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Abstract

Transformer language models have driven sig-
nificant progress across various fields, includ-
ing natural language processing and computer
vision. A central component of these models
is the self-attention (SA) mechanism, which
learns rich vector representations of tokens by
modeling their relationships with others in a
sequence. However, despite extensive research,
transformers continue to suffer from training
instability — often manifesting as spikes or di-
vergence in the training loss during a run.

In this work, we identify one source of this
instability: SA’s limited ability to capture short-
range dependencies, especially in tasks like
language modeling, where almost every token
heavily relies on its nearby neighbors. This
limitation causes the pre-softmax logits of SA
to grow rapidly, destabilizing training. To ad-
dress this, we propose decomposing the SA
into local (short-range) and global (long-range)
attention heads. This decomposed attention, re-
ferred to as Long Short-attention (LS-attention),
mitigates logit explosion and results in more
stable training compared to an equivalent multi-
head self-attention (MHSA). Empirical com-
parisons with two alternative training stabiliza-
tion methods show that LS-attention reduces
the validation perplexity to nearly 2/5 of that
achieved by one method and reaches a similar
perplexity as the other method using only 1,/20
of the GPU hours. Additionally, our experi-
ments demonstrate that LS-attention reduces
inference latency by up to 36% compared to
a state-of-the-art implementation of equivalent
MHSA.

1 Introduction

Transformer language models have become the back-
bone of modern machine learning systems, achieving
remarkable success across diverse domains such as nat-
ural language processing (Vaswani et al., 2017; Devlin
et al., 2019; Radford et al., 2018, 2019), computer vi-
sion (Chen et al., 2020; Yu et al., 2022; Pippi et al.,
2025; Chang et al., 2022), and speech (Baevski et al.,
2020; Hsu et al., 2021; Ao et al., 2022; Gulati et al.,
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(b) Plot of maximum absolute pre-softmax logit from atten-
tion operations over training steps.

Figure 1: Mitigation of training instability and logit ex-
plosion using LS-attention. The upper plots show that
the training loss of an autoregressive transformer model
with Flash-attention begins to diverge after some train-
ing steps, whereas the same model with LS-attention
remains stable. The bottom plots compare the maxi-
mum absolute pre-softmax logits of vanilla MHSA and
LS-attention during training. LS-attention prevents logit
explosion by reducing the maximum logit magnitude to
less than one-twentieth that of vanilla MHSA.

2020). These models have enabled state-of-the-art re-
sults in applications like machine translation, document
summarization, code generation, image captioning, and
multimodal reasoning. Their scalability and adaptability
have made them the default choice for both academic
research and industry-scale deployments. From BERT
(Devlin et al., 2019) and GPT (Radford et al., 2018) to
recent large-scale models, transformer language mod-
els have demonstrated exceptional abilities to model
complex data distributions, generalize across tasks, and
benefit from massive pretraining on unlabeled data.
Despite their success, transformer language mod-
els often exhibit training instability, particularly dur-
ing large-scale pretraining or when processing long
sequences (Molybog et al., 2023; Chowdhery et al.,
2023; Li et al., 2022; Wortsman et al., 2024; Zhai et al.,
2023; Dehghani et al., 2023; Nishida et al., 2024; Wang



et al., 2025; Kedia et al., 2024). This instability typi-
cally manifests as spikes or divergence in the training
loss. Several explanations and solutions for this train-
ing instability have been proposed in the literature. For
instance, Liu et al. (2020) attribute instability to the
amplification of small parameter perturbations due to re-
liance on the residual branch. Others, such as Molybog
et al. (2023), implicate the Adam optimizer (Kingma
and Ba, 2015) as a contributing factor. The use of long
sequences during training has also been linked to insta-
bility, prompting strategies like progressive sequence
length increase (Li et al., 2022, 2021) during training.
Several studies (Wortsman et al., 2024; Zhai et al., 2023;
Dehghani et al., 2023; Kedia et al., 2024) associate the
issue with logit explosion and propose normalization
techniques (e.g., QK-norm Henry et al. (2020)) to sta-
bilize training, though the root cause of the explosion
remains unclear. Nishida et al. (2024) identify norm
imbalance among parameters as a source of instability
and introduce reparameterization methods to address it.
Additional techniques such as learning rate warm-up,
weight decay, and pParam (Yang et al., 2022) have also
been explored. However, a clear understanding of the
underlying causes — particularly those stemming from
the behavior of the attention mechanism — and their
effective mitigation remains an active area of research.

Cause of Instability: Although several studies (e.g.,
Wortsman et al. (2024); Zhai et al. (2023); Dehghani
et al. (2023); Kedia et al. (2024)) have identified the ex-
plosion of pre-softmax logits in SA as a key contributor
to training instability, the underlying cause of this phe-
nomenon remains largely unexplained. In this work, we
attribute the logit explosion to SA’s limited capacity to
model local or short-range dependencies — especially in
tasks such as natural language processing, where almost
every token typically relies heavily on its neighboring
tokens. To elaborate, let X = [Xg, . ..,%,_1]T € R"*4
represents a sequence of n input tokens. The self-
attention mechanism transforms X into new representa-
tions Y = [yo,--.,¥n_1]7 € R**4, computed as:

Y = PXW,,

where W,, € R%%? is a trainable weight matrix, and
P € R™ " is the attention matrix encoding the token
dependencies. Each row of P is a probability distribu-
tion, where a high P[é, j] implies that the representation
yi strongly incorporates information from x;. The at-
tention matrix is computed via: P = softmax(S) =
softmax(QKT) = softmax(XWoWZ%LXT)!, where
Q,K € R"*9 are the query and key matrices, respec-
tively, and S € R™*" contains the pre-softmax logits.
To model arbitrary dependencies between n tokens, the
attention matrix P ideally requires O(n?) degrees of
freedom. However, because P is derived from the prod-
uct of two n X d matrices, its degree of freedom remains

'Without loss of generality, we ingore the logit scaling
factor for simplicity.

bounded above by nd. When n > d, this becomes a
significant bottleneck. In tasks where all tokens depends
on a small set of “keyword” tokens, the attention matrix
becomes low-rank. However, in tasks requiring dense
local dependencies — where nearly every token depends
on its immediate neighbors — the attention matrix must
be effectively high-rank. The inability of the low-rank
structure to approximate such high-rank patterns forces
the model to compensate by inflating the logits S, lead-
ing to instability during training.

Our Solution: The key idea behind our approach to
mitigating logit explosion stems from the observation
that local dependencies typically span only a small
window around each token. As a result, they can be
effectively captured using O(nl) degrees of freedom,
where [ < n denotes the local window size. In contrast,
global attention attempts to model interactions between
all pairs of n tokens in the input sequence, requiring
the representation of O(n?) attention weights. This
demand often exceeds the expressive capacity of the
attention mechanism, since its parameterization is lim-
ited to O(nd) degrees of freedom. A sliding-window
local attention mechanism, which restricts each query
token’s attention span to a small neighborhood of I’ to-
kens (I’ < n), reduces the number of attention scores
to be represented to O(nl’), making it more compatible
with the available degrees of freedom. Local attention is
therefore more effective than global attention for captur-
ing short-range dependencies. However, local attention
alone is insufficient for modeling long-range dependen-
cies, which remain essential for strong performance
for many tasks. To meet both needs, we propose de-
composing the SA into local (short-range) and global
(long-range) attention heads. This decomposed atten-
tion, referred to as LS-attention, enables transformer
models to effectively capture both short- and long-range
dependencies while reducing the risk of logit explosion
during training (as illustrated in Figure 1). A compari-
son with two alternative training stabilization methods
shows that LS-attention either achieves significantly
lower perplexity (as low as 2/5 that of one method) or
requires substantially fewer GPU hours (less than 1/20)
to reach comparable performance.

Efficiency of Our Solution: In addition to improving
training stability, LS-attention offers computational ef-
ficiency during both training and inference. For longer
sequences, the computational overhead of a transformer
model is dominated by the MHSA module, which uses
global attention heads with quadratic computational
complexity in the sequence length n. In contrast, a
local attention head with attention span [ < n exhibits
nearly linear complexity with respect to n. In practice,
we find that LS-attention, with only a few global atten-
tion heads and the remaining heads as local attention,
performs very well, which reduces both training and in-
ference time significantly. In our experiments, we found
LS-attention to be upto 36% more efficient during in-
ference compared to Flash-attention (Dao et al., 2022;



Dao, 2024), the state-of-the-art efficient implementation
of MHSA.

Summary of Contributions: The contributions of
this work are summarized as follows:

* We identify a key limitation of SA: its inability to
model dense local dependencies in long sequences
effectively. This limitation leads to logit explosion
during training, contributing to instability in trans-
former models, particularly in tasks like language
modeling.

We propose Long Short-attention (LS-attention),
which decomposes MHSA into long-range and
short-range attention heads. Through extensive ex-
perimentation, we validate the effectiveness of LS-
attention in mitigating logit explosion and training
instability. Additionally, LS-attention offers im-
proved computational efficiency on long sequences
compared to vanilla MHSA.

We empirically compare LS-attention with two
alternative training stabilization methods. One
method converges to a poor local optimum, with
validation perplexity nearly 2.5x higher than LS-
attention after significant training progress. The
other requires over 2.5 more training steps and
more than 20x the GPU hours to achieve compa-
rable performance.

2 Background

In this section, we provide a brief overview of the SA
mechanism and introduce the notations used throughout
this work.

Self-Attention For an input sequence X =
[x0, - - 7xn,l]T € R"*4 where n is sequence length
and d is the embedding dimension, the SA computes an
output sequence Y = [yo,...,yn_1]7 € R"*? such
that y; is a convex combination of the input tokens, i.e.,

n—1 n—1
yi= Y v =y ayWyx; Q)
§=0 =0
where v; = Wyx; € R% is a value representa-

tion of token x; and Wy is a learnable projection ma-
trix. For each i € {0,...,n — 1}, the set of weights
{aio, ..., j(n—1)} form a probability distribution. The
weight a;; determines the component of input token x;
in the output token y;, thus their dependency. In SA,
the O(n?) weights {c;;};; are also learned as a pair-
wise function of the input tokens xg, . .., X,—1. More
precisely, a;; is computed as

exp (a7 kj/Vdy)
Sr_vexp (afk; /v/dy)

where the query and key representation of each x;
is computed as q; = Wpx; and k; = Wgx; with

@)

Qi =

Wq, Wi € R%*4 being two learnable projection ma-
trices.

As stated in the introduction section, this operation
can be written in matrix form as:

Y = softmax (QKT/\/gk) Vv

where Q, K € R"*% and V € R™*% are the matrices
of all query, key, and value vectors.

Causal Attention In autoregressive decoding, the task
is to predict the next token in a sequence given the pre-
ceding tokens. Formally, for an input sequence of tokens
{zg,...,&n_1},eachtokenz; fori =1,...,n— 1is
predicted based on the sequence {z, };<;. In such tasks,
the attention for each query token is restricted to tokens
that come before it in the sequence. More precisely,
each y; is computed as

Yi= ZaiijXj (3)

J<i

where each «;; is computed as in Eq. (2). Such atten-
tion is called causal attention.

Local Attention The above attention is sometimes re-
ferred to as global attention, as a query token can attend
to another token across the full sequence (satisfying
other restrictions like causality). It is also referred to
as long-range attention because it can capture depen-
dencies between tokens that are far apart. In contrast,
local or short-range attention restricts each query token
to attend only to its nearby neighbors. More precisely,
in local attention, we compute y; as

yi= Zai(i+j)WVXi+j )

=1

where each o;; is computed as in Eq. (2) and [ and

r are small values compared to n. Therefore, in local
attention each query token only attends to its nearby
token within the range {i + [, ...,7 + r} For two sided
local attention, [ takes negative value and r takes a
positive value. Local attention can be combined with
causal attention by setting [ to a small negative value
and r to 0.

All SAs which restrict the attention to be computed
toasubset S C {(4,7) : 0 <4,j <n — 1} of all token
pairs can be represented compactly by the following
matrix notation

Y = softmax ((QKT + Ms)/\/a) A\ )

where Mg is a mask matrix defined as Mg[i, j] =

0 if (¢,j) € S and —oo otherwise. For example, in
causal attention, S = {(4, ) : j < i}. For local causal
attention with local attention span I, S = {(4,) : 0 <
i—j <}
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Figure 2: Comparison of representing dense local dependencies by local and global attention. (a) Global attention
attempts to represent O(n?) attention scores (shown in blue) using only O(nd) degrees of freedom. (b) Local
attention focuses on O(nl’) attention scores, where I’ < n, making it a better fit for the available O(nd) capacity.
(c) In a synthetic dense local dependency learning task, local attention achieves lower training loss. (d) Local

attention is more resilient to logit explosion.

Multi-Head Attention Multi-head attention extends
the self-attention mechanism by computing multiple
attention operations in parallel, each with its own set of
projection matrices. Specifically, given H heads, each
head ¢ computes:

D _ xw ) SR——)
QY =xwy, KO =xwy, v®=xw{

where W), W e R, W) € R and typi-
cally dj, = d,, = d/h. Each head produces an output:

0 = softmax (Q<i)K<i)T/\/£) V@,

The outputs from all heads are concatenated and pro-
jected back to the original dimensionality:

MHSA(X) = Concat (O<0), ey O(Hfl)) Wo,

where Wp € R4Xd jg 3 Jearnable output projec-
tion matrix. Multi-head attention enables the model to
jointly attend to information from different representa-
tion subspaces at different positions, which enhances
the model’s expressiveness.

3 Understanding the Limitation of
Self-Attention

In this section, we analyze the ability of (global) self-
attention to learn dense local dependensy. To this end,
consider a causal next-token prediction task over se-
quences of length n, where the prediction of the next
token depends only on the immediately preceding [ to-
kens, with | < n. Let Q = [qo, ..., qn_1]T € R"*4
and K = [ko,...,k,_1]T € R"*4 be the query and
key matrices, where q; and k; denote the query and
key vectors for the i-th token, respectively. For this
task, the ideal attention matrix P € R™*" would satisfy
P[i, 5] > 0for0 <i—j <1, and P[i, j] = 0 otherwise.

When attempting to learn this dependency pattern
using causal (global) attention, the model aims to ap-
proximate a matrix P’ such that P'[i, j] = P[i, j] for

i —j > 0, and treats P’[¢, j] as a “don’t care” term
for i — 5 < 0 (since these terms are masked in causal
attention). An illustration of such an attention pattern is
shown in Figure 2a, where n = 6 and | = 2; red entries
represent masked (don’t care) terms. Importantly, P’
is a matrix of rank n, which grows linearly with the
sequence length. As a result, it is difficult to find a low-
rank parameterization that accurately captures this struc-
ture. During training, the attention mechanism attempts
to replicate P’ using softmax((QK” + Ms)/+v/dy), but
doing so requires representing O(n?) non-masked en-
tries in P’ using only O(nd) degrees of freedom from
QKT'. This mismatch becomes a critical bottleneck in
settings where n >> d, leading to logit explosion and
training instability.

A sliding window local attention does not suffer from
the same limitations when capturing such local depen-
dencies. It attempts to reconstruct the ideal attention
matrix P only for the subset of entries {(¢,7) : 0 <
i — j < '}, where the local attention span I’ < n and
is on the same order as [. An example of an attention
pattern learned by a sliding window local attention is
shown in Figure 2b. In this case, the attention mecha-
nism needs to learn only O(nl’) entries, which is sig-
nificantly smaller than O(n?) for global attention. As a
result, local attention is better suited for learning dense
local dependencies compared to global attention.

3.1 Validation through a Synthetic Task

Our synthetic task is designed to evaluate the represen-
tational power of the softmax operation, i.e., in cap-
turing local dependencies when Q and K are allowed
to freely take any values. The goal is to predict the
output O = [0y, ...,0,_1]T € R"*? of a sequence
given the input V = [vq,...,v, 1|7 € R"*4, such
that O satisfies O = PV for a predefined attention ma-
trix P € R™*™. The matrix P is constructed to encode
dense local dependencies, typically as a banded matrix
where only entries within a fixed window [ around the di-
agonal can be non-zero. Therefore, predicting O from V



using an attention mechanism effectively requires learn-
ing Q and K such that P ~ softmax((QK” + Mg)) is
satisfied, where M denotes the appropriate masking
matrix for global and local attention.

To that end, we generated a 2500 x 2500 attention
matrix P such that

Pli,j] = { gjj’ :)ftl?efwise 720
where each p;; is independently drawn from a Bernoulli
distribution with probability 0.5. The matrix P is then
row-normalized to ensure it represents a valid atten-
tion distribution. We set V to be the identity matrix
of size 2500 x 2500, so that each o; can be expressed
as a unique linear combination of the v;s. This setup
guarantees the uniqueness of P in the relation O = PV.
We trained both global and local attention operations
for 100K steps using the Adam optimizer, with the
key/query dimensionality dj, set to 25. For the local
attention, we used a sliding window of span 50. The
training losses for both models are shown in Figure 2c.
As illustrated, local attention leads to faster convergence
and achieves significantly lower training loss compared
to global attention after 100K steps, indicating its su-
perior ability to model dense local dependencies. Ad-
ditionally, we tracked the maximum pre-softmax logit
value (i.e., ||QKT||o) throughout training for both at-
tention types, which is shown in Figure 2d. The figure
reveals that while the logit values increase for both cases
as training progresses, they rise much more sharply for
global attention, indicating its higher susceptibility to
the logit explosion problem when attempting to model
local dependencies.

4 Long-Short Attention: Proposed
Solution

As argued in the previous section, local attention mecha-
nisms are more effective than global attention in model-
ing dense local dependencies. However, local attention
cannot capture long-range dependencies. To address
this limitation, our approach combines both local and
global attention mechanisms to jointly model short- and
long-range dependencies. We rely on the assumption
that the overall attention matrix P can be approximately
decomposed as

P~ P+ +Psy _, +Pro++Pry,

where each Pg, captures local dependencies within a
small attention span p < n, and each P ; captures long-
range dependencies and is assumed to be low-rank. This
assumption is motivated by the observation that, in many
applications, only a small number of “keyword” tokens
receive attention in long-range interactions, resulting in
low-rank attention patterns.

Given such a decomposition, the attention output can
be approximated as:

Hs—1 H;—1
Y=PVx Y PsV+ > PV
=0 =0

Hy—1

N T
~ ; softmax ((QleSi + Ms) /\/@) \Y%

Hj -1
T
+ ; softmax ((QLiKLi + Ml) /@) v

where M and M; are the attention masks for short-

range and long-range attention, respectively. In prac-
tice, we implement this combined mechanism using
a (s 4 I)-head attention module, referred to as Long
Short-attention (LS-attention), with s short-range (lo-
cal) attention heads and [/ long-range (global) attention
heads. Therefore, the output of LS-attention is given
by:

LS-attn(X) = Concat(0”, ..., 0¥~ yw,
such that
0 = softmax ((QVK®" + M©)/v/dy ) VO
— softmax ((Xwg>w§§)TxT + M)/ ) XW )

where H = s + [ and M is the attention mask matrix
for the i-th attention, and set to local attention mask for
the first s heads and to the global attention mask for
the last [ heads. In practice, we do not implement the
LS-attention using the above parallel form. Rather, we
use the efficient SA implementation of (Dao et al., 2022;
Dao, 2024; Shah et al., 2024).

Runtime and Memory Requirements

A global attention head requires O(n?d;) FLOPs. In
contrast, a local attention head with an attention span
of p requires only O(npd;) FLOPs. Therefore, an LS-
attention module with s local heads and ! global heads
requires approximately O(n(sp + nl)dy) ~ O(n?ldy)
FLOPs, assuming p < n. In comparison, a vanilla
(s + 1)-head attention requires O((s + [)n?d},) FLOPs,
which is roughly (s + 1)/l times more than LS-attention.

During inference in a transformer model with auto-
regressive generation, the KV-cache (Pope et al., 2023;
Zhang et al., 2023) is used to store the key and value vec-
tors of previous tokens to compute the attention scores
for the future queries in the MHSA operation. The
size of the KV-cache for a global attention head grows
linearly with sequence length. In contrast, it remains
nearly constant for a local attention head. Therefore, if
the total number of attention heads remains the same,
LS-attention reduces the K'V-cache size by a factor of
approximately (s + 1)/l compared to MHSA during
long-sequence generation.

S Experimental Results and Analysis

This section investigates the relationship between se-
quence length and the training instability of transformer
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Figure 4: Mitigation of logit explotion and training instability using LS-attention.

models on a natural language modeling task, where local
dependencies are typically dense. We also empirically
validate the effectiveness of the proposed LS-attention
in mitigating logit explosion and training instability. LS-
attention is compared with two alternative methods for
stabilizing transformer training. Finally, we compare
the inference time of LS-attention with that of a state-
of-the-art implementation of vanilla MHSA and provide
an ablation study.

5.1 Experimental Setup

Model Architecture For experimental validation, we
used a small-scale model with around 6.5\ parameters.
Our architecture is based on a GPT-2-style decoder,
trained with an autoregressive loss. We set the number
of layers to 6 and the embedding dimension d to 192.
By default, the number of attention heads H was set to
6, and the inner dimension of the feedforward (FFN)
layer, denoted by ds;,, was set to 4d = 768. In some
experiments, we reduced the number of attention heads
while keeping the per-head dimension fixed at d/H =
32. To maintain a similar number of parameters in these
cases, we increased dy, accordingly (following Shazeer
(2019); Ainslie et al. (2023)). As the baseline attention,
we used the CUDA implementation of Flash-attention,
specifically the FlashAttention2 implementation from
Dao (2024).

Hyperparameters of LS-Attention In experiments
with LS-attention, we replaced the MHSA module with

our proposed LS-attention. For an H-head LS-attention
configuration, one head was allocated for global (long-
range) attention, while the remaining I — 1 heads were
used for local (short-range) attention. The attention span
for each local head was fixed at 50 for sequence lengths
n < 2048 and 100 for longer sequences.

Optimization Hyperparameters We trained all mod-
els using the AdamW optimizer with a weight decay
of le—1, 51 = 0.9, and 2 = 0.95. Gradient clipping
was applied with a maximum norm of 1.0. The learn-
ing rate followed a cosine decay schedule with linear
warmup: the maximum learning rate was set to 6e—4,
the minimum to 6e—>5, with 2000 warmup steps and a
total of 600,000 decay steps. Across all experiments,
we fixed the total number of tokens per batch to 21°.
Consequently, when using longer sequence lengths, we
proportionally reduced the number of sequences per
batch to maintain a constant token budget.

Dataset All experiments were conducted on the PG-
19 dataset (Rae et al., 2020), which consists of full-
length books. The dataset has a significantly high aver-
age document length, making it well-suited for evaluat-
ing long-range dependencies in language models. The
text was normalized using NMT_NFKC normalization
and tokenized using a SentencePiece tokenizer with a
unigram model and a vocabulary size of 10K.

All experiments were conducted on an NVIDIA A40
GPU. Unless stated otherwise, we used mixed-precision
training with the bfloat16 (BF16) data type.



= > 2.5%
3
= -4 H i
3
; —— Flash-attn + KQ-norm
= 45 —— Flash-attn + FP32
g0 —— LS-attn
]
5 ! ! | !
1 2 3 4 5
training step -10*

(a) Validation log perplexity vs. training steps.

o
W
T
1

> 20%

—— Flash-attn + KQ-norm _|
—— Flash-attn + FP32
—— LS-attn

neg. log perplexity

20 40 60 80
GPU hour

(b) Validation log perplexity vs. GPU hours.

Figure 5: Performance comparison of LS-attention (in mixed BF16) with two alternatives: (1) Flash-attention
trained with full FP32 precision, and (2) Flash-attention with QK-normalization (in mixed BF16). Sequence length

n is set to 8192.

5.2 Investigation on Training Instability

In Section 3, we argued that longer sequence lengths
lead to logit explosion in the self-attention layer, which
in turn causes training instability in transformer lan-
guage models. In this section, we investigate whether
increasing the sequence length indeed causes such in-
stability and logit explosion. We then evaluate whether
LS-attention can mitigate this issue. To this end, we
trained our baseline transformer model (which uses
Flash-attention for its self-attention mechanism) with
progressively longer sequence lengths. For smaller se-
quence lengths, such as n = 512, the model does not
exhibit any signs of training instability — even when
trained with a reduced number of attention heads H.
As an illustration, Figure 3a shows the training curves
for sequence length n = 512 with H = 2 and H = 6.
It can be seen that the training loss decreases mono-
tonically during the first 50K training steps. However,
when the sequence length is increased to n = 2048 and
n = 8192, the training becomes unstable — even for
H = 6 — as shown in Figure 3b. For those sequence
lengths, while the training loss initially decreases, it
suddenly starts increasing as training progresses, clearly
indicating that longer sequence lengths contribute to
training instability in transformer models. To determine
whether this instability is associated with logit explosion
in the self-attention layer, we tracked the maximum ab-
solute pre-softmax logit value during training for three
different sequence lengths: n = 128, 512, and 2048.
These are plotted in Figure 4c. The figure shows that
the maximum logit value remains relatively small for
n = 128, but grows significantly for n = 2048, suggest-
ing that logit explosion contributes substantially to the
observed training instability.

Next, we trained our transformer model using LS-
attention as the self-attention module for sequence
lengths n = 2048 and n = 8192 — the settings under
which Flash-attention exhibited significant instability.
Figure 4a shows the training curves for H = 6, where
one head is global and the remaining five are local. As
seen in the figure, the 6-head LS-attention does not ex-
hibit any training instability during the first 50K training

steps. To further assess the ability of LS-attention to
mitigate training instability, we trained a model with
only 2-head LS-attention — one global and one local —
on the same longer sequence lengths (n = 2048 and
n = 8192). The resulting training curves, shown in Fig-
ure 4b, indicate that even with just one global and one
local head, LS-attention successfully stabilizes train-
ing for long sequences. To verify whether this training
stability is accompanied by mitigation of logit explo-
sion, we compared the maximum absolute pre-softmax
logit values of LS-attention and vanilla self-attention
in Figure 4c. The figure clearly demonstrates that LS-
attention significantly reduces the maximum logit values
to negligible levels compared to vanilla self-attention,
suggesting that LS-attention effectively addresses the
logit explosion.

5.3 Comparison with Alternative Training
Stabilization Methods

We evaluated two alternative methods for stabilizing the
training of our baseline model. First, we explored train-
ing with full FP32 precision instead of default mixed
precision with BF16. Prior work, such as (Golden et al.,
2024), has noted that Flash-attention — the efficient self-
attention implementation — is particularly vulnerable
to numerical instability due to the reduced precision
of low-bit datatypes. Thus, training in full precision
serves as a potential stabilization strategy. The second
method we investigated is QK-normalization (Henry
et al., 2020). Previous studies, including (Dehghani
et al., 2023) and (Wortsman et al., 2024), have shown
that QK-normalization can stabilize transformer train-
ing across various applications. The performance of
our transformer model using these two alternative meth-
ods at sequence length n = 8192 is compared with
LS-attention in Figure 5.

In Figure 5a, we plot the validation log perplex-
ity over increasing training steps. The figure shows
that both alternative methods overcome the training
instability problem. However, Flash-attention with
QK-normalization converges to a poor local optimum,
achieving a validation perplexity of around 112.17 after
the first 50K training steps — more than 2.5 times higher



than what the other two methods achieve after the same
number of steps.

On the other hand, Flash-attention with full preci-
sion training is able to reach a validation perplexity of
around 38.5 within the same 50K training steps. How-
ever, it requires larger than 2.5 times more training steps
compared to LS-attention, which reaches similar per-
plexity in about 18, 000 training steps. Moreover, due
to the full precision computations, each training step of
Flash-attention with FP32 is significantly slower than
LS-attention. As a result, it requires over 20 times the
GPU hours to reach similar perplexity compared to LS-
attention (as shown in Figure 5b).

5.4 Comparison of Inference Time

In this section, we compare the inference time of our
transformer model with LS-attention to that of the same
model using Flash-attention. Both configurations use
the BF16 data type, and the total number of attention
heads is set to 6. For LS-attention, the number of global
heads is fixed at 1. Inference time were measured in
batch processing mode, i.e., during the forward pass of
a batch of input sequences through the model.

The result is presented in Table 1. The table shows
that for sequence length n = 2048, replacing Flash-
attention with LS-attention reduces the inference time
by a modest 7.14%. However, when the sequence length
is increased to n = 8192, the reduction improves signif-
icantly to 36.25%. This trend is expected: for longer se-
quences, the inference time becomes increasingly domi-
nated by the cost of global self-attention heads, which
scale quadratically with sequence length. Since LS-
attention uses only one global head compared to six
in Flash-attention, it becomes significantly more effi-
cient at longer sequence lengths. As sequence length
increases, the time reduction achieved by LS-attention is
expected to asymptotically approach to a factor of H/I,
where H is the total number of heads in Flash-attention
and [ is the number of global heads in LS-attention.

Seq. len (n) Attention Type Reduction
Flash-attn  LS-attn
2048 0.56 0.52 7.14%
8192 3.31 2.11 36.25%

Table 1: Reduction in inference time (in milliseconds
per sequence) using LS-attention.

5.5 Ablation Study

Vanilla. MHSA uses only global attention heads,
whereas LS-attention incorporates both local and global
heads. In this section, we investigate whether the global
heads in LS-attention significantly impact the model’s
performance. To this end, we compare the default LS-
attention configuration (i.e., one global head and five
local heads) with a variant that uses all six heads as
local attention. The results, shown in Figure 6, suggest
that the global attention head has a significant impact on
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Figure 6: Impact of global attention head in LS-
attention.

performance. LS-attention with a global head achieves
a validation perplexity of around 36, while the variant
with no global head reaches only around 42 perplexity
after the first 50K training steps. The results suggest
that LS-attention effectively exploits both short-range
and long-range dependencies by incorporating local and
global attention.

6 Conclusion

This paper identifies a key source of training instabil-
ity in transformer models: the SA’s limited ability to
effectively model dense local dependencies. This limi-
tation leads to the explosion of SA’s pre-softmax logits,
resulting in training instability for longer sequences. As
a potential solution, we propose Long Short-attention
(LS-attention), which decomposes standard MHSA into
long-range (global) and short-range (local) attention
heads. Extensive experiments validate LS-attention’s
ability to mitigate logit explosion and improve training
stability. We compare LS-attention with two alternative
training stabilization methods, demonstrating that LS-
attention either achieves significantly better perplexity
or converges faster — both in terms of training steps and
GPU hours. Furthermore, LS-attention offers compu-
tational efficiency compared to state-of-the-art MHSA
implementations.

7 Limitations

The limitation of self-attention (SA) in modeling dense
local dependencies becomes particularly prominent
when the sequence length n is significantly larger than
the embedding dimension d. As a result, training insta-
bility in transformer models due to SA is more severe
when training on longer sequences. Consequently, the
benefits of LS-attention over standard MHSA — both in
terms of training stability and computational efficiency
— are more pronounced on longer sequences. In con-
trast, for shorter sequences, LS-attention may not offer
significant advantages. Additionally, in applications
where there is no dense local dependencies, incorporat-
ing local attention heads in LS-attention may not lead
to performance improvements.
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