
Varying Coefficient Tensor Regression

Abstract

We propose a new varying coefficient model for tensor data regression analysis. To manage
the complexity of multi-dimensional tensors, we first employ a tensor partitioning strategy
to reduce dimensionality, followed by a tensor decomposition technique for the tensor covari-
ates. By extracting key features from the tensor covariates, we feed these low-dimensional
representations into a varying coefficient model, alongside other one-way covariates. Addi-
tionally, we apply a non-concave penalty estimation to simultaneously identify the model
structure and select significant predictors. A subsequent refined smoothing step enhances
the model’s accuracy. We study the asymptotic properties of estimated functions and coef-
ficients. Extensive simulations are conducted to evaluate the performance of our approach.
Our study is motivated by a real fundus image dataset, which is analyzed using our model
to improve glaucoma management.
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1 Introduction

Tensors, as multidimensional generalizations of matrices, have become increasingly prominent
due to their ability to represent and analyze complex, high-dimensional data structures. Ex-
tending from low-dimensional vectors and matrices, tensor objects can encapsulate data across
multiple dimensions, offering a more comprehensive representation of multiway data. This flex-
ibility makes tensors particularly valuable in many fields, such as neuroimaging (Zhou et al.,
2013; Li et al., 2018), genomics (Hore et al., 2016), social network analysis (Dunlavy et al.,
2011), hyperspectral image (Liu et al., 2019), and recommendation system (Zhang et al., 2021).
The inherent high-dimension in tensors (Hillar and Lim, 2013) pose difficulties and challenges in
real data analysis. Recent studies in statistical tensors mainly focused on tensor decomposition
(Kolda and Bader, 2009; Zhang and Xia, 2018; Zhang and Han, 2019), tensor completion (Gandy
et al., 2011; Yuan and Zhang, 2016; Zhang, 2019), tensor regression (Zhou et al., 2013; Zhang
and Li, 2017; Li et al., 2018; Zhang et al., 2020) and tensor clustering (Han et al., 2022a; Luo
and Zhang, 2022).

Previous authors extend traditional linear regression to tensor data, including scalar-on-
tensor (Zhou et al., 2013), tensor-on-tensor (Lock, 2018; Liu et al., 2020; Luo and Zhang, 2022),
and tensor-on-vector (Li and Zhang, 2017; Sun and Li, 2017), among others. In these problems,
the number of unknown parameters can be enormous, often far exceeding the sample size,
thus imposing a significant computational burden on the estimation. To address this challenge,
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dimension reduction tools are necessary for an efficient estimation of tensor coefficients, including
the CP decomposition-based regression (Zhou et al., 2013; Sun and Li, 2017; Bi et al., 2018; Hao
et al., 2020), the Tucker decomposition-based regression (Li et al., 2018; Guhaniyogi et al., 2017;
Zhang et al., 2020; Han et al., 2022b; Luo and Zhang, 2023), and the tensor train decomposition-
based regression (Liu et al., 2020, 2024), among others. In addition to aforementioned low rank
representation methods, one may further impose a sparsity structure and use regularization in
the estimation (Zhou et al., 2013; Zhang et al., 2020; Liu et al., 2020)

Most earlier works only examined a parametric linear relationship between tensors and other
variables. To capture non-linear association, varying coefficient model (VCM) offers a more
flexible framework (Hastie and Tibshirani, 1993; Cai et al., 2000; Fan and Zhang, 1999). There
exist a large body of literature for the development of estimation methods for VCM, such
as the local linear method (Zhang et al., 2002; Xia et al., 2004; Fan, 2018; Lu, 2008), the
profile least squares method (Fan and Huang, 2005), the average derivatives method (Newey
and Stoker, 1993), and the smoothing spline method (Ahmad et al., 2005). VCM is especially
useful for addressing dynamic and complex data problems. Cheng et al. (2014) and Cheng
et al. (2016) developed a comprehensive framework of VCM in longitudinal/cluster data. Mu
et al. (2018) applied a bivariate spline on triangulation to estimate the functional coefficient of
space domain data. Yu et al. (2022) used tensor-product splines to evaluate the spatio-temporal
non-stationarity. Zhu et al. (2022) studied a kernel based varying coefficient network model.

From our review, very few papers introduced the nonparametric functional effect into tensor
data analysis. Chen et al. (2024) proposed a semi-parametric tensor decomposition by assum-
ing a constant core tensor and functional factor matrices generated from tucker decomposition.
Han et al. (2023) developed an iterative algorithm to estimate functional factor matrix along one
functional axis. Zhou et al. (2024) investigated a non-parametric tensor regression model and
used the spline approximation by the scale-adjusted block relaxation algorithm under CP de-
composition. None of these works considered varying coefficients for tensor inputs. We propose
a new VCM for tensor regression and study its estimation methods in this work. Figure 1 dis-
plays sample images from the Glaucoma Real-world Appraisal Progression Ensemble (GRAPE)
dataset (Huang et al., 2023), which forms the basis of our analysis in this paper. The longitu-
dinal image data were collected at the Eye Center of the Second Affiliated Hospital of Zhejiang
University and include 1,115 fundus images from 263 eyes, along with accompanying clinical
information. In particular, increased intraocular pressure (IOP) is the most important risk fac-
tor for glaucoma and we thus focus on accurately predicting IOP based on fundus images to
enable timely intervention and prevent the progression of glaucoma. In particular, we examine
the complicated age-image interactions in the glaucoma management study and demonstrate
the superior prediction performance of the proposed VCM.

The varying-coefficient tensor regression model formulated in this paper can be viewed as
a combination of tensor partition, tensor decomposition and varying coefficient partial linear
model. Under our framework, we initially partition the whole tensor data into distinct, non-
overlapping parts based on prior knowledge or distribution principles. The CP decomposition
technique is applied to each partitioned tensor to extract low-rank factor representations. We
only need to focus on the factor matrix along the subject dimension and with some linear alge-
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(a) CFP OD image and corre-
sponding tensor partition

(b) ROI OD image and corre-
sponding tensor partition

(c) VF OD schematic diagram and
location IDs

(d) CFP OS image (e) ROI OS image (f) VF OS schematic diagram

Figure 1: Fundus image analysis: illustrations for different images in the GRAPE data set. (a) and (d):
original color fundus photograph (CFP). (b) and (e): processed region of interest (ROI) image. (c) and
(f): view field (VF) schematic diagram. Dashed lines in (a) and (b) show the proposed tensor partition
on CFP and ROI images. The red arrowed curves in (c) and (f) show the extraction order of VF values
of oculus dexter (OD) and oculus sinister(OS) respectively, and detailed location IDs reported in (c).

bra operation, we convert the high-dimensional functional coefficient tensor to a parsimonious
functional coefficient matrix. Finally, standard nonparametric estimation methods of VCM can
be implemented by vectorizing the transformed matrix covariate. Through extensive simulation
studies we demonstrate the advantage of our proposed model. We finally apply this new model
to examine the GRAPE data set and make some new findings for medical research.

The rest of this article is organized as follows. In section 2, we introduce the methodology
of our varying coefficient tensor regression model. In section 3, we consider variable selection
and model identification using a penalization estimation. In section 4, we present the theory
of our model, showing the asymptotic distribution and consistency for estimated functions and
coefficients. In section 5, simulation studies are conducted to examine the performance of the
proposed model. In section 6, we analyze the GRAPE data using the new model and report our
findings. Technical proofs are provided in the Appendix.
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2 Methodology

2.1 Notations and Preliminaries

We first review some basic mathematical facts on tensor (Kolda and Bader (2009)). In this
paper, we use lowercase letters (e.g. x), lowercase boldface letters (e.g. x), uppercase boldface
letters (e.g. X), and uppercase calligraphic letters (e.g. X ) to denote scalars, vectors, matrices,
and order-3-or-higher tensors respectively. An order-D tensor X = (xj1j2···jD ) ∈ Rp1×p2×···×pD ,
jd = 1, · · · , pd, d = 1, · · · , D, is a D-dimensional array with ΠD

d=1pd elements. A vector or a
matrix may be regarded as order-1 or order-2 tensor respectively.

We denote the inner product of two tensors X , Y ∈ Rp1×p2×···×pD as

⟨X , Y⟩ =
p1∑

j1=1

p2∑
j2=1

· · ·
pD∑

jD=1
xj1,j2,··· ,jD yj1,j2,··· ,jD (1)

An outer product for D vectors x(d) ∈ Rpd , d = 1, 2, · · · , D, is an order-D tensor denoted as
X = x(1) ◦ x(2) ◦ · · · ◦ x(D), and such X is called rank-1 tensor.

The parallel factor analysis, also known as CP decomposition, factorizes a tensor into a lin-
ear combination of rank-1 tensors. In particular, a tensor satisfying a rank R CP decomposition
has the following structure

X =
R∑

r=1
λrx(1)

r ◦ x(2)
r ◦ · · · ◦ x(D)

r (2)

where x(d)
r = (x(d)

jdr) ∈ Rpd , jd = 1, · · · , pd, d = 1, · · · , D, r = 1, · · · , R, are normalized rank-1
tensor, and λ1 ≥ · · · ≥ λR ≥ 0 are the weights.

In this paper, suppose we observe data {(yi, Xi, zi, ti) : i = 1, · · · , n} from a sample of n units,
consisting of n independent copies of (y, X , z, t), where for the i-th unit, yi ∈ R is the response,
Xi = (xi,j1···jD ) ∈ Rp1×···×pD is an order-D tensor covariate, zi = (zi,1, · · · , zi,p0)⊤ ∈ Rp0 is a
p0−vector of scalar covariates, and ti ∈ [0, 1] is an index variable. We concatenate all tensor
Xi’s into a (D + 1) dimensional tensor X̃ = {Xi : i = 1, · · · , n} ∈ Rn×p1×···×pD .

2.2 Tensor partition varying-coefficient model

Our interest is to develop a regression model for the association between the scalar response y,
and its corresponding tensor covariate X and one-way covariates z. We shall assume that y, X
and z are centered. The regression coefficients for the tensor covariate are allowed to vary with
an index variable t ∈ [0, 1]. Specifically, for the i-th unit, we assume

yi = ⟨Xi, A(ti)⟩ + z⊤
i β + ϵi. (3)

In model (3), the effect of tensor covariate on response is treated as varying tensor function
A(ti) = (αj1,··· ,jD (ti)), where each αj1,··· ,jD (ti) : [0, 1] → R is an unknown mapping. The
coefficient for one-way covariate zi is a constant vector β ∈ Rp0 . In addition, we assume
ϵi ∼ N(0, σ2) for i = 1, · · · n, and Cov(ϵi, ϵj) = 0 for any i ̸= j. In this model, the index

4



variable ti can be any continuous covariate. For example, in the glaucoma study, investigators
are interested in examining how the effects of fundus images on the intraocular pressure change
with age and we thus choose t to be the patient’s age in this study.

A commonly observed image tensor X would require the estimation of enormous unknown
varying-coefficients. It is computationally prohibitive to directly estimate A(t) due to the high
dimensionality. However, not all elements of X contribute to the response of interest. Often,
regions of interest are confined to a small portion of the entire tensor. Therefore, it is more
sensible to focus on sub-tensors that capture those local features. To this end, we consider a
partition model that divides the concatenated full-sample tensor X̃ into S disjoint sub-tensor
covariates X̃ (s), that is

X̃ = ∪S
s=1X̃ (s) and X̃ (s) ∪ X̃ (s′) = ∅ ∀s ̸= s′. (4)

Without loss of generality, we assume that the size of each sub-tensor X̃ (s) ∈ Rn×p′
1×···×p′

D is
fixed for any s such that S = ΠD

d=1(pd/p′
d) ≡ ΠD

d=1S(d), where S(d) is the number of partitions
along the d-th order. We denote X (s)

i ∈ Rp′
1×···×p′

D as partition s of the i-th tensor covariate
accordingly, and X̃ (s) = {X (s)

i : i = 1, · · · , n}.
Corresponding to the partition pattern of X̃ , we can also divide A(t) into S disjoint sub-

tensor functions A(s)(t), that is

A(t) = ∪S
s=1A(s)(t) and A(s)(t) ∪ A(s′)(t) = ∅ ∀s ̸= s′. (5)

With such tensor partition technique, we can rewrite the tensor effect in (3) as ⟨Xi, A(ti)⟩ =∑S
s=1⟨X (s)

i , A(s)(ti)⟩.
Next we adopt a rank-R CP decomposition model on each partition to further reduce the

sub-tensor X̃ (s) to lower dimensional feature matrices. Specifically, we have

X̃ (s) ≈
R∑

r=1
λ(s)

r x∗
rs ◦ x(s1)

r ◦ · · · ◦ x(sD)
r (6)

where λ
(s)
r is the weight of the r-th rank of the decomposition, x(sd)

r = (x(sd)
1r , · · · , x

(sd)
p′

d
r )⊤ ∈ Rp′

d

is the common factor along the d-th order of the r-th rank, and x∗
rs = (x∗

1rs, · · · , x∗
nrs)⊤ ∈ Rn

is the factor along the subject dimension. The elements of x∗
rs contain the primary variation in

the tensor variables due to subject differences, while the common structure among the subjects
is absorbed into factors x(sd)

r , r = 1, · · · , R, d = 1, · · · , D (Miranda et al., 2018). If we focus on
the i-th individual tensor covariate Xi, following (6), we have

X (s)
i ≈

R∑
r=1

λ(s)
r x∗

irsx(s1)
r ◦ · · · ◦ x(sD)

r ≡
R∑

r=1
x∗

irsU (s)
r (7)

where U (s)
r = λ

(s)
r x(s1)

r ◦ · · · ◦ x(sD)
r ∈ Rp′

1×···×p′
D . We note that U (s)

r contains only the shared
information among subjects and thus can be dropped from the regression analysis.

After the above partitioning and decomposition, essentially only x∗
irs may contribute to the

response variation and thus serve as an appropriate covariate. Consequently, the total number
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of measurements for an individual tensor is reduced from p1 × · · · × pD to R × S. A similar
method is adopted in Tang et al. (2020) to learn individualized tensor construction. If we
denote ars(t) ≡ ⟨U (s)

r , A(s)(t)⟩ as the corresponding coefficient function of x∗
irs, i = 1, · · · , n, and

A(t) = (ars(t)), model (3) now becomes

yi =⟨Xi, A(ti)⟩ + z⊤
i β + ϵi

=
S∑

s=1
⟨X (s)

i , A(s)(ti)⟩ + z⊤
i β + ϵi

≈
S∑

s=1

〈 R∑
r=1

x∗
irsU (s)

r , A(s)(ti)
〉

+ z⊤
i β + ϵi

=
S∑

s=1

R∑
r=1

x∗
irs⟨U (s)

r , A(s)(ti)⟩ + z⊤
i β + ϵi

=⟨X∗
i , A(ti)⟩ + z⊤

i β + ϵi, (8)

where X∗
i = (x∗

irs) ∈ RR×S . Throughout this paper, we shall assume that R and S are constants.
Instead of applying the decomposition on coefficient tensor A (Zhou et al., 2013; Zhang and Li,
2017; Li et al., 2018), we place the low-rank assumption on the tensor covariate X and make
no specific assumptions regarding the structure of the tensor function A(t). Furthermore, we
do not need more assumptions on tensor covariate X , such as Gaussian ensemble design (Zhang
et al., 2020; Han et al., 2022b) or tensor restricted isometry property (Luo and Zhang, 2023;
Tong et al., 2022). The model considered in this paper thus presents a novel introduction to the
literature.

2.3 Estimating functions and parameters

For the unknown functional coefficients, we only require the usual smoothness condition which
enables the local linear approximation by a first order Taylor expansion. Specifically, for ti is in
a small neighborhood of t, we have

A(ti) ≈ A(t) + Ȧ(t)(ti − t), (9)

where Ȧ(t) is the first derivative of A(t). We may estimate the unknown functions A(t) and
parameters β by minimizing the local least squares

n∑
i=1

[
yi − v⊤

i (at + bt(ti − t)) − z⊤
i β
]2

Kh(ti − t)

=
n∑

i=1

[
yi − ṽ⊤

i (t)θt
]2

Kh(ti − t) (10)

where vi = vec(X∗
i ) ∈ RRS , at = vec(A(t)), bt = vec(Ȧ(t)), ṽ⊤

i (t) = (z⊤
i , v⊤

i , (ti − t)v⊤
i )⊤ ∈

R2RS+p0 , θt = (β⊤, a⊤
t , b⊤

t )⊤ and Kh(t) = K(t/h)/h is a scaled kernel with bandwidth h. It is
straightforward to derive the closed-form solution of (10) to be

θ̂t =
[
Ṽ⊤(t)W(t)Ṽ(t)

]−1Ṽ⊤(t)W(t)y (11)
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where y = (y1, · · · , yn)⊤ ∈ Rn, Ṽ(t) = (ṽ1(t), · · · , ṽn(t))⊤ ∈ Rn×(2RS+p0), and W(t) =
diag(Kh(t1 − t), · · · , Kh(tn − t)) ∈ Rn×n. We thus have vectorized estimate vec(Â†(t)) = â†

t =
(0RS×p0 , IRS , 0RS×RS)θ̂t. In practice, the bandwidth h is chosen by the leave-one-out cross
validation.

After function estimate Â†(t) is attained, we may evaluate the global estimator of β by
minimizing

n∑
i=1

[
yi − ⟨X∗

i , Â†(ti)⟩ − z⊤
i β
]2

. (12)

The final estimate β̂† is given by

β̂† =
[
Z⊤Z

]−1Zy† (13)

where Z = (z1, · · · , zn)⊤ ∈ Rn×p0 , and y† = (y1 − ⟨X∗
1, Â†(t1)⟩, · · · , yn − ⟨X∗

n, Â†(tn)⟩)⊤ ∈ Rn.

3 Variable selection and structure identification

3.1 Group penalty procedure

Even after tensor partition and decomposition, there are still RS functions to be estimated
in A(t) = (ars(t)), r = 1, · · · , R, s = 1, · · · , S, in addition to p0 Euclidean parameters in β.
The dimension may still be quite large relative to the available sample size. In practice not
all these components are effective to the response and a sparsity structure is usually plausible.
Furthermore, not all functional coefficients are varying and need to be estimated nonparamet-
rically. We further adopt a regularization procedure for variable selection and model structure
identification.

To implement the shrinkage approach, we consider spline basis approximation method (De Boor,
2001) for functional estimation in this section. While the kernel method can usually provide a
better local approximation to the function estimation, it is often less efficient suitable for the
penalized computations. In contrast, the spline method is computationally more efficient for
our purpose of regularization.

For a chosen set of B-splines basis functions {Bl(t), l = 1, · · · , L}, we denote B(t) =
(B1(t), · · · , BL(t))T where each Bl(t) is a B-spline function, L = kn + kd + 1 is the number
of basis functions, kn is the number of equispaced internal knots located in [0, 1], and kd is the
degree of the polynomial spline. The spline approximation of the varying coefficient can be
written in terms of B-splines as

ars(t) ≈
L∑

l=1
γlrsBl(t) = B⊤(t)γrs, (14)

where γrs = (γ1rs, · · · , γLrs)T are some suitable coefficients.
Here we consider B-spline basis for its desirable properties such as the numerical stability

(De Boor, 2001) while other basis functions can be used for a similar purpose. We need to
choose kn to control the smoothness of nonparametric function ars(t)’s and require kn → ∞ as
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n → ∞. Although it is possible to allow different number of basis for different functions ars(t),
we specify them all equal to L for the simplicity of notation.

After substituting (14) into (8), we obtain a slightly different tensor regression form:

yi ≈
L∑

l=1

R∑
r=1

S∑
s=1

x∗
irsBl(ti)γlrs + z⊤

i β + ϵi ≡ ⟨Hi(ti), G⟩ + z⊤
i β + ϵi, (15)

where Hi(t) = X∗
i ◦ B(t) = (x∗

irsBl(t)) ≡ (hilrs(t)) ∈ RL×R×S , and G = (γlrs) ∈ RL×R×S .
Before we define the penalty term in a projected B-spline space for simultaneous variable

selection and structure identification, we introduce an orthogonal decomposition of ars(t) with
respect to the L2 norm by

ars(t) = (ars)c + (ars)v(t) (16)

where (ars)c =
∫ 1

0 ars(t)dt ≈
∫ 1

0 B⊤(t)dtγrs ∈ R is the mean of ars(t), and (ars)v(t) = ars(t) −
(ars)c ≈

(
B⊤(t) −

∫ 1
0 B⊤(t)dt

)
γrs is the deviation from the mean. Then we have

∥ars∥2
2 = |(ars)c|2 + ∥(ars)v∥2

2 (17)

where | · | denotes the absolute value, and ∥ · ∥2 is the L2 norm. The two terms on the
right hand side of (17) can be easily evaluated by |(ars)c|2 ≈ γ⊤

rs

∫ 1
0 B(t)dt

∫ 1
0 B⊤(t)dtγrs,

and ∥(ars)v∥2
2 ≈ γ⊤

rs

[ ∫ 1
0
(
B(t) −

∫ 1
0 B(t)dt

)(
B⊤(t) −

∫ 1
0 B⊤(t)dt

)
dt
]
γrs = γ⊤

rs

( ∫ 1
0 B(t)B⊤(t)dt −∫ 1

0 B(t)dt
∫ 1

0 B⊤(t)dt
)
γrs. It is clear that ∥(ars)v∥2 ̸= 0 when ars is a varying function, ∥(ars)v∥2 =

0 when ars is a constant function, and furthermore, |(ars)c| = ∥(ars)v∥2 = 0 when ars is a con-
stant zero function.

We then propose the following penalized loss function to simultaneously select important
variables and identify the model structure with group regularized estimator Ĝ‡ and β̂‡:

1
2

n∑
i=1

[
yi − ⟨Hi(ti), G⟩ − z⊤

i β
]2 + n

p0∑
k=1

Pωβ
(|βk|)

+ n
R∑

r=1

S∑
s=1

{
Pωc

γ
(|(ars)c|) + Pωv

γ
(∥(ars)v∥2)

}
(18)

where Pω(·)’s are all SCAD penalty functions with a group tuning parameter ω. In general the
SCAD function is defined through its first derivative as

Ṗω(θ) = ω
[
I{|θ| ≤ ω} + (a0ω − |θ|)+

(a0 − 1)ω I{|θ| > ω}
]

(19)

with a0 > 2, where I{·} is an indicator function. In our numerical studies, we set a0 = 3.7 as
suggested by Fan and Li (2001).

To implement the above minimization, following Fan and Li (2001), we use an iterative local
quadratic approximation algorithm to solve the penalized estimation. Using the Taylor expan-
sion, given an estimator of θ in (c−1)-th iteration, θ(c−1), we can approximate the regularization
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term Pω(θ) by

Pω(θ) ≈ Pω(θ(c−1)) + 1
2

Ṗω(θ(c−1))
θ(c−1) (θ2 − (θ(c−1))2). (20)

The initial estimate G(0) and β(0) can be obtained from A†(t) and β† in (11) and (13), or the
least square estimation of (18) with ωβ = ωc

γ = ωv
γ = 0.

In the c-th iteration, we first update β(c) by minimizing

1
2

n∑
i=1

[
yi − ⟨Hi(ti), G(c−1)⟩ − z⊤

i β
]2 + n

p0∑
k=1

Pωβ
(|βk|) (21)

where G(c−1) is the estimate of G in the (c − 1)-th iteration. The approximate solution of (21) is

β(c) =
(
Z⊤Z + nΩ0(β(c−1), ωβ)

)−1
Z⊤y(c−1)

Z (22)

where y(c−1)
Z = (y1 − ⟨H1(t1), G(c−1)⟩, · · · , yn − ⟨Hn(tn), G(c−1)⟩)⊤ ∈ Rn, Z = (z1, · · · , zn)⊤ ∈

Rn×p0 , Ω0(β(c−1), ωβ) = diag
( Ṗωβ

(|β(c−1)
1 |)

|β(c−1)
1 |

, · · · ,
Ṗωβ

(|β(c−1)
p0 |)

|β(c−1)
p0 |

)
∈ Rp0×p0 is a diagonal matrix, and

β(c−1) = (β(c−1)
1 , · · · , β

(c−1)
p0 ) ∈ Rp0 is the estimate of β in the (c − 1)-th iteration.

Then, given the current estimate β(c), we update the estimate G(c) by minimizing

1
2

n∑
i=1

[
yi − ⟨Hi(ti), G⟩ − z⊤

i β(c)]2 + n
R∑

r=1

S∑
s=1

Pωc
γ
(|(ars)c|) + n

R∑
r=1

S∑
s=1

Pωv
γ
(∥(ars)v∥2). (23)

Similar to (22), G(c) can be obtained through

vec(G(c)) =
(
H⊤H + nΩ1(G(c−1), ωc

γ) + nΩ2(G(c−1), ωv
γ)
)−1

H⊤y(c)
H (24)

where y(c)
H = (y1 − z⊤

1 β(c), · · · , yn − z⊤
n β(c))⊤ ∈ Rn, H = (vec(H1(t1), · · · , vec(Hn(tn))⊤ ∈

Rn×LRS , and vec(Hi(ti)) = (hilrs(ti)) = (hi111(ti), · · · , hiL11(ti), · · · , hiLR1(ti), · · · , hiLRS(ti))⊤ ∈
RLRS . As for two penalized terms, we have

Ω1(G(c−1), ωc
γ) =diag(

Ṗωc
γ
(|(a(c−1)

11 )c|)
|(a(c−1)

11 )c|
B1, · · · ,

Ṗωc
γ
(|(a(c−1)

R1 )c|)
|(a(c−1)

R1 )c|
B1, · · · ,

Ṗωc
γ
(|(a(c−1)

RS )c|)
|(a(c−1)

RS )c|
B1)

is an LRS-by-LRS block diagonal matrix, where |(a(c−1)
rs )c| =

√
γ

(c−1)⊤
rs B1γ

(c−1)
rs with γrs =

(γlrs) ∈ RL, and B1 ∈ RL×L is a matrix given by

B1 =
∫ 1

0
B(t)dt

∫ 1

0
B⊤(t)dt =


( ∫ 1

0 B1(t)dt
)2 · · ·

∫ 1
0 B1(t)dt

∫ 1
0 BL(t)dt

... . . . ...∫ 1
0 BL(t)dt

∫ 1
0 B1(t)dt · · ·

( ∫ 1
0 BL(t)dt

)2
 ,
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and

Ω2(G(c−1), ωv
γ) = diag(

Ṗωv
γ
(∥(a(c−1)

11 )v∥2)
∥(a(c−1)

11 )v∥2
B2, · · · ,

Ṗωv
γ
(∥(a(c−1)

R1 )v∥2)
∥(a(c−1)

R1 )v∥2
B2, · · · ,

Ṗωv
γ
(∥(a(c−1)

RS )v∥2)
∥(a(c−1)

RS )v∥2
B2)

is also an LRS-by-LRS block diagonal matrix, where ∥(a(c−1)
rs )v∥2 =

√
γ

(c−1)⊤
rs B2γ

(c−1)
rs and

B2 ∈ RL×L is a matrix given by

B2 =
∫ 1

0
B(t)B⊤(t)dt −

∫ 1

0
B(t)dt

∫ 1

0
B⊤(t)dt

=


∫ 1

0 B2
1(t)dt −

( ∫ 1
0 B1(t)dt

)2 · · ·
∫ 1

0 B1(t)BL(t)dt −
∫ 1

0 B1(t)dt
∫ 1

0 BL(t)dt
... . . . ...∫ 1

0 BL(t)B1(t)dt −
∫ 1

0 BL(t)dt
∫ 1

0 B1(t)dt · · ·
∫ 1

0 B2
L(t)dt −

( ∫ 1
0 BL(t)dt

)2
 .

The vector vec(G(c)) can be easily tensorized to produce the corresponding G(c).
We iteratively update β and G until convergence, that is ∥β(c) −β(c−1)∥2

2 +∥G(c) −G(c−1)∥2
2 <

10−8 in this work. Finally, we set Ĝ‡ = G(c) and β̂‡ = β(c) upon convergence. We may obtain
the penalized tensor function Â‡(t) = (â‡

rs(t)) = (B⊤(t)γ̂‡
rs).

Remark 1 Instead of shrinking |(ars)c| and ∥(ars)v∥2 to zero, we could also operationally
replace them by |(γrs)c| and ∥(γrs)v∥2 where (γrs)c = 1

L

∑L
l=1 γlrs is the mean and (γrs)v =

γrs − (γrs)c ∈ RL represents the deviation function. These two pairs are quite similar in both
theory and practice since we can choose the order of spline to ensure a one-to-one corresponding
projection. More specifically, we can expand |(γrs)c|2 = 1

L2 γ⊤
rs11⊤γrs, and ∥(γrs)v∥2

2 = γ⊤
rs(I −

1
L11⊤)(I − 1

L11⊤)⊤γrs = γ⊤
rs(I − 1

L11⊤)γrs, where 1 ∈ RL is a vector of ones and I ∈ RL×L is
an identity matrix.

Remark 2 To identify constant coefficients in A(t), we can also use the term ∥ȧrs∥2 =√
γ⊤

rsḂγrs to replace ∥(ars)v∥2, where Ḃ = {
∫ 1

0 Ḃl(t)⊤Ḃl′(t)dt : l, l′ = 1, · · · , L} ∈ RL×L. The
idea is to shrink the first derivative ∥ȧrs∥2 to zero, then ars(t) is a constant function. This
penalty term will produce a similar result as ∥(ars)v∥2 (Guo and Li, 2022).

Remark 3 In numerical studies, we have also used Lasso (Tibshirani, 1996) and MCP
(Zhang, 2010) penalty functions in place of Pω(·) to show the versatility of our methodology.
For Lasso and MCP penalty in our experiment, Ṗω(θ) = ωsign(θ) and Ṗω(θ) = (ω − |θ|

a′
0
)+sign(θ)

respectively, where a′
0 = 3.

3.2 Tuning penalty parameters and model refinement

After obtaining Â‡(t) and β̂‡, we can select variables (whether βk can be shrunk to zero),
and identify constant coefficients (whether ars(t) is a zero constant function, non-zero constant
function or varying function) simultaneously. To this end we need tune penalty parameters ωβ,
ωc

γ and ωv
γ to achieve accurate results. We thus choose the optimal tuning parameters ω∗

β, ωc,∗
γ

and ωv,∗
γ by a data-driven grid search method minimizing the Bayesian information criterion

(BIC). Other criteria such as extended Bayesian information criterion (eBIC, Chen and Chen
2008) and generalised information criterion (GIC, Fan and Tang 2013) can also be adopted.
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More specifically, we select the best tuning parameters by minimizing

BIC(ωβ, ωc
γ , ωv

γ) = log(
∑n

i=1[yi − ⟨Hi(ti), Ĝ‡⟩ − z⊤
i β̂‡]2

n
) + (dβ + dc + dvL) log(n)

n
(25)

where Ĝ‡ and β̂‡ are the solution of (18) given ωβ, ωc
γ and ωv

γ , dc and dv are the numbers of
functions estimated as nonzero constant functions and varying functions respectively, and dβ is
the number of non-zero coefficients in β̂‡. L is equivalent number of constant coefficients for a
varying function, and exactly equal to the number of spline basis in (18).

4 Asymptotic theory

We first introduce some notations. Denote the random covariates to be {t, X∗, z} and its sample
version as {ti, X∗

i , zi}. Let A∗(t) = (a∗
rs(t)), and β∗ = (β∗

k) be the ground true value of A(t)
and β.
Denote µr =

∫
trK(t)dt and νr =

∫
trK2(t)dt for any integer r. For any smooth functions

f(t), denote ḟ(t) = df(t)/dt, and f̈(t) = d2f(t)/dt2. Moreover, we do not distinguish the
differentiation and continuation at the boundary points from those in the interior of [0, 1].
For instance, a continuous function at the boundary of [0, 1] means that this function is left
continuous at 0 and right continuous at 1.

The following technical conditions are assumed for the theoretical results.

(C1) The index variable {ti} are i.i.d. with a density function f(t), which is twice continu-
ously differentiable and is bounded away from 0 in the support t ∈ [0, 1]. Further ti is
independent to the covariates X∗

i and zi.

(C2) The kernel function K(t) is a symmetric (i.e., K(−t) = K(t)) and continuous density
function and there exists a constant s > 2 such that

∫ 1
−1 K(u)sujdu < ∞ for j ≤ 6.

In addition, there exist a large enough constant K0 such that supt∈R K(t) ≤ K0 and
supt∈R K ′(t) ≤ K0.

(C3) The elements in A∗(·) have continuous third derivatives in [0, 1]. The parameters β fall in
a compact space in Rp0 .

(C4) Assume the vector ṽi(t), i = 1, · · · , n are i.i.d. with conditional covariance matrix Ω(t) =
Cov(ṽi|T = t). Assume that the entries in Ω(t) are Lipschitz continuous in t ∈ [0, 1],
and there exists a λ > 1 such that λ−1 ≤ inft∈[0,1] λmin(Ω(t)) ≤ supt∈[0,1] λmax(Ω(t)) ≤ λ.
Here λmin(Ω(t)) and λmax(Ω(t)) are the smallest and largest eigenvalue of Ω(t) respec-
tively. Moreover, denote Ωz,v = E((z⊤, v⊤)⊤(z⊤, v⊤)), Ωv = E(v⊤v), Ωz = E(z⊤z),
Ωvz = E(v⊤z), Ωzv = E(z⊤v). We assume that ṽi(t) are uniformly bounded and Ωz,v is
invertable with eigenvalues bounded away from zero and infinity.

(C5) For simplicity we assume that the entries of the tensor covariate X∗ and the one-way
covariate z are centered (i.e., with mean 0) and bounded random variables.
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(C6) Let c1, · · · , ckn be the interior knots of [0, 1]. Furthermore, let c0 = 0, ckn+1 = 1, κi =
ci − ci−1 such that max1≤i≤kn+1{κi} = O(min1≤i≤kn+1{κi}) and max1≤i≤kn{κi+1 − κi} =
o(k−1

n ).

4.1 Asymptotic properties for regression estimates

Theorem 1 Suppose that Assumptions (C1)-(C4) hold, if n → ∞ and h → 0 in such a
way that nh → ∞ and nh5 = O(1), then the asymptotic conditional distribution of θ̂ =
(β̂⊤, vec(Â(t))⊤, vec( ˆ̇A(t))⊤)⊤ in (10) is given by

√
nh




β̂ − β∗

vec(Â(t)) − vec(A∗(t))
vec( ˆ̇A(t)) − vec(Ȧ∗(t))

− 1
2


0p0

µ2h2vec(Ä∗(t))
−h2f(t)−1ḟ(t)(µ−1

2 µ4 − µ2)vec(Ä∗(t))




d−→ N

0, σ2

 ν0Ω−1
z,vf(t)−1 −ν0f(t)−2ḟ(t)Ω−1

z,v

(
Ωzv

Ωv

)
Ω−1

v

−ν0f(t)−2ḟ(t)Ω−1
v (Ωvz, Ωv)Ω−1

z,v h−2f(t)−1µ−1
2 ν2Ω−1

v

 .

 (26)

In particular, let Ω̃v(t) = Ωv − ΩvzΩ−1
z Ωzv, the estimated vec(Â†(t)) in θ̂ has asymptotic con-

ditional distribution of

√
nh
[[

vec(Â†(t)) − vec(A∗(t))
]

− 1
2µ2h2vec(Ä∗(t))

]
d−→ N

(
0,

ν0σ2

f(t) Ω̃−1
v

)
. (27)

Theorem 2 Let β̂† be the estimate that minimizes (12). Suppose that Assumptions (C1)-(C5)
hold, if n → ∞ and h → 0 in such a way that nh4 → 0 and nh3/ log(n) → ∞, we have

√
n(β̂† − β∗) d−→ N(0, σ2Ω−1

z ) (28)

The optimal bandwidth in Theorem 1 is h ∼ n−1/5. This bandwidth does not satisfy the
condition in Theorem 2. Interestingly, in order to obtain the

√
n consistency and asymptotic

normality for β̂†, undersmoothing for Â†(t) is necessary for controlling the bias of the local
smoothing estimators. On the other hand, h should also be large enough such that nh3/ log(n) →
∞, in order to control the variance of the remainder terms. This is a common requirement in
varying coefficient partial linear models; see Carroll et al. (1997) for a detailed discussion.

4.2 Asymptotic properties for penalized functions and parameters

According to the result in De Boor (2001), for ars(t) satisfying Assumption (C3) and (C6),
there exists a B-spline function B⊤(t)γ∗

rs, where γ∗
rs is the best spline approximating function

for a∗
rs(t), such that

Rrs ≡ sup
t∈[0,1]

|B⊤(t)γ∗
rs − a∗

rs(t)| = O(k−2
n ) (29)

where kn is number of interior knots, kn → ∞ as n → ∞.
Note in Eq. (18), we actually optimize it through G and β. With Assumption (C3) and (C6) hold,
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we may approximate |(ars)c| ≈
√

γ⊤
rsB1γrs = ∥γrs∥B1 and ∥(ars)v∥2 ≈

√
γ⊤

rsB2γrs = ∥γrs∥B2

respectively. Now we rewrite Eq. (18) as

L(G, β) =
n∑

i=1

[
yi − ⟨Hi(ti), G⟩ − z⊤

i β
]2 + n

p0∑
k=1

Pωβ
(|βk|)

+ n
R∑

r=1

S∑
s=1

{
Pωc

γ
(∥γrs∥B1) + Pωv

γ
(∥γrs∥B2)

}
(30)

Similar with local linear smoothing method in section 2.3, we denote ui = vec(Hi(ti)) =
(hilrs(ti)) ∈ RLRS , ũi = (vec(Hi(ti))⊤, z⊤

i )⊤ ∈ RLRS+p0 . Let ωmax = max{ωβ, ωc
γ , ωv

γ}, and
ωmin = min{ωβ, ωc

γ , ωv
γ}.

Recall that the number of basis functions L = kn + kd + 1. As kd is usually chosen to be
very small, we shall assume that L is having the same order as kn. In addition, we assume that

(C7) p0 = O(nτ ) for some constant τ < 1, and kn = Ck min
{(

n
log n

)1/5
,
(

n1−τ

log n

)1/4} for some
constant Ck > 0.

We also impose the following assumptions for the tuning parameters and the minimum signal
strength.

(C8) There exists a large enough constant a > 2 such that |β∗
k| > aωβ for k ∈ {k : β∗

k ̸= 0},
∥γ∗

ij∥B1 ≥ aωc
γ for (i, j) ∈ {(r, s) : ∥γ∗

rs∥B1 ̸= 0}, and ∥γ∗
rs∥B2 ≥ aωv

γ for (i, j) ∈ {(r, s) :
∥γ∗

ij∥B2 ̸= 0}.

Theorem 3 Suppose that Conditions (C1), (C3), (C5), (C6) and (C7) hold, and set ωβ =
c1 max

{( log n
n

)2/5
,
( log n

n1−τ

)1/2}, ωv
γ = c2 max

{( log n
n

)1/2
,
( log n

n1−τ

)5/8} and ωc
γ = c3 max

{( log n
n

)1/2
,
( log n

n1−τ

)5/8}
for some large enough constants c1, c2, c3 > 0. We have:

(i) ∥β̂‡
k − β∗

k∥ = Op

(
max

{( log n
n

)2/5
,
( log n

n1−τ

)1/2}), for k = 1, · · · p0,

(ii) ∥â‡
rs(t) − a∗

rs(t)∥ = Op

(
max

{( log n
n

)2/5
,
( log n

n1−τ

)1/2}), for r = 1, · · · , R, and s = 1, · · · , S.

Theorem 4 Suppose that Conditions (C1), (C3), (C5), (C6), (C7) and (C8) hold, and suppose
ωβ, ωc

γ , ωv
γ → 0, and min

{(
n

log n

)2/5
,
(

n1−τ

log n

)1/2}
ωβ → ∞, min

{(
n

log n

)1/2
,
(

n1−τ

log n

)5/8}
ωv

γ → ∞ and

min
{(

n
log n

)1/2
,
(

n1−τ

log n

)5/8}
ωc

γ → ∞, we have, with probability tending to 1,

(i) β̂‡
k = 0, for k ∈ {k, |βk| = 0},

(ii) (â‡
rs)c = 0, for (r, s) ∈ {(r, s) : |(ars)c| = 0},

(iii) (â‡
rs)v(t) ≡ 0, for (r, s) ∈ {(r, s) : ∥(ars)v∥2 = 0}.

5 Simulation study

5.1 Estimation consistency

The data were generated according to (8), where ti, i = 1, · · · , n, are randomly sampled from
the uniform distribution U(0, 1). We first consider the following two settings:

Case I : Each subject Xi is a p1×p2 tensor with order D = 2, p1 = p2 = 80 for i = 1, · · · , n. Evenly
divide Xi into S = 16 parts with p′

1 = p′
2 = 20, by partitioning it into S(1) = S(2) = 4 equal
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segments along length and width separately. Set R = 10. For each part X̃ (s) expressed
in the form of (6), λ

(s)
r = 1, x∗

rs ∈ Rn is a Gaussian ensemble vector whose entries
are generated i.i.d. from the standard normal distribution, and any x(sd)

r , x(sd)
r′ ∈ Rp′

d ,
r ̸= r′ are orthonormal and obtained from the QR decomposition of a random matrix.
The tensor function A(t) has the same dimension of Xi, and for each part, corresponding
A(s)(t) = ∑R

r=1 ars(t)x(s1)
r ◦ x(s2)

r .

Case II : Each subject Xi is a p1 × p2 × p3 tensor with order D = 3, p1 = p2 = p3 = 40 for i =
1, · · · , n. Evenly divide Xi into S = 64 parts by partitioning it into S(1) = S(2) = S(3) = 4
equal segments along length, width, and height separately, with p′

1 = p′
2 = p′

3 = 10. Set
R = 5. For each X̃ (s) in (6), λ

(s)
r = 1, and x∗

rs ∈ Rn, x(sd)
r ∈ Rp′

d are generated in the
same way as Case I. Tensor function A(t) has the same dimension of Xi, and for each part,
corresponding A(s)(t) = ∑R

r=1 ars(t)x(s1)
r ◦ x(s2)

r ◦ x(s3)
r .

In both cases, we consider four different functions for ars(t): a1rs(t) = 4
√

rs/RS(t − 0.5)2,
a2rs(t) =

√
rs/RSt0.5, a3rs(t) = 1.75

√
rs/RS(exp −(3t − 1)2 + exp −(4t − 3)2 − 0.75), a4rs(t) =√

rs/RS sin(2π(t − 0.5)), 1 ≤ r ≤ R; 1 ≤ s ≤ S. We set p0 = 2 and β = (3, 3)⊤. Z ∈ Rn×p0

is a Gaussian ensemble matrix. The random error ϵi follows the standard normal distribution
N(0, 1).

For each simulated data, we carry out the estimation procedure introduced in Section 2 to
fit the model. After 500 simulations, we summarize the performance of our varying coefficient
tensor regression (VCTR) model in Table 1 with sample size n = 2000 and 5000. The estimation
errors for functions are integrated over the range of t. The errors for A(t) and β are averaged
across all their components. These empirical results affirm the estimation consistency of the
semi-parametric estimators for regression coefficients.

We also show the prediction errors of Case I and II with 10-fold cross validation in Figure 2.
We compare prediction errors of our VCTR model with two constant coefficient tensor models,
based on Miranda et al. (2018) and Zhou et al. (2013), respectively. When the true model
involves varying coefficients, our model clearly demonstrates an advantage over those existing
models.

5.2 Selection accuracy

We now evaluate the accuracy of the penalization method for high-dimensional covariates intro-
duced in Section 3. Let F1 = {(r, s) : ∥(ars)v∥2 > 0}, F2 = {(r, s) : |(ars)c| > 0, ∥(ars)v∥2 = 0}
and F3 = {(r, s) : |(ars)c| = 0, ∥(ars)v∥2 = 0} be the index set of varying, constant non-zero
and constant zero coefficients in tensor function A(t). Obviously, {(r, s) : r ∈ {1, · · · , R}, s ∈
{1, · · · , S}} = F1 ∪ F2 ∪ F3 and Fi ∩ Fj = ∅ for i, j ∈ {1, 2, 3}. Also let F4 = {k, |βk| > 0} and
F5 = {k, |βk| = 0} be the index set for significant and sparsed coefficients in one-way parameter
β. Similarly, we have {1, · · · , p0} = F4 ∪ F5 and F4 ∩ F5 = ∅. We denote |F| as the number
of elements in a set F . In this subsection, we denote sets F̂i, i = 1, · · · , 5 as the estimator of
ground truth Fi.

In Case III, we consider the selection performance under various spatial correlation among
tensor covariates. In case IV, we consider tensor covariates with unknown coefficients greater
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Table 1: Estimation results of Case I and II for 500 simulations. The accuracy of Â†(t) is measured by
MIAE and RMISE, where MIAE = E

[ ∫ 1
0 |Â†(t) − A(t)|dt

]
, and RMISE = E1/2[ ∫ 1

0 (Â†(t) − A(t))2dt
]
.

The accuracy of β̂† is measured by MAE and MSE, where MAE = 1
p0

∑p0
j=1 |β̂†

j − βj |, and RMSE =[ 1
p0

∑p0
j=1(β̂†

j − βj)2]1/2.

Case Function n Â†(t) β̂†

MIAE RMISE MAE RMSE

I

A1(t) 2000 0.0622(0.0011) 0.0780(0.0012) 0.0343(0.0263) 0.0371(0.0267)
5000 0.0272(0.0011) 0.0341(0.0013) 0.0200(0.0144) 0.0218(0.0145)

A2(t) 2000 0.0636(0.0023) 0.0799(0.0029) 0.0455(0.0274) 0.0518(0.0302)
5000 0.0279(0.0007) 0.0349(0.0009) 0.0270(0.0137) 0.0314(0.0158)

A3(t) 2000 0.0648(0.0016) 0.0817(0.0021) 0.0441(0.0301) 0.0485(0.0337)
5000 0.0398(0.0006) 0.0392(0.0008) 0.0259(0.0168) 0.0394(0.0154)

A4(t) 2000 0.0678(0.0018) 0.0852(0.0021) 0.0340(0.0181) 0.0364(0.0179)
5000 0.0358(0.0016) 0.0448(0.0019) 0.0152(0.0086) 0.0165(0.0084)

II

A1(t) 2000 0.0687(0.0031) 0.0865(0.0038) 0.0510(0.0254) 0.0592(0.0305)
5000 0.0232(0.0009) 0.0293(0.0010) 0.0211(0.0084) 0.0217(0.0084)

A2(t) 2000 0.0709(0.0022) 0.0889(0.0028) 0.0409(0.0188) 0.0461(0.0206)
5000 0.0239(0.0007) 0.0299(0.0010) 0.0235(0.0101) 0.0244(0.0109)

A3(t) 2000 0.0854(0.0055) 0.1103(0.0071) 0.0401(0.0381) 0.0425(0.0386)
5000 0.0407(0.0009) 0.0535(0.0011) 0.0256(0.0152) 0.0286(0.0175)

A4(t) 2000 0.1117(0.0049) 0.1430(0.0064) 0.0509(0.0245) 0.0541(0.0258)
5000 0.0578(0.0012) 0.0727(0.0013) 0.0305(0.0162) 0.0362(0.0205)

than the sample size. In both cases, we adopt three types of familiar penalty functions: Lasso,
SCAD, and MCP. The tuning parameters are chosen by BIC.

Case III : Each subject Xi follows the same dimension as Case I. To allow the spatial correlation
among different parts, for any two subject factor matrices X∗(s) in different partitions, en-
tries have a first order auto-regressive covariance matrix with covariance ρ|s(1)−s′(1)|+|s(2)−s′(2)|

for 1 ≤ s(1), s′(1) ≤ S(1) and 1 ≤ s(2), s′(2) ≤ S(2). Tensor function A(t) is designed sim-
ilarly as Case I with A(s)(t) = ∑R

r ars(t)x(s1)
r ◦ x(s2)

r . If 1 ≤ r ≤ s ≤ 10, ars(t) =√
rs/RS sin(2π(t − 0.5)); if 1 ≤ s < r ≤ 10, ars(t) =

√
rs/RS, and the rest of the tensor

functions are all 0’s.

Case IV : Each subject Xi is an p1 × p2 × p3 tensor with order D = 3, p1 = p2 = p3 = 80 for i =
1, · · · , n. Evenly divide Xi into S = 64 parts by partitioning it into S(1) = S(2) = S(3) = 4
equal segments along length, width and height separately, with p′

1 = p′
2 = p′

3 = 20.
Set R = 20. For each X̃ (s) in (6), λ

(s)
r = 1, and x∗

rs ∈ Rn, x(sd)
r ∈ Rp′

d are generated
in the same way as Case II. Tensor function A(t) has the same shape as X , and for
each part, corresponding A(s)(t) = ∑R

r ars(t)x(s1)
r ◦ x(s2)

r ◦ x(s3)
r . If 1 ≤ r ≤ s ≤ 10,

ars(t) =
√

rs/RS sin(2π(t − 0.5)); if 1 ≤ s < r ≤ 10, ars(t) =
√

rs/RS , and the rest of
the tensor functions are all 0’s.

In both cases, We set p0 = 5 and β = (1, 1, 0, 0, 0)⊤. Z ∈ Rn×p0 is a Gaussian ensemble matrix.
The random error ϵi is generated in the same way as Case I and II.

The results for Case III are summarized in Table 2 after 500 simulations. The penalized
estimation correctly identifies the true zero coefficients and non-zero coefficients with high prob-

15



(a) Prediction error of Case I, n=2000. (b) Prediction error of Case I, n=5000.

(c) Prediction error of Case II, n=2000. (d) Prediction error of Case II, n=5000.

Figure 2: Box plots of prediction errors of Case I and II with 10-fold cross validation. Model M1 is our
VCTR model. Models M2 and M3 are constant coefficient tensor models, estimated by Miranda et al.
(2018) and Zhou et al. (2013), respectively.

ability. The covariate correlation slightly affects the accuracy where wrong selection occurs more
often with higher auto-correlation. All three penalty functions perform quite well.

The results for Case IV are summarized in Table 3. We note that this case is more compli-
cated than previous cases since the tensor coefficient has a greater dimension RS = 20×64. The
un-penalized estimation approach is infeasible for this challenging case. In general the selection
accuracy improves with increasing sample size n while the three penalty functions perform sim-
ilarly well. We also plot prediction errors of Case III and IV with 10-fold cross validation in
Figure 3.

5.3 Additional simulation results

To better illustrate our estimation procedure, we present Figure 4 to provide some further insight.
Panel (a) is the ground truth of A(t) in case III with ρ = 0.1; Panel (b) is estimated from the un-
penalized kernel smoothing method using (11); Panel (c) is the penalized estimator Â(t) using
(18); Panel (d) is the a further refined smooth estimation Â(t) after identifying model structure.
Clearly the initial kernel smoothing method cannot accurately estimate coefficients that vary too
rapidly, particularly in the lower-right space of Â(t). After applying the penalized estimation,
the fine details of A(t) are estimated more precisely but exhibit some local wrinkles. Finally
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Table 2: Estimation results of 500 simulations for Case III. We use sensitivity (se), specificity (sp),
positive predictive value (ppv), and negative predictive value (npv) to evaluate identification accuracy,
where se = P(Fi ∩ F̂i|Fi), ppv = P(Fi ∩ F̂i|F̂i), sp = P(Fc

i ∩ F̂c
i |Fc

i ) and npv = P(Fc
i ∩ F̂c

i |Fc
i ). Sample

size n = 5000. Penalty parameters of Lasso, SCAD, and MCP are chosen by BIC.

Lasso SCAD MCP
ρ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Zero coefficient in A(t)
se 0.9965 0.9948 0.9926 0.9961 0.9952 0.9930 0.9974 0.9917 0.9913

ppv 0.9811 0.9849 0.9793 0.9922 0.9918 0.9827 0.9939 0.9917 0.9810
sp 0.9516 0.9615 0.9473 0.9802 0.9791 0.9560 0.9846 0.9791 0.9516

npv 0.9910 0.9865 0.9807 0.9901 0.9878 0.9820 0.9934 0.9792 0.9775
Constant non-zero coefficient in A(t)

se 0.9712 0.9788 0.9558 0.9942 0.9827 0.9404 0.9885 0.9827 0.9481
ppv 0.9981 0.9923 0.9881 0.9868 0.9884 0.9781 0.9962 0.9848 0.9725
sp 0.9996 0.9985 0.9978 0.9974 0.9978 0.9959 0.9993 0.9970 0.9948

npv 0.9944 0.9959 0.9915 0.9989 0.9967 0.9886 0.9978 0.9967 0.9900
Varying coefficient in A(t)

se 0.9256 0.9385 0.9359 0.9615 0.9744 0.9359 0.9795 0.9744 0.9333
ppv 0.9816 0.9787 0.9712 0.9948 0.9873 0.9463 0.9899 0.9720 0.9608
sp 0.9975 0.9972 0.9961 0.9993 0.9982 0.9925 0.9986 0.9961 0.9947

npv 0.9898 0.9915 0.9912 0.9947 0.9965 0.9911 0.9972 0.9964 0.9908
Prediction error of Â‡(t)

MAE 0.0109 0.0111 0.0134 0.0114 0.0122 0.0127 0.0136 0.0175 0.0195
RMISE 0.0198 0.0217 0.0219 0.0192 0.0234 0.0240 0.0245 0.0397 0.0414

Prediction error of β̂‡

MAE 0.0047 0.0082 0.0092 0.0045 0.0063 0.0136 0.0046 0.0058 0.0141
RMSE 0.0077 0.0133 0.0149 0.0067 0.0101 0.0209 0.0080 0.0096 0.0207

(a) Prediction error of Case III. (b) Prediction error of Case IV.

Figure 3: Box plots of prediction error of Case III and IV with 10-fold cross validation. (a) shows
prediction errors of different covariance parameter ρ’s in Case III, ’Oracle’ is our tensor regression model
with true model structure, ’Unpenalized’ is the un-penalized tensor regression model (section 2.3), and
’Lasso’, ’SCAD’, and ’MCP’ are our final tensor regression model (section 3.2) after model structure
identification with Lasso, SCAD and MCP penalties (section 3.1). (b) shows prediction errors of the
final tensor regression model (section 3.2) after model structure identification under overfitting situation
(Case IV), with different sample size n = 2000, 5000. In case IV, un-penalized tensor regression model
cannot work.
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Table 3: Estimation results of 500 simulations for Case IV. We use sensitivity (se), specificity (sp),
positive predictive value (ppv), and negative predictive value (npv) to evaluate identification accuracy,
where se = P(Fi ∩ F̂i|Fi), ppv = P(Fi ∩ F̂i|F̂i), sp = P(Fc

i ∩ F̂c
i |F̂c

i ) and npv = P(Fc
i ∩ F̂c

i |Fc
i ). All

tuning parameters for Lasso, SCAD, and MCP are chosen by BIC.

Lasso SCAD MCP
n 2000 3500 5000 2000 3500 5000 2000 3500 5000

Zero coefficient in A(t)
se 0.9916 0.9971 0.9975 0.9944 0.9962 0.9971 0.9913 0.9947 0.9947

ppv 0.9822 0.9891 0.9929 0.9954 0.9970 0.9982 0.9972 0.9967 0.9981
sp 0.6271 0.7729 0.8525 0.9051 0.9373 0.9627 0.9424 0.9322 0.9610

npv 0.7934 0.9295 0.9430 0.8879 0.9249 0.9423 0.8421 0.8750 0.8981
Constant non-zero coefficient in A(t)

se 0.6737 0.7895 0.8553 0.8974 0.9316 0.9658 0.9026 0.9263 0.9684
ppv 0.9217 0.9754 0.9739 0.9259 0.9332 0.9687 0.8989 0.9273 0.9497
sp 0.9981 0.9994 0.9993 0.9977 0.9979 0.9990 0.9968 0.9985 0.9977

npv 0.9901 0.9936 0.9956 0.9969 0.9979 0.9990 0.9970 0.9977 0.9990
Varying coefficient in A(t)

se 0.5143 0.7429 0.8476 0.9143 0.9476 0.9571 0.9048 0.9429 0.9476
ppv 0.5814 0.8564 0.8968 0.8265 0.8984 0.9129 0.7917 0.8161 0.8529
sp 0.9932 0.9978 0.9983 0.9967 0.9984 0.9982 0.9939 0.9963 0.9971

npv 0.9919 0.9957 0.9975 0.9986 0.9991 0.9993 0.9984 0.9990 0.9991
Prediction error of Â‡(t)

MAE 0.0242 0.0135 0.0108 0.0132 0.0055 0.0040 0.0097 0.0058 0.0041
RMISE 0.0375 0.0231 0.0194 0.0256 0.0140 0.0117 0.0223 0.0145 0.0115

Prediction error of β̂‡

MAE 0.0361 0.0148 0.0090 0.0141 0.0073 0.0065 0.0218 0.0085 0.0064
RMSE 0.0514 0.0225 0.0133 0.0221 0.0124 0.0107 0.0325 0.0121 0.0101

implementing another kernel smoothing with the identified model structure, the estimated tensor
becomes smoother and closer to the truth.

(a) Truth. (b) Un-penalized. (c) Penalized. (d) Refined estimate.

Figure 4: Ground truth of A(t) and different estimates Â(t) in Case III, ρ = 0.1.

In the following, we provide additional simulation results to illustrate our model perfor-
mance under simpler partition strategies and lower CP rank with less sample size. For Case I,
given tensors Xi ∈ Rp1×p2 for i = 1, 2, · · · , n, a partition strategy and a CP rank are chosen
from (S(1), S(2), R) ∈ {(3, 3, 3), (3, 3, 6), (4, 4, 3)}. For Case II, given tensors Xi ∈ Rp1×p2×p3

for i = 1, 2, · · · , n, a partition strategy and a CP rank are chosen from (S(1), S(2), S(3), R) ∈
{(3, 3, 3, 3), (3, 3, 3, 6), (4, 4, 4, 3)}. We set the sample size n = 1200, and 1600. Consider i.i.d.
noise generated from two different distributions: Π1 = N(0, 1), a standard Gaussian distribu-
tion; Π2 = t(5), a t-distribution with 5 degrees of freedom, representing a heavy-tailed noise.
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Other settings are consistent with those in section 5. Estimation accuracy of A(t) and β are
summarized in Table 4 and 5.

Table 4: Estimation consistency of 200 simulations for Case I: Â†(t)’s accuracy is measured by RMISE =
E1/2[ ∫ 1

0 (Â†(t) − A(t))2dt
]
, and β̂†’s accuracy is measured by RMSE =

[ 1
p0

∑p0
j=1(β̂†

j − βj)2]1/2.

n 1200 1600
Noise Π1 Π2 Π1 Π2

Estimator Â†(t) β̂† Â†(t) β̂† Â†(t) β̂† Â†(t) β̂†

(S(1), S(2), R) = (3, 3, 3)
A1(t) 0.0536 0.0528 0.0667 0.0725 0.0462 0.0502 0.0575 0.0647
A2(t) 0.0537 0.0470 0.0704 0.0619 0.0477 0.0516 0.0603 0.0630
A3(t) 0.0705 0.0540 0.0836 0.0865 0.0650 0.0516 0.0773 0.0634
A4(t) 0.0873 0.0446 0.0967 0.0796 0.0844 0.0475 0.0923 0.0640

(S(1), S(2), R) = (3, 3, 6)
A1(t) 0.0579 0.0535 0.0731 0.0596 0.0462 0.0308 0.0614 0.0545
A2(t) 0.0577 0.0592 0.0745 0.0477 0.0481 0.0506 0.0611 0.0798
A3(t) 0.0735 0.0538 0.0855 0.0673 0.0646 0.0555 0.0732 0.0712
A4(t) 0.0866 0.0587 0.1013 0.0536 0.0806 0.0517 0.0922 0.0625

(S(1), S(2), R) = (4, 4, 3)
A1(t) 0.0557 0.0667 0.0712 0.0751 0.0467 0.0483 0.0620 0.0681
A2(t) 0.0543 0.0549 0.0725 0.0693 0.0491 0.0516 0.0636 0.0692
A3(t) 0.0716 0.0750 0.0828 0.0898 0.0643 0.0635 0.0756 0.0618
A4(t) 0.0908 0.0436 0.0994 0.0628 0.0841 0.0376 0.0919 0.0822

Table 5: Estimation consistency of 200 simulations for Case II: Â†(t)’s accuracy is measured by RMISE =
E1/2[ ∫ 1

0 (Â†(t) − A(t))2dt
]
, and β̂†’s accuracy is measured by RMSE =

[ 1
p0

∑p0
j=1(β̂†

j − βj)2]1/2.

n 1200 1600
Noise Π1 Π2 Π1 Π2

Estimator Â†(t) β̂† Â†(t) β̂† Â†(t) β̂† Â†(t) β̂†

(S(1), S(2), S(3), R) = (3, 3, 3, 3)
A1(t) 0.0615 0.0526 0.0789 0.0672 0.0501 0.0491 0.0660 0.0558
A2(t) 0.0613 0.0614 0.0790 0.0730 0.0502 0.0483 0.0641 0.0647
A3(t) 0.0775 0.0593 0.0924 0.0721 0.0679 0.0528 0.0793 0.0610
A4(t) 0.0948 0.0611 0.1077 0.0734 0.0860 0.0558 0.0953 0.0669

(S(1), S(2), S(3), R) = (3, 3, 3, 6)
A1(t) 0.0877 0.0554 0.1126 0.0664 0.0611 0.0464 0.0791 0.0535
A2(t) 0.0872 0.0519 0.1134 0.0736 0.0613 0.0462 0.0793 0.0587
A3(t) 0.1048 0.0552 0.1260 0.0776 0.0783 0.0516 0.0922 0.0564
A4(t) 0.1252 0.0641 0.1438 0.0760 0.0960 0.0502 0.1093 0.0670

(S(1), S(2), S(3), R) = (4, 4, 4, 3)
A1(t) 0.1119 0.0598 0.1443 0.0794 0.0741 0.0406 0.0874 0.0622
A2(t) 0.1135 0.0574 0.1456 0.0796 0.0744 0.0426 0.0877 0.0616
A3(t) 0.1375 0.0590 0.1627 0.0760 0.0943 0.0424 0.1043 0.0643
A4(t) 0.1642 0.0670 0.1874 0.0923 0.1165 0.0490 0.1227 0.0615

From Table 4 and 5, we can easily see our model learns unknown function A(t) and coefficient
β better with larger sample size. Compared to the white noise setting, the estimation accuracy
of our model decreases under heavy-tailed noise. However, it still maintains a relatively low level
of error. Due to the increased number of parameters to be estimated in Case II introduced by
high dimension compared to Case I, the estimation accuracy shown in Table 5 is lower than that
in Table 4. Furthermore, with increasing dimensionality, the influence of the partition strategy
on parameter estimation accuracy becomes more significant than that of the CP rank.

Next, we conduct additional experiments on our penalized model. As the Lasso and MCP
penalties yield similar results to SCAD, only the SCAD penalty is presented.
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Table 6: Selection accuracy of 200 simulations for Case III. Partition strategy and CP rank:
(S(1), S(2), R) = (3, 3, 6). Sensitivity (se), specificity (sp), positive predictive value (ppv), and negative
predictive value (npv) are used to evaluate performance, where se = P(Fi ∩ F̂i|Fi), ppv = P(Fi ∩ F̂i|F̂i),
sp = P(Fc

i ∩ F̂c
i |Fc

i ) and npv = P(Fc
i ∩ F̂c

i |Fc
i ). SCAD penalty parameter is selected by BIC.

n 800 1200 1600
ρ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Zero coefficient in A(t)
se 0.9852 0.9733 0.8126 0.9978 0.9978 0.9163 0.9993 0.9993 0.9659

ppv 0.9921 0.9934 0.9669 0.9958 0.9914 0.9803 0.9943 0.9950 0.9883
sp 0.9919 0.9933 0.9719 0.9956 0.9911 0.9807 0.9941 0.9948 0.9881

npv 0.9858 0.9750 0.8433 0.9979 0.9979 0.9254 0.9993 0.9993 0.9690
Constant non-zero coefficient in A(t)

se 0.8344 0.8700 0.6167 0.9600 0.9522 0.8233 0.9900 0.9844 0.8822
ppv 0.9852 0.9607 0.6999 0.9978 0.9967 0.8776 0.9989 0.9989 0.9513
sp 0.9939 0.9822 0.8689 0.9989 0.9983 0.9389 0.9994 0.9994 0.9744

npv 0.9288 0.9413 0.8265 0.9809 0.9776 0.9174 0.9951 0.9927 0.9462
Varying coefficient in A(t)

se 0.9911 1.0000 0.9956 0.9956 0.9956 0.9867 0.9978 0.9978 0.9956
ppv 0.7924 0.8348 0.6202 0.9382 0.9400 0.7860 0.9960 0.9862 0.8558
sp 0.9329 0.9502 0.8551 0.9853 0.9853 0.9369 0.9991 0.9964 0.9591

npv 0.9982 1.0000 0.9989 0.9991 0.9991 0.9972 0.9996 0.9996 0.9991
Prediction error of Â‡(t)

MAE 0.0413 0.0433 0.0862 0.0288 0.0312 0.0548 0.0233 0.0251 0.0425
RMISE 0.0656 0.0694 0.1440 0.0467 0.0504 0.0899 0.0369 0.0404 0.0727

Prediction error of β̂‡

MAE 0.0181 0.0216 0.0218 0.0140 0.0148 0.0177 0.0110 0.0129 0.0115
RMSE 0.0258 0.0303 0.0294 0.0205 0.0209 0.0236 0.0162 0.0188 0.0168

In Case III, to explore selection performance under various spatial correlation among tensor
covariates, we generate different factor matrix X∗(s)’s with a same auto-regressive covariance
matrix in the main manuscript. For tensor function A(t) with A(s)(t) = ∑R

r ars(t)x(s1)
r ◦ x(s2)

r .
If 1 ≤ s(1) < s(2) ≤ 3, ars(t) =

√
rs(1)s(2)/RS(1)S(2) sin(2π(t − 0.5)), and if 1 ≤ s(2) ≤ s(1) ≤ 3,

ars(t) =
√

rs(1)s(2)/RS(1)S(2), for 1 ≤ r ≤ 3. And the rest of tensor functions are all 0’s. Cor-
responding partition strategy and CP rank are chosen from (S(1), S(2), R) ∈ {(3, 3, 6), (4, 4, 3)}.
All other settings are the same with those in section 5.2. We set the sample size n = 800, 1200
and 1600, and correlation parameter ρ = 0.1, 0.5 and 0.9. Only SCAD penalty is considered,
and all experiment results are summarized in Table 6 and 7.

In Case IV, we focus on tensor covariates with unknown parameters greater than the sample
size. The partition strategy and CP rank is designed as (S(1), S(2), S(3), R) = (4, 4, 4, 6). Tensor
function A(t) is generated with A(s)(t) = ∑R

r ars(t)x(s1)
r ◦ x(s2)

r ◦ x(s3)
r . If s(1) + s(2) + s(3) < 6,

ars(t) =
√

rs(1)s(2)s(3)/RS(1)S(2)S(3) sin(2π(t − 0.5)), and if s(1) + s(2) + s(3) ≥ 6 and 1 ≤

s(1), s(2), s(3) ≤ 3, ars(t) =
√

rs(1)s(2)s(3)/RS(1)S(2)S(3), for 4 ≤ r ≤ 6. And the rest of the
tensor functions are all 0’s. All other settings are the same with those in section 5.2. We set the
sample size n = 400, 800, 1200 and 1600, and consider noise with two different distributions, Π1

and Π2. All experiment results are summarized in Table 8.
From Table 6 and 7, we can find our penalized model can identify model structure and
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Table 7: Selection accuracy of 200 simulations for Case III. Partition strategy and CP rank:
(S(1), S(2), R) = (4, 4, 3). Partition strategy and CP rank: (S(1), S(2), R) = (3, 3, 6). Sensitivity
(se), specificity (sp), positive predictive value (ppv), and negative predictive value (npv) are used to
evaluate performance, where se = P(Fi ∩ F̂i|Fi), ppv = P(Fi ∩ F̂i|F̂i), sp = P(Fc

i ∩ F̂c
i |Fc

i ) and
npv = P(Fc

i ∩ F̂c
i |Fc

i ). SCAD penalty parameter is selected by BIC.

n 800 1200 1600
ρ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Zero coefficient in A(t)
se 0.9752 0.9552 0.6429 0.9962 0.9933 0.8286 1.0000 1.0000 0.9114

ppv 0.9962 0.9894 0.9567 0.9964 0.9955 0.9773 0.9982 0.9982 0.9837
sp 0.9970 0.9919 0.9770 0.9970 0.9963 0.9859 0.9985 0.9985 0.9881

npv 0.9817 0.9674 0.7850 0.9972 0.9950 0.8863 1.0000 1.0000 0.9372
Constant non-zero coefficient in A(t)

se 0.8467 0.8533 0.5789 0.9756 0.9611 0.7833 0.9967 0.9922 0.8833
ppv 0.9833 0.9722 0.7187 0.9979 0.9933 0.8671 1.0000 1.0000 0.9269
sp 0.9913 0.9853 0.8720 0.9987 0.9960 0.9247 1.0000 1.0000 0.9560

npv 0.9218 0.9244 0.7842 0.9860 0.9783 0.8829 0.9981 0.9955 0.9358
Varying coefficient in A(t)

se 0.9978 0.9933 0.9889 0.9978 0.9978 0.9978 1.0000 0.9978 0.9978
ppv 0.8004 0.7924 0.5910 0.9587 0.9433 0.6831 0.9960 0.9904 0.8198
sp 0.9328 0.9251 0.7251 0.9892 0.9836 0.8749 0.9990 0.9974 0.9400

npv 0.9995 0.9984 0.9960 0.9995 0.9995 0.9994 1.0000 0.9995 0.9995
Prediction error of Â‡(t)

MAE 0.0434 0.0486 0.1143 0.0298 0.0329 0.0697 0.0239 0.0269 0.0505
RMISE 0.0686 0.0768 0.1775 0.0474 0.0522 0.1108 0.0378 0.0429 0.0824

Prediction error of β̂‡

MAE 0.0206 0.0209 0.0220 0.0157 0.0137 0.0156 0.0127 0.0122 0.0123
RMSE 0.0294 0.0294 0.0307 0.0220 0.0201 0.0221 0.0188 0.0177 0.0172

detect sparsity with high probability in both proposals of partition strategy and CP rank.
And selection accuracy improves with larger sample sizes, while it deteriorates with increasing
covariate correlation. A same trend is also observed in the prediction errors of the estimated
A(t) and β.

Table 8 illustrates our penalized model in a more complicated case, where RS = 6 × 64. In
this case, un-penalized estimation approach is invalid for sample size n = 400 and 800. As the
sample size increases, selection accuracy improves significantly. When sample size n = 1600, the
penalized model can nearly perfectly distinguish varying, constant non-zero, and zero coefficients.

6 Glaucoma management with fundus images

The GRAPE (Huang et al., 2023) dataset was collected in the Eye Center at the Second Affiliated
Hospital of Zhejiang University, which contains 1115 records of 263 eyes from 144 glaucoma
patients from 2015 to 2022, with ages ranging from 18 to 81 years. One patient may visit
hospital multiple times for follow-up examinations during this period and information obtained
from oculus dexter (OD) or oculus sinister(OS) during each visit will be recorded. We regard
each record as an independent sample in our VCPLT model, which is composed of a list of
visual fields (VF) value from 59 points, excluding 2 points located in blind points, a color
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Table 8: Selection accuracy of 200 simulations for Case IV. Sensitivity (se), specificity (sp), positive
predictive value (ppv), and negative predictive value (npv) are used to evaluate performance, where
se = P(Fi ∩ F̂i|Fi), ppv = P(Fi ∩ F̂i|F̂i), sp = P(Fc

i ∩ F̂c
i |Fc

i ) and npv = P(Fc
i ∩ F̂c

i |Fc
i ). SCAD penalty

parameter is selected by BIC.

n 400 800 1200 1600
Noise Π1 Π2 Π1 Π2 Π1 Π2 Π1 Π2

Zero coefficient in A(t)
se 0.9766 0.8518 0.9884 0.9673 0.9987 0.9947 1.0000 0.9983

ppv 0.9966 0.9700 0.9997 0.9970 0.9997 0.9987 0.9997 0.9970
sp 0.9877 0.9012 0.9988 0.9889 0.9988 0.9951 0.9988 0.9889

npv 0.9204 0.6200 0.9590 0.8916 0.9879 0.9808 1.0000 0.9938
Constant non-zero coefficient in A(t)

se 0.9333 0.9608 0.9863 0.9745 0.9961 0.9826 1.0000 1.0000
ppv 0.9088 0.6147 0.9456 0.8425 0.9828 0.9702 1.0000 0.9904
sp 0.9847 0.8604 0.9913 0.9712 0.9973 0.9952 1.0000 0.9985

npv 0.9900 0.9932 0.9978 0.9949 0.9994 0.9961 1.0000 1.0000
Varying coefficient in A(t)

se 0.9700 0.9167 0.9967 0.9700 0.9967 0.9786 0.9967 0.9867
ppv 0.8631 0.6800 0.9686 0.9448 0.9968 0.9905 1.0000 1.0000
sp 0.9850 0.9944 0.9972 0.9946 0.9992 0.9997 1.0000 1.0000

npv 0.9975 0.9735 0.9997 0.9975 0.9997 0.9975 0.9997 0.9989
Prediction error of Â‡(t)

MAE 0.0378 0.0651 0.0224 0.0297 0.0188 0.0197 0.0115 0.0159
RMISE 0.1107 0.1431 0.0504 0.0646 0.0373 0.0418 0.0255 0.0341

Prediction error of β̂‡

MAE 0.0383 0.0657 0.0190 0.0371 0.0175 0.0253 0.0140 0.0213
RMSE 0.0680 0.1102 0.0279 0.0545 0.0267 0.0359 0.0226 0.0282

fundus photograph (CFP), an optical coherence tomography (OCT) measurements and clinical
information, such as age, gender, and intraocular pressure (IOP). In Figure 5, we show the
distribution of subjects’ age and the corresponding IOPs, and in Figure 1, we give an example
of two different fundus images (CFP and ROI), together with 59 locations of VF points.

(a) Histogram of patient visits (b) Longitudinal IOP elevation

Figure 5: Fundus image analysis: statistical summary for original GRAPE dataset. (a) shows the
histogram of subject’s ages in the whole dataset. (b) shows the intraocular pressure (IOP) value with
different ages.

The scientific objective is to quantify the relationship between IOP and fundus images of
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glaucoma patients, along with their clinical data. Figure 1 displays an example of fundus images
(CFP and ROI), before being fed into our model estimation process. During data processing, we
first drop samples without fundus images. Then we regard IOPs beyond 2 standard deviations
as outliers and also drop the corresponding samples. Finally, n = 591 samples remains (311 from
male glaucoma patients and 290 from female). In dealing with VF values, we impute missing
data and fix outliers with the mean value of the corresponding VF location. We standardized
all continuous variables to be mean 0 and variance 1. We resize all remaining images into
Xi ∈ Rp1×p2×p3 , where p1 = 192, p2 = 192 and p3 = 3, representing length, width and number
of color channels respectively. In this dataset, both oculus dexter (OD) and oculus sinister (OS)
are available, in which the optic disc and macula are positioned oppositely and blood vessels
may have different orientations. To avoid these discrepancies during the tensor partitioning
process, we flipped all OS images horizontally and concatenate unified tensor together as X̃ ∈
Rn×p1×p2×p3 , and an even division is applied to the length and the width, resulting with S(1)

and S(2) equal segments and a total of S = S(1) × S(2) partitions. For each partition, we denote
them as X̃ (s) ∈ Rn×p

(s)
1 ×p

(s)
2 ×p3 for s = 1 · · · S. A unified CP decomposition with the same rank

R introduced in (6) is applied on X̃ (s) to obtain factor matrices X∗
s. We choose optic disc area

as our ROI since the fundus manifestation of glaucoma contains optic disc rim narrowing, cup-
to-disc ratio (CDR) increasing, large extent of parapapillary atrophy, and RNFL defect (Prum
et al., 2016), which are mainly focused on the area around optic disc.

Our hypothesis is that the association between IOP and fundus images may vary with differ-
ent ages, thus we consider model (3) with age being the index variable ti. The one-way covariate
zi includes subject’s gender and the corresponding 5 view field values (cf. location ID 1, 22,
25, 28 and 31 in Figure 1.(f)). To achieve consistency under the same location for OD and OS
image, we record VF value, as shown in (c) and (f) in Figure 1. 10-fold cross validation is used to
select S and R, and the best partition is S = 3×3×1 = 9 with the best CP rank R = 2 for both
CFP and ROI; see Table 9 below for further details. With such specifications, we implement our
VCTR model, and the estimated varying coefficient Â(t) and one-way constant coefficient β̂ are
shown in Figure 6 and Table 10, respectively. Table 11 shows the estimated constant coefficient
β for gender and 59 different VF locations with tensor covariate CFP and ROI.

Comparing the un-penalized estimator with the penalized estimator ârs(t) in Figure 6, we
observe that there are more varying coefficients for ROI than CFP, especially for partitions
surrounding the optic disc. This suggests the increasing cup-to-disc ratio could lead to greater
variability of image region effects on patients’ intraocular pressure levels. These new insights
would be difficult to uncover without applying the proposed tensor varying coefficient model.

From Table 10, insignificant gender effects are observed on CFP and ROI images. Male
patients tend to have slightly higher scaled intraocular pressure than female patients, similar
to earlier findings in Liu et al. (2022). For the view field values, only VF1, VF22 and VF31

are significantly associated with the response with negative effects. These VFs are located near
optic disc, an important area for diagnosing glaucoma.

Additional results for the estimated constant coefficient β for gender and 59 different VF
locations with tensor covariate, and the estimated penalized varying-coefficient functions ars(t)
for CFP and ROI are provided Table 11 and Figure 7 respectively. The corresponding mean
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â

r
s
(t

)
fro

m
re

fin
ed

ke
rn

el
sm

oo
th

in
g

af
te

r
id

en
tif

yi
ng

co
effi

ci
en

ts
.

24



Fi
gu

re
7:

Fu
nd

us
im

ag
e

an
al

ys
is:

th
e

es
tim

at
ed

va
ry

in
g-

co
effi

ci
en

tf
un

ct
io

ns
â
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Table 9: Fundus image analysis: MAE (left) and RMSE (right) for tensor partition on colored fundus
photograph (CFP) and region of interest (ROI) with different S and R. All results are generated from
10-fold cross validation.

R
S1 × S2 × S3

R
1 2 3 4 1 2 3 4

Colored fundus photograph (CFP)
0.8799 0.7933 0.8389 0.9050 2 × 2 × 1 1.1457 0.9793 1.0929 1.2842
0.7956 0.7728 0.8075 0.8355 3 × 3 × 1 0.994 0.9581 1.0305 1.0818
0.8392 0.8886 0.9666 1.0915 4 × 4 × 1 1.079 1.2014 1.3201 1.4951
0.8935 1.1866 / / 6 × 6 × 1 1.148 1.6424 / /

Region of interest (ROI)
0.7658 0.7602 0.7517 0.7594 2 × 2 × 1 0.9619 0.9519 0.9521 0.9528
0.7640 0.7449 0.7726 0.7838 3 × 3 × 1 0.9552 0.9447 0.9912 1.0233
0.7478 0.8023 0.8470 0.9094 4 × 4 × 1 0.9503 1.0330 1.1179 1.1985
0.7958 1.0077 / / 6 × 6 × 1 1.0168 1.3167 / /

and CI curves are generated via bootstrapping.
At last, we compared our VCTR model with other two constant coefficient tensor models

consistent with those in section 5, and the experiment results are shown in Table 12. We
can find model M3 proposed in Zhou et al. (2013) is overfitting. While this model has the
best performance in in-sample errors, its prediction ability is the worst in out-of-sample error.
That is, even if we set the CP-rank R = 1 for the kruskal regression in model M3, it still
has R(p1 + p2 + p3) + p0 = 392 unknown parameters. Our refined M1 model has slightly worse
performance in in-sample error compared to original M1 model. However, due to fewer functions
and parameters to estimate resulting from the model structure identification, refined M1 model
shows better performance in out-of-sample error than original M1 model. The tensor partition
model with constant parameters always has a worse performance comapred with our model in
both in-sample error and out-of-sample error.

Table 10: Fundus image analysis: Estimated results of regression coefficients β̂ for one-way covariate in
GRAPE dataset. 95% confidence intervals are based on 500 bootstrap resamples.

z Colored fundus photograph (CFP) Region of interest (ROI)
β̂† β̂‡ 95% CI β̂† β̂‡ 95% CI

Gender -0.0574 0 / -0.056 0 /
VF1 -0.0790 -0.0721 [-0.106,-0.039] -0.0558 -0.0487 [-0.087, -0.010]
VF22 -0.0641 -0.0612 [-0.101,-0.025] -0.0797 -0.0756 [-0.114, -0.038]
VF25 -0.0138 0 / 0.0026 0 /
VF28 0.0125 0 / 0.0479 0 /
VF31 -0.0815 -0.0756 [-0.108, -0.0038] -0.0701 -0.0678 [-0.096, -0.027]
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Table 12: Fundus image analysis: prediction error for different models. Model M1 is our VCPLT model
proposed (section 2.3), model refined M1 is our refined tensor regression model (section 3.2) after SCAD
penalty (section 3). Model M2 and M3 are two different constant coefficient tensor models consistent
with models in Figure 2. In-sample error is calculated without training-test set split. Out-of-sample error
is calculated by 10-fold cross validation. MAE is the mean absolute error, RMSE is the root of the mean
squared error, and SDE is the standard deviation of error.

Model In-sample error Out-of-sample error
MAE RMSE SDE MIAE RMISE SDE

Colored fundus photograph (CFP)
M1 0.6091 0.7448 0.5536 0.7982 1.0007 0.9864

Refined M1 0.6239 0.7860 0.6177 0.7592 0.9431 0.9312
M2 0.7484 0.9357 0.8755 0.9891 1.2847 1.2697
M3 0.3578 0.4624 0.4138 1.5812 2.0075 2.0292

Region of interest (ROI)
M1 0.5595 0.7111 0.5054 0.7317 0.9523 0.9047

Refined M1 0.5640 0.7235 0.5234 0.6894 0.8865 0.8453
M2 0.7417 0.9352 0.8745 0.9731 1.2775 1.2543
M3 0.3202 0.4045 0.3636 1.4653 1.8660 1.8586

A Appendix: Proof of asymptotic theory

A.1 Asymptotics of the regression estimates

Proof of Theorem 1: For any fixed t ∈ [0, 1], let (β̂, Â(t), ˆ̇A(t)) be the minimizer of (10),
which implies that

0 = 1
n

n∑
i=1

[
v⊤

i vec(Â(t)) + (ti − t)v⊤
i vec( ˆ̇A(t)) + z⊤

i β̂ − yi

] 
zi

vi

(ti − t)vi

Kh(ti − t)

= 1
n

n∑
i=1

[
v⊤

i

[
vec(Â(t)) − vec(A∗(t))

]
+ (ti − t)v⊤

i

[
vec( ˆ̇A(t)) − vec(Ȧ∗(t))

]
+ z⊤

i

[
β̂ − β∗]

− 1
2(ti − t)2v⊤

i vec(Ä∗(t)) − 1
6(ti − t)3v⊤

i vec(
...
A∗(ξi)) − ϵi

] 
zi

vi

(ti − t)vi

Kh(ti − t)

where ξi is between ti and t for i = 1, · · · n.
Denote ṽi(t) = (z⊤

i , v⊤
i , (ti − t)v⊤

i )⊤ for i = 1, · · · , n, and Ṽ := (ṽ1(t), · · · , ṽn(t))⊤ =
z⊤

1 v⊤
1 (t1 − t)v⊤

1
...

...
...

z⊤
n v⊤

n (tn − t)v⊤
n

, and W(t) =


Kh(t1 − t)

. . .
Kh(tn − t)

. The above equality is

equivalent to:


β̂ − β∗

vec(Â(t)) − vec(A∗(t))
vec( ˆ̇A(t)) − vec(Ȧ∗(t))

 =1
2[Ṽ⊤(t)W(t)Ṽ(t)]−1Ṽ⊤(t)W(t)


v⊤

1 (t1 − t)2vec(Ä∗(t))
...

v⊤
n (tn − t)2vec(Ä∗(t))


+ [Ṽ⊤(t)W(t)Ṽ(t)]−1Ṽ⊤(t)W(t)ϵ + R, (31)
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where R is a remainder term involves of
...
A∗(ξi) and (ti − t)3Kh(ti − t). We shall evaluate the

bias induced by the first term on the right hand side of the above equation and R first.
For Ṽ⊤(t)W(t)Ṽ(t), we have

Ṽ⊤(t)W(t)Ṽ(t) (32)

=


z1 · · · zn

v1 · · · vn

(t1 − t)v1 · · · (tn − t)vn




Kh(t1 − t)
. . .

Kh(tn − t)




z⊤
1 v⊤

1 (t1 − t)v⊤
1

...
...

...
z⊤

n v⊤
n (tn − t)v⊤

n



=


Kh(t1 − t)z1 · · · Kh(tn − t)zn

Kh(t1 − t)v1 · · · Kh(tn − t)vn

(t1 − t)Kh(t1 − t)v1 · · · (tn − t)Kh(tn − t)vn




z⊤
1 v⊤

1 (t1 − t)v⊤
1

...
...

...
z⊤

n v⊤
n (tn − t)v⊤

n



=


∑n

i=1 Kh(ti − t)ziz⊤
i

∑n
i=1 Kh(ti − t)ziv⊤

i

∑n
i=1(ti − t)Kh(ti − t)ziv⊤

i∑n
i=1 Kh(ti − t)viz⊤

i

∑n
i=1 Kh(ti − t)viv⊤

i

∑n
i=1(ti − t)Kh(ti − t)viv⊤

i∑n
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i

∑n
i=1(ti − t)Kh(ti − t)viv⊤

i

∑n
i=1(ti − t)2Kh(ti − t)viv⊤

i

 .

For brevity, we only provide evaluations on ∑n
i=1 Kh(ti − t)viv⊤

i , ∑n
i=1(ti − t)Kh(ti − t)viv⊤

i

and ∑n
i=1(ti − t)2Kh(ti − t)viv⊤

i in (32), and other entries can be derived similarly. Note that,

E
[ n∑

i=1
Kh(ti − t)viv⊤

i

]
= nE(vv⊤)E

[
Kh(ti − t)

]
= nΩvE

[
Kh(ti − t)

]
,

E(Kh(ti − t)) = 1
h

∫
K

(
ti − t

h

)
f(ti)dti = 1

h

∫
K(u)f(t + hu)d(t + hu) = f(t)(1 + O(h2)).

We thus have,

E
[
n−1

n∑
i=1

Kh(ti − t)viv⊤
i

]
= Ωvf(t) + O(h2).

Similarly, from the facts that

E
[ n∑

i=1
(ti − t)Kh(ti − t)viv⊤

i

]
= nE(vv⊤)E

[
(ti − t)Kh(ti − t)

]
= nΩvE

[
(ti − t)Kh(ti − t)

]
,

E
[
(ti − t)Kh(ti − t)

]
= 1

h

∫
(ti − t)K

(
ti − t

h

)
f(ti)dti =

∫
uK(u)f(t + hu)d(t + hu)

=h2ḟ(t)µ2 + O(h3),

we have,

E
[
n−1

n∑
i=1

(ti − t)Kh(ti − t)viv⊤
i

]
= Ω(h2).

Similarly, from the facts that,

E
[ n∑

i=1
(ti − t)2Kh(ti − t)viv⊤

i

]
= nE(vv⊤)E

[
(ti − t)2Kh(ti − t)

]
= nΩvE

[
(ti − t)2Kh(ti − t)

]
,
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E
[
(ti − t)2Kh(ti − t)

]
= 1

h

∫
(ti − t)2K

(
ti − t

h

)
f(ti)dti =h

∫
u2K(u)f(t + hu)d(t + hu)

=h2µ2f(t) + O(h4),

we have: E
[
n−1∑n

i=1(ti − t)2Kh(ti − t)viv⊤
i

]
= h2µ2f(t)Ωv + O(h4).

Applying similar calculations to other terms in (32) and use the formula for the inverse of
2 × 2 block matrix square diagonal partition, we have:

[n−1Ṽ⊤(t)W(t)Ṽ(t)]−1 p−→

 Ωz,vf(t) + O(h2) h2µ2ḟ(t)
(

Ωzv

Ωv

)
+ O(h3)

h2µ2ḟ(t)(Ωvz, Ωv) + O(h3) h2µ2Ωvf(t) + O(h4)


−1

=

 Ω−1
z,vf−1(t) + O(h2) −f−2(t)ḟ(t)Ω−1

z,v

(
Ωzv

Ωv

)
Ω−1

v + O(h2)

−f−2(t)ḟ(t)Ω−1
v (Ωvz, Ωv)Ω−1

z,v + O(h2) h−2µ−1
2 Ω−1

v f(t)−1 + O(1)

 (33)

Similarly, for n−1Ṽ⊤(t)W(t)


v⊤

1 (t1 − t)2vec(Ä∗(t))
...

v⊤
n (tn − t)2vec(Ä∗(t))

, we have:

n−1Ṽ⊤(t)W(t)


v⊤

1 (t1 − t)2vec(Ä∗(t))
...

v⊤
n (tn − t)2vec(Ä∗(t))

 =n−1


Kh(t1 − t)z1 · · · Kh(tn − t)zn

Kh(t1 − t)v1 · · · Kh(tn − t)vn

(t1 − t)Kh(t1 − t)v1 · · · (tn − t)Kh(tn − t)vn



×


v⊤

1 (t1 − t)2vec(Ä∗(t))
...

v⊤
n (tn − t)2vec(Ä∗(t))



=


n−1∑n

i=1(ti − t)2Kh(ti − t)ziv⊤
i vec(Ä∗(t))

n−1∑n
i=1(ti − t)2Kh(ti − t)viv⊤

i vec(Ä∗(t))
n−1∑n

i=1(ti − t)3Kh(ti − t)viv⊤
i vec(Ä∗(t))


p−→


µ2h2Ωzvvec(Ä∗(t))f(t)
µ2h2Ωvvec(Ä∗(t))f(t)
µ4h4Ωvvec(Ä∗(t))ḟ(t)

 . (34)
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Combining (33) and (34) we have

[Ṽ⊤(t)W(t)Ṽ(t)]−1Ṽ⊤(t)W(t)


v⊤

1 (t1 − t)2vec(Ä∗(t))
...

v⊤
n (tn − t)2vec(Ä∗(t))


p−→


(

0p0

µ2h2vec(Ä∗(t))

)
+ O(h4)

−µ2h2f(t)−1ḟ(t)vec(Ä∗(t)) + h2µ−1
2 µ4f(t)−1ḟ(t)vec(Ä∗(t)) + O(h4)



=


0p0

µ2h2vec(Ä∗(t))
−h2f(t)−1ḟ(t)(µ−1

2 µ4 − µ2)vec(Ä∗(t))

+ O(h4).

Similarly, using the fact that under Conditions (C1)-(C3), we have

E
[
(ti − t)3Kh(ti − t)

]
= 1

h

∫
(ti − t)3K

(
ti − t

h

)
f(ti)dti

=h2
∫

u3K(u)f(t + hu)d(t + hu)

=h4µ4ḟ(t) + O(h5),

and that the variance of the remainder R is of order:

1
n

E
[
(ti − t)6K2

h(ti − t)
]

= 1
nh2

∫
(ti − t)6K2

(
ti − t

h

)
f(ti)dti

=n−1h4
∫

u6K2(u)f(t + hu)d(t + hu)

=O(n−1h5).

We have R = Op(h4 + n−1/2h5/2). Consequently, from the fact that n−1/2h5/2 = o(h−4) and
(31) we have,


β̂ − β∗

vec(Â(t)) − vec(A∗(t))
vec( ˆ̇A(t)) − vec(Ȧ∗(t))

− 1
2


0p0

µ2h2vec(Ä∗(t))
−h2f(t)−1ḟ(t)(µ−1

2 µ4 − µ2)vec(Ä∗(t))


=[Ṽ⊤(t)W(t)Ṽ(t)]−1Ṽ⊤(t)W(t)ϵ + Op(h4). (35)

Note that,

Var
{

[Ṽ⊤(t)W(t)Ṽ(t)]−1Ṽ⊤(t)W(t)ϵ
}

=Eσ2[Ṽ⊤(t)W(t)Ṽ(t)]−1Ṽ⊤(t)W2(t)Ṽ(t)[Ṽ⊤(t)W(t)Ṽ(t)]−1 (36)
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We have already evaluated [Ṽ⊤(t)W(t)Ṽ(t)]−1 in (33). For Ṽ⊤(t)W2(t)Ṽ(t), we have

Ṽ⊤(t)W2(t)Ṽ(t) (37)

=


z1 · · · zn

v1 · · · vn

(t1 − t)v1 · · · (tn − t)vn




K2
h(t1 − t)

. . .
K2

h(tn − t)




z⊤
1 v⊤

1 (t1 − t)v⊤
1

...
...

...
z⊤

n v⊤
n (tn − t)v⊤

n



=


∑n

i=1 K2
h(ti − t)ziz⊤

i

∑n
i=1 K2

h(ti − t)ziv⊤
i

∑n
i=1(ti − t)K2

h(ti − t)ziv⊤
i∑n

i=1 K2
h(ti − t)viz⊤

i

∑n
i=1 K2

h(ti − t)viv⊤
i

∑n
i=1(ti − t)K2

h(ti − t)viv⊤
i∑n

i=1(ti − t)K2
h(ti − t)viz⊤

i

∑n
i=1(ti − t)K2

h(ti − t)viv⊤
i

∑n
i=1(ti − t)2K2

h(ti − t)viv⊤
i


Similar to (32), we focus on ∑n

i=1 K2
h(ti − t)viv⊤

i , ∑n
i=1(ti − t)K2

h(ti − t)viv⊤
i and ∑n

i=1(ti −
t)2K2

h(ti − t)viv⊤
i , and other entries in (37) can be derived similarly. Note that

E
[
n−1

n∑
i=1

K2
h(ti − t)viv⊤

i

]
= ΩvE

[
K2

h(ti − t)
]
,

and

E
[
K2

h(ti − t)
]

= 1
h2

∫
K2
( ti − t

h

)
f(ti)dti

= 1
h2

∫
K2(u)f(t + hu)d(t + hu)

= 1
h

f(t)ν0 + O(h).

Therefore we have, n−1∑n
i=1 K2

h(ti − t)viv⊤
i

p−→ 1
hf(t)ν0Ωv +O(h). Similarly, from the facts that

E
[
n−1

n∑
i=1

(ti − t)K2
h(ti − t)viv⊤

i

]
= ΩvE

[
(ti − t)K2

h(ti − t)
]
,

and

E
[
(ti − t)K2

h(ti − t)
]

= 1
h2

∫
(ti − t)K2

( ti − t

h

)
f(ti)dti

= 1
h

∫
uK2(u)f(t + hu)d(t + hu)

=hḟ(t)ν2 + O(h2),

we have, n−1∑n
i=1(ti − t)K2

h(ti − t)viv⊤
i

p−→ hν2ḟ(t)Ωv + O(h2). Similarly, from

E
[
n−1

n∑
i=1

(ti − t)2K2
h(ti − t)viv⊤

i

]
= ΩvE

[
(ti − t)2K2

h(ti − t)
]
,
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and

E
[
(ti − t)2K2

h(ti − t)
]

= 1
h2

∫
(ti − t)2K2

( ti − t

h

)
f(ti)dti

=
∫

u2K2(u)f(t + hu)d(t + hu)

=hν2f(t) + O(h3),

we have, n−1∑n
i=1(ti − t)2K2

h(ti − t)viv⊤
i

p−→ hν2f(t)Ωv + O(h3).
Summarizing above, we can obtain

n−1Ṽ⊤(t)W2(t)Ṽ(t) p−→

 h−1f(t)ν0Ωz,v + O(h) hν2ḟ(t)
(

Ωzv

Ωv

)
+ O(h2)

hν2ḟ(t)(Ωvz, Ωv) + O(h2) hν2Ωvf(t) + O(h3)


Together with (35) and (36) we have:

Var


√

nh


β̂ − β∗

vec(Â(t)) − vec(A∗(t))
vec( ˆ̇A(t)) − vec(Ȧ∗(t))




=σ2

 Ω−1
z,vf(t)−1 + O(h2) −f(t)−2ḟ(t)Ω−1

z,v

(
Ωzv

Ωv

)
Ω−1

v + O(h2)

−f(t)−2ḟ(t)Ω−1
v (Ωvz, Ωv)Ω−1

z,v + O(h2) h−2µ−1
2 Ω−1

v f(t)−1 + O(1)



×

 f(t)ν0Ωz,v + O(h2) h2ν2ḟ(t)
(

Ωzv

Ωv

)
+ O(h3)

h2ν2ḟ(t)(Ωvz, Ωv) + O(h3) h2ν2Ωvf(t) + O(h4)



×

 Ω−1
z,vf(t)−1 + O(h2) −f(t)−2ḟ(t)Ω−1

z,v

(
Ωzv

Ωv

)
Ω−1

v + O(h2)

−f(t)−2ḟ(t)Ω−1
v (Ωvz, Ωv)Ω−1

z,v + O(h2) h−2µ−1
2 Ω−1

v f(t)−1 + O(1)


=σ2

[
v0I + O(h2) O(h3)

(µ−1
2 ν2 − ν0)f(t)−1ḟ(t)Ω−1

v (Ωvz, Ωv) + O(h2) µ−1
2 ν2I + O(h2)

]

×

 Ω−1
z,vf(t)−1 + O(h2) −f(t)−2ḟ(t)Ω−1

z,v

(
Ωzv

Ωv

)
Ω−1

v + O(h2)

−f(t)−2ḟ(t)Ω−1
v (Ωvz, Ωv)Ω−1

z,v + O(h2) h−2µ−1
2 Ω−1

v f(t)−1 + O(1)



= σ2

 ν0Ω−1
z,vf(t)−1 + O(h2) −ν0f(t)−2ḟ(t)Ω−1

z,v

(
Ωzv

Ωv

)
Ω−1

v + O(h2)

−ν0f(t)−2ḟ(t)Ω−1
v (Ωvz, Ωv)Ω−1

z,v + O(h2) h−2f(t)−1µ−1
2 ν2Ω−1

v + O(1)

 .

(38)

The first statement in Theorem 1 can then be concluded from (35) and (38), and the second
statement in Theorem 1 can be easily derived by applying the formula for the inverse of a 2 × 2
block matrix to Ω−1

z,v.

Lemma 1 Let {Xi, Yi}n
i=1 be i.i.d. samples such that E|Yi|s < ∞ and supx

∫
|y|sf(x, y)dy < ∞
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for some s > 2, where f is the joint density of (X, Y ). Let K be a bounded function with a
compact support, satisfying a Lipschitz condition. Given that n2d−1h → ∞ for some d < 1−s−1,
we have

sup
x

∣∣∣n−1
n∑

i=1
[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]

∣∣∣ = Op

({ log(1/h)
nh

}1/2)
.

Proof of Lemma 1: This proof can be attained from the results in Mack and Silverman (1982)
or using a maximal inequality in empirical process theory Pollard (1991). See Stone (1982) for
a detailed discussion on uniform convergence rates for non-parametric regression.
Proof of Theorem 2: In (12), our target is to use all local estimate Â(ti), i = 1, · · · , n

to obtain a global estimate β̂. From the independence of ti and X∗
i , zi, Condition (C5), the

assumption that nh4 → 0 and Lemma 1, it can be shown that

sup
t∈[0,1]

∣∣∣vec(Â(t)) − vec(A∗(t))
∣∣∣ = Op

({ log(1/h)
nh

}1/2)
. (39)

By (12), we can compute our global estimate through

β̂† =
[
Z⊤Z]−1Z⊤


y1 − v⊤

1 vec(Â(t1))
...

yn − v⊤
n vec(Â(tn))



=
[
Z⊤Z]−1Z⊤


v⊤

1 vec(A∗(t1)) + z⊤
1 β + ϵ1 − v⊤

1 vec(Â(t1))
...

v⊤
n vec(A∗(tn)) + z⊤

n β + ϵn − v⊤
n vec(Â(tn))



=
[
Z⊤Z]−1Z⊤


v⊤

1 [vec(A∗(t1)) − vec(Â(t1))]
...

v⊤
n [vec(A∗(tn)) − vec(Â(tn))]

+ β +
[
Z⊤Z

]−1Z⊤ϵ.

So we have

β̂† − β =
[
Z⊤Z]−1Z⊤


v⊤

1 [vec(A∗(t1)) − vec(Â(t1))]
...

v⊤
n [vec(A∗(tn)) − vec(Â(tn))]

+
[
Z⊤Z

]−1Z⊤ϵ.

For the first term on the right hand side of the above equation, we shall establish its asymptotic
property using a cross-validation arguments. Specifically, suppose the index {1, 2, . . . , n} are
divided into h−2 non-overlapping subsets with size nh2. For simplicity we shall assume that
D := h−2 and nh2 are integers and denoted the D disjoint set as S1, . . . , SD. Further, we denote
S−d := {1, 2, . . . , n}/Sd, and for any index set S and a given matrix M, we use MS to denote
the submatrix of M by keeping the rows indexed by the index set S only. For d ∈ {1, 2, . . . , D},
let vec(Â(−d)(t)) be the local least squares estimator obtained by leaving the samples indexed
by Sd out. It is easy to see that vec(Â(−d)(t)) − vec(Â(t)) = Op(h2) for any t ∈ [0, 1]. To show
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this, we apply Neumann series on θ̂(−d)

θ̂(−d) =
[ ∑

i/∈Sd

Kh(ti − t)ṽiṽ⊤
i

]−1[ ∑
i/∈Sd

Kh(ti − t)ṽiyi
]

=
[ n∑

i=1
Kh(ti − t)ṽiṽ⊤

i −
∑
i∈Sd

Kh(ti − t)ṽiṽ⊤
i

]−1[ ∑
i/∈Sd

Kh(ti − t)ṽiyi
]

=
∞∑

p=0

[[ n∑
i=1

Kh(ti − t)ṽiṽ⊤
i

]−1[ ∑
i∈Sd

Kh(ti − t)ṽiṽ⊤
i

]]p
×
[ n∑

i=1
Kh(ti − t)ṽiṽ⊤

i

]−1[ ∑
i/∈Sd

Kh(ti − t)ṽiyi
]

Given the result in (33), we have

[ n∑
i=1

Kh(ti − t)ṽiṽ⊤
i

]−1[ ∑
i∈Sd

Kh(ti − t)ṽiṽ⊤
i

]

p−→n−1

 Ω−1
z,vf−1(t) + O(h2) −f−2(t)ḟ(t)Ω−1

z,v

(
Ωzv

Ωv

)
Ω−1

v + O(h2)

−f−2(t)ḟ(t)Ω−1
v (Ωvz, Ωv)Ω−1

z,v + O(h2) h−2µ−1
2 Ω−1

v f(t)−1 + O(1).



× nh2

 Ωz,vf(t) + O(h2) h2µ2ḟ(t)
(

Ωzv

Ωv

)
+ O(h3)

h2µ2ḟ(t)(Ωvz, Ωv) + O(h3) h2µ2Ωvf(t) + O(h4)


=h2I2RS+p0 + O(h4).

And

[ n∑
i=1

Kh(ti − t)ṽiṽ⊤
i

]−1[ ∑
i/∈Sd

Kh(ti − t)ṽiyi
]

=
[ n∑

i=1
Kh(ti − t)ṽiṽ⊤

i

]−1[ n∑
i=1

Kh(ti − t)ṽiyi −
∑
i/∈Sd

Kh(ti − t)ṽiyi
]

p−→
[ n∑

i=1
Kh(ti − t)ṽiṽ⊤

i

]−1[ n∑
i=1

Kh(ti − t)ṽiyi
]
(1 + O(h2))

=θ̂ + O(h2).

So θ̂(−d) = ∑∞
p=0[h2I2RS+p0 + Op(h4)]p[θ̂ + Op(h2)] = θ̂ + Op(h2), and thus vec(Â(−d)(t)) =

(0RS×p0 , IRS , 0RS×RS)θ̂ = vec(Â(t)) + Op(h2).
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Therefore, we have,

[
Z⊤Z]−1Z⊤


v⊤

1 [vec(A∗(t1)) − vec(Â(t1))]
...

v⊤
n [vec(A∗(tn)) − vec(Â(tn))]



=
D∑

d=1

[
Z⊤Z]−1Z⊤

Sd


v⊤

1 [vec(A∗(t1)) − vec(Â(−d)(t1))] + v⊤
1 [vec(Â(−d)(t1)) − vec(Â(t1))]

...
v⊤

n [vec(A∗(tn)) − vec(Â(−d)(tn)) + v⊤
n [vec(Â(−d)(tn)) − vec(Â(tn))]


Sd

=
D∑

d=1

[
Z⊤Z]−1Z⊤

Sd


v⊤

1 [vec(A(t1)) − vec(Â(−d)(t1))]
...

v⊤
n [vec(A(tn)) − vec(Â(−d)(tn))]


Sd

+ Op(h2).

Notice that given ti, zi and vi, for i ∈ S−d, {vec(Â(−d)(tj)), j ∈ Sd} are conditionally indepen-
dent. By conditional on ti, zi and vi, for i ∈ S−d first, and applying the classical concentration

inequality on 1
n/D Z⊤

Sd


v⊤

1 [vec(A∗(t1)) − vec(Â(−d)(t1))]
...

v⊤
n [vec(A∗(tn)) − vec(Â(−d)(tn))]


Sd

, and together with the bound in

(39), we have, there exists a large enough constant C > 0 such that, with probability larger
than 1 − O(n−1),

1
n/D

Z⊤
Sd


v⊤

1 [vec(A∗(t1)) − vec(Â(t1))]
...

v⊤
n [vec(A∗(tn)) − vec(Â(tn))]


Sd

≤ C

h2 +
√

1
nh

√
log n

nh2

 .

Here in the last step we have used the facts that E[vec(A(t)) − vec(Â(−d)(t))|t] = O(h2), and
Var[vec(A(t)) − vec(Â(−d)(t))|t] = O((nh)−1). Consequently, we have

√
n
[
Z⊤Z]−1Z⊤


v⊤

1 [vec(A∗(t1)) − vec(Â(t1))]
...

v⊤
n [vec(A∗(tn)) − vec(Â(tn))]

 = Op

√
nh2 +

√
1
h

√
log n

nh2

 = op(1).

As a result, Theorem 2 can be concluded by Slutsky’s Theorem and the fact that

Var
{√

n
[
Z⊤Z

]−1Z⊤ϵ
}

= nσ2E
[
Z⊤Z]−1Z⊤Z

[
Z⊤Z]−1 = σ2E

[
n−1

n∑
i=1

ziz⊤
i

]−1 →σ2

n
Ω−1

z .

A.2 Asymptotics of the penalized functions and parameters

Proof of theorem 3: Let δn = k
−3/2
n + max

{
nτ/2, k

1/2
n
}
k

1/2
n

√
log n

n , G = G∗ + δn∆G , β =
β∗ + δn∆β, where ∆G ∈ RL×R×S and ∆β ∈ Rp0 . Denote ∆̃ = (vec(∆G)⊤, k

1/2
n ∆⊤

β )⊤. Let
L(G, β) be the penalized squared loss defined as in (18). By Fan and Li (2001), it suffices to
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show that for any arbitrary small ϵ > 0, there exists a large constant C such that

P
{

inf
∥∆̃∥=C

L(G, β) > L(G∗, β∗)
}

≥ 1 − ϵ. (40)

This implies that with probability at least 1 − ϵ, there is a local minimum (Ĝ‡, β̂‡) in the ball
{(G, β) = (G∗ + δn∆G , β∗ + δn∆β) : ∆̃ = (vec(∆G)⊤, k

1/2
n ∆⊤

β )⊤, ∥∆̃∥ ≤ C}. That is, there
exists a local minimizer such that ∥Ĝ‡ − G∗∥ = Op(δn), ∥β̂‡ − β∗∥ = Op(k−1/2

n δn). Notice that

L(G, β) − L(G∗, β∗) = L(G, β) − L(G, β∗) + L(G, β∗) − L(G∗, β∗).

To prove (40), we shall evaluate L(G, β) − L(G, β∗) and L(G, β∗) − L(G∗, β∗) separately first.
Recall that we denote ui = vec(Hi(ti)) = (hilrs(ti)) ∈ RLRS , ũi = (vec(Hi(ti))⊤, z⊤

i )⊤ ∈
RLRS+p0 . We have

L(G, β) − L(G, β∗)

=1
2

n∑
i=1

{[
yi − ⟨Hi(ti), G⟩ − z⊤

i β
]2 −

[
yi − ⟨Hi(ti), G⟩ − z⊤

i β∗]2}
+ n

p0∑
k=1

{
Pωβ

(|βk|) − Pωβ
(|β∗

k|)
}

=1
2δ2

n

n∑
i=1

z⊤
i ∆β∆⊤

β zi − δn

n∑
i=1

z⊤
i ∆β

[
yi − ⟨Hi(ti), G⟩ − z⊤

i β∗]
+ n

p0∑
k=1

{
Pωβ

(|βk|) − Pωβ
(|β∗

k|)
}

=:I1 + I2 + I3.

Similarly,

L(G, β∗) − L(G∗, β∗)

=1
2

n∑
i=1

{[
yi − ⟨Hi(ti), G⟩ − z⊤

i β∗]2 −
[
yi − ⟨Hi(ti), G∗⟩ − z⊤

i β∗]2}

+ n
R∑

r=1

S∑
s=1

{
Pωc

γ
(∥γrs∥B1) − Pωc

γ
(∥γ∗

rs∥B1)
}

+ n
R∑

r=1

S∑
s=1

{
Pωv

γ
(∥γrs∥B2) − Pωv

γ
(∥γ∗

rs∥B2)
}

=1
2

n∑
i=1

{[
yi − ⟨Hi(ti), G∗⟩ − z⊤

i β∗ − δnu⊤
i ∆G

]2 −
[
yi − ⟨Hi(ti), G∗⟩ − z⊤

i β∗]2}

+ n
R∑

r=1

S∑
s=1

{
Pωc

γ
(∥γrs∥B1) − Pωc

γ
(∥γ∗

rs∥B1)
}

+ n
R∑

r=1

S∑
s=1

{
Pωv

γ
(∥γrs∥B2) − Pωv

γ
(∥γ∗

rs∥B2)
}

=1
2δ2

n

n∑
i=1

u⊤
i ∆G∆G

⊤ui − δn

n∑
i=1

u⊤
i ∆G

[
yi − ⟨Hi(ti), G∗⟩ − z⊤

i β∗]
+ n

R∑
r=1

S∑
s=1

{
Pωc

γ
(∥γrs∥B1) − Pωc

γ
(∥γ∗

rs∥B1)
}

+ n
R∑

r=1

S∑
s=1

{
Pωv

γ
(∥γrs∥B2) − Pωv

γ
(∥γ∗

rs∥B2)
}

=:I4 + I5 + I6 + I7.
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For I1, we have with probability tending to 1,

I1 = 1
2δ2

n

n∑
i=1

z⊤
i ∆β∆⊤

β zi = 1
2δ2

n

n∑
i=1

∆⊤
β ziz⊤

i ∆β = Ω(nk−1
n δ2

n∥k1/2
n ∆β∥2).

For I4, note that similar to Lemma 3 in the supplementary material of Chen et al. (2023) we can
show that with probability tending to 1, the eigenvalues of n−1∑n

i=1 ũiũ⊤
i are of order Ω(k−1

n ).
Therefore, we have there exists a constant C0 > 0 such that with probability tending to 1,

I4 = 1
2δ2

n

n∑
i=1

u⊤
i ∆G∆G

⊤ui = 1
2δ2

n∆G
⊤

n∑
i=1

uiu⊤
i ∆G ≥ C0nk−1

n δ2
n∥∆G∥2.

For I2, using the facts that with probability tending to 1, uniformly for all ∥∆̃∥ = C, we
have

sup
∥∆̃∥=C

n−1
n∑

i=1
z⊤

i ∆βϵi = Op

√ log n

n1−τ
∥∆β∥

 ,

and

sup
∥∆̃∥=C

n−1
n∑

i=1
z⊤

i ∆βu⊤
i ∆G = Op

k−1/2
n

√
log n

n1−τ
∥∆β∥∥∆G∥

 .

Thus we have

I2 = − δn

n∑
i=1

z⊤
i ∆β

[
yi − ⟨Hi(ti), G⟩ − z⊤

i β∗]

= − δn

n∑
i=1

z⊤
i ∆β

[
⟨X∗

i , A∗(ti)⟩ + z⊤
i β∗ + ϵi − ⟨Hi(ti), G∗⟩ + ⟨Hi(ti), G∗ − G⟩ − z⊤

i β∗]
= − δn

n∑
i=1

z⊤
i ∆β

{ R∑
r=1

S∑
s=1

x∗
irs

[
a∗

rs(ti) − B⊤(ti)γ∗
rs

]}
− δn

n∑
i=1

z⊤
i ∆βϵi + δ2

n

n∑
i=1

z⊤
i ∆βu⊤

i ∆G

≥ − δn

n∑
i=1

z⊤
i ∆β

R∑
r=1

S∑
s=1

∣∣∣x∗
irsRrs

∣∣∣− Op

(
δn

√
n1+τ log n∥∆β∥

)
= − Op

(
nδnk−5/2

n ∥k1/2
n ∆β∥ + δnk−1/2

n

√
n1+τ log n∥k1/2

n ∆β∥
)

.

Similarly, using the fact that with probability tending to 1,

sup
∥∆̃∥=C

n−1
n∑

i=1
u⊤

i ∆Gϵi = Op

√ log n

n
∥∆G∥

 ,
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we have, for I5,

I5 = − δn

n∑
i=1

u⊤
i ∆G

[
yi − ⟨Hi(ti), G∗⟩ − z⊤

i β∗]
= − δn

n∑
i=1

u⊤
i ∆G

[
⟨X∗

i , A∗(ti)⟩ + z⊤
i β∗ + ϵi − ⟨Hi(ti), G∗⟩ − z⊤

i β∗]
= − δn

n∑
i=1

u⊤
i ∆G

{ R∑
r=1

S∑
s=1

x∗
irs

[
a∗

rs(ti) − B⊤(ti)γ∗
rs

]}
− 2δn

n∑
i=1

u⊤
i ∆Gϵi

≥ − δn

n∑
i=1

u⊤
i ∆G

R∑
r=1

S∑
s=1

∣∣∣x∗
irsRrs

∣∣∣− Op

nδn

√
log n

n
∥∆G∥


= − Op

(
nδnk−5/2

n ∥∆G∥ + δn

√
nlog n∥∆G∥

)
With ∥k

1/2
n ∆β∥ + ∥∆G∥ ≥ ∥∆̃∥, we have, there exists a constant C > 0 such that with

probability tending to 1,

I1 + I4 + I2 + I5 ≥C1
(
nδ2

nk−1
n ∥∆̃∥2 − nδnk−5/2

n ∥∆̃∥ − δn max
{
nτ/2k−1/2

n , 1
}√

nlog n∥∆̃∥
)
.

When δn = k
−3/2
n + max

{
nτ/2, k

1/2
n
}
k

1/2
n

√
log n

n and when the radius C is large enough, we
have I1 + I4 + I2 + I5 > 0 with probability tending to 1. In particular, δn is minimized when
kn = Ω

(
min

{(
n

log n

)1/5
,
(

n1−τ

log n

)1/4}).
For I3, notice that Condition (C8) implies max{P ′′

ωβ
(|β∗

k|), P ′′
ωc

γ
(∥γ∗∥B1), P ′′

ωv
γ
(∥γ∗∥B2), |β∗

k| ̸=
0, ∥γ∗∥B1 ̸= 0, ∥γ∗∥B2 ̸= 0} → 0. By the fact that ωβ = O(k−1/2

n δn), we have

I3 =n
p0∑

k=1

{
Pωβ

(|βk|) − Pωβ
(|β∗

k|)
}

=n
p0∑

k=1

{
Pωβ

(|β∗
k + δn∆β,k|) − Pωβ

(|β∗
k|)
}

≥ −
∣∣∣∣n ∑

k:β∗
k

̸=0

{
δn∆β,kP ′

ωβ
(|β∗

k|)sign(|β∗
k|) + 1

2δ2
n∆2

β,kP ′′
ωβ

(|β∗
k|)[1 + o(1)]

}∣∣∣∣
=O

(
nδnk−1/2

n ωβ∥k1/2
n ∆β∥

)
≥ − C2nδ2

nk−1
n ∥k1/2

n ∆β∥,

for some C2 > 0. Similarly, for I6 and I7, by the fact that ωv
γ = O(k−1

n δn), ωc
γ = O(k−1

n δn), we
can show that there exists a constant C3 > 0 such that

I6 + I7 ≥ −C3nδ2
nk−1

n ∥∆G∥.

Therefore, when C is large enough, we have I1 + I4 > |I2 + I5| + |I3 + I6 + I7|, which im-
plies that ∑7

ℓ=1 Iℓ > 0. Therefore, we conclude that ∥Ĝ‡ − G∗∥ = Op(δn) = O
(
k

−3/2
n +

max
{
nτ/2, k

1/2
n
}
k

1/2
n

√
log n

n

)
, ∥β̂‡ − β∗∥ = Op(k−1/2

n δn) = O
(
k−2

n + max
{
nτ/2, k

1/2
n
}√ log n

n

)
.

The theorem is concluded by ∥â‡
rs(t) − â∗

rs(t)∥ = Op(k−1/2
n )∥Ĝ‡ − G∗∥ and plugging in kn =
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Ω
(

min
{(

n
log n

)1/5
,
(

n1−τ

log n

)1/4}).

Proof of theorem 4: This can be proved using the results in the previous proof and the argu-
ments in the proof of Lemma 1 of Fan and Li (2001).
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