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Abstract. Due to the high costs associated with the labor and expertise
required for annotating 3D medical images at the voxel level, most public
and in-house datasets only include annotations of a single (or a few) or-
gan or tumor. This limitation results in what is commonly referred to as
the ’partial labeling/annotation problem’. In order to tackle this issue, we
introduce an adaptive learning network, AdaptNet, to effectively segment
multiple organs and tumors within partially labeled data from abdomen
CT images. AdaptNet comprises three key components: a segmentation
network, a pseudo-label generation network, and an adaptive controller
responsible for generating dynamic weights. AdaptNet generates adap-
tive weights dynamically through the controller, which takes into account
the balance of the partial labels and the corresponding pseudo-labels.
This approach enables AdaptNet to efficiently and flexibly learn mul-
tiple organ and tumor information from the partial labeling/annotation
dataset, which is typically performed by multiple or multi-head networks.
We conduct validation on a large-scale partially annotated dataset un-
der MICCAI FLARE 2023 challenge and demonstrate that the proposed
AdaptNet outperforms the baseline method across the 13 different organ
and tumor segmentation tasks. Our method achieves a mean organ Dice
Similarity Coefficient (DSC) of 89.61% and a Normalized Surface Dice
(NSD) of 94.94%, and a tumor DSC and NSD of 39.16% and 30.52%
on the FLARE 2023 online validation. Additionally, in the Final Testing
dataset, our method achieves a mean organ DSC and NSD of 89.34%
and 95.26% and a tumor DSC and NSD of 54.59% and 40.78%, and the
area under GPU memory-time curve is 33.35s and 84276 MB. The code
is available at https://github.com/Prech-start/FLARE23_AdaptNet.
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1 Introduction

Abdominal organs are quite common cancer sites, such as colon and rectum
cancer, and pancreas cancer, which are the 2nd and 3rd most common cause of
cancer death [21]. Computed tomography (CT) provides doctors with valuable
prognostic information. During the diagnosis process, the doctor evaluates the
lesion or organ by manual annotation in two dimensions plane on the CT, which
leads to a tedious procedure in the clinical practice. Moreover, the structural
complexity of abdominal organs and their cancers make the annotation pro-
cess challenging [13]. Currently, there are many high-quality publicly available
tumor datasets, such as liver cancer segmentation [3], lung nodule segmenta-
tion [1], etc. However, they are all for one single type of tumor. In terms of
organ segmentation, several multi-organ segmentation datasets with all the or-
gan labels have been released, e.g., BTCV [15], AMOS[12], etc. However, this
kind of dataset with all organs or tumors annotated is almost unachievable in
real clinical workflow. Utilizing these datasets inevitably creates partial label-
ing/annotation problems. Furthermore, there is still no general and publicly
available dataset with ’partial labeling/annotation problems’ for universal ab-
dominal organs and pan-cancer segmentation nowadays. FLARE2023 challenge,
an extension of FLARE2021 and FLARE2022 challenges, provides such an op-
portunity, which aims to promote the development of universal organ and tumor
segmentation in abdominal CT scans. FLARE2023 showcases a rich variety of
tumor types and a combination of multiple different organ annotations, as shown
in Fig. 1. This imbalanced labeling could potentially lead to the failure of the
segmentation methods.

Formerly, researchers have proposed some traditional segmentation meth-
ods gray-level based methods [14], Live wire segmentation approaches [23], and
mathematical fitting procedure [5] for segmentation tasks which are more effi-
ciently than manual segmentation methods. However, the traditional methods
need manual design features. Compared with the traditional methods, Deep
Learning (DL) methods demonstrate enhanced accuracy and much better gen-
eralization capacity. In recent years, regardless of various works based on fully
supervision learning method [16] achieve State-of-the-Art (SOTA) performance
in single data centers, many of which are small and single data center [20]. Fur-
thermore, most of the SOTA methods cannot be easily verified and generalized
in other datasets with imbalanced annotations.

To address the problem, this study intends to use the core concept of semi-
supervised learning to effectively use unlabeled organ samples to improve model
performance. Semi-supervised learning potentially learns wrong information from
incorrect pseudo-labels, which would lead to performance degradation. Normally,
selecting high-confidence predictions can fix the problem of performance degra-
dation. However, this way would exclude a large amount of unlabeled data from
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(b) full organ(a) partial organ (d) kidney tumor(c) liver tumor

Fig. 1. Samples of imbalanced annotations in FLARE2023. Partial organ annotations
are observed in some cases, as depicted in case (a). In other cases, all organs are
annotated, but tumors are absent, as shown in case (b). There are also cases with
annotations covering both tumors and organs, as demonstrated in cases (c) and (d).

the training process, resulting in insufficient model training. Furthermore, this
way leads to the low-quality pseudo-labels not being utilized in training. There-
fore, based on that, we propose an adaptive learning segmentation method to
efficiently utilize and learn pseudo-labels.

In this paper, we propose an automatic segmentation method, AdaptNet, for
abdominal organs and cancers based on FLARE2023 dataset with imbalanced
partial labeling. The proposed framework AdaptNet mainly contains three com-
ponents: a pseudo-label generation network that creates the class-wise annota-
tions which not exist in the true labels, a controller responsible for generating
dynamic weights, and a segmentation network that segments lesions and organs
based on adaptive weights generated by dynamic weights controller. The main
contributions of this work are summarized as follows: (1) Through the proposed
AdaptNet, pseudo-labels have been effectively utilized and learned, which in-
troduces the unlabeled organ information, while also avoiding the misleading
from incorrect pseudo-labels. (2) To balance the pseudo-labels and the origi-
nal label, dynamic weights are generated automatically by a controller. (3) To
mitigate the misleading of incorrect pseudo-labels, an adaptive loss approach is
employed to train the segmentation model. Experiments show the effectiveness
of the proposed AdaptNet for the partial labeling problem.
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2 Method

2.1 Preprocessing

Resample and normalization We resample the pixel spacing to (2.2838,
1.8709, 1.8709) for all cases, and clip the pixel value based on the Hounsfield
units to [−160, 240], and normalize all the cases in [0, 1] to ensure data stability
and consistency.

Cropping the data To reduce redundant or irrelevant information and save
computing resources, all the original CT matrix is cropped according to the
foreground markers generated by original labels and pseudo-labels (the details
are in the next section).

Data augmentation In order to prevent the model from over-fitting, data
augmentation is used in this study. The augmentation approaches of nnU-Net
methodology [11] have been utilized.

2.2 Proposed Method

Specifically, the proposed AdaptNet contains a pseudo-label generator network
which is followed by a label filling module, a baseline network which is to make
a segmentation prediction, and a dynamic weights controller which is mainly
made up of an adaptive weight calculation (AWC) module, as shown in Fig. 2.

Pseudo-Label Generator Pseudo-labels contain valuable information about
the location and boundary of target organs and tumors during training, which en-
hances the model’s discriminative ability. By incorporating pseudo-labels, pseudo-
label generator arguments the datasets and promotes the model to learn more
boundary information from unlabeled organs in true labels. Here, we apply the
segmentation network from [10] as the pseudo-label generator network, which
has achieved remarkable results in the FLARE2022 challenge.

Segmentation Network The baseline network is built upon nnU-Net [11],
utilizing parameters generated using the nnU-Net methodology.

Label Filling Module To incorporate pseudo-labels into the true labels, La-
bel Filling Module is used after pseudo-labels were generated. The details are
illustrated in Fig. 2. In general, the Label Filling Module can be expressed in
the following equation:

ML = R(PL,UTL ∩ UPL, 0) + TL (1)

where the UTL and UPL denote the list of classes for true label (TL) and pseudo-
label (PL). The expression R(S, I, 0) signifies the substitution of the intersection
I with the value 0 within the set S, and then combining TL and PL to form a
mixed-label (ML).
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Fig. 2. Overview of our proposed AdaptNet. Green block: Generate the mix label and
ROI bounding box by Label Filling Module, and weight of adaptive loss calculation
by AWC. Pink block: Baseline segmentation network. Blue block: Adaptive weight
calculation (AWC) module: calculate the weight according to the unique object class
between the pseudo-label and the true label. Yellow Block: Label Filling Module filters
the interfering information and combines the pseudo-label and true label into a mix-
label.
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Adaptive Weight Calculation Considering the potentially misleading effects
of pseudo-labels during training, we introduce an adaptive loss to impose con-
straints. The main idea of adaptive loss is to automatically weaken learning
efficiency from pseudo-labels while amplifying the guiding capability of true la-
bels during training. For the purpose of this paper, we define symbol CO as
[1, class_count], where the class_count means the total class counts for the
segmentation task, and suppose Cpseudo represents the unique indexes collection
of pseudo-label. Its definition is

Cpseudo = {ci | ci ∈ CO, ci is pseudo label},

where i is the i-th class index. Then, indexes collection of true label Ctrue is

Ctrue = {ci | ci ∈ CO, ci is true label}.

Then, the updated steps of loss weight for each target class are as follows:

wo
i =

1

class_count
, i ∈ CO, (2)

wp
i = ξada ∗ wo

i , i ∈ Cpseudo, (3)

wt
i = wo

i +

∑c∈Cpseudo(wo
c − wp

c )

| Ctrue |
, i ∈ Ctrue, (4)

where wp
i and wt

i represent the weight of the i-th class in pseudo-label and true
label, respectively. The ξada is an adjustable parameter to control attention to
the true label. It is initialized to a default value of 0.5. The |Ctrue| equals with
class number in true label.

In general, the weight wi of the i-th class can be defined as follows:

wi =

{
wp

i , i ∈ Cpseudo

wt
i , i ∈ Ctrue

(5)

In this way, the model can pay more attention to the organ with real labels
and also learn the shape or location information of unlabeled organs via their
corresponding pseudo-labels. In other words, the true label gains a dynamic
higher loss score than pseudo-labels according to the label status of each patch.
Therefore, the Adaptive Weight module suppresses gradients generated by fea-
tures in the filled labels that could disrupt training and enhance the learning
capacity for the true annotations.

Then, we combine the adaptive weight and ComboLoss function which is
combined with DiceLoss and CELoss. The ComboLoss converges considerably
faster than cross-entropy loss during training[25]. It is defined as:

LCE(y, ŷ, w) =

CO∑
i

wi(−
1

N

N∑
j=1

yij log(ŷ
i
j) + (1− yij)log(1− ŷij)), (6)
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LDice(y, ŷ, w) =

CO∑
i

wi(1−
2
∑N

j=1 y
i
j ŷ

i
j∑N

j=1 y
i
j + ŷij

), (7)

loss(y, ŷ, w) = αce ∗ LCE(y, ŷ, w) + αdc ∗ LDice(y, ŷ, w), (8)

where the yij and ŷij mean the ground truth and the predicted probability of
pixel j, respectively, and N is the number of pixels. αce and αdc are the hyper-
parameters to balance the contribution of DiceLoss and CELoss. αce and αdc

are set to 0.5 in this study.

Training Strategies One of the obstacles to training 3D networks is the prob-
lem of "insufficient memory". A common solution is to train a 3D network from
smaller sub-volumes (3D patches) and test it by sliding window. We set the
step of the sliding window and use multithreaded preprocessing of CT image to
reduce our inference time. The shape of the sliding window is consistent with
the patch as shown in Table 3. Here, to reduce the inference time, the length of
the step is [5/6, 7/8, 9/10] times the window width for each axis instead of the
default parameter [1/2, 1/2, 1/2] of nnU-Net. Consequently, the inference time
significantly decreases, e.g., from 72s to 48s for case 0048 in the environment of
this study.

2.3 Post-processing

In the post-processing stage, we employ a connected component-based method
after the segmentation prediction. Particularly in organ image segmentation, it
helps remove the disconnected voxels, consequently, reducing false positives. In
the study, the largest connected component of each segmented organ volume is
simply selected.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [18][19],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs (liver, spleen, pancreas, right
kidney (RK), left kidney (LK), stomach, gallbladder, esophagus, aorta, inferior
vena cava (IVC), right adrenal gland (RAG), left adrenal gland (LAG), and
duodenum) and various abdominal lesions, which cover various abdominal can-
cer types, such as liver cancer, kidney cancer, pancreas cancer, colon cancer,
gastric cancer, and so on. The organ annotation process used ITK-SNAP [27],
nnU-Net [11], and MedSAM [17]. The training dataset is curated from more than
30 medical centers under the license permission, including TCIA [4], LiTS [2],
MSD [24], KiTS [8,9], autoPET [7,6], TotalSegmentator [26], and AbdomenCT-
1K [20]. The training set includes 4000 abdomen CT scans where 2200 CT scans
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with partial labels and 1800 CT scans without labels. The validation and testing
sets include 100 and 400 CT scans. In this study, unlabeled images were not used.
Only 2200 scans with partial labels have been used due to the computational
resource limitation, and the 1800 unlabled images are not used. The frequency
statistics about the 2200 cases regarding organ and tumor annotations are pro-
vided in Table 1. 5-fold cross-validation has been performed, in which 1760 cases
are chosen as the training dataset, and the rest 440 cases are as the internal
validation dataset in each fold.

Table 1. Organ annotation occurrence frequency(%) summary

Target Liver RK Spleen Pancreas Aorta IVC RAG
Frequency 59.6 59.1 59.4 59.6 11.3 11.3 11.3

Target LAG Gallbladder Esophagus Stomach Duodenum LK Tumor
Frequency 11.2 10.2 11.3 11.3 11.3 59.0 68.0

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 2.

Table 2. Development environments and requirements.

System Ubuntu 23.04
CPU Intel(R) Core(TM) i9-10900X CPU@3.70GHz
RAM 4×32GB; 2933MT/s
GPU NVIDIA GeForce RTX™3090 24G
CUDA version 12.0
Programming language Python 3.9.16
Deep learning framework Pytorch (Torch 2.0.1)
Code https://github.com/Prech-start/FLARE23_AdaptNet

Training protocols During the training phase, we set the batch size to 2 and
randomly select all samples within each epoch. For each sample, we perform

https://github.com/Prech-start/FLARE23_AdaptNet
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random patch cropping with patch sizes of (96, 128, 160). As for the optimizer,
we utilize AdamW with a learning rate of 1e-3 and a weight decay of 1e-5. The
learning rate updating follows the default mechanism of AdamW. Additional
details are presented in Table 3.

Table 3. Training protocols.

Network initialization “he" normal initialization
Batch size 2
Patch size 96×128×160
Total epochs 120
Optimizer AdamW with weight decay(µ = 1e− 5)
Initial learning rate (lr) 0.001
Lr decay schedule halved by 200 epochs
Training time 11 hours per fold
Loss function Adaptive Loss
Number of model parameters 30.8M5

Number of flops 838.6116 G6

CO2eq 3.91908 Kg7

4 Results and discussion

The best fold was selected via the results in the Public validation, as shown in
Table 4. The result of Public Validation is calculated with the 50 open cases from
100 Validation set. The result for Online Validation is collected from FLARE2023
website. It is worth noting that in the metrics for public validation, we have
included the standard deviation, represented as evaluation score±std. The std
of the online validation is not available since it is not reported online. The results
for the validation are listed in Table 5.

Table 4. Segmentation DSC(%) of five fold from Public Validation.

Target
baseline label filling proposed

Organ Tumor Organ Tumor Organ Tumor
fold0 34.84 36.89 89.25 40.94 88.96 45.12
fold1 36.18 37.20 89.30 40.75 88.97 43.24
fold2 35.79 34.15 89.05 42.02 89.02 45.35
fold3 35.57 40.17 89.20 44.19 89.09 43.75
fold4 35.07 39.61 89.22 41.73 88.94 45.04
mean 35.49 37.60 89.20 41.92 88.96 44.50
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Table 5. Result in Public Validation, Online Validation and Final Testing.

Target
Public Validation Online Validation Testing

DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)
Liver 97.74±0.44 99.28±0.73 97.60 99.07 96.95 98.27
RK 94.44±7.76 95.92±8.61 93.83 95.36 93.73 94.75
Spleen 96.88±0.94 99.12±1.75 96.94 99.19 96.48 98.94
Pancreas 86.06±5.58 97.06±4.01 84.70 96.18 88.64 97.01
Aorta 94.74±1.25 98.78±2.29 94.74 98.72 94.97 99.53
IVC 88.62±7.60 91.26±7.90 88.30 90.60 88.83 92.09
RAG 81.41±12.23 94.97±13.68 81.43 95.51 81.65 95.30
LAG 82.64±5.66 95.96±4.34 80.86 94.37 81.94 94.79
Gallbladder 86.53±18.94 88.38±20.43 84.11 85.80 83.38 86.32
Esophagus 79.95±16.67 90.77±16.92 81.14 92.53 86.56 96.88
Stomach 93.14±3.20 97.25±4.10 93.67 97.59 93.53 97.17
Duodenum 81.51±7.90 94.80±5.91 81.43 94.54 84.02 94.27
LK 93.45±6.72 94.73±8.90 93.18 94.81 92.90 94.40
Organ Average 89.01±6.13 95.25±3.23 88.61 94.94 89.34 95.26
Tumor 43.75±35.21 35.46±29.93 39.16 30.52 54.59 40.78

4.1 Quantitative results on validation set

As shown in Table 6, the quantitative experiments have been carried out for
more comprehensive ablation studies on the Pseudo-label filling and Adapting
weight calculation. For the tumor segmentation, the proposed method performs
better than the baseline model and the label-filling-based model, with an im-
provement of at least 0.0258 and 0.0295 in DSC and NSD scores, respectively.
For the organ segmentation, the segmentation result of our proposed method
is slightly worse (with a decline of only 0.0027 in DSC score) than the model
that used pseudo-label filling. Specifically, comparisons with Quantitative evalu-
ation in Table 6 and annotation statistics in Table 1 illustrate that the baseline
model is invalid in segmenting the organs with low frequency, i.e., aorta (0.113),
IVC (0.113), RAG (0.113), LAG (0.112), gallbladder (0.102), esophagus (0.113),
stomach (0.113), and duodenum (0.113). The model’s ability is strengthened in
tumors and organs with high frequency (e.g., liver, spleen, etc. ). It also demon-
strates the effectiveness of pseudo-label filling in the segmentation task with im-
balance annotations. The proposed AdaptNet approach improves segmentation
of the part of objects with high frequency (i.e., RK (0.591), LK (0.590), and tu-
mor (0.680)), while the segmentation results from AdaptNet are not as promising
as the model used pseudo-label filling for the organs with low frequency. Accord-
ing to the weight calculation algorithm and the frequency of organ annotation
occurrence, it can be inferred that this situation is reasonable in that the lower
the labeling frequency, the less guided by the real annotation.



AdaptNet:Adaptive Learning for Segmentation 11

Table 6. Overview of Ablation Experiment Results. Note: Label filling: baseline +
Label filling module. Proposed: baseline + Label filling module + Adaptive weight
calculation.

Target
Baseline Label filling Proposed

DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD(%)
Liver 90.78 91.85 97.76 99.26 97.72 99.22
RK 89.08 90.35 93.84 95.25 94.02 95.39
Spleen 91.71 93.57 96.90 99.22 96.85 99.10
Pancreas 80.25 91.39 85.87 96.93 85.85 96.90
Aorta 1.73 1.59 94.78 98.90 94.68 98.69
IVC 2.29 2.12 89.32 92.12 88.62 91.25
RAG 6.96 7.61 81.24 94.86 81.26 94.87
LAG 6.23 7.26 82.33 95.73 81.85 95.35
Gallbladder 10.24 10.03 85.08 87.02 83.96 85.74
Esophagus 3.78 4.50 80.54 91.37 80.25 91.13
Stomach 3.54 3.85 93.80 97.70 93.40 97.69
Duodenum 0.46 0.59 82.06 94.88 81.31 94.68
LK 88.64 89.76 93.15 94.19 93.37 94.59
Organ Average 36.60 38.04 88.97 95.19 88.70 94.97
Tumor 37.60 27.68 41.93 32.34 44.51 35.29

4.2 Qualitative results on validation set

In this section, we show the two good segmentation cases and two bad segmen-
tation cases.

Good segmentation cases As shown in case-0087 of Fig. 3, the baseline
method is not available to segment the IVC, aorta, stomach, duodenum and
RAG. Meanwhile, the baseline method misclassifies part of LK as spleen. The
label filling method can only segment part of the duodenum. Compared to the
under-segmentation of the baseline method and the label filling method in the
kidney, our method performs much better in the tumor. In case-0057 of Fig. 3,
the tumor in RK, stomach, aorta, LK and IVC are not segmented in the baseline
method. The part of LK is misclassified as part of the tumor and the lesion in LK
is under-segmentation by the label filling method, while the proposed AdaptNet
can almost segment the tumor in LK, however, the small part of LK is misclassi-
fied as pancreas. Compared to the label filling method, our approach exhibits a
better ability to highlight tumor segmentation. It demonstrates improved tumor
segmentation performance.

Bad segmentation cases In case-0067 of Fig. 4, the baseline has trouble
in segmenting the IVC and aorta. And all three methods fail to segment the
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Case #FLARETs_0087 (slice #73)

CT image Ground Truth Label fillingBaseline Proposed
Organ DSC:  0.30 Tumor DSC: 0.58 Organ DSC:  0.85 Tumor DSC: 0.72 Organ DSC:  0.86 Tumor DSC: 0.80

Organ DSC:  0.32 Tumor DSC: 0.85 Organ DSC:  0.84 Tumor DSC: 0.82 Organ DSC:  0.84 Tumor DSC: 0.88Case #FLARETs_0057 (slice #63)

Fig. 3. Good segmentation cases from 50 validation set.

esophagus. It can be explained that the location of the esophagus makes all the
methods confusing. In case-0095, as shown in Fig. 4, the baseline model does
not segment the duodenum, IVC, gallbladder and aorta. The three methods
misclassify the LK as the tumor. The duodenum and pancreas are similar in gray
scale so the boundary of these organs is not clear in the predictive segmentation.

CT image Ground Truth Label fillingBaseline Proposed

Case #FLARETs_0067 (slice #75)

Case #FLARETs_0095 (slice #66)

Organ DSC:  0.36 Tumor DSC: 0.66 Organ DSC:  0.83 Tumor DSC: 0.50 Organ DSC:  0.83 Tumor DSC: 0.40

Organ DSC:  0.36 Tumor DSC: 0.76 Organ DSC:  0.88 Tumor DSC: 0.59 Organ DSC:  0.88 Tumor DSC: 0.44

Fig. 4. Bad segmentation cases from 50 validation set.

4.3 Segmentation efficiency results on validation set

We have submitted our Docker container encapsulating our model to the official
challenge. We have tested it on 20 cases, and the efficiency metrics were as
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follows: an average execution time of 40.673 seconds, an average maximum GPU
memory usage of 4499.8MB, and an average area under the CPU curve of 124628
seconds. There are 8 cases with efficiency as shown in Table 7.

Table 7. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 33.39 4088 75893
0051 (512, 512, 100) 43.83 4850 154144
0017 (512, 512, 150) 46.19 4938 161893
0019 (512, 512, 215) 41.23 4394 122667
0099 (512, 512, 334) 51.92 4686 155622
0063 (512, 512, 448) 53.18 4674 154248
0048 (512, 512, 499) 59.8 4658 175999
0029 (512, 512, 554) 75.38 5202 231308

4.4 Results on final testing set

The testing results from the docker of our solution were evaluated by the chal-
lenge officially on the Final Testing, and are shown in Table 5.

4.5 Limitation and future work

Upon reflecting on our study, it becomes evident that we encounter certain
limitations in the following aspects.

Calculation of Adaptive Weights: The computation of adaptive weights
did not take into consideration the issue of small organ volumes, resulting in a
lack of differentiation in loss weights between small organs. Moreover, we find
the phenomenon that the lower occurrence of label frequency resulted in a loss
of segmentation accuracy, as evidenced by the fact that in our approach, while
there was an improvement in tumor DSC, the mean DSC for organs experienced
a slight decrease.

Effect of Different Preprocessing Strategies: Different preprocessing
strategies were found to impact the contrast of the images. Future work may
involve training on a fusion of images processed using various preprocessing
methods.

Frequency is not fully taken into account in modeling: The frequency
of each object is different in the dataset. Considering the frequency of each object
would improve the segmentation performance of the model.
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5 Conclusion

In order to tackle ’partial labeling/annotation problem’, we develop an adaptive
learning network, AdaptNet, to effectively segment multiple organs and tumors
within partially labeled datasets from abdomen CT images. The quantitative and
qualitative results show that AdaptNet can efficiently and flexibly learn multi-
ple organ and tumor information from the partial labeling/annotation dataset,
which is typically performed by multiple or multi-head networks. We conducted
validation on a large-scale partially annotated dataset under MICCAI FLARE
2023 challenge and demonstrated that the proposed AdaptNet outperforms base-
line segmentation methods across the 13 different organ and tumor segmentation
tasks.
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