
DexUMI: Using Human Hand as the Universal
Manipulation Interface for Dexterous Manipulation

Mengda Xu *,1,2,3 Han Zhang *,1 Yifan Hou 1 Zhenjia Xu 5

Linxi Fan 5 Manuela Veloso 3,4 Shuran Song 1,2

1 Stanford University, 2 Columbia University,
3 J.P. Morgan AI Research, 4 Carnegie Mellon University, 5 NVIDIA

Abstract—We present DexUMI - a data collection and policy
learning framework that uses the human hand as the natural
interface to transfer dexterous manipulation skills to various
robot hands. DexUMI includes hardware and software adap-
tations to minimize the embodiment gap between the human
hand and various robot hands. The hardware adaptation bridges
the kinematics gap using a wearable hand exoskeleton. It allows
direct haptic feedback in manipulation data collection and adapts
human motion to feasible robot hand motion. The software
adaptation bridges the visual gap by replacing the human
hand in video data with high-fidelity robot hand inpainting.
We demonstrate DexUMI’s capabilities through comprehensive
real-world experiments on two different dexterous robot hand
hardware platforms, achieving an average task success rate of
86%.
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Fig. 1: DexUMI transfer dexterous human manipulation skills to
various robot hand by using wearable exoskeletons and a data
processing framework. We demonstrate DexUMI’s capability and
effectiveness on both underactuated (e.g., Inspire) and fully-actuated
(e.g., XHand) robot hand for a wide variety of manipulation tasks.

I. INTRODUCTION

Human hands are incredibly dexterous in a wide range of
tasks. Dexterous robot hands are designed with the hope of
replicating this capability. However, it remains a significant
challenge to transfer skills from human hands to robotic
counterparts due to their substantial embodiment gap. This gap
manifests in various forms, such as differences in kinematic
structures, contact surface shape, available tactile information,
and visual appearance.

What further complicates this challenge is the diversity of
dexterous hand hardware designs available today. Each robotic
hand presents different engineering trade-offs in degrees of
freedom, motor ranges, actuation mechanisms, and overall
dimensions. The solution for reducing the embodiment gap
must handle the vast hardware design space. Teleoperation

has become a popular manipulation interface for dexterous
hands. However, teleoperation can be difficult due to the
spatial observation mismatch and the lack of direct haptic
feedback. These problems do not exist when human hand can
perform the manipulation task directly. In other words, human
hand itself is a better manipulation interface. In this paper,
we ask the following question: How can we minimize the
embodiment gap, so that we can use the human hand as the
universal manipulation interface for diverse robot hands? To
answer this question, we propose DexUMI, a framework with
hardware and software adaptation components that is designed
to minimize the action and observation gaps.

The hardware adaptation takes the form of a wearable
hand exoskeleton. A user can directly collect manipulation
data while wearing it. The exoskeleton is designed for each
target robot hand through a hardware optimization framework
that refines exoskeleton parameters (e.g., link lengths) to
closely match the robot finger trajectories while maintaining
wearability for the human hand. The hardware adaption pro-
vides the following benefits:

• Intuitive demonstration with direct haptic feedback:
Unlike teleoperation systems, the wearable exoskeleton has
no spatial mismatch and allows users to directly contact
objects during manipulation, making the demonstration
intuitive and doable without a robot.

• Records feasible motion for the robot hand: The ex-
oskeleton constrains human hand motions to match the
kinematics of the target hand, ensuring the recorded motion
is transferable.

• Capturing precise joint action: Unlike retargeting meth-
ods, our exoskeleton reads precise joint angles directly
from encoders, eliminating inaccuracies due to visual fin-
gertip tracking.

• Matching tactile information for learning: Most hand-
held grippers for data collection [10, 42, 55] do not record
the tactile information. Our design includes additional
tactile sensors on the fingertip to record the same tactile
info as what the robot hand would record.

Our software adaptation takes the form of a data process-
ing pipeline that bridges the visual observation gap between
human demonstration and robot deployment. This process-
ing pipeline first removes the human hand and exoskeleton
from the demonstration video using video segmentation, then



inpaints the video with the corresponding robot hand and
environment backgrounds that match the target action. This
adaptation ensures visual input consistency between training
and robot deployment, despite visual differences between
human and robotic hands.

With both hardware and software adaptation layers, Dex-
UMI allows us to collect data on various tasks with minimal
kinematic and visual gaps then transfer skills to robots. Com-
prehensive real-world experiments demonstrate DexUMI’s ca-
pability on two different dexterous hand types: a 6-DoF
Inspire hand [16] and a 12-DoF XHand [17]. Our approach
achieves 3.2 times greater data collection efficiency compared
to teleoperation and an average success rate of 86% across four
tasks , including long-horizon and complex tasks requiring
multi-finger contacts.

II. RELATED WORK

Although extensive work has studied how to enable learning
in simulated environments [3, 33, 61, 57, 39, 65, 22, 1, 24,
68, 30, 27, 45, 58, 38], we focus on reviewing real world data
collection methods.

Teleoperation: Teleoperation is a popular interface for
dexterous manipulation. Hand control is achieved with motion
capture gloves [72, 56, 35, 53, 69], virtual-reality devices
[26, 12, 9], or camera-based tracking [28, 66, 48, 21, 5, 23, 46].
Most approaches employ optimization-based retargeting to
map human fingertips to robot hand. While being adaptable
to different robot platforms, retargeting struggles with funda-
mental morphological differences between human and robot
hands, especially the thumb flexibility [4]. Recent work by
Zhou et al. [73] introduced a hand exoskeleton for direct joint
mapping, but the mechanical structural differences limit the
mapping accuracy. Additionally, teleoperation or kinesthetic
teaching [25] require the robot hardware to be present, limiting
the flexibility of data collection. In contrast, DexUMI collects
manipulation data without physical robots.

Human hand video: Learning manipulation skills from
human hand video is an attractive direction. Prior works have
explored learning affordance [29, 40, 63, 15] or extracting
human and object pose [43, 8, 41, 67, 47] from video. Though
showing promising results, many of these works either require
additional real-world robot data or need to learn the policy
in simulation and depend on privileged information, such as
object pose, to deploy the policy in the real world.

Wearable devices: Another line of work focuses on design-
ing wearable devices for data collection, such as portable hand-
held grippers [59, 10, 20, 70, 13, 44, 52, 54, 42, 55, 32, 34, 37].
These approaches have demonstrated promising results in
scaling real-robot manipulation skills. However, these systems
primarily target simple parallel/pinch grippers and cannot
be easily adapted to multi-fingered systems. Alternatively,
Dexcap [60] uses motion capture gloves for in-contact data
collection. However, it still relies on retargeting methods and
human-correction data through teleportation. In contrast, our
method eliminates these requirement, enabling direct policy
deployment with data collected through DexUMI. Recently,
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Fig. 2: Exoskeleton Design. The optimized exoskeleton design shares
the same joint-to-fingertip position mapping as the target robot hand
while maintaining the wearability. The exoskeletons utilizes the
encoder to precisely capture the joint action and 150° DFoV camera
to record the information-rich visual observation. An iPhone is rigidly
mounted to track the wrist pose through the ARKit.

Wei and Xu [62] and Fang et al. [14] proposed hand-over-hand
systems for dexterous hands. These works require the actual
robot hand to be available and lifted by the human hand.

III. HARDWARE ADAPTATION TO BRIDGE THE
EMBODIMENT GAP

This section introduces our hardware adaptation, which is
a wearable exoskeleton design that adapts human motion to
feasible robot actions. While the final exoskeleton design is
robot-specific, the principles of the design framework can
be shared. We introduce the design framework in two parts:
mechanism design optimization (§III-A) and sensor integration
(§III-B).

A. Exoskeleton Mechanism Design

Modern robot hands often closely mimic human hands
anatomically, meaning that a hand exoskeleton would compete
for space with the human hand wearing it. The biggest chal-
lenge is for the thumb, whose pronation–supination movement
can sweep a large volume and cause significant collision
between the human thumb and a naively designed exoskeleton.
Our exoskeleton design has two goals to achieve:
1) Shared joint-action mapping: The exoskeleton and the

target robot hand must share the same joint-to-fingertip
position mapping, including their limits, so the action can
transfer.

2) Wearability: The exoskeleton must allow sufficient natural
movements of the user’s hand.

While the first goal can be mathematically defined, the
wearability goal is hard to write down concretely. Our solution
is to parameterize the exoskeleton design and formulate the
wearability requirements as constraints on the design parame-
ters, then find a solution that accommodates wearability while
preserving kinematic relationships by solving an optimization.
To make the optimization feasible, we prioritize the exact
kinematics of fingertip links, while allowing greater flexibility
in the kinematics of links less likely to contact objects.

E.1 Design initialization: We initialize the design with
parameterized robot hand models based on URDF files (See
Fig. 3). When such detailed designs are unavailable (e.g., the
Inspire-Hand’s finger mechanisms), we substitute them with
equivalent general linkage designs with the same DoFs (e.g.,



28.85mm

Identical Fingertips Workspace

Move Thumb 
Backward

Identical Fingertips Workspace

50mm

Inspire Hand Exoskeleton XHand Exoskeleton

Initialization (URDF) After Optimization 

Fig. 3: Mechanism Optimization. To avoid thumb collision between
human hand and exoskeleton, the hardware optimization step allows
us to move the exoskeleton thumb backward while still preserving
the original fingertip and joint mapping in SE(3) space.

a four-bar linkage) and allow optimization to find parameters
that best match the observed kinematic behavior. Please see
Appendix for details.

E.2 Bi-level optimization objective: Our optimization
objective maximizes the following similarity:
maxp S(W tip

exo(p),W tip
robot), where W tip

exo and W tip
robot represent

the fingertip workspaces (set of all possible fingertip pose
in SE(3)) for the exoskeleton and robot hand, respectively.
p = {j1, ..., jn, l1, ..., lm} is the exoskeleton design
parameters including joint positions ji ∈ R3 in the wrist
coordinate (i.e., flange) and linkage lengths lj . The function
S(·, ·) represents a similarity metric between the two
workspaces, which quantifies how closely the exoskeleton’s
fingertip pose distribution matches that of the robot hand.
In practice, the S(·, ·) is implemented as minimization by
sampling configurations from both workspaces. Given a set
of K robot hand configurations θrobot,k and N exoskeleton
configurations θexo,n:

S(W tip
exo(p),W tip

robot) =

−

(
K∑

k=1

min
θexo

∥F tip
exo(p,θexo)−F tip

robot(θrobot,k)∥2

+

N∑
n=1

min
θrobot

∥F tip
exo(p,θexo,n)−F tip

robot(θrobot)∥2
)

(1)

where F tip
exo and F tip

robot are the forward kinematics for the
exoskeleton and robot hand respectively. Optimizing the first
term encourages the exoskeleton to cover the robot hand’s
workspace by finding exoskeleton configurations closest to
the sampled robot hand configurations. The second term
requires W tip

exo(p) ⊆ W tip
robot, ensuring the exoskeleton’s fin-

gertip workspace remains within the robot hand’s capabilities,
preventing generation of unreachable poses outside the robot
hand’s workspace.

E.3 Constraints: We apply bound constraints ji ∈ Ci and
lmin
j ≤ lj ≤ lmax

j , which are empirically selected to ensure that
the exoskeleton can be comfortably worn. For example, we
want to move the thumb swing joint closer to the wrist along
the x-axis under MANO [51] convention to avoid collision
between the human thumb’s pronation–supination movement
and that of the exoskeleton.
B. Sensor Integration

Sensors on the exoskeleton need to satisfy the following
design objectives:

1) Capture sufficient information: the sensors need to capture
ALL the information necessary for policy learning, which
includes: robot action such as joint angle (S.1) and wrist
motion (S.2), as well as observations in both vision (S.3)
and tactile (S.4).

2) Minimize embodiment gap: the sensory information should
have minimal distribution shift between human demonstra-
tion and robot deployment.

S.1 Joint capture & mapping. To precisely capture joint
actions, our exoskeleton integrates joint encoders at every
actuated joint – using resistive position encoders for both the
XHand and Inspire-hand. We choose the Alps encoder [2]
for its size and precision. Due to the joint friction and motor
backlash, the mapping between exoskeleton joint encoder
θiexo and robot hand motor Mi

robot values is often non-linear,
therefore, we train a simple regression model for each joint
to obtain this mapping. To calibrate the regression model, we
collect a set of paired data by uniformly sampling K motor
values on the physical robot for each finger and then find the
corresponding exoskeleton joint value by overlaying the visual
observation between the robot hand and exoskeleton. This
process creates a paired dataset for us to train the regression
model.

S.2 Wrist pose tracking. We use iPhone ARKit to capture
the 6DoF wrist pose, as smartphones represent the most ac-
cessible devices capable of providing precise spatial tracking.
This tracking device is only needed for data collection, not for
robot deployment.

S.3 Visual observation. We mounted a 150° diagonal field
of view (DFoV) wide-angle camera OAK-1 [19] under the
wrist for both the exoskeleton and the target robot dexterous
hand. This positioning was chosen to effectively capture
hand-object interactions. Critically, the camera poses in the
wrist frame were identical for the exoskeleton and the robot
hand, which maintains visual consistency between training and
deployment.

S.4 Tactile sensing. The wearable exoskeleton allows users
to directly contact objects and receive haptic feedback. How-
ever, this human haptic feedback cannot be directly transferred
to the robotic dexterous hand. Therefore, we install tactile
sensors on the exoskeleton to capture and translate these
tactile interactions. To ensure consistent sensor readings, we
install the same type of tactile sensors on the exoskeleton
as those used on the target robot hand. For XHand, we use
the electro-magnetic tactile sensor that comes with the hand.
For the Inspire-Hand, we install the same resistive tactile
sensor Force Sensitive Resistor [18] for both the
exoskeleton and the robot hand.

IV. SOFTWARE ADAPTATION TO BRIDGE THE VISUAL GAP

Fig. 4 shows the visual gap between human demonstration
(a) and robot deployment (h). To bridge this visual gap, we de-
veloped a data processing pipeline to adapt the demonstration
image into what the robot will see as if the robot hand was
collecting data. This adaptation uses off-the-shelf pretrained
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Fig. 4: Bridging the Visual Gap. To convert the visual observation
into policy training data, we first segment the exoskeleton using
SAM2 (b) and inpaint the missing background (c). The corresponding
joint action (a) is replayed on the dexterous hand to obtain the robot
hand image (d). SAM2 is applied to obtain the robot mask (e).
The intersection (f) of the exoskeleton mask (b) and robot mask (e)
identifies the visible part of the hand during interaction. Finally, we
replace pixels in the inpainted background (c) with the visible robot
hand (g).

models to ensure generalizability. The adaptation takes four
steps:

V.1 Segment human hand and exoskeleton. Firstly, we seg-
ment (Fig. 4b) the human hand and exoskeleton on observation
videos using SAM2 [49]. Since SAM2 requires initial prompt
points, we established a protocol where the human operator
always begins with the same hand gesture, allowing us to reuse
the same prompt points for all demonstrations.

V.2 Inpaint environment background. With segmentation,
we remove the human hand and the exoskeleton pixels from
the image data. Then we use ProPainter [74], a flow-based
inpainting method, to fully refill (Fig. 4c) the missing areas
[6, 31, 7].

V.3 Record corresponding robot hand video. Next, to
render robot hand properly into the video, we replay the
recorded joint action on the robot hand and record another
video with only the robot hand (Fig. 4d). This step does not
involve the robot arm. We then used SAM2 again to extract the
robot hand pixels (Fig. 4e) and discard the background. Notice,
it is possible to train an image generation model to output
the robot hand image based on the actions, but it requires
additional model training.

V.4 Compose robot demonstrations. The last step is to
merge the inpainted-background-only video with robot-hand-
only video. It is crucial to maintain proper occlusion rela-
tionships: the robot hand does not always appear on top. We
developed an occlusion-aware compositing approach lever-
aging: (1) our consistent under-wrist camera setup, and (2)
the kinematic and shape similarity between the exoskele-
ton and robot hand. We compute a visible mask (Fig. 4f)
by intersecting the exoskeleton mask and robot hand mask.
Rather than naively overwriting pixels, we selectively replace
pixels in the inpainted observation with robot hand pixels
only if those pixels are present in the visible mask. This
preserved natural occlusion relationships between the hand and
objects when viewed from our under-wrist camera perspective.
This approach generated visually coherent robot manipulation
demonstrations that maintained proper spatial relationships.

Imitation learning. Our imitation learning policy
p(at|ot, ft) takes processed visual observation ot and tactile
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Fig. 5: Policy Rollout: We evaluate DexUMI’s capabilities across
challenging real-world tasks. The Cube task tests basic picking pre-
cision. The Egg Carton task evaluates multi-finger coordination. The
Tea Picking task assesses performance on contact-rich manipulation
requiring millimeter-level fine-grained fingertip actions. Finally, the
Kitchen task tests capabilities on long-horizon high-precision actions
to manipulate a knob, move a pan using both the side of thumb and
index finger (beyond just fingertips), and utilize tactile sensing for
visually challenging salt picking tasks.

sensing ft as input. The output is a sequence of actions
{at, . . . , at+L} of length L, starting from the current time
t, denoted as at. The robot action at includes a 6-DOF
end-effector action and N-DOF hand action where N depends
on the specific robot hand hardware.

V. EVALUATION

Target robot hands: We evaluate DexUMI across two
different robot hands:
• Inspire Hand (IHand): A twelve-DoF (six active DoFs)

underactuated hand. The thumb has two active and two
passive DoFs, while each remaining finger has one active
and one passive DoF.

• XHand: A fully-actuated hand with twelve active DoFs.
The thumb contains three DoFs, the index finger has three
DoFs, and each of the remaining fingers has two DoFs.

Tasks: We evaluate DexUMI across four different real-
world tasks:
• Cube [IHand]: Pick up a 2.5cm wide cube from a table

and place it into a cup. This evaluates the basic capabilities
and precision of the DexUMI system.

• Egg Carton [IHand]: Open an egg carton with multiple
fingers: the hand needs the index, middle, ring, and little
fingers to apply downward pressure on the carton’s top
while simultaneously using the thumb to lift the front latch.

• Tea [IHand & XHand]: Grasp tweezers from the table and
use them to transfer tea leaves from a teapot to a cup. The
main challenge is to stably operate the deformable tweezers
with multi-finger contacts.



Method Inspire Hand

Action Tactile Visual Cube Carton Tea
tool leaf

Rel Yes Inpaint 1.00 0.85 1.00 0.85
Abs Yes Inpaint 0.10 0.35 0.80 0.00
Rel No Inpaint 0.95 0.90 1.00 0.90
Abs No Inpaint 0.90 0.85 0.90 0.60
Rel No Mask 0.60 0.10 0.90 0.50
Rel No Raw 0.20 0.05 0.85 0.05

TABLE I: Evaluation Results (Inspire Hand). Stage-wise accu-
mulated success rates for different combinations of finger action
representation (Absolute vs Relative), tactile feedback (Yes vs No),
and visual rendering approaches (Inpaint vs Mask/Raw).

Method XHand

Action Tactile Visual Tea Kitchen
tool leaf knob pan salt

Rel Yes Inpaint 1.00 0.85 0.95 0.95 0.75
Abs Yes Inpaint 1.00 0.25 0.50 0.45 0.00
Rel No Inpaint 0.95 0.80 0.95 0.95 0.15
Abs No Inpaint 1.00 0.75 0.60 0.60 0.0
Rel No Mask / / / / /
Rel No Raw / / / / /

TABLE II: Evaluation Results (XHand). Stage-wise accumulated
success rates. The Mask and Raw visual approaches were not tested
on XHand (indicated by /).

• Kitchen [XHand]: The task involves four sequential steps:
turn off the stove knob; transfer the pan from the stove
top to the counter; pick up salt from a container; and
lastly, sprinkle it over the food in the pan. The task tests
DexUMI’s capability over long-horizon tasks with precise
actions, tactile sensing and skills beyond using fingertips.

Comparison: We evaluate the impact of policy action space
choices, tactile sensing, and software adaptation on system
performance.
• Relative vs. Absolute finger action: We compare the form

of finger action trajectory: absolute position or relative tra-
jectory proposed by [10]. We always use relative position
for wrist action.

• With vs. Without tactile sensing: We trained policies with
and without tactile sensor input.

• With vs. Without software adaptation: We examine two
variants without software adaptation: (1) Mask, which re-
places pixels occupied by the exoskeleton (during training)
or robot hand (during inference) with a green color mask,
and (2) Raw, which simply passes unmodified images
containing the exoskeleton as policy input.

Evaluation protocol: For each evaluation episode, the test
objects are randomly placed on the table at initialization.
We conduct 20 evaluation episodes per task, maintaining
consistent initial object configurations across our method and
all baselines. For long horizon tasks, we report stage-wise
accumulated success rate in Tab. I and Tab. II.

A. Key Findings

DexUMI framework enables efficient dexterous policy
learning: As shown in Tab. I and Tab. II, the DexUMI system
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Fig. 6: Comparisons. a) The policy outputs relative hand actions
yield more precise action and demonstrate better multi-finger coor-
dination. Note, we draw a sketch for the knob closing for better
visualization. b) Even with noisy tactile sensor reading, the tactile
significantly improve tasks which is visually challenging.

achieves high success rates across all four tasks on two robot
hands. The system handles precise manipulation, long-horizon
tasks, and coordinated multi-finger contact, while effectively
generalizing across diverse manipulation scenarios.

Relative finger trajectories are more robust to noise and
hardware imperfections: Tab. I and Tab. II show relative
finger trajectory consistently achieves better success across
all tasks. Fig. 6 shows more insights: relative trajectory can
make critical contact events more reliable. We hypothesize
two reasons for this difference: 1. Relative action has a simpler
distribution than absolute and is thus easier to learn; 2. Relative
action learns a reactive behavior where the delta action keeps
accumulating until a key event is reached (e.g. fingers close on
contact). However, the absolute action learns a static mapping
and would stall if the mapping has errors.

Only relative finger trajectories can benefit from the
noisy tactile feedback: An interesting observation in Tab. I
and Tab. II is how having tactile affects the results differently.
The tactile sensor on the XHand can drift and become in-
consistent after experiencing high pressure. Therefore, in most
cases, having tactile makes the results worse. We observed that
only with relative trajectory can the policy benefit from having
such tactile sensing. For the Inspire hand, the tactile sensors
we manually installed are even more noisy (See section §III-B
for details), then all methods become worse after adding tactile
sensor as input. However, policies with relative trajectory still
suffer less performance drop compared with the ones with
absolute trajectory.

Tactile feedback improves performance on tasks with
clean force profiles: We try to understand what kind of
task would benefit from having tactile sensing. We focused
on the XHand as its tactile sensors provide cleaner readings.
We observed that tactile feedback significantly improved per-
formance on picking up salt. This task highlights the effect
of tactile because 1) The tactile sensors give a clear, large
reading when the fingers touch the bowl of salt. 2) There is
little useful visual information close to grasping as the camera
view is mostly blocked by the bowl. In this case, we found
that tactile feedback completely changes policy behavior. With
tactile sensors, the fingers always insert into the salt first then
close the fingers. Without tactile feedback, the fingers attempt
to grasp the salt sometimes in the air. On the contrary, tactile
info does not help in tweezer manipulation, which lacks strong
correlation between hand motion and force feedback. Holding
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Fig. 7: Efficiency: Collection throughput (CT) within 15-minute.
Though DexUMI still slower than bare hand, it achieves significant
higher efficiency than teleportation.

a tweezer only triggers minimal tactile sensor readings.
DexUMI framework enables efficient dexterous hand

data collection: We compared data collection efficiency across
three ways: DexUMI, bare human hand, and teleoperation
on the tea-picking-with-tool task. The same human operator
collected data using each approach within 15-minute sessions.
We computed the collection throughput (CT) based on the
number of successful demonstrations acquired. As illustrated
in Fig. 7, while DexUMI remains slower than direct human
hand manipulation, it achieves 3.2 times greater efficiency than
traditional teleoperation methods, significantly reducing the
time required for dexterous manipulation data collection.

VI. CONCLUSION

We present DexUMI, a scalable and efficient data collection
and policy learning framework that uses the human hand as
an interface to transfer human hand motion to precise robot
hand actions while providing natural haptic feedback. Through
extensive challenging real-world experiments, we demonstrate
DexUMI’s capability in learning dexterous manipulation poli-
cies for precise, contact-rich, and long-horizon tasks. Our
work establishes a new approach to collecting real-world
dexterous hand data efficiently and at scale beyond traditional
teleoperation.

VII. LIMITATION AND FUTURE WORK

We would like to discuss DexUMI’s limitations from three
different aspects: hardware adaptation, software adaptation,
and existing robot hand hardware.

Hardware Adaptation:
• Per robot hand exoskeleton design: Although DexUMI

demonstrates generalizability across underactuated and
fully-actuated hands, our optimization framework still re-
quires hardware-specific tuning, especially for wearability.
One future work direction is fully automated optimization
formulation given robot hand model and some description
of the human hand. Further, our hardware optimization
framework can potentially leverage generative models [64]

to increase efficiency and accuracy when design space
grows.

• Fingertips Matching: Our current formulation focuses only
on matching the fingertip workspace between the designed
exoskeleton and target robot hand. It would be interesting
for future work to also model remaining potential contact
geometries such as the palm.

• Wearability: The hardware optimization pipeline makes
the exoskeleton wearable and allows humans to operate it
relatively easily for extended periods. However, wearability
could be further improved by integrating soft materials,
such as TPU for parts that contact the human hand.
Additionally, constrained by both the design of the target
hand and 3D printing material strength, users might still
experience limitations in fully stretching certain fingers.

• Reliability of Tactile Sensors: Throughout our experiments,
we found that reliable tactile sensors are key to maintaining
consistent tactile observation between the exoskeleton and
corresponding robot hand, thereby reducing the embodi-
ment gap. In our implementation, the resistive tactile sen-
sors added to the Inspire hand and its exoskeleton proved
sensitive to their attachment way on fingers. Meanwhile,
the electromagnetic tactile sensors on the XHand and its
exoskeleton showed a tendency to drift after exposure to
high pressure. Since the human hand generates more force
than the robot hand, tactile sensor readings frequently drift
when humans operate the exoskeleton. Future work can
also incorporate other types of tactile sensors, such as
vision-based tactile sensors [71, 50, 36] and capacitive F/T
sensors [11].

• Material Limitations: Our experiments demonstrate that
DexUMI is able to capture fine-grained fingertip actions
such as closing tweezers. However, we sometimes found
that encoders cannot precisely capture human motion due
to 3D printing material strength limitations; occasionally,
the human hand slightly distorts the exoskeleton linkage
when manipulating objects. In such cases, encoders are
unable to capture this distortion.

Software Adaptation:
• Robot Hand Image: Currently, we still require real-world

robot hardware to obtain robot hand images. However, this
requirement could be eliminated by implementing an image
generation model that receives motor values as input and
produces corresponding hand pose images as output.

• Inpainting Quality: Throughout our experiments, we found
that the current software adaptation pipeline can already
yield high-fidelity robot hand images. Nevertheless, we
observed that illumination effects on the robot hand cannot
be fully reproduced, and some areas in the image appear
blurred due to limitations in the inpainting process.

• Camera Location: DexUMI currently requires the camera
to be rigidly attached to the robot hand/exoskeleton and
does not support a moving camera. However, it would be
feasible to collect a dataset and train an image generation
model that receives the relative pose between the camera
and hand, along with hand pose information, to generate



the corresponding hand pose image from any given camera
position.

Existing Robot Hand Hardware:
• Precision: Throughout our experiments, we found that both

the Inspire Hand and XHand lack sufficient precision due
to backlash and friction. For example, the fingertip location
of the Inspire Hand differs when moving from 1000 to
500 motor units compared to moving from 0 to 500 motor
units. Although the desired motor value is the same in
both cases, the final fingertip position varies. We observed
this phenomenon in both robot hands. Consequently, when
fitting regression models between encoder and hand motor
values, we can typically ensure precision in only “one
direction”—either when closing the hand or opening it.
This inevitably causes minor discrepancies in the inpaint-
ing and action mapping processes. Further, we found that
the XHand mapping between motor command and fingertip
location slightly differs across time shifts or after each
reboot.

• Size Discrepancy: The size difference between the robot
hand and the human hand may cause wearability issues.
For example, if the robot hand is twice as large as the
human hand, it becomes difficult for both the human
hand and the exoskeleton to reach the joint configurations
required by the robot hand.

• Co-design: Many of these wearability issues arise from
design constraints in existing commercial hardware. An
interesting direction would be to explore a reverse design
paradigm: first designing an exoskeleton that is comfort-
able and fully operable for humans, and then using that
exoskeleton as the foundation for designing the robot hand.
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