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ABSTRACT

Hebbian and anti-Hebbian plasticity are widely observed in the biological brain,
yet their theoretical understanding remains limited. In this work, we find that when
a learning method is regularized with L2 weight decay, its update will align with
the direction of the Hebbian learning signal as it approaches stationarity. This
Hebbian-like behavior is not unique to SGD: almost any learning rule, includ-
ing random ones, can exhibit the same signature long before learning has ceased.
We also provide a theoretical explanation for anti-Hebbian plasticity in regression
tasks, demonstrating how it can arise naturally from gradient or input noise, and
offering a potential reason for the observed anti-Hebbian effects in the brain. Al-
though the need for pure Hebbian mechanisms is well established in certain brain
regions, our results suggest a new possibility: that Hebbian learning may also be
auxiliary, emerging from more complex learning mechanisms rather than serving
as the predominant learning signal, as has traditionally been assumed.

1 INTRODUCTION

Hebbian and anti-Hebbian plasticity are the most commonly observed types of plasticity in the brain
(Koch et al.| 2013} [Zenke & Gerstner, 2017; |Lisman, [1989; Lamsa et al., [2007). It is a longstand-
ing belief in neuroscience that Hebbian learning is fundamentally distinct from gradient descent
(Hebb, 2005). While Hebbian learning is a simple, unsupervised learning rule that is biologically
plausible, gradient-based optimization is widely regarded as requiring access to global error sig-
nals and precise coordination across layers—properties not generally supported by neural circuits
in the brain. As a result, gradient descent has been largely dismissed as biologically implausible
(Rumelhart et al., [1986; |Whittington & Bogacz, [2019; [Lillicrap et al.,[2020), despite its centrality to
modern machine learning. Although some recent work has hypothesized algorithms that empirically
approximate SGD, which could be implemented through local learning rules in the brain (Lillicrap
et al.,[2020; |Liao et al., [2024)), there is limited evidence that our brains are actually learning in any of
the proposed mechanisms. At the same time, the mechanistic understanding from the neuroscience
side on Hebbian learning and anti-Hebbian learning is poor and often phenomenology-driven. For
example, in the spike-timing-dependent-plasticity (STDP) theory (Caporale & Danl 2008; Froemke
et al., 2005; Brzosko et al., 2019), the division between Hebbian and anti-Hebbian learning only de-
pends on the timing of firing, and there is a lack of understanding of why this is the case. However,
this separation between artificial and biological learning may be less stark than previously thought.
There is some apparent resemblance between Hebbian learning and SGD. Hebbian learning requires
weight decay or forms of normalization to ensure convergence, as the core Hebbian principle func-
tions primarily as a learning signal (Oja,|1982)). Similarly, in SGD with weight decay, SGD serves as
the learning signal, while weight decay acts as a regularization mechanism that promotes robustness
and generalization.

In this work, we discover deeper connections between SGD and Hebbian learning. We demon-
strate that the standard training routines used in deep learning, especially stochastic gradient descent
(SGD) with weight decay and noise, can give rise to learning signals that look Hebbian or anti-
Hebbian. Our results demonstrate that:

1. Close to stationarity, almost any learning rule (including SGD) with weight decay will have a
learning signal that looks like a Hebbian rule; and the correlation increases monotonically as
we use a larger weight decay;
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Figure 1: Balance of contractive and expansive forces. For deep learning, the noise and weight decay are,
respectively, expansion and contraction forces. When they do not balance, the gradient must fill in the gap — if
noise outweighs weight decay, the gradient must appear contractive; otherwise, it appears expansive. Similarly,
for biology, the Hebbian dynamics is always expansive, and the anti-Hebbian dynamics is always contractive.
Thus, to reach a balance, a learning signal will look like, and become aligned with, the Hebbian or anti-Hebbian
rule depending on whether it is expansive or contractive.

2. When we inject noise into the learning process, the learning signal aligns anti-Hebbian, and the
effect also becomes stronger as the noise gets stronger;

This work is organized as follows. The next section discusses the closely related works and prelim-
inary concepts to understand our result. Section [3]studies when SGD is similar to the Hebbian rule.
Sectiond]studies when SGD is similar to the anti-Hebbian rule. Section[3]studies the dynamical and
nonstationary aspects of these phenomena. Additional figures are presented in the Appendix.

2 RELATED WORKS AND BACKGROUND

Hebbian Learning. As a mathematical model, consider a hidden layer in an arbitrary network:
hb:Wha(x)a (1)

where h,, is the postactivation of the previous layer, and hy, is the preactivation of the current layer.
In the most conventional form, the simplest homosynaptic updateﬂ rule states that I is learned
according to

AW = thbh;v 2

where s € {—1, 1} is the sign of learning. When s = 1, the rule is Hebbian, which states that if neuron
1 causes neuron j to fire, then their connection should be strengthened. Similarly, when s = -1, the
rule is anti-Hebbian, as it tends to reduce correlation between neurons. 7 is a positive time constant,
which we call the “learning rate.” In a neuroscience context, Eq. equation [2] should be regarded a
discrete-time approximation to the true underlying continuous-time process, and the rule implies

W = snhohI W, (3)

which increases the norm of W when s > 0 and decreases it when s < 0. Therefore, Hebbian learning
in this limit is always expansive, and anti-Hebbian learning is always contractive (see Figure I] for
a visualization). Evidence exists to show that both Hebbian and anti-Hebbian learning exist widely
in the brain (Abbott & Nelson| 2000; [Magee & Grienberger, 2020). Yet it is not yet clear when the
learning is supposed to be Hebbian as opposed to anti-Hebbian. Our theory offers a very simple
mechanistic answer to this question.

Gradient Descent in the Brain. So far, there has not been any strong evidence that the brain
could implement and run any form of gradient descent, despite various theoretical proposals (Kolen
& Pollackl |1994; |Lillicrap et al.| 2020; Whittington & Bogacz, [2019)—and observations of Hebbian
plasticity are often implicitly regarded as evidence against gradient descent (e.g., see the criticism of
heterosynaptic rules in [Porr & Worgotter|(2007)). Our theory shows that gradient descent dynamics
can lead to dynamics at stationarity that are consistent with the Hebbian phenomenon, and because of
this, observations of Hebbian updates are consistent with the existence of more complicated learning
rules in the brain.

Similarity between learning algorithms. A few works are closely related to ours. Xie & Seung
(2003)) shows the equivalence of gradient descent to a form of contrastive Hebbian algorithm (CHA).
However, CHA is not biologically Hebbian because it is not a homosynaptic rule, required by the

'We use this term as a synonym of Hebbian learning.
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Figure 2: The left shows example weight updates with a high alignment between the learning signal (—V y £)
and the Hebbian update at the end of training with high weight decay, while the right image displays an example
update at the end of training with no weight decay which has very low alignment. This figure shows a 20x20
subset of the direction of the Hebbian and learning signal updates for the second layer of an SCE after training
with 7 = 0.1, and v = 0.05, or v = 0.0. Dimension 1 can be viewed as the output (post-synaptic) neuron (in
the case of SGD, whose incoming weights we are differentiating), and Dimension 2 are input (pre-synaptic)
feature/neurons that the weight projects from. We are only visualizing a 20x20 subset of these updates for
clarity. Examples of low cosine similarity of the learning signal for v = 0.05 at the start and end of training can
be seen in Figure[T7] In general, we find that stronger weight decay, larger learning rate, and larger batch size
lead to better alignment (Figures [§]and[J).

Hebbian principle. There have been several other adjacent ideas to modify the Hebbian rule to lead
to learning performance similar to gradient descent or even mathematical equivalences to SGD in
certain types of models Scellier et al.| (2018); | Xiao et al.| (2019); [Scellier & Bengio| (2019); Ernoult;
et al.| (2022). But these works fail to provide a general relationship between arbitrary models trained
with SGD and do not identify the key role of regularization and noise.

More recently, it was shown that heterosynaptic circuits such as feedback alignment or SAL (Liao
et al., |2024) can lead to dynamics similar to Hebbian dynamics (Ziyin et al.| [2025). However, to
the best of our knowledge, no paper has successfully shown any robust equivalence between SGD
with weight decay and Hebbian learning. On the machine learning side, a recent theoretical work
(Ziyin et al.| 2024)) suggested that the representation learning in neural networks is governed by
the expansion and contraction of representations during SGD training. However, the relevance to
Hebbian learning and neuroscience is unclear.

3 LEARNING-REGULARIZATION BALANCE PRODUCES HEBBIAN LEARNING

There have been proposals that a balance between Hebbian and anti-Hebbian dynamics must happen
for the brain to reach at least some form of homeostasis (stationarity) (Xie & Seung},[2003;[Ojal [1982}
Bienenstock et al.,{1982). There is a similar effect in gradient-based training in neural networks. The
use of weight decay contracts the weights to become smaller, but learning can hardly happen if the
weights are too small. Therefore, any model that reaches some level of stationarity in training must
have a gradient signal that is expansive and opposed to the contractive effect of weight decay.

For the layer defined in Eq.[T] the full weight update is
AW o =V, () Lhy (2) =9 W, )

[ —
learning signal

where and ~ is the strength of weight decay. Close to a stationary point, the update should be small
in expectation: E; [V, ()¢hi (z)] + W » 0. Thus,

TrEo [V, (a) hi (2)] = o[V, 0y Chs(2)] = A Te[WWT] <0 (5)
Therefore, on average, V:}fb(m)éhb(x) is negative.

Now, as in Ziyin et al.[(2024), we assume a weak decoupling condition: |k, |? = E[|hqe[?], which
states that norms of all representations are rather close to each other. This is certainly satisfied
when, for example, there is a neural collapse (Papyan et al.| 2020) or when the representations are
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normalized. This means that the expected alignment between the learning signal and the Hebbian
update is given by

E T‘r[_vhb(m)‘ghf(x) ha(x)hbT(m)] = _E[HhaH2]Ex[Vfb(x)ghb(x)] (6)
—_—
learning signal Hebbian update
= E[| ha I Te[WWT] > 0. (7

Namely, the learning signal has positive correlation with the Hebbian update, and the alignment
becomes stronger as ~y increases. See Figure [2|for an example of such alignment.

Perhaps surprisingly, a weaker form of this result generalizes any update rule, precisely because the
weight decay term always aligns with the anti-Hebbian update; at stationarity the expected learning
signal must align Hebbian. Consider an arbitrary learning signal g(z, 6); the full weight update is

AW = g(z,0) - YW, ®)

where g is the learning rule and 6 is the entirety of all trainable (plastic) parameters. For clarity, 7 is
subsumed into g and . Close to stationarity, we have that E,[g(x,6)] ~ yWV.

Now, consider the cosine similarity between the learning rule and the Hebbian rule:

Tr [Eo[g(x,0)]Eo[hahi]]

cosf = 9)
|Ez[g(z, )]l F |Ez[hahi ] F
The direction of alignment at stationarity when E,[g(x,0)] = yW is thus
Tr []Ew[g(xae)]Ew[hahl?]] :VTY[WEw[hahg]] (10
= YE[|s]*] > 0. (1n)

We see that the update must have a positive alignment with the Hebbian rule on average. This shows
an intriguing and yet surprising fact: any algorithm with weight decay may look like a Hebbian rule,
and the Hebbian rule may just be a “universal” projection of more complicated algorithms. This is
a weaker but rather universal result. It is different from Eq[7]in the sense that Eq. [7] predicts that the
learning signal and the Hebbian rule are statistically correlated, whereas this result only says that
they have the same direction when averaged over all stimuli.

While this theory is only rigorously stated for stationary points of the learning rule, it is also relevant
when the dynamics are out-of-stationarity. For example, the alignment is found to be proportional
to -y, and to reach this value of alignment, there must be a period of time when the dynamics is
nonstationary and is between zero and the stationarized value. We will study the dynamical aspects
in Section

Neurobiology. A key feature of this simple theory is that it separately considers the effects of
the learning signal and the weight decay, which, in the context of neurobiology, are likely to have
different biological substrates. The learning signal is a fast process; it is likely to, for example,
come from other neurons and take the form of electric currents and spikes (Lillicrap et al., [2020).
The weight decay, however, is a much slower biochemical process and directly corresponds to the
changes in the biochemical properties of synapses (such as a spine shrinkage (Stein et al., 2015)).
Therefore, the biological realizations of these two processes are likely to take different forms and
can be separately measured. This makes it particularly important to have a theory for the learning-
signal component of the update, as this can be directly measured through LTD and LTP experiments
of Hebbian plasticity (e.g., see (Zenke & Gerstner, 2017)).

Simulations. We empirically find that this trend holds across a wide variety of different learning
tasks. We ran simulations performing classification on CIFAR-10 and non-linear regression on
synthetic data (Krizhevskyl 2009). We tested both MLPs and transformers, as well as a range of
activation functions and optimizers. In some situations, the correlation between the two learning
paradigms is very strong (e.g., in Figure [2). In our experiments, we used a default learning rate
of 7 = 0.01 and trained for 50 epochs, which reached convergence. Since this trend only holds
near stationarity—a condition achievable in full gradient descent but obscured in SGD by noise-we
found it best to use larger batch sizes to compute both the gradient and Hebbian update as suggested
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Figure 3: The diagram on the left shows that the trend of weight decay increasing Hebbian alignment of the
learning signal is robust across different activation functions. The diagram on the right shows that the trend can
generalize to deeper networks. The SCE MLPs were modified by varying the activation functions across Linear,
ReLU, Sigmoid, and Tanh (left) and increasing the depth to 6 and layer width to dimension 512 (right. L1,
L2,....L6 in this diagram indicate the Hebbian alignment with the learning signal for the corresponding layer.
For a small (or zero) weight decay, the learning process sometimes exhibits a weak anti-Hebbian alignment,
indicated by a negative alignment with Hebbian learning.
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Figure 4: No standard interpretation of Hebbian learning produces alignment with SGD at convergence. The
graph shows the mean SGD alignment of the second layer’s updates, + the standard deviation over a 200-
iteration window, when trained with various versions of the Hebbian learning rule for two different learning
rates. The SCE was modified to learn with various versions of the Hebbian learning rule. The Normalized
Hebbian learning rule is the generic Hebbian algorithm with weight standardization after every step. The
second algorithm is QOja’s rule. We also tested the pre-activation and post-activation versions of both. The
average alignment of every combination approaches zero.

in [Xu et al| (2023). We found a batch size of 256 to generally show Hebbian phenomena while
being small enough to converge to good solutions quickly (Figure[8). To get the alignment between
the updates, we compute the cosine similarity of the direction of the gradient update from the loss
function (the negative gradient in SGD) and the direction of the Hebbian update. Further, most
experiments reported on in this paper followed one of the following setups, and any variations will
be reported when relevant.

(1) Standard Classification Experiment (SCE): In these experiments, we trained a small MLP
with 2 layers of 128 dimensions and tanh activation using cross-entropy loss to classify CIFAR-10.

(2) Standard Regression Experiment (SRE): In these experiments, we trained a small MLP with
two hidden layers of 128 units each and tanh activation, using mean squared error to predict the
output of a teacher model. The teacher has the same architecture but is initialized with different
random parameters. Both the input and output vectors are 32-dimensional. The training dataset
consisted of 20,000 randomly generated training examples, and the validation dataset contained
2,000 examples. For the transformer variant of the SRE, we used a transformer with 32-dimensional
token embeddings, a vocabulary size of 16, and a maximum sequence length of 32. The encoder
consists of 2 layers with 4 attention heads and 32-dimensional feed-forward blocks using ReLU
activations. The average of the output token embeddings is passed through the same MLP described
above and compared to the teacher output.
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Table 1: For all models, optimizers and learning rules, Hebbian alignment rises with increasing weight-decay
~. Hebbian alignment (mean + SD, n = 10) at convergence is shown for the 2nd-layer gradient in a regres-
sion MLP and a sequence-to-vector transformer (1st layer for DFA). All experiments were SREs with a few
modifications outside of the learning rule and weight decay specified in the table. DFA used n = 0.1 with
gradient-norm clép = 5 and, as in the original implementation, used biases. RandomNN used gradient-norm
clip = 1 and a target weight L2 norm of 100 to determine the sign of the update as explained in Section [C.3|of
the Appendix. Table elements with — indicate the model’s weights collapsed to zero.

Model Learning Rule Weight Decay ()
0 5x107° 5x107% 5x 1073
Adam ~0.02+0.00 0.10+0.00 0.66+0.01 -
RearessionMLp  SGD -0.10£0.01 -0.06+0.01 0.17+0.01 0.59+0.01
g DFA 0.45 +0.05 0.45+0.04  0.68+0.05 0.87+0.00
RandomNN 0.00 £ 0.00 0.00+£0.00  0.05+0.00 0.50+0.00
Adam -0.02+0.02 0.50+£0.24  0.99 +0.02 -
Transformer SGD 0.00 £0.01 0.04 +0.01 0.47+0.06 0.88+0.03
anstorme DFA 0.08 + 0.03 0.07+0.02  0.11+0.02 0.12+0.02
RandomNN 0.00 £ 0.00 0.00£0.00  0.01+0.00 0.09+0.01

Classification. We train a series of MLPs using the SCE setup to classify CIFAR-10. Figure
shows that as weight decay increases, so does the alignment of the learning signal with the Hebbian
update. The trend persists across different activation functions. Although we still detect this trend
in larger MLPS (Figure [3), we occasionally observe some layers behaving in an anti-Hebbian direc-
tion as the weight increases. Using residual connections and batch normalization can stabilize the
network and make it more Hebbian; however, a deeper exploration of this quality is left for future
research. We also explore the use of other regularizations in Appendix At the same time, when
one trains an identical model using Hebbian-style learning rule, the model performs poorly and
there is no alignment at convergence with the SGD learning signal as seen in Figure ] (Ojal [1982);
there is no reason to expect unsupervised learning to produce similar dynamics near convergence as
supervised learning.

Regression. We also evaluate the generalization of this trend to student-teacher regression prob-
lems as described in SRE. We explored both MLP and Transformer models and evaluated the Heb-
bian alignment for learning rules outside of SGD. Recall that a key prediction of the theory is that
almost any update look like a Hebbian rule when regularized. We test a variety of rules: SGD,
Adam, and Direct Feedback Alignment (DFA) (Ngkland, 2016). To demonstrate that this obser-
vation is universal, we also run a setting with a randomly initialized neural network whose output
is used as a learning signal, based entirely on the input data (Random NN). Notably, Random NN
should not be able to learn anything given it is effectively only a deterministic random error signal.
Results are shown in Table [T} In all cases, alignment to Hebbian learning emerges and becomes
stronger as weight decay increases, regardless of the model.

4 NOISE-LEARNING BALANCE LEADS TO ANTI-HEBBIAN LEARNING

We have answered the question of how Hebbian learning can be an emergent and phenomenological
byproduct. The second part of the question is when we will see anti-Hebbian learning, as both
Hebbian and anti-Hebbian learning are ubiquitous in the brain. Can anti-Hebbian learning also be a
byproduct of more complicated learning rules?

The analysis in the previous section does not take into account the existence of noise in learning. In
reality, noise is always non-negligible both in biological learning and in artificial learning. That a
strong noise leads to an anti-Hebbian learning signal can already be explained by looking at a simple
linear regression problem:

U(w) = (w'z-y)>*, (12)

where = € R%, y € R are sampled from some underlying distribution at every training step. Here,
we inject noise € € V(0,0 1) to the weight before every optimization step so that w = v + €, where v
is the weight before noise injection. This could be a thermal noise that can exist ubiquitously in the
brain (London et al., 2010). It can also be seen as an approximate model of the SGD noise, which
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Figure 5: As the noise increases, the Hebbian alignment decreases and higher weight decays lead to higher
Hebbian alignment (right). The figure on the left displays a heatmap of the Hebbian alignment of the learning
signal at convergence for a number of different additive noises and weight decays; there is a clear quadratic
curve at zero-alignment as predicted by the theory. The SRE was augmented by adding noise to each parameter
at the start of each iteration with a mean of zero and the specified standard deviation on the diagram. The trend
is even clearer when we follow the behavior of varying the noise of a specific weight decay (Varying Noise) or
the weight decay of a specific noise standard deviation (Varying Weight Decay).

causes w to fluctuate around the mean (Liu et alJ, 2021). The learning signal and Hebbian update
are

Agapw = —x(wa -y), (13)
AHCbbw = wax. (14)
The alignment between the two is
E[(Asapw)” (Anerbw)] = =|z’Ec [(w”2)? = w” zy] (15)
= [z [(v"2)? + 0%z ]* - v T y], (16)

which is negative for sufficiently large o and any |z| # 0. Thus, large noise leads to anti-Hebbian
learning.

An interesting question is how this effect competes and trades off with weight decay. When there is
a weight decay, the full weight update is Asgpw = —z(w? 2 — y) — yw, and so

E[(Asgpw)” (Aneppw)] » —aco + ver, (17)

where ¢y and ¢; are positive. Thus, one expects a phase transition boundary at v o< 0. When ~
is larger than this boundary, the learning is Hebbian-like; when smaller, the learning is anti-Hebbian
like. This result provides a straightforward and simple framework to potentially test and understand
the Hebbian and anti-Hebbian plasticity in biology. A possible strong biological evidence that would
verify this theory is the simultaneous observations of strong noise in the ambient space and anti-
Hebbian plasticity. In simulation, this scaling law is verified in the experiments (Figure [3)), which
justifies this simple analysis.

Simulations We ran experiments to validate the noise prediction using a two-layer MLP with tanh
activation. We used a student-teacher model to build a non-linear regression problem and trained
until convergence using SGD and varying the variance of the Gaussian noise added at each training
step, as well as the weight decay. There is a very smooth alignment trend with SGD, as can be seen in
Figure[5] The white region shows the phase boundary between the Hebbian phase and anti-Hebbian
phase, and shows a shape in accordance with the quadratic curve v ~ o2,

We observed that at convergence, the Hebbian alignment of the learning signal is higher in low
noise environments, and becomes more aligned with anti-Hebbian as the noise increases (Figure
[B). Interestingly, we found that solutions with high generalization generally had low Hebbian and
anti-Hebbian alignment (Figure [6)).

We also observed this trend with other optimizers such as Adam (Figure[I3). However, we struggled
to robustly reproduce this effect outside of the last few layers of much larger networks or those doing
different learning tasks, such as classification. We hypothesize this could be because the magnitude
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Figure 6: Best performance of the model is achieved when it is not Hebbian or anti-Hebbian on average. The
left image displays the student validation loss for the experiment in Figure 5} while the right image shows a
scatter plot of the validation loss vs. Hebbian alignment of the gradient. There seems to be some weak saddle
phenomena in loss that occur at the phase transition boundary of Hebbian alignment with respect to noise and
scale. The validation loss reduces as both weight decay and noise get smaller.

of the weights does not have as much of an effect on the quality of the learned representations in
larger non-linear networks, so the gradient signal does not necessarily need to point in a direction
that contracts weights. We also find that adding other types of biologically plausible constraints
during learning, such as a sparsification term on layer activations, can lead to a stronger anti-Hebbian
alignment of the gradient.

5 TRANSIENT PHASES OF HEBBIAN AND ANTI-HEBBIAN LEARNING

As we mentioned in Section|[3] the results are applicable when the dynamics are not yet fully station-
ary. While the argument we had suggested that one would only observe the Hebbian alignment close
to convergence, our empirical results suggest that the alignment is present for much of training. Two
key phenomena we discover are the initial alignment bump and the steady state Hebbian oscillations.
Outside stationarity, the learning signal often dominates regularization. So it is sufficient to consider
the full weight update directly.

Initial Hebbian alignment bump Particularly for networks with ReLU activations, there is a
bump in Hebbian alignment of the learning signal that appears to be strongly dependent on initial-
ization scale and learning rate at the beginning of training (Figure[7). During this initial phase of
alignment, the full weight update of SGD also increases in alignment to a pure Hebbian update.
This early stage of alignment seems to be the result of general feature learning, as the actual scale
of weight norms does not change substantially at the start of this period, and with positive weight
decays decreases. A higher learning rate makes this process happen faster.

When we examine the Hebbian alignment of the weight updates for individual neurons in the model,
a striking pattern appears. During this period, individual neurons seem to take on Hebbian or anti-
Hebbian learning roles that can persist for many steps. Like the average behavior of the model,
the length of these phases increases as the weight initialization scale magnitude and learning rate
decrease. The ratio of anti-Hebbian to Hebbian neurons increases with weight decay.

Hebbian and Anti-Hebbian steady state oscillations There is a phase change that occurs after
the initial coherent phase of learning, which is accompanied by a strong shift in the magnitude
of the alignment intensity. After this phase change, individual neurons often, though not always,
seem to oscillate between strongly Hebbian or anti-Hebbian weight updates (Figure[I8). Since near
stationarity, the magnitude of the parameters should not increase or decrease on average, we also find
the mean of the full weight updates to converge to zero (Figure[I3)). Often, we find that models with
better generalization exhibit strong Hebbian/anti-Hebbian oscillations; however, strong oscillations
do not necessarily entail strong generalization.
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Initialization Scale vs. Hebbian Alignment of Weight
Update (mean * SD, window=200) & Weight-Norm
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Figure 7: For some activations at low learning rates, there is a sharp jump in Hebbian alignment of the weight
update when training with SGD; the size of this jump depends on initial conditions. During this phase, the
weight norm decreases monotonically, suggesting the effect is due to feature alignment rather than parameter
scale. This experiment used a SCE with 1 = 0.001.

6 DISCUSSION

This study suggests that Hebbian and anti-Hebbian plasticity can be understood as emergent regimes
of gradient-based optimization rather than fundamentally distinct learning principles. By analyzing
the interaction between stochastic gradient descent, weight decay, and stochastic perturbations, we
demonstrated that the expected gradient update direction aligns with classic Hebbian plasticity when
contraction due to regularization dominates, and switches to an anti-Hebbian alignment when expan-
sion driven by noise prevails. The resulting phase boundary satisfies a simple scaling relation, and
the phenomenon was observed across a broad spectrum of architectures, objectives, and alternative
update rules.

There are a few limitations that provide interesting areas for future research. We only dealt with
smaller models in our experiments. While this decision was reasonable given the scope of this
paper, it leaves open the question of whether or not we see Hebbian dynamics in much larger-scale
models. As mentioned in the text, as we expanded our models and used different optimizers, we
often saw strong average anti-Hebbian alignment of a subset or all of the layers, even at high weight
decays. This likely results from our stationarity condition not holding in these models. However,
we do not yet have a theory for why and when these regions of anti-Hebbian alignment occur.

Our results have two primary implications. First, our results show that Hebbian and anti-Hebbian
plasticity can emerge as regimes of gradient-based optimization, in addition to their conventional
role as fundamental learning mechanisms. Second, the presence of Hebbian or anti-Hebbian sig-
natures in neuro-physiological data need not be interpreted as evidence against global error-driven
optimization in the brain; such local plasticity patterns may arise as epiphenomena of an underlying
optimization process.

Given that unsupervised adaptation and reinforcement are useful and widespread mechanisms, in-
trinsically Hebbian homosynaptic plasticity likely does exist in the brain. However, much of the
existing experimental evidence for Hebbian and anti-Hebbian plasticity is often correlational and
phenomenological (e.g., see |Lamsa et al.| (2007)), so it can be difficult to decide whether the un-
derlying dynamics are actually Hebbian or are more complicated and only appear to be Hebbian.
Although some evidence has established the importance of heterosynaptic modulation in memory
storage and visual discrimination, its broader role in learning has remained largely speculative due
to the challenges of studying it both in vivo and in vitro (Bailey et al., 2000; (Chasse et al. [2021).
We hope the theory we propose in this paper will serve as a basis for future experimental studies that
will validate or challenge the existence of heterosynaptic learning principles in the brain.
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Validation Accuracy and
Alignment for Layer 2
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Figure 8: The optimal performance seems to be at a critical position between Hebbian and anti-
Hebbian gradient alignment when varying batch size and weight decay. This shows the accuracy
(left) and the Hebbian alignment of gradient update (right) for SCEs with a variety of weight decays
and batch sizes. The striped background indicates NaN values.

A REPRODUCTION

All experiments were run on MIT’s OpenMind cluster using Quadro RTX 6000 GPUs and cumula-
tively took under 50 hours of compute time.

B LLM USAGE

The authors used LLM:s to assist in editing the manuscript and writing experimental code.

C EXPERIMENTS

In the following document, we provide additional figures and explanations that were referenced in
the main text.

C.1 ADDITIONAL INFLUENCES ON HEBBIAN ALIGNMENT AND GENERALIZATION

C.1.1 BATCH SIZE

See Figure
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Validation Accuracy and Alignment for Layer 2
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Figure 9: The optimal performance seems to be at a critical position between Hebbian and anti-
Hebbian gradient alignment when varying learning weight and weight decay. This shows the accu-
racy (left) and the Hebbian alignment of gradient update (right) for SCEs with a variety of weight
decays and learning rates.

Model Size vs Weight Decay: Hebbian Alignment

—&— 1M params
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Figure 10: This diagram shows the effect of model size on Hebbian alignment and weight decay.
Each point represents the mean of the alignment for the final 200 steps of the run + the std across
10 seeds. The trend of weight decay leading to increased Hebbian alignment of the learning signal
holds with larger models as well. The diagram above shows the alignment of the second layer of the
respective MLPs. The MLPs had the following number of total layers: 3, 7, and 9 for the 1M, 10M,

and 50M models, respectively. All hidden dimensions were assigned to reach the target parameter
count as closely as possible. See equationﬂ;glfor how the exact hidden dimensions were computed.

C.1.2 LEARNING RATE

See Figure

C.1.3 MODEL SCALE

See Figure
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Sparsity vs Weight Decay: Hebbian Alignment CNN vs MLP: Hebbian Alignment vs Weight Decay
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Figure 11: Empirically, the Hebbian alignment of the learning signal increases with sparsity (left).
We also see that the linear layers in a convolutional neural network, which are highly sparse, have
increased Hebbian alignment. Each point represents the mean of the alignment for the final 200 steps
of the run + the std across 10 seeds. The models on the left were the standard MLPs with varying
sparsity. The MLP on the right was a standard MLP and the CNN had the following architecture:
Conv Layers: (¢;, = 3, ¢cout = 32,5 =3,p=1), (32,64,3,1), (64,128, 3,1) MaxPool: (2,2) Linear
hidden dimensions: 2048, 512, 256.

Limited Plasticity vs Weight Decay: Hebbian Alignment
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Figure 12: The alignment decreases as the fraction of parameters of the standard MLP that are frozen
increases; however, the trend still persists. Each point represents the mean of the alignment for the
final 200 steps of the run + the std across 10 seeds.
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Where 1 is the dimension of the input, o is the dimension of the output and ¢ is the target parameter

count.
C.1.4 MODEL SPARSITY
See Figure[T1]

C.1.5 FROZEN PARAMATERS

See Figure[12]
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Hebbian Alignment of Gradient Heatmap
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Figure 13: Again, there is a clear trend that even for the Adam optimizer, as noise increases, align-
ment of the learning signal decreases, and as weight decay increases, so too does alignment. Adam
was very sensitive to the parameter ranges for which we’d see the trend, so we used a different
weight decay and standard deviation range than the prior experiment. However, the rest of the ar-
chitecture and experimental setup are identical to that described in FigureEl

Input Noise vs. Weight Decay Alignment
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Figure 14: Additive noise to the input can also lead to anti-Hebbian learning. Since noise is only
added to the input of the network, the exact phase boundary changes with depth. The results depicted
above are from a SRE with input noise injected.

C.1.6 TRAINING DURATION

C.1.7 NOISE

See Figure[13]and [[4]

C.1.8 FULL UPDATE VS. LEARNING SIGNAL

As defined in the terminology section, the learning signal g(x,0) = —Vy £(-) represents the gradient
contribution to weight updates, while the full weight update AW = n(g(x,0) — yW') includes both
the learning signal and regularization terms. While we see that the learning signal aligns on average
with the Hebbian update, the full weight update can not, otherwise the weight would explode. See
Figure [T3] for a visualization of the alignment of the learning signal and the full weight update over
the course of training. Still, we see a very interesting trend where the full weight update often has
strongly Hebbian or anti-Hebbian updates that, on average, cancel.
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Hebbian Alignment and Loss of Learning Signal
and Full Weight Update During Training
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Figure 15: Comparison of Hebbian alignment for learning signal vs. full weight update during
training (top) and the corresponding validation loss and accuracy (bottom). The learning signal
alignment shows the characteristic patterns described in the main text, while the full weight update
alignment approaches zero near stationarity as expected, since the mean of the full update must be
zero at convergence. Individual neuron-wise signals can still oscillate between Hebbian and anti-
Hebbian phases even when the mean full update is zero. Learning Signal alignment begins and
persists far before learning has stopped.

Hebbian Alignment of Gradient Update vs. Regularizers During Training
(Rolling Window 200, mean = SD)
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Figure 16: Other regularization techniques have a variety of effects on the Hebbian alignment of
the learning signal. While we only developed a theory for L2 weight decay, the alignment seems to
exist for some other regularizers as well, such as L1 weight decay and an anti-Hebbian alignment
for batch normalization when used to augment SCEs. Batch normalization seems to have an anti-
Hebbian effect, while both L1 and L2 weight decay can have a Hebbian effect.

C.1.9 OTHER REGULARIZATION TECHNIQUES
See Figure[T6
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Figure 17: With weight decay, even after the first epoch (left), there starts to be an alignment of the
directions; at convergence (right), even when specific steps have low cosine similarity, there is still
clearly a lot of similar structure. At the end of training, many learning signals with low Hebbian
alignment still share a surprising amount of structure. The plots above are from a SCE with = 0.1
and v = 0.05.
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Figure 18: The full weight update of neurons in the neural network strongly oscillates between
positively and negatively aligned to the Hebbian update late into training with weight decay (left).
As can be seen by the blue and red stripes, there is some form of global coherent oscillation in
alignment at higher weight decays. This phenomenon becomes much weaker without weight decay
(right). Both diagrams show 30 example neurons from the second hidden layer of an MLP trained
on the standard regression experiment over the course of training. The diagram on the left has a
v = 0.05 while the one on the right has a gamma of 0.0, both used tanh activations. Our experiments
suggest that the oscillation in alignment for individual neurons is not related to the magnitude of the
weight update that neuron is receiving, though the experiment run without weight decay does have
higher magnitude weight updates since the weights are larger.

C.2 EXAMPLE ALIGNMENTS DURING TRAINING
C.2.1 LOW ALIGNMENT UPDATE AT END OF TRAINING

See Figure

C.2.2 FuLL WEIGHT UPDATE HEBBIAN OSCILLATION

See Figure[T§]

C.3 RANDOMNN FORMULATION
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The RandomNN was a MLP with 3 hidden vectors of size 128 and tanh activations. The MLP took
the same input as the student model but outputted a vector of length 4. The output was averaged
across the batch and then and then multiplied by a random projection matrix unique to each parame-
ter and reshaped to be the dimensions of that parameter. No parameters of RandomNN change after
initialization. The resulting learning signal for W is a deterministically random low-rank matrix,
W=,

The full weight update is given by:
AW =1 (g(z,0) —7W)

where
g(aj7 0) = p(W*)Sdir(W)sred(VK W*)W*

and where,

sred(W, W) = sign (W2 - [W - W7|2)
sair (W) = sign (100 - [W]2)

1 if [Wz <1
otherwise

(W) {

1
[W2+e

The minimal requirements to have non-zero weights and reach stationarity require g(x,6) to be
some forcing function that wants to make the weights larger than zero. This is the case with any
descent learning algorithm, as with zero weights, one can not learn or express anything besides 0.
However, it is not only true of learning algorithms.

There are a number of trivial constructions that satisfy this condition, such as setting f(z,0) = A
where A is a random matrix defined at initialization. This will naturally be an expanding force and
become aligned with the Hebbian rule, however, it will do this even without regularization. But is
there a way to make a non-learning model that does not behave Hebbian at all without regularization,
but does with regularization?

RandomNN is one such construction. In it, we produce random weight update vectors in a subspace
of the possible directions of the student model’s weight updates. This means that after some number
of updates, the value of the weight is not orthogonal to the random update vectors, and in fact
becomes highly aligned to them. Thus, for a given weight update, the norm of the weights will
either increase or decrease, not strictly increase. We can make an attractor to push the norm of
the weights to a specific non-zero value by choosing to either add or subtract the random update,
depending on which one will move it closer to the target value. Thus, without any regularization, the
model’s weights will converge to have the target norm and will, on average, not increase or decrease,
resulting in no Hebbian alignment. However, once a weight decay term is added, the attractor will
try to strictly increase to approach the target, and thus align with the Hebbian update. We also apply
a weight update norm clip for stability.
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