat16 (BF16) data type. 494
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Figure 5: Performance comparison of LS-attention (in mixed BF16) with two alternatives: (1) Flash-attention
trained with full FP32 precision, and (2) Flash-attention with QK-normalization (in mixed BF16). Sequence length
n is set to 8192.

5.2 Investigation on Training Instability495

In Section 3, we argued that longer sequence lengths496
lead to logit explosion in the self-attention layer, which497
in turn causes training instability in transformer lan-498
guage models. In this section, we investigate whether499
increasing the sequence length indeed causes such in-500
stability and logit explosion. We then evaluate whether501
LS-attention can mitigate this issue. To this end, we502
trained our baseline transformer model (which uses503
Flash-attention for its self-attention mechanism) with504
progressively longer sequence lengths. For smaller se-505
quence lengths, such as n = 512, the model does not506
exhibit any signs of training instability – even when507
trained with a reduced number of attention heads H .508
As an illustration, Figure 3a shows the training curves509
for sequence length n = 512 with H = 2 and H = 6.510
It can be seen that the training loss decreases mono-511
tonically during the first 50K training steps. However,512
when the sequence length is increased to n = 2048 and513
n = 8192, the training becomes unstable – even for514
H = 6 – as shown in Figure 3b. For those sequence515
lengths, while the training loss initially decreases, it516
suddenly starts increasing as training progresses, clearly517
indicating that longer sequence lengths contribute to518
training instability in transformer models. To determine519
whether this instability is associated with logit explosion520
in the self-attention layer, we tracked the maximum ab-521
solute pre-softmax logit value during training for three522
different sequence lengths: n = 128, 512, and 2048.523
These are plotted in Figure 4c. The figure shows that524
the maximum logit value remains relatively small for525
n = 128, but grows significantly for n = 2048, suggest-526
ing that logit explosion contributes substantially to the527
observed training instability.528

Next, we trained our transformer model using LS-529
attention as the self-attention module for sequence530
lengths n = 2048 and n = 8192 – the settings under531
which Flash-attention exhibited significant instability.532
Figure 4a shows the training curves for H = 6, where533
one head is global and the remaining five are local. As534
seen in the figure, the 6-head LS-attention does not ex-535
hibit any training instability during the first 50K training536

steps. To further assess the ability of LS-attention to 537
mitigate training instability, we trained a model with 538
only 2-head LS-attention – one global and one local – 539
on the same longer sequence lengths (n = 2048 and 540
n = 8192). The resulting training curves, shown in Fig- 541
ure 4b, indicate that even with just one global and one 542
local head, LS-attention successfully stabilizes train- 543
ing for long sequences. To verify whether this training 544
stability is accompanied by mitigation of logit explo- 545
sion, we compared the maximum absolute pre-softmax 546
logit values of LS-attention and vanilla self-attention 547
in Figure 4c. The figure clearly demonstrates that LS- 548
attention significantly reduces the maximum logit values 549
to negligible levels compared to vanilla self-attention, 550
suggesting that LS-attention effectively addresses the 551
logit explosion. 552

5.3 Comparison with Alternative Training 553
Stabilization Methods 554

We evaluated two alternative methods for stabilizing the 555
training of our baseline model. First, we explored train- 556
ing with full FP32 precision instead of default mixed 557
precision with BF16. Prior work, such as (Golden et al., 558
2024), has noted that Flash-attention – the efficient self- 559
attention implementation – is particularly vulnerable 560
to numerical instability due to the reduced precision 561
of low-bit datatypes. Thus, training in full precision 562
serves as a potential stabilization strategy. The second 563
method we investigated is QK-normalization (Henry 564
et al., 2020). Previous studies, including (Dehghani 565
et al., 2023) and (Wortsman et al., 2024), have shown 566
that QK-normalization can stabilize transformer train- 567
ing across various applications. The performance of 568
our transformer model using these two alternative meth- 569
ods at sequence length n = 8192 is compared with 570
LS-attention in Figure 5. 571

In Figure 5a, we plot the validation log perplex- 572
ity over increasing training steps. The figure shows 573
that both alternative methods overcome the training 574
instability problem. However, Flash-attention with 575
QK-normalization converges to a poor local optimum, 576
achieving a validation perplexity of around 112.17 after 577
the first 50K training steps – more than 2.5 times higher 578
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than what the other two methods achieve after the same579
number of steps.580

On the other hand, Flash-attention with full preci-581
sion training is able to reach a validation perplexity of582
around 38.5 within the same 50K training steps. How-583
ever, it requires larger than 2.5 times more training steps584
compared to LS-attention, which reaches similar per-585
plexity in about 18, 000 training steps. Moreover, due586
to the full precision computations, each training step of587
Flash-attention with FP32 is significantly slower than588
LS-attention. As a result, it requires over 20 times the589
GPU hours to reach similar perplexity compared to LS-590
attention (as shown in Figure 5b).591

5.4 Comparison of Inference Time592

In this section, we compare the inference time of our593
transformer model with LS-attention to that of the same594
model using Flash-attention. Both configurations use595
the BF16 data type, and the total number of attention596
heads is set to 6. For LS-attention, the number of global597
heads is fixed at 1. Inference time were measured in598
batch processing mode, i.e., during the forward pass of599
a batch of input sequences through the model.600

The result is presented in Table 1. The table shows601
that for sequence length n = 2048, replacing Flash-602
attention with LS-attention reduces the inference time603
by a modest 7.14%. However, when the sequence length604
is increased to n = 8192, the reduction improves signif-605
icantly to 36.25%. This trend is expected: for longer se-606
quences, the inference time becomes increasingly domi-607
nated by the cost of global self-attention heads, which608
scale quadratically with sequence length. Since LS-609
attention uses only one global head compared to six610
in Flash-attention, it becomes significantly more effi-611
cient at longer sequence lengths. As sequence length612
increases, the time reduction achieved by LS-attention is613
expected to asymptotically approach to a factor of H/l,614
where H is the total number of heads in Flash-attention615
and l is the number of global heads in LS-attention.616

Seq. len (n) Attention Type Reduction
Flash-attn LS-attn

2048 0.56 0.52 7.14%
8192 3.31 2.11 36.25%

Table 1: Reduction in inference time (in milliseconds
per sequence) using LS-attention.

5.5 Ablation Study617

Vanilla MHSA uses only global attention heads,618
whereas LS-attention incorporates both local and global619
heads. In this section, we investigate whether the global620
heads in LS-attention significantly impact the model’s621
performance. To this end, we compare the default LS-622
attention configuration (i.e., one global head and five623
local heads) with a variant that uses all six heads as624
local attention. The results, shown in Figure 6, suggest625
that the global attention head has a significant impact on626
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Figure 6: Impact of global attention head in LS-
attention.

performance. LS-attention with a global head achieves 627
a validation perplexity of around 36, while the variant 628
with no global head reaches only around 42 perplexity 629
after the first 50K training steps. The results suggest 630
that LS-attention effectively exploits both short-range 631
and long-range dependencies by incorporating local and 632
global attention. 633

6 Conclusion 634

This paper identifies a key source of training instabil- 635
ity in transformer models: the SA’s limited ability to 636
effectively model dense local dependencies. This limi- 637
tation leads to the explosion of SA’s pre-softmax logits, 638
resulting in training instability for longer sequences. As 639
a potential solution, we propose Long Short-attention 640
(LS-attention), which decomposes standard MHSA into 641
long-range (global) and short-range (local) attention 642
heads. Extensive experiments validate LS-attention’s 643
ability to mitigate logit explosion and improve training 644
stability. We compare LS-attention with two alternative 645
training stabilization methods, demonstrating that LS- 646
attention either achieves significantly better perplexity 647
or converges faster – both in terms of training steps and 648
GPU hours. Furthermore, LS-attention offers compu- 649
tational efficiency compared to state-of-the-art MHSA 650
implementations. 651

7 Limitations 652

The limitation of self-attention (SA) in modeling dense 653
local dependencies becomes particularly prominent 654
when the sequence length n is significantly larger than 655
the embedding dimension d. As a result, training insta- 656
bility in transformer models due to SA is more severe 657
when training on longer sequences. Consequently, the 658
benefits of LS-attention over standard MHSA – both in 659
terms of training stability and computational efficiency 660
– are more pronounced on longer sequences. In con- 661
trast, for shorter sequences, LS-attention may not offer 662
significant advantages. Additionally, in applications 663
where there is no dense local dependencies, incorporat- 664
ing local attention heads in LS-attention may not lead 665
to performance improvements. 666
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