Near-optimal Distributional Reinforcement Learning towards Risk-sensitive Control

Anonymous Author(s) Affiliation Address email

Abstract

1	We consider finite episodic Markov decision processes aiming at the entropic risk
2	measure (EntRM) of return for risk-sensitive control. We identify two properties of
3	the EntRM that enable risk-sensitive distributional dynamic programming. We pro-
4	pose two novel distributional reinforcement learning (DRL) algorithms, including
5	a model-free one and a model-based one, that implement optimism through two
6	different schemes. We prove that both of them attain $\tilde{O}(\frac{\exp(\beta H)-1}{ \beta H}H\sqrt{HS^2AT})$
7	regret upper bound, where S is the number of states, A the number of states, H
8	the time horizon and T the number of total time steps. It matches RSVI2 proposed
9	in [22] with a much simpler regret analysis. To the best of our knowledge, this is
10	the first regret analysis of DRL, which theoretically verifies the efficacy of DRL
11	for risk-sensitive control. Finally, we improve the existing lower bound by proving
12	a tighter bound of $\Omega(\frac{\exp(\beta H/6)-1}{\beta H}H\sqrt{SAT})$ for $\beta > 0$ case, which recovers the
13	tight lower bound $\Omega(H\sqrt{SAT})$ in the risk-neutral setting.

14 **1** Introduction

Standard reinforcement learning (RL) [45] seeks to find an optimal policy that maximizes the expectation of return. It is also called risk-neutral RL since the objective is the mean functional of the return distribution. However, in some high-stakes applications including finance [15, 6], medical treatment [21] and operations [16] etc, the decision-maker tends to be risk-sensitive with the goal of maximizing some risk measure of return distribution.

In this paper, we consider the problem of optimizing the exponential risk measure (EntRM) in the
episodic and finite MDP setting for risk-sensitive control. The entropic risk measure can trade-off
between the expectation and the variance, and adjusts the risk-sensitiveness by control a risk parameter
(see Equation 1). Ever since the seminal work of [29], risk-sensitive RL based on the EntRM has
been applied across a wide range of domains [43, 37, 27]. Most of the existing approaches, however,
involve complicated algorithmic design to deal with the non-linearity of the EntRM.

Distributional reinforcement learning (DRL) [4] has demonstrated its superior performance over 26 traditional methods in some difficult tasks [14, 13] under risk-neutral setting. Different from the 27 value-based approaches, it learns the whole return distribution instead of a real-valued value function. 28 29 Given the entire return distribution, it is natural to leverage the distributional information to optimize a risk measure other than expectation [13, 44, 33]. Despite of the intrinsic connection between DRL 30 and risk-sensitive RL, it is surprising that existing works on risk-sensitive control via DRL approaches 31 ([13, 34, 1]) lack regret analysis. Consequently, it is challenging to evaluate and improve these DRL 32 algorithms in terms of sample-efficiency, which brings about a reasonable question 33

34 Can distributional reinforcement learning attain near-optimal regret for risk-sensitive control?

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

In this work, we answer this question positively by providing two DRL algorithms with provably 35

regret guarantees. We devise two novel DRL algorithms with principled exploration schemes for 36 risk-sensitive control in the tabular MDP setting. In particular, the proposed algorithms implement 37

the principle of optimism in the face of uncertainty (OFU) at the distributional level to balance the 38 exploration-exploitation trade-off. By providing the first regret analysis of DRL, we theoretically 39

- verifies the efficacy of DRL for risk-sensitive control. Therefore, our work bridge the gap between 40
- DRL and risk-sensitive RL with regard to sample complexity. 41

Main contributions. We summarize our main contributions in the following. 42

43 1. We build a risk-sensitive distributional dynamic programming (RS-DDP) framework. To be more

specific, we choose the entropic risk measure (EntRM) of the return distribution as our objective. By 44

- identifying two key properties of EntRM, We establish distributional Bellman optimality equation for 45
- risk-sensitive control. 46

2. We propose two DRL algorithms that enforce the OFU principle in a distributional fashion through 47

two different schemes. We provide $\tilde{O}(\frac{\exp(|\beta|H)-1}{|\beta|}H\sqrt{S^2AK})$ regret upper bound, which matches the best existing result of RSVI2 in [22]. It is the first regret analysis of DRL algorithm in the 48

49

finite episodic MDP in the risk-sensitive setting. Compared to [22], our algorithm does not involve 50 complicated bonus design, and our analysis are conceptually cleaner and easier to interpret.

51

3. We fill the gaps in the proof of lower bound in [23]. To the best of our knowledge, [23] only 52 S. We find the gaps in the proof of lower bound in [25]. To the best of our knowledge, [25] only implies a lower bound $\Omega(\frac{\exp(|\beta|H/2)-1}{|\beta|}\sqrt{K})$ rather the claimed bound $\Omega(\frac{\exp(|\beta|H/2)-1}{|\beta|}\sqrt{T})$. The resulting lower bound is independent of S and A and is loose with a factor of \sqrt{H} . We overcome these issues by proving a tight lower bound of $\Omega(\frac{\exp(\beta H/6)-1}{\beta H}H\sqrt{SAT})$ for $\beta > 0$. Note that the 53

54

55

lower bound is tight in the risk-neutral setting ($\beta \rightarrow 0$). 56

Related work. Following the paper [4], DRL has witnessed a rapid growth of study in literature 57 [40, 14, 13, 2, 32]. Most of these works focus on improving the performance in the risk-neutral 58 setting, with a few exceptions [13, 34, 1]. However, none of these works study the sample complexity. 59

A rich body of work studies risk-sensitive RL with the EntRM [7, 8, 10, 9, 3, 11, 12, 18, 17, 19, 60 24, 28, 30, 33, 35, 36, 38, 39, 42, 43]. In particular, [29] is the first to introduce the ERM as risk-61 sensitive objective in MDP. However, they either assume known transition and reward or consider 62

63 infinite-horizon setting without sample-complexity considerations.

Two works are closely related to ours [23, 22] under precisely the same setting. [23] is the first to 64 study the risk-sensitive episodic MDP, which provides the first algorithms and regret guarantees. 65 Nevertheless, the regret upper bounds contain a dispensable factor of $\exp(|\beta|H^2)$. Additionally, their 66 lower bound proof contains mistakes, and the corrected proof suggests a weaker bound. [22] improves 67 the algorithm by removing the additional $\mathcal{O}(\exp(|\beta|\hat{H}^2))$ factor. However, the regret analysis is 68 complicated, and the lower bound is not fixed. A very recent work ([1]) independently proposes a 69 risk-sensitive DDP framework, but their work is fundamentally different from ours. The risk measure 70 considered in [1] is the conditional value at risk (CVaR), and they focus on the infinite horizon setting. 71 Due to the space limit, we provide detailed comparisons with [23, 22, 1] in Appendix A. 72

2 **Preliminaries** 73

Notations. We write $[M:N] \triangleq \{M, M+1, ..., N\}$ and $[N] \triangleq [1:N]$ for any positive integers $M \leq N$. We adopt the convention that $\sum_{i=n}^{m} a_i \triangleq 0$ if n > m and $\prod_{i=n}^{m} a_i \triangleq 1$ if n > m. We 74 75 use $\mathbb{I}\{\cdot\}$ to denote the indicator function. For any $x \in \mathbb{R}$, we define $[x]^+ \triangleq \max\{x, 0\}$. We define 76 the step function with parameter c as $\psi_c(x) \triangleq \mathbb{I}\{x \ge c\}$. Note that ψ_c represents the CDF of a 77 deterministic variable taking value c. We denote by $\mathscr{D}([a, b]), \mathscr{D}_M$ and \mathscr{D} the set of distributions 78 supported on [a, b], [0, M] and the set of all distributions respectively. For a random variable (r.v.) X, 79 we use $\mathbb{E}[X]$ and $\mathbb{V}[X]$ to denote its expectation and variance. For two r.v.s, we denote by $X \perp Y$ if 80 X is independent of Y. We use $\tilde{\mathcal{O}}(\cdot)$ to denote $\mathcal{O}(\cdot)$ omitting logarithmic factors. 81

Episodic MDP. An episodic MDP is identified by $\mathcal{M} \triangleq (\mathcal{S}, \mathcal{A}, (P_h)_{h \in [H]}, (\mathcal{R}_h)_{h \in [H]}, H)$, where 82 S is the state space, A the action space, $P_h : S \times A \times \to \Delta(S)$ the probability transition kernel at 83 step $h, \mathcal{R}_h : \mathcal{S} \times \mathcal{A} \to \mathscr{D}([0,1])$ the collection of reward distributions at step h and H the length of 84

- one episode. The agent interacts with the environment for K episodes. At the beginning of episode k, 85
- Nature selects an initial state s_1^k arbitrarily. In step h, the agent takes action a_h^k and observes random 86
- reward $R_h^k(s_h^k, a_h^k) \sim \mathcal{R}_h(s_h^k, a_h^k)$ and reaches the next state $s_{h+1}^k \sim P_h(\cdot | s_h^k, a_h^k)$. The episode 87 terminates at H + 1 with $R_{H+1}^k = 0$, then the agent proceeds to next episode. 88

For each $(k,h) \in [K] \times [H]$, we denote by $\mathcal{H}_h^k \triangleq (s_1^1, a_1^1, s_2^1, a_2^1, \ldots, s_H^1, a_H^1, \ldots, s_h^k, a_h^k)$ the (random) history up to step h episode k. We define $\mathcal{F}_k \triangleq \mathcal{H}_H^{k-1}$ as the history up to episode k-1. We describe the interaction between the algorithm and MDP in two levels. In the level of 89

- 90
- 91
- episode, we define an algorithm as a sequence of function $\mathscr{A} \triangleq (\mathscr{A}_k)_{k \in [K]}$, each mapping \mathcal{F}_k to 92
- a policy $\mathscr{A}_k(\mathcal{F}_k) \in \Pi$. We denote by $\pi^k \triangleq \mathscr{A}_k(\mathcal{F}_k)$ the policy at episode k. In the level of step, a 93
- (deterministic) policy π is defined as a sequence of functions $\pi = (\pi_h)_{h \in [H]}$ with $\pi_h : S \to \Delta(\mathcal{A})$. 94

Entropic risk measure. EntRM is a well-known risk measure in risk-sensitive decision-making, 95 including mathematical finance [25], Markovian decision processes [3]. The EntRM value of a r.v. 96

 $X \sim F$ with coefficient $\beta \neq 0$ is defined as 97

$$U_{\beta}(X) \triangleq \frac{1}{\beta} \log(\mathbb{E}_{X \sim F}[\exp(\beta X)]) = \frac{1}{\beta} \log\left(\int_{\mathbb{R}} \exp(\beta x) dF(x)\right)$$

With slight abuse of notations, we write $U_{\beta}(F) = U_{\beta}(X)$ for $X \sim F$. For β with small absolute 98 value, using Taylor's expansion we have 99

$$U_{\beta}(X) = \mathbb{E}[X] + \frac{\beta}{2} \mathbb{V}[X] + \mathcal{O}(\beta^2).$$
(1)

Hence for a decision-maker who aims at maximizing the EntRM value, she tends to be risk-seeking 100

(favoring high uncertainty in X) if $\beta > 0$ and risk-averse (favoring low uncertainty in X) if $\beta < 0$. 101

 $|\beta|$ controls the risk-sensitivity. It exactly recovers mean as the risk-neutral objective when $\beta \to 0$. 102

3 **Risk-sensitive Distributional Dynamic Programming** 103

[4, 40] has discussed the *infinite-horizon* distributional dynamic programming in the *risk-neutral* 104 setting, which will be referred to as the classical DDP. There is a big gap between the risk-sensitive 105 MDP and the risk-neutral one. In this section, we establish the novel DDP framework for risk-sensitive 106 control. 107

We start with defining the return for a policy π starting from state-action pair (s, a) at step h 108

$$Z_h^{\pi}(s,a) \triangleq \sum_{h'=h}^{H} R_{h'}(s_{h'},a_{h'}), \ s_h = s, a_{h'} = \pi_{h'}(s_{h'}), \ s_{h'+1} \sim P_{h'}(\cdot|s_{h'},a_{h'}).$$

Define $Y_h^{\pi}(s) \triangleq Z_h^{\pi}(s, \pi_h(s))$. There are three sources of randomness in $Z_h^{\pi}(s, a)$: the reward $R_h(s, a)$, the transition P^{π} and the next-state return $Y_{h+1}^{\pi}(s_{h+1})$. Denote by $\nu_h^{\pi}(s)$ and $\eta_h^{\pi}(s, a)$ the cumulative distribution function (CDF) corresponding to $Y_h^{\pi}(s)$ and $Z_h^{\pi}(s, a)$ respectively. To the 109 110 111 end of risk-sensitive control, we define the action-value function of a policy π at step h as $Q_h^{\pi}(s, a) \triangleq U_{\beta}(Z_h^{\pi}(s, a))$, i.e. the EntRM value of the return distribution, for each $(s, a, h) \in S \times A \times [H]$. The 112 113 value function is defined as $V_h^{\pi}(s) \triangleq Q_h^{\pi}(s, \pi_h(s)) = U_{\beta}(Y_h^{\pi}(s)).$ 114

We focus on the control setting, in which the goal is to find an optimal policy to maximize the value 115 function, i.e. 116

$$\pi^* \triangleq \arg \max_{(\pi_1, \dots, \pi_H) \in \Pi} V_1^{\pi_1 \dots \pi_H}(s).$$

We write $\pi = (\pi_1, ..., \pi_H)$ to emphasize that it is a multi-stage maximization problem. Direct search 117 suffers exponential computational complexity. In the risk-neutral case, the *principle of optimality* 118 holds, i.e., the optimal policy of tail sub-problem is the tail optimal policy [5]. Therein the multi-stage 119 maximization problem can be reduced to a multiple single-stage maximization problem. However, 120 the principle does not always hold for general risk measures. For example, the optimal policy for 121 CVaR may be non-Markovian/history-dependent ([41]). 122

We identify two key properties of EntRM, upon which we retain the principle of optimality. 123

124 **Lemma 1.** The EntRM satisfies the following properties:

126

• Additive:
$$X \perp Y \Rightarrow U_{\beta}(X+Y) = U_{\beta}(X) + U_{\beta}(Y), \forall X, Y.$$

• Monotonicity-preserving: $\forall F_1, F_2, G \in \mathcal{D}, \forall \theta \in [0, 1],$

$$U_{\beta}(F_2) \le U_{\beta}(F_1) \Rightarrow U_{\beta}((1-\theta)F_2 + \theta G) \le U_{\beta}((1-\theta)F_1 + \theta G).$$

The proof is given in Appendix B. In particular, the additivity entails that the EntRM value of the current return $Z_h^{\pi}(s, a)$ equals the sum of the immediate value of $R_h(s, a)$ and the value of the future return $Y_h^{\pi}(s')$, i.e.,

$$U_{\beta}(Z_h^{\pi}(s,a)) = U_{\beta}(R_h(s,a)) + U_{\beta}(Y_h^{\pi}(s')).$$

The monotonicity-preserving property together with the additivity suggests that the optimal future return $Y_h^*(s')$ consists in the optimal current return $Z_h^*(s, a)$

$$Z_h^*(s,a) = R_h(s,a) + Y_h^*(s').$$

¹³² These observations implies the principle of optimality.

Proposition 1 (Principle of optimality). Let $\pi^* = {\pi_1^*, \pi_2^*, ..., \pi_H^*}$ be an optimal policy and assume when we visit some state *s* using policy π at time-step *h* with positive probability. Consider the

135 sub-problem defined by the the following maximization problem

$$\max_{\pi \in \Pi} V_h^{\pi}(s) = U_{\beta}(\mathcal{R}_h(s, a)) + U_{\beta}([P_h \nu_{h+1}^{\pi}](s, a)).$$

136 Then the truncated optimal policy $\{\pi_h^*, \pi_{h+1}^*, ..., \pi_H^*\}$ is optimal for this sub-problem.

¹³⁷ The proof is given in Appendix E. It further induces the distributional Bellman optimality equation.

Proposition 2 (Distributional Bellman optimality equation). For arbitrary initial state s_1 , the optimal policy $(\pi_h^*)_{h \in [H]}$ is given by the following backward recursions:

$$\nu_{H+1}^{*}(s) = \psi_{0}, \ \eta_{h}^{*}(s,a) = [P_{h}\nu_{h+1}^{*}](s,a) * f_{h}(\cdot|s,a),$$

$$\pi_{h}^{*}(s) = \arg\max_{a \in \mathcal{A}} Q_{h}^{*}(s,a) = U_{\beta}(\eta_{h}^{*}(s,a)), \\ \nu_{h}^{*}(s) = \eta_{h}^{*}(s,\pi_{h}^{*}(s)),$$
(2)

where $f_h(s,a)$ is the probability density function of $R_h(s,a)$. Furthermore, the sequence $(\eta_h^*)_{h\in[H]}$

and $(\nu_h^*)_{h \in [H]}$ are the sequence of distributions corresponding to the optimal returns at each step.

The proof is given in Appendix E. For simplicity, we define the distributional Bellman operator $\mathcal{B}(P,\mathcal{R}): \mathscr{D}^{\mathcal{S}} \to \mathscr{D}^{\mathcal{S} \times \mathcal{A}}$ with associated model $(P,\mathcal{R}) = (P(s,a),\mathcal{R}(s,a))_{(s,a) \in \mathcal{S} \times \mathcal{A}}$ as

$$[\mathcal{B}(P,\mathcal{R})\nu](s,a) \triangleq [P\nu](s,a) * f_h(\cdot|s,a), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$$

144 Hence we can rewrite Equation 2 in a compact form:

$$\nu_{H+1}^{*}(s) = \psi_{0}, \ \eta_{h}^{*}(s,a) = [\mathcal{B}(P_{h},\mathcal{R}_{h})\nu_{h+1}^{*}](s,a),$$

$$\pi_{h}^{*}(s) = \arg\max_{a \in \mathcal{A}} U_{\beta}(\eta_{h}^{*}(s,a)), \ \nu_{h}^{*}(s) = \eta_{h}^{*}(s,\pi_{h}^{*}(s)), \forall (s,a,h) \in \mathcal{S} \times \mathcal{A} \times [H].$$
(3)

Finally, we define the regret of an algorithm \mathscr{A} interacting with an MDP \mathcal{M} for K episodes as

$$\operatorname{Regret}(\mathscr{A}, \mathcal{M}, K) \triangleq \sum_{k=1}^{K} V_1^*(s_1^k) - V_h^{\pi^k}(s_1^k).$$

Note that the regret is a random variable since π^k is a random quantity. We denote by $\mathbb{E}[\text{Regret}(\mathscr{A}, \mathcal{M}, K)]$ the expected regret. We will omit π and \mathcal{M} if it is clear from the context.

148 **4** Algorithm

For a better understanding of the readers, we present our algorithms under the assumption that the reward is *deterministic and known*¹. The algorithms for the case of random reward are given

¹The algorithms for random reward enjoy the regret bounds of the same order.

in Appendix C. We denote by $\{r_h(s,a)\}_{(s,a,h)\in S\times A\times [H]}$ the reward functions. For the case of deterministic reward, the Bellman update in Equation 2 takes the form

$$\eta_h^*(s,a) = [P_h \nu_{h+1}^*](s,a)(\cdot - r_h(s,a)),$$

since adding a deterministic reward $r_h(s, a)$ corresponds to shifting the distribution $[P_h \nu_{h+1}^*](s, a)$ by an amount of $r_h(s, a)$. We thus define the distributional Bellman operator $\mathcal{B}(P, \mathcal{R}) : \mathscr{D}^S \to \mathscr{D}^{S \times \mathcal{A}}$ with associated model $(P, r) = (P(s, a), r(s, a))_{(s,a) \in S \times \mathcal{A}}$ as

$$[\mathcal{B}(P,r)\nu](s,a) \triangleq [P\nu](s,a)(\cdot - r_h(s,a)), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$$

We propose two DRL algorithms in this section, including a model-free algorithm and a model-based algorithm. We first introduce the Model- Free Risk-sensitive Optimistic Distribution Iteration (RODI-MF) in Algorithm 1. For completeness, we introduce some additional notations here. For two CDFs F and G over reals, we define the supremum distance between them $||F - G||_{\infty} \triangleq$ sup_x |F(x) - G(x)|. We define the ℓ_1 distance between two probability mass functions (PMFs) P and Q as $||P - Q||_1 \triangleq \sum_i |P_i - Q_i|$. We denote by $B_{\infty}(F, c) := \{G \in \mathcal{D} || |G - F ||_{\infty} \le c\}$ the supremum norm ball centered at F with radius c. With slight abuse of notations, we denote by $B_1(P, c)$ the l_1 norm ball centered at P with radius c.

164 4.1 Algorithm overview

165 4.1.1 RODI-MF

¹⁶⁶ In each episode, the algorithm includes the planning phase (Line 4-12) and the interaction phase ¹⁶⁷ (Line 13-17).

Planning phase. In a high level, the algorithm implements an optimistic version of approximate DDP from step H + 1 to step 1 in each episode. In Line (5-7), it performs sample-based Bellman update. To make it clear, we introduce the superscript k to the variables of Algorithm 1 in episode k. For example, η_h^k denotes η_h in episode k. Specifically, for those visited state-action pairs, we claim that Line 6 is equivalent to a model-based Bellman update. Denote by $\mathbb{I}_h^k(s, a) \triangleq \mathbb{I}\{(s_h^k, a_h^k) = (s, a)\}$. Fix a tuple (s, a, k, h) such that $N_h^k(s, a) \ge 1$. We denote by $\hat{P}_h^k(\cdot|s, a)$ the empirical transition model

$$\hat{P}_{h}^{k}(s'|s,a) = \frac{1}{N_{h}^{k}(s,a)} \sum_{\tau \in [k-1]} \mathbb{I}_{h}^{\tau}(s,a) \cdot \mathbb{I}\{s_{h+1}^{\tau} = s'\}.$$

175 Observe that for any $\nu \in \mathscr{D}^{\mathcal{S}}$, we have

$$\begin{split} \left[\hat{P}_{h}^{k} \nu \right](s,a) &= \sum_{s' \in \mathcal{S}} \hat{P}_{h}^{k}(s'|s,a)\nu(s') = \frac{1}{N_{h}^{k}(s,a)} \sum_{s' \in \mathcal{S}} \sum_{\tau \in [k-1]} \mathbb{I}_{h}^{\tau}(s,a) \cdot \mathbb{I}\{s_{h+1}^{\tau} = s'\}\nu(s') \\ &= \frac{1}{N_{h}^{k}(s,a)} \sum_{\tau \in [k-1]} \mathbb{I}_{h}^{\tau}(s,a) \cdot \sum_{s' \in \mathcal{S}} \mathbb{I}\{s_{h+1}^{\tau} = s'\}\nu(s_{h+1}^{\tau}) \\ &= \frac{1}{N_{h}^{k}(s,a)} \sum_{\tau \in [k-1]} \mathbb{I}_{h}^{\tau}(s,a)\nu(s_{h+1}^{\tau}). \end{split}$$

176 Hence the update formula in Line 6 of Algorithm 1 can be rewritten as

$$\eta_{h}^{k}(s,a) = \left[\hat{P}_{h}^{k}\nu_{h+1}^{k}\right](s,a)(\cdot - r_{h}(s,a)) = \left[\mathcal{B}(\hat{P}_{h}^{k}, r_{h})\nu_{h+1}^{k}\right](s,a),$$

implying the equivalence to a model-based Bellman update with empirical model \hat{P}_{h}^{k} . Alternatively, the unvisited (s, a) remains to be the return distribution corresponding to the highest possible reward H + 1 - h. The algorithm then computes the optimism constants (Line 8) and enforces OFU through the distributional optimism operator c_{h}^{k} (Line 9) to obtain the optimistically plausible return distribution η_{h}^{k} . The choice of c_{h}^{k} will be discussed later. The optimistic return distributions yields the optimistic value function, from which the algorithm generates the greedy policy π_{h}^{k} . The policy π_{h}^{k} will be used in the interaction phase. Interaction phase. In Line (15-16), the agent interacts with the environment using policy π and updates the counts N_h based on new observations.

Algorithm 1 RODI-MF

```
1: Input: T and \delta
  2: Initialize N_h(\cdot, \cdot) \leftarrow 0; \eta_h(\cdot, \cdot), \nu_h(\cdot) \leftarrow \psi_{H+1-h} for all h \in [H]
  3: for k = 1 : K do
  4:
                    for h = H : 1 do
  5:
                              if N_h(\cdot, \cdot) > 0 then
                                        \eta_h(\cdot, \cdot) \leftarrow \frac{1}{N_h(\cdot, \cdot)} \sum_{\tau \in [k-1]} \mathbb{I}_h^{\tau}(\cdot, \cdot) \nu_{h+1}(s_{h+1}^{\tau})(\cdot - r_h(\cdot, \cdot))
  6:
                              end if
  7:
                             \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} c_{h}(\cdot,\cdot) \leftarrow \sqrt{\frac{2S}{N_{h}(\cdot,\cdot)\vee 1}\iota} \\ \\ \eta_{h}(\cdot,\cdot) \leftarrow O_{c_{h}(\cdot,\cdot)}^{\infty}\eta_{h}(\cdot,\cdot) \\ \\ \pi_{h}(\cdot) \leftarrow \arg\max_{a}U_{\beta}(\eta_{h}(\cdot,a)) \\ \\ \nu_{h}(\cdot) \leftarrow \eta_{h}(\cdot,\pi_{h}(\cdot)) \end{array} \end{array}
  8:
  9:
10:
11:
12:
                    end for
                    Receive s_1^k
13:
                    for h = 1: H do
14:
                              a_h^k \leftarrow \pi_h(s_h^k) and transit to s_{h+1}^k
N_h(s_h^k, a_h^k) \leftarrow N_h(s_h^k, a_h^k) + 1
15:
16:
                    end for
17:
18: end for
```

186 **4.1.2 RODI-MB**

We introduce the second algorithm Model- Based Risk-sensitive Optimistic Distribution Iteration (RODI-MB). Algorithm 2 is a model-based algorithm because it requires to explicitly maintaining the empirical transition model in each episode. However, it can be reduced to a *non-distributional* reinforcement learning algorithm that deals with the one-dimensional values instead of the distributions, which saves the computational complexity and space complexity. Likewise, the algorithm includes the planning phase (Line 4-10) and the interaction phase (Line 11-15).

Planning phase. Analogous to Algorithm 1, the algorithm also performs approximate DDP together with the OFU principle. First, it applies the distributional optimistic operator to the empirical transition model \hat{P}_h^k to get the optimistic transition model \tilde{P}_h^k . Then the algorithm uses \tilde{P}_h^k to execute Bellman update to generate the optimistic return distributions η_h^k . The remaining steps are the same as Algorithm 1.

Interaction phase. In Line (13-14), the agent interacts with the environment using policy π^k and updates the counts N_h^{k+1} and empirical transition model \hat{P}_h^{k+1} based on the new observations.

Algorithm 2 RODI-MB			orithm 3 ROVI
1:	Input: T and δ	1:	Input: T and δ
2:	$N_h^1(\cdot, \cdot) \leftarrow 0; \hat{P}_h^1(\cdot, \cdot) \leftarrow \frac{1}{S} 1$ for all $h \in [H]$	2:	$N_h^1(\cdot, \cdot) \leftarrow 0; \hat{P}_h^1(\cdot, \cdot) \leftarrow \frac{1}{5}1$ for all $h \in [H]$
3:	for $k = 1 : K$ do	3:	for $k = 1 : K$ do
4:	$\nu_{H+1}^k(\cdot) \leftarrow \psi_0$	4:	$W_{H+1}^k(\cdot) \leftarrow 1$
5:	for $h = H : 1$ do	5:	for $h = H : 1$ do
6:	$\tilde{P}_{h}^{k}(\cdot,\cdot) \leftarrow \mathcal{O}_{c_{h}^{k}(\cdot,\cdot)}^{1} \hat{P}_{h}^{k}(\cdot,\cdot)$	6:	$ ilde{P}^k_h(\cdot,\cdot) \leftarrow \mathrm{O}^1_{c^k_h(\cdot,\cdot)} \hat{P}^k_h(\cdot,\cdot)$
7:	$\eta_h^k(\cdot, \cdot) \leftarrow \left[\mathcal{B}\left(\tilde{P}_h^k, r_h \right) \nu_{h+1}^k \right] (\cdot, \cdot)$	7:	$J_{h}^{k}(\cdot,\cdot) \leftarrow e^{\beta r_{h}(\cdot,\cdot)} \left[\tilde{P}_{h}^{k} W_{h+1}^{k} \right] (\cdot,\cdot)$
8:	$\pi_h^k(\cdot) \leftarrow \arg\max_a U_\beta(\eta_h^k(\cdot, a))$	8:	$W_h^k(\cdot) \leftarrow \max_a J_h^k(\cdot, a)$
9:	$\nu_{h}^{k}(\cdot) \leftarrow \eta_{h}^{k}(\cdot, \pi_{h}^{k}(\cdot))$	9:	end for
10:	end for	10:	Receive s_1^k
11:	Receive s_1^k	11:	for $h = 1 : H$ do
12:	for $h = 1$: H do	12:	$a_h^k \leftarrow \arg \max_a J_h^k(s_h^k, a)$ and tran-
13:	$a_h^k \leftarrow \pi_h^k(s_h^k)$ and transit to s_{h+1}^k		sit to s_{h+1}^k
14:	Compute $N_h^{k+1}(\cdot, \cdot)$ and $\hat{P}_h^{k+1}(\cdot, \cdot)$	13:	Compute $N_h^{k+1}(\cdot, \cdot)$ and $\hat{P}_h^{k+1}(\cdot, \cdot)$
15:	end for	6 14:	end for
16: end for		15:	end for

200 Equivalence to ROVI. Risk-sensitive Optimistic Value Iteration (ROVI) is a non-distributional

algorithm that deals with the real-valued value function rather than the distribution. It is motivated by

the *exponential Bellman equation* proposed by [22]. We define the functional exponential EntRM

(EERM) E_{β} as the EntRM after the exponential transformation

$$E_{\beta}(F) \triangleq \exp(\beta(U_{\beta}(F))) = \int_{\mathbb{R}} \exp(\beta x) dF(x).$$

Define the exponential value functions $W_h(s) \triangleq E_\beta(\nu_h(s))$ and $J_h(s,a) \triangleq E_\beta(\eta_h(s,a))$ for all (s,a,h)s. Applying EERM to Equation 3 yields the exponential Bellman equation

$$J_{h}^{*}(s,a) = \exp(\beta r_{h}(s,a))[P_{h}W_{h+1}^{*}](s,a),$$

$$W_{h}^{*}(s) = \operatorname{sign}(\beta)\max\operatorname{sign}(\beta)J_{h}^{*}(s,a), \ W_{H+1}^{*}(s) = 1.$$
(4)

To verify the equivalence, it is sufficient to show that J_h^k in Algorithm 3 corresponds to the exponential function of η_h^k in Algorithm 2. Observe that E_β is linear in *F*, hence it follows that

$$E_{\beta}(\eta_{h}^{k}(s,a)) = E_{\beta}\left(\left[\tilde{P}_{h}^{k}\nu_{h+1}^{k}\right](s,a)(\cdot - r_{h}(s,a))\right) = \exp(\beta r_{h}(s,a)) \cdot \left[\tilde{P}_{h}^{k}E_{\beta}(\nu_{h+1}^{k})\right](s,a)$$
$$= \exp(\beta r_{h}(s,a))\left[\tilde{P}_{h}^{k}W_{h+1}^{k}\right](s,a) = J_{h}^{k}(s,a).$$

The two algorithms generate the policy sequence in the same way, implying that their trajectories \mathcal{H}_{H}^{K} follow the same distribution. The formal statement is given in Appendix E.

210 4.2 Distributional Optimism

It is common to add a bonus to the reward to ensure optimism in the risk-neutral setting. Specifically, the bonus is closely related to the level of uncertainty, which is quantified by the concentration inequality. Yet, this type of optimism cannot be adapted to the distributional setup. As one of our technical novelty, the *distributional optimism* is introduced for algorithmic design and regret analysis. In particular, we specify two types of distributional optimism operators, which map a statistically plausible distribution (either the empirical model or the return distribution) to a optimistically plausible distribution. Either of them is applied by Algorithm 2 or Algorithm 1.

Distributional optimism on the return distribution (in Algorithm 1). For two CDFs F and G, we say that F is more optimistic than G (w.r.t. EntRM) if $U_{\beta}(F) \ge U_{\beta}(G)$. This reflects the intuition that the more optimistic distribution should own larger EntRM value. Following [31], we define the distributional optimism operator $O_c^{\infty} : \mathscr{D}([a, b]) \mapsto \mathscr{D}([a, b])$ with level $c \in (0, 1)$ as

$$(\mathcal{O}_c^{\infty} F)(x) \triangleq [F(x) - c\mathbb{I}_{[a,b)}(x)]^+.$$

The optimistic operator shifts the input F down by at most c over [a, b), and retain the value 1 at b. It

- ensures that $O_c^{\infty} F$ remains in $\mathscr{D}([a, b])$ and dominates all the other CDFs in $\mathscr{D}([a, b])$ in the sense
- that $(O_c^{\infty}F)(x) \leq G(x)$ for any $G \in B_{\infty}(F,c)$. Since EntRM is monotonic, it holds that

$$U_{\beta}(\mathcal{O}_c^{\infty}F) \ge U_{\beta}(G), \ \forall G \in B_{\infty}(F,c).$$

Hence $O_c^{\infty} F$ is the most optimistic distribution in the infinity ball $B_{\infty}(F,c)$. In other words, for any CDF F and G satisfying $||F - G||_{\infty} \leq c$, we have $O_c^{\infty} G \succeq F$. When specialized to the return distributions, we can apply the distributional optimism operator to the estimated return distribution η_h^k (Line 9 of Algorithm 1) with the constant c_h^k to ensure $U_{\beta}(\eta_h^k(s,a)) \geq U_{\beta}(\eta_h^*(s,a))$. The constant c_h^k quantifies uncertainty in the model estimation, i.e., $\left\|\hat{P}_h^k(s,a) - P_h(s,a)\right\|_1$.

Distributional optimism on the model (in Algorithm 2). Given the model, we consider the optimism among the space of PMFs rather than CDFs. Using the ℓ_1 concentration inequality [46], we get a concentration bound of the empirical PMF of model: with probability at least $1 - \delta$,

$$\left\|\widehat{P}_{h}^{k}(s,a) - P_{h}(s,a)\right\|_{1} \le c_{h}^{k}(s,a) = \sqrt{\frac{2S}{N_{h}^{k}(s,a)}\log\frac{1}{\delta}} = \widetilde{\mathcal{O}}\left(\sqrt{\frac{2S}{N_{h}^{k}(s,a)}}\right)$$

We wish to obtain a optimistic transition model $\tilde{P}_{h}^{k}(s, a)$ from the empirical one $\hat{P}_{h}^{k}(s, a)$. To be more specific, the return distribution η_{h}^{k} computed from $\tilde{P}_{h}^{k}(s, a)$ and ν_{h+1}^{k} should be more optimistic than the optimal one $\eta_h^*(s, a)$ with high probability. We thus define the distributional optimism operator O_c¹: $\mathscr{D}(S) \mapsto \mathscr{D}(S)$ with level c and future return $\nu \in \mathscr{D}^S$ as

$$O_c^1\left(\widehat{P}(s,a),\nu\right) \triangleq \arg\max_{P\in B_1(\widehat{P}(s,a),c)} U_\beta([P\nu]).$$

The ERM satisfy an interesting property that enables an efficient approach to perform O_c^1 (see Appendix B). The following holds by using the induction

$$U_{\beta}\left(\eta_{h}^{k}(s,a)\right) = r_{h}(s,a) + U_{\beta}\left(\left\lfloor\tilde{P}_{h}^{k}\nu_{h+1}^{k}\right\rfloor[s,a]\right) \ge r_{h}(s,a) + U_{\beta}\left(\left[P_{h}\nu_{h+1}^{k}\right][s,a]\right)$$
$$\ge r_{h}(s,a) + U_{\beta}\left(\left[P_{h}\nu_{h+1}^{*}\right][s,a]\right)$$
$$= U_{\beta}(\eta_{h}^{*}(s,a)),$$

which verify the optimism of $\eta_h^k(s, a)$ over $\eta_h^*(s, a)$.

237 **5 Regret Analysis**

238 5.1 Regret upper bounds

- **Theorem 1** (Regret upper bound of RODI-MF). For any $\delta \in (0, 1)$, with probability 1δ , the regret of Algorithm 1 under deterministic reward or Algorithm 4 under random reward is bounded as
- 240 Of Algorium 1 under deterministic reward of Algorium 4 under random reward is bounded as

$$Regret(RODI-MF,K) \le \mathcal{O}\left(\frac{1}{|\beta|}L_H H \sqrt{S^2 A K \log(4SAT/\delta)}\right) = \tilde{\mathcal{O}}\left(\frac{\exp(|\beta|H) - 1}{|\beta|} H \sqrt{S^2 A K}\right)$$

²⁴¹ The proof is given in Appendix D.

Theorem 2 (Regret upper bound of RODI-MB/ROVI). For any $\delta \in (0, 1)$, with probability $1 - \delta$, the

regret of Algorithm 1/Algorithm 3 under deterministic reward or Algorithm 4/Algorithm 6 under

244 random reward is bounded as

$$\begin{split} \textit{Regret}(\textit{RODI-MF},K) &= \textit{Regret}(\textit{ROVI},K) \leq \mathcal{O}(\frac{1}{|\beta|}L_H H \sqrt{S^2 A K \log(4SAT/\delta)}) \\ &= \tilde{\mathcal{O}}\left(\frac{\exp(|\beta|H) - 1}{|\beta|} H \sqrt{S^2 A K}\right). \end{split}$$

The proof is given in Appendix D. The above results match the best-known results in [22]. In particular, our algorithms attain exponentially improved regret bounds than those of RSVI and RSQ in [23] with a factor of $\exp(|\beta|H^2)$. By choosing $|\beta| = O(1/H)$, we can eliminate the exponential term and achieve polynomial regret bound akin to the risk-neutral setting.

Compared to the traditional/non-distributional analysis dealing with one-dimensional values, our analysis is distribution-centered, called the *distributional analysis*. The distributional analysis deals with the distributions of the return rather than the risk measure values of the return. For example, it involves the operations of the distributions, the optimism between different distributions, the error caused by estimation of distribution, etc. These distributional aspects fundamentally differ from the traditional analysis that deals with the one-dimensional scalars (value functions). Now we recap the technical novelty of our analysis in the following.

Lipschitz continuity and linearity. We identify two important properties of EERM that establishes the regret upper bounds, including the Lipschitz continuity and linearity. Denote by L_M the Lipschitz constant of the EERM $E_\beta : \mathscr{D}([0, M]) \to \mathbb{R}$ with respect to the infinity norm $\|\cdot\|_{\infty}$. Lemma 2 provides a *tight* Lipschitz constant of EERM. The Lipschitz constant relates the difference between distributions to the difference measured by their EERM values.

Lemma 2 (Lipschitz property of EERM). E_{β} is Lipschitz continuous with respect to the supremum norm over \mathscr{D}_M with $L_M = \exp(|\beta|M) - 1$. Moreover, L_M is tight in terms of both $|\beta|$ and M.

Notice that $\lim_{\beta\to 0} L_M = 0$, which coincides with the fact that $\lim_{\beta\to 0} E_\beta = 1$. The linearity of EERM is a key property that sharpens the regret bounds. In contrast, EntRM is non-linear in the distribution, which could induce a factor of $\exp(|\beta|H)$ when controlling the error propagation across time-steps. It would further lead to a compounding factor of $\exp(|\beta|H^2)$ in the regret bound. In summary, the Lipschitz continuity property enables the regret upper bounds of DRL algorithms, and

the linearity tightens the bound.

Distributional optimism. Another technical novelty in our analysis is the optimism in the face of 269 uncertainty at the distributional level. The traditional analysis uses the OFU to construct a sequence 270 of optimistic value functions. However, our analysis implements the distributional optimism that 271 yields a sequence of optimistic return distributions. In particular, we first define a high probability 272 event, under which the true return distribution concentrates around the estimated one with a certain 273 confidence radius. Then we apply the distributional optimism operator to obtain the optimistically 274 plausible return distribution and the optimistic EntRM value. Hence the regret can be bounded by the 275 surrogate regret, with the optimal EntRM value replaced by 276

$$\operatorname{Regret}(K) = \sum_{k=1}^{K} \frac{1}{\beta} \log \left(W_1^*(s_1^k) \right) - \frac{1}{\beta} \log \left(W_1^{\pi^k}(s_1^k) \right) \le \frac{1}{\beta} \sum_{k=1}^{K} W_1^k(s_1^k) - W_1^{\pi^k}(s_1^k).$$

277

Distributional analysis vs. non-distributional analysis. When analyzing Algorithm 2/Algorithm 3, proving the regret bound of either algorithm suffices due to their equivalence relation. Since Algorithm 3 is a non-distributional algorithm, one may consider using the standard analysis that does not involve distributions. However, we show that this induces a factor of $\frac{1}{|\beta|} \exp(|\beta|H)$, which explodes as $|\beta| \rightarrow 0$. We overcome this issue by invoking a novel distributional analysis of Algorithm 2, leading to the desired factor of $\frac{1}{|\beta|} (\exp(|\beta|H) - 1)$.

Although we focus on the algorithms for the deterministic reward in the main text, the regret upper bounds also hold for case of random reward. Algorithm 4, Algorithm 5 and Algorithm 6 corresponds to Algorithm 1, Algorithm 2 and Algorithm 3 respectively (cf. Appendix C).

287 5.2 Regret lower bound

We provide more details of the mistakes in the lower bound of [23] in Appendix D. The proof of [23] 288 reduces the regret lower bound to the two-armed bandit regret lower bound. Since the two-armed 289 bandit is a special case of MDP with S = 1, A = 2 and H = 1, the reduction-based proof only leads 290 to a lower bound independent of S, A, and H. Instead, our tight lower bound follows a totally different 291 roadmap motivated by [20]. [20] proves the tight minimax lower bound $H\sqrt{SAT}$ for risk-neutral 292 MDP. However, the generalization to risk-sensitive MDP is non-trivial. The main technical challenge 293 is due to the non-linearity of EntRM. The proof in [23] heavily relies on the linearity of expectation, 294 allowing the exchange between taking the risk measure (expectation) and the summation. In the 295 risk-sensitive setting, the non-linearity of EntRM requires new proof techniques. 296

Assumption 1. Assume $S \ge 6, A \ge 2$, and there exists an integer d such that $S = 3 + \frac{A^d - 1}{A - 1}$. We further assume that $H \ge 3d$ and $\bar{H} \triangleq \frac{H}{3} \ge 1$.

Theorem 3 (Tighter lower bound). Assume Assumption 1 holds and $\beta > 0$. Let $\overline{L} \triangleq (1 - \frac{1}{A})(S - 3) + \frac{1}{A}$. Then for any algorithm \mathscr{A} , there exists an MDP $\mathcal{M}_{\mathscr{A}}$ such that for $K \ge 2 \exp(\beta(H - \overline{H} - 301 - 4))\overline{HL}A$ we have

$$\mathbb{E}[\operatorname{Regret}(\mathscr{A}, \mathcal{M}_{\mathscr{A}}, K)] \geq \frac{1}{72\sqrt{6}} \frac{\exp(\beta H/6) - 1}{\beta H} H\sqrt{SAT}.$$

The proof is given in Appendix D. Theorem 3 recovers the tight lower bound for standard episodic MDP, implying that the exponential dependence on $|\beta|$ and H in the upper bounds is indispensable. Yet, it is not clear whether a similar lower bound holds for $\beta < 0$, which is left as a future direction.

305 6 Conclusion

We propose a risk-sensitive distributional dynamic programming framework. We devise two novel DRL algorithms, including a model-free one and a model-based one, which implement the OFU principle at the distributional level to balance the exploration and exploitation trade-off under the risk-sensitive setting. We prove that both attain near-optimal regret upper bounds compared with our improved lower bound.

There are several promising future directions. The current regret upper bound has an additional factor \sqrt{HS} compared with the lower bound. It might be possible to remove the factor by designing new algorithms or improving the analysis. Besides, it is interesting to extend the DRL algorithm from tabular MDP to linear function approximation setting. Finally, it will be meaningful to investigate whether the DDP framework holds for other risk measures.

316 **References**

- [1] Mastane Achab and Gergely Neu. Robustness and risk management via distributional dynamic
 programming. *arXiv preprint arXiv:2112.15430*, 2021.
- [2] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva
 Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional determin istic policy gradients. *arXiv preprint arXiv:1804.08617*, 2018.
- [3] Nicole Bäuerle and Ulrich Rieder. More risk-sensitive markov decision processes. *Mathematics* of Operations Research, 39(1):105–120, 2014.
- [4] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In *International Conference on Machine Learning*, pages 449–458. PMLR, 2017.
- [5] Dimitri P Bertsekas et al. *Dynamic programming and optimal control: Vol. 1.* Athena scientific Belmont, 2000.
- [6] Tomasz R Bielecki, Stanley R Pliska, and Michael Sherris. Risk sensitive asset allocation.
 Journal of Economic Dynamics and Control, 24(8):1145–1177, 2000.
- [7] Vivek S Borkar. A sensitivity formula for risk-sensitive cost and the actor–critic algorithm. *Systems & Control Letters*, 44(5):339–346, 2001.
- [8] Vivek S Borkar. Q-learning for risk-sensitive control. *Mathematics of operations research*,
 27(2):294–311, 2002.
- [9] Vivek S Borkar. Learning algorithms for risk-sensitive control. In *Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems–MTNS*, volume 5, 2010.
- [10] Vivek S Borkar and Sean P Meyn. Risk-sensitive optimal control for markov decision processes
 with monotone cost. *Mathematics of Operations Research*, 27(1):192–209, 2002.
- [11] Rolando Cavazos-Cadena and Daniel Hernández-Hernández. Discounted approximations for
 risk-sensitive average criteria in markov decision chains with finite state space. *Mathematics of Operations Research*, 36(1):133–146, 2011.
- [12] Stefano P Coraluppi and Steven I Marcus. Risk-sensitive, minimax, and mixed riskneutral/minimax control of markov decision processes. In *Stochastic analysis, control, optimization and applications*, pages 21–40. Springer, 1999.
- [13] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
 distributional reinforcement learning. In *International conference on machine learning*, pages
 1096–1105. PMLR, 2018.
- [14] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
 learning with quantile regression. In *Thirty-Second AAAI Conference on Artificial Intelligence*,
 2018.
- [15] Mark Davis and Sébastien Lleo. Risk-sensitive benchmarked asset management. *Quantitative Finance*, 8(4):415–426, 2008.
- [16] Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with
 parameter uncertainty. *Operations research*, 58(1):203–213, 2010.
- [17] Giovanni B Di Masi et al. Infinite horizon risk sensitive control of discrete time markov
 processes with small risk. *Systems & control letters*, 40(1):15–20, 2000.
- [18] Giovanni B Di Masi and Lukasz Stettner. Risk-sensitive control of discrete-time markov
 processes with infinite horizon. *SIAM Journal on Control and Optimization*, 38(1):61–78, 1999.
- [19] Giovanni B Di Masi and Łukasz Stettner. Infinite horizon risk sensitive control of discrete time
 markov processes under minorization property. *SIAM Journal on Control and Optimization*,
 46(1):231–252, 2007.

- [20] Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic
 reinforcement learning in finite mdps: Minimax lower bounds revisited. In *Algorithmic Learning Theory*, pages 578–598. PMLR, 2021.
- [21] Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis Wehenkel. Clinical data based
 optimal sti strategies for hiv: a reinforcement learning approach. In *Proceedings of the 45th IEEE Conference on Decision and Control*, pages 667–672. IEEE, 2006.
- [22] Yingjie Fei, Zhuoran Yang, Yudong Chen, and Zhaoran Wang. Exponential bellman equation
 and improved regret bounds for risk-sensitive reinforcement learning. *Advances in Neural Information Processing Systems*, 34, 2021.
- Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, and Qiaomin Xie. Risk-sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret. *arXiv preprint arXiv:2006.13827*, 2020.
- [24] Wendell H Fleming and William M McEneaney. Risk-sensitive control on an infinite time
 horizon. *SIAM Journal on Control and Optimization*, 33(6):1881–1915, 1995.
- [25] Hans Föllmer and Alexander Schied. Stochastic finance. In *Stochastic Finance*. de Gruyter,
 2016.
- [26] Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next: The true shape
 of regret in bandit problems. *Mathematics of Operations Research*, 44(2):377–399, 2019.
- [27] Lars Peter Hansen and Thomas J Sargent. Robustness. In *Robustness*. Princeton university
 press, 2011.
- [28] Daniel Hernández-Hernández and Steven I Marcus. Risk sensitive control of markov processes
 in countable state space. *Systems & control letters*, 29(3):147–155, 1996.
- [29] Ronald A Howard and James E Matheson. Risk-sensitive markov decision processes. *Management science*, 18(7):356–369, 1972.
- [30] Anna Jaśkiewicz. Average optimality for risk-sensitive control with general state space. *The annals of applied probability*, 17(2):654–675, 2007.
- [31] Ramtin Keramati, Christoph Dann, Alex Tamkin, and Emma Brunskill. Being optimistic to
 be conservative: Quickly learning a cvar policy. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 4436–4443, 2020.
- [32] Clare Lyle, Marc G Bellemare, and Pablo Samuel Castro. A comparative analysis of expected and distributional reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 4504–4511, 2019.
- [33] Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao. Dsac: Distributional
 soft actor critic for risk-sensitive reinforcement learning. *arXiv preprint arXiv:2004.14547*, 2020.
- [34] Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional
 reinforcement learning. *Advances in Neural Information Processing Systems*, 34, 2021.
- [35] Steven I Marcus, Emmanual Fernández-Gaucherand, Daniel Hernández-Hernandez, Stefano
 Coraluppi, and Pedram Fard. Risk sensitive markov decision processes. In *Systems and control in the twenty-first century*, pages 263–279. Springer, 1997.
- [36] Oliver Mihatsch and Ralph Neuneier. Risk-sensitive reinforcement learning. *Machine learning*,
 404 49(2):267–290, 2002.
- [37] David Nass, Boris Belousov, and Jan Peters. Entropic risk measure in policy search. In 2019
 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1101–1106.
 IEEE, 2019.
- [38] Takayuki Osogami. Robustness and risk-sensitivity in markov decision processes. Advances in
 Neural Information Processing Systems, 25:233–241, 2012.

- [39] Stephen D Patek. On terminating markov decision processes with a risk-averse objective
 function. *Automatica*, 37(9):1379–1386, 2001.
- [40] Mark Rowland, Marc Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An analysis
 of categorical distributional reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*, pages 29–37. PMLR, 2018.
- [41] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. *Lectures on stochastic programming: modeling and theory.* SIAM, 2021.
- [42] Yun Shen, Wilhelm Stannat, and Klaus Obermayer. Risk-sensitive markov control processes.
 SIAM Journal on Control and Optimization, 51(5):3652–3672, 2013.
- [43] Yun Shen, Michael J Tobia, Tobias Sommer, and Klaus Obermayer. Risk-sensitive reinforcement
 learning. *Neural computation*, 26(7):1298–1328, 2014.
- [44] Rahul Singh, Qinsheng Zhang, and Yongxin Chen. Improving robustness via risk averse
 distributional reinforcement learning. In *Learning for Dynamics and Control*, pages 958–968.
 PMLR, 2020.
- [45] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- [46] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
 Inequalities for the 11 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*, 2003.

429 Checklist

430	1. For all authors
431 432	(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
433	(b) Did you describe the limitations of your work? [Yes]
434	(c) Did you discuss any potential negative societal impacts of your work? [Yes]
435 436	(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
437	2. If you are including theoretical results
438 439	(a) Did you state the full set of assumptions of all theoretical results? [Yes](b) Did you include complete proofs of all theoretical results? [Yes]
440	3. If you ran experiments
441 442	(a) Did you include the code, data, and instructions needed to reproduce the main experi- mental results (either in the supplemental material or as a URL)? [N/A]
443 444	(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [N/A]
445 446	(c) Did you report error bars (e.g., with respect to the random seed after running experi- ments multiple times)? [N/A]
447 448	(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [N/A]
449	4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets
450	(a) If your work uses existing assets, did you cite the creators? [N/A]
451	(b) Did you mention the license of the assets? [N/A]
452 453	(c) Did you include any new assets either in the supplemental material or as a URL? $[N/A]$
454 455	(d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]