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Abstract

The vast majority of Reinforcement Learning methods is largely impacted by the com-
putation effort and data requirements needed to obtain effective estimates of action-value
functions, which in turn determine the quality of the overall performance and the sample-
efficiency of the learning procedure. Typically, action-value functions are estimated through
an iterative scheme that alternates the application of an empirical approximation of the
Bellman operator and a subsequent projection step onto a considered function space. It
has been observed that this scheme can be potentially generalized to carry out multiple
iterations of the Bellman operator at once, benefiting the underlying learning algorithm.
However, till now, it has been challenging to effectively implement this idea, especially in
high-dimensional problems. In this paper, we introduce iterated Q-Network (i-QN), a novel
principled approach that enables multiple consecutive Bellman updates by learning a tai-
lored sequence of action-value functions where each serves as the target for the next. We
show that i-QN is theoretically grounded and that it can be seamlessly used in value-based
and actor-critic methods. We empirically demonstrate the advantages of i-QN in Atari 2600
games and MuJoCo continuous control problems.

1 Introduction
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Figure 1: Iterated Q-Network (ours) uses the online
network of regular Q-Network approaches to build a
target for a second online network, and so on, through
the application of the Bellman operator Γ. The result-
ing loss Li-QN comprises K temporal difference errors
instead of just one as in LQN.

Deep Reinforcement Learning (RL) algorithms have
achieved remarkable success in various fields, from
nuclear physics (Degrave et al., 2022) to construc-
tion assembly tasks (Funk et al., 2022). These al-
gorithms aim at obtaining a good approximation
of an action-value function through consecutive ap-
plications of the Bellman operator Γ to guide the
learning procedure in the space of Q-functions, i.e.,
Q0 → ΓQ0 = Q1 → ΓQ1 = Q2 → · · · (Bert-
sekas, 2019). This process is known as value iter-
ation. Approximate value iteration (AVI) (Farah-
mand, 2011) extends the value iteration scheme to
function approximation by adding a projection step,
Q0 → ΓQ0 ≈ Q1 → ΓQ1 ≈ Q2 → · · · . Thus, the
kth Bellman update ΓQk−1 gets projected back onto
the chosen Q-function space via a new function Qk

approximating ΓQk−1. This projection step also appears in approximate policy evaluation (APE), where an
empirical version of the Bellman operator for a behavioral policy is repeatedly applied to obtain its value
function (Sutton & Barto, 1998).

In this paper, we discuss and tackle two efficiency issues resulting from the AVI learning scheme. (i) Pro-
jection steps are made sequentially, thus forcing to learn a Bellman update only at the end of the previous
projection step, harming the efficiency of the training. (ii) Samples are only used to learn a one-step ap-
plication of the Bellman operator at each gradient step, reducing sample-efficiency. We propose a novel
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approach to overcome these limitations by learning consecutive Bellman updates simultaneously. We lever-
age neural network function approximation to learn consecutive Bellman updates in a telescopic manner,
forming a chain where each neural network learns the application of the Bellman operator over the previ-
ous one, as shown in Figure 1. This leads to a hierarchical ordering between the Q-estimates, where each
one is the projection of the Bellman update corresponding to the previous one, hence the name iterated
Q-Network (i-QN). Importantly, i-QN distributes the samples across all considered projection steps, thereby
increasing the number of samples that each Q-function is learned from. Our approach can be seamlessly
used in place of the regular one-step Bellman update by any value-based or actor-critic method, e.g., Deep
Q-Network (DQN) (Mnih et al., 2015), Soft Actor-Critic (SAC) (Haarnoja et al., 2018). In the following, we
motivate our approach theoretically and provide an algorithmic implementation that we validate empirically
on Atari 2600 (Bellemare et al., 2013) and MuJoCo control problems (Todorov et al., 2012).

Contributions. (1) We introduce iterated Q-Network (i-QN), a novel approach that enables learning
multiple Bellman updates at once. (2) We provide intuitive and theoretical justifications for the advantages
and soundness of i-QN. (3) We show that i-QN can be seamlessly combined with value-based and actor-critic
methods to enhance their performance, conducting experiments on Atari games and MuJoCo tasks.

2 Preliminaries

We consider discounted Markov decision processes (MDPs) defined as M = ⟨S, A, P, R, γ⟩, where S and
A are measurable state and action spaces, P : S ×A → ∆(S)1 is a transition kernel, R : S ×A → ∆(R) is a
reward function, and γ ∈ [0, 1) is a discount factor (Puterman, 1990). A policy is a function π : S → ∆(A),
inducing an action-value function Qπ(s, a) ≜ Eπ [

∑∞
t=0 γtR(st, at)|s0 = s, a0 = a] that gives the expected

discounted cumulative return executing action a in state s, following policy π thereafter. The objective is
to find an optimal policy π∗ = arg maxπ V π( · ), where V π( · ) = Ea∼π( · )[Qπ( · , a)]. Approximate value
iteration (AVI) and approximate policy iteration (API) are two common paradigms to tackle this problem
(Sutton & Barto, 1998). While AVI aims to find the optimal action-value function Q∗( · , ·) ≜ maxπ Qπ( · , ·),
API alternates between approximate policy evaluation (APE) to estimate the action-value function of the
current policy and policy improvement that improves the current policy from the action-value function
obtained from APE.

Both paradigms aim to find the fixed point of a Bellman equation by repeatedly applying a Bellman operator
starting from a random Q-function. AVI uses the optimal Bellman operator Γ∗, whose fixed point is Q∗,
while APE relies on the Bellman operator Γπ associated with a policy π, whose fixed point is Qπ (Bertsekas,
2015). For any state s ∈ S and action a ∈ A, Γ∗ and Γπ are defined as

(Γ∗Q)(s, a) ≜ Er∼R(s,a),s′∼P(s,a)[r + γ max
a′∈A

Q(s′, a′)], (1)

(ΓπQ)(s, a) ≜ Er∼R(s,a),s′∼P(s,a),a′∼π(s′)[r + γQ(s′, a′)]. (2)

It is well-known that these operators are contraction mappings in L∞-norm, such that their iterative ap-
plication leads to their fixed point in the limit (Bertsekas, 2015). However, in model-free RL, only sample
estimates of those operators are used since the expectations cannot be computed in closed form. This ap-
proximation, coupled with the use of function approximation to cope with large state-action spaces, forces
learning the values of a Bellman update before being able to compute the next Bellman update. This pro-
cedure, informally known as projection step, results in a sequence of projected functions (Qi) that does not
correspond to the one obtained from the consecutive applications of the true Bellman operator, as shown in
Figure 2a, where Γ equals Γ∗ for AVI and Γπ for APE. We denote QΘ as the space of function approximators,
where Θ is the space of parameters. To learn a Bellman update ΓQθ̄0

given a fixed parameter vector θ̄0 ∈ Θ,
for a sample s, a, r, s′, Temporal Difference (TD) learning (Hasselt, 2010; Haarnoja et al., 2018) aims to
minimize

LQN(θ1|θ̄0, s, a, r, s′) =
(

Γ̂Qθ̄0
(s, a)−Qθ1(s, a)

)2
, (3)

over parameters θ1 ∈ Θ, where Γ̂ is an empirical estimate of Γ and QN stands for Q-Network. In current
1∆(X ) denotes the set of probability measures over a set X .

2



Under review as submission to TMLR

ΓQ0

0Q 1Q

ΓQ1

2Q
ΓQ2

3Q

Q* π

(a) Q-Network

ΓQ1
ΓQ0

0Q 1Q 2Q

Q* π

ΓQ2

3Q
(b) iterated Q-Network (ours)

Figure 2: Graphical representation of the regular Q-Network approach (left) compared to our proposed
iterated Q-Network approach (right) in the space of Q-functions Q. The regular Q-Network approach
proceeds sequentially, i.e., Q2 is learned only when the learning process of Q1 is finished. With iterated Q-
Network, all parameters are learned simultaneously. The projection of Q∗/π and projections of the Bellman
update are depicted with a dashed line2. The losses are shown in red.

approaches, a single Bellman update is learned at a time. The training starts by initializing the target
parameters θ̄0 and the online parameters θ1. The distance between Qθ1 , representing the second Q-function
Q1, and ΓQθ̄0

, representing the first Bellman update ΓQ0, is minimized via the loss in Equation 3, as shown
in Figure 2a. After a predefined number of gradient steps, the procedure repeats, as in Figure 2a, where the
second and third projection steps are blurred to stress the fact that they are learned sequentially. However,
this sequential execution is computationally inefficient because it requires many non-parallelizable gradient
steps to train a single projection. Moreover, this procedure is sample-inefficient since, at each gradient step,
samples are used to learn only one Bellman update. In this work, we present a method that learns multiple
Bellman updates at each gradient from a single sample batch. Importantly, our method scales to deep RL
as shown in Section 6.

3 Related work

ΓQ

Q

Q* πΓQ

Figure 3: Other empirical Bellman operators
can be represented using another notation Γ̃
than the classical empirical Bellman opera-
tor Γ̂. Changing the class of function ap-
proximators QΘ results in a new space Q̃Θ.

Several methods have been proposed on top of Q-learning to
improve various aspects. A large number of those algorithms
focus on variants of the empirical Bellman operator (Van Has-
selt et al., 2016; Fellows et al., 2021; Sutton, 1988). For in-
stance, double DQN (Van Hasselt et al., 2016) uses an empiri-
cal Bellman operator designed to avoid overestimating the re-
turn. As shown in Figure 3, this results in a different location
of the Bellman update Γ̃Q compared to the classical Bellman
update Γ̂Q. Other approaches consider changing the space
of representable Q-functions QΘ (Wang et al., 2016; Osband
et al., 2016; Fatemi & Tavakoli, 2022; Ota et al., 2021), at-
tempting to improve the projection of Q∗/π on QΘ compared
to the one for the chosen baseline’s neural network architec-
ture. It is important to note that adding a single neuron to
one architecture layer can significantly change QΘ. Wang et al. (2016) show that performance can be in-
creased by including inductive bias into the neural network architecture. This idea can be understood as a
modification of QΘ, as shown in Figure 3 where the new space of representable Q-function Q̃Θ is colored in
yellow. Furthermore, algorithms such as Rainbow (Hessel et al., 2018) leverage both ideas.

To the best of our knowledge, only a few works consider learning multiple Bellman updates concurrently.
Using a HyperNetwork (Ha et al., 2016), Vincent et al. (2024a) propose to approximate the Q-function
parameters resulting from consecutive Bellman updates. While the idea of learning a HyperNetwork seems
promising, one limitation is that it is challenging to scale to action-value functions with millions of param-

2The existence of a projection on QΘ depends only on the choice of the function approximator. Note that even if the
projection does not exist, the presented abstraction is still valid.
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Figure 4: Left: Graphical representation of i-QN where each online networks Qk learns from its respective
target network Q̄k−1. Every G steps, each target network Q̄k (k > 0) is updated to its respective Qk. Right:
i-QN considers a window of K Bellman updates as opposed to QN methods that consider only 1 Bellman
update. Every T steps, the windows are shifted forward to consider the following Bellman updates.

eters (Mnih et al., 2015). Similarly, Schmitt et al. (2022) provide a theoretical study about the learning
of multiple Bellman updates concurrently. They consider an off-policy learning setting for linear function
approximation and focus on low-dimensional problems. Crucially, their study shows that, in the limit, the
concurrent learning of a sequence of consecutive Q-functions converges to the same sequence of Q-functions
when learning is carried out sequentially. This finding leads to the following statement: we do not need to
wait until one Q-function has converged before learning the following one. In this work, we pursue this idea
by proposing a novel approach that scales with the number of parameters of the Q-function.

4 Learning multiple Bellman updates

The motivation behind learning multiple Bellman updates arises from a well-known result in AVI, which
establishes an upper bound on the performance loss ∥Q∗−QπN ∥, where πN is the greedy policy of QN , i.e.,
the last Q-function learned during training (Theorem 3.4 from Farahmand (2011), stated in Appendix A for
completeness). The only term of this upper bound that is controlled by the optimization procedure is the
sum of approximation errors3 ∑N

k=1 ∥Γ∗Qk−1 −Qk∥2
2,ν , where ν is the distribution of the state-action pairs

in the replay buffer. Therefore, minimizing this sum of terms is crucial to obtain low performance losses.
By learning one Bellman update at a time, classical Q-Network approaches minimize each term at a time,
which is suboptimal compared to minimizing the entire sum at once. Indeed, optimizing for the immediate
approximation error does not guarantee a low sum of approximation errors at the end of the training.
Therefore, in this work, we propose a novel approach that considers several consecutive Bellman updates
simultaneously, as illustrated in Figure 2b. We complement this abstract visualization with Figure 10 in
Appendix C.1, where we verify the described behavior in practice on a simple two-dimensional problem by
applying our approach to Fitted-Q iteration (Ernst et al., 2005).

Analogously to classical QN approaches, we construct each Bellman update using a target network. This
means that we consider K online parameters (θk)K

k=1 and K target parameters (θ̄k)K−1
k=0 , where each online

parameter θk is learned to fit its corresponding Bellman update computed from the target parameters θ̄k−1.
Crucially, each QN loss LQN(θk|θ̄k−1, s, a, r, s′) is learned in parallel from a shared sample (s, a, r, s′). To
enforce the structure of a chain, we update each target network θ̄k (k > 0) to its corresponding online
network θk every D steps as Figure 4 (left) illustrates, in which we note Qk = Qθk

and Q̄k = Qθ̄k
for clarity.

Unfortunately, learning all the Bellman updates is not feasible in practice as it would require storing many
Q-functions parameters. Instead, we learn a window composed of K consecutive Bellman updates that is
shifted every T steps as shown in Figure 4 (right). Classical QN approaches also fit in this representation
as they consider a window of size 1. The window is shifted by updating each target parameter θ̄k to the
following online parameter θk+1.

As i-QN is a semi-gradient method using target networks, the sum of approximation errors is not directly
minimized. Indeed, since each target network Qθ̄k

is frozen, i.e., there is a gap between them and their
corresponding online network Qθk

, as shown in Figure 4 (left). This means that even when each approxima-
3We ignore the factors αk weighting the sum of approximation errors as they do not play a significant role in the analysis.
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Algorithm 1 Iterated Deep Q-Network (i-DQN). Modifications to DQN are marked in purple.

1: Initialize the first target network θ̄0 and the K online parameters (θk)K
k=1, and an empty replay buffer

D. For k = 1, .., K − 1, set θ̄k ← θk the rest of the target parameters.
2: repeat
3: Sample kb ∼ U{1, .., K}.
4: Take action at ∼ ϵ-greedy(Qθ

kb
(st, ·)); Observe reward rt, next state st+1.

5: Update D ← D
⋃
{(st, at, rt, st+1)}.

6: every G steps
7: Sample a mini-batch B = {(s, a, r, s′)} from D.
8: for k = 1, .., K do [in parallel]
9: Compute the loss w.r.t. θk, LDQN =

∑
(s,a,r,s′)∈B

(
r + γ maxa′ Qθ̄k−1

(s′, a′)−Qθk
(s, a)

)2
.

10: Update θk from ∇θk
LDQN.

11: every T steps
12: Shift the parameters θ̄k ← θk+1, for k ∈ {0, .., K − 1}.
13: every D steps
14: Update θ̄k ← θk, for k ∈ {1, .., K − 1}.

tion error ∥ΓQθ̄k−1
−Qθk

∥2
2,ν decreases by minimizing the corresponding QN loss between θk and θ̄k−1, the

sum of approximation errors ∥Γ∗Qθ̄0
− Qθ1∥2

2,ν +
∑K

k=2 ∥Γ∗Qθk−1 − Qθk
∥2

2,ν does not necessarily decrease.
Nevertheless, we derive a sufficient condition under which the considered sum of approximation errors de-
creases. For that, we refine our notation by referring to (θt

k)K
k=0 as the value of the parameters the tth time

the target parameters (θ̄k)K−1
k=1 are updated to their respective online parameters (θk)K−1

k=1 , which happens
every D steps. Proposition 4.1 states that the sum of approximation errors is reduced (Equation 5) if the
gain obtained by each parameter θt+1

k compared to θt
k over the function θ 7→ ∥Γ∗Qθt

k−1
− Qθ∥2,ν is greater

than the displacement of the target ∥Γ∗Qθt+1
k−1
− Γ∗Qθt

k−1
∥2,ν (Equation 4). The proof, which relies mainly

on the triangular inequality, is available in Appendix A.
Proposition 4.1. Let t ∈ N, (θt

k)K
k=0 be a sequence of parameters of Θ, and ν be a probability distribution

over state-action pairs. If, for every k ∈ {1, .., K},

∥Γ∗Qθt
k−1
−Qθt

k
∥2,ν︸ ︷︷ ︸

kthapprox error before optimization

− ∥Γ∗Qθt
k−1
−Qθt+1

k
∥2,ν︸ ︷︷ ︸

kthapprox error after optimization

≥ ∥Γ∗Qθt+1
k−1
− Γ∗Qθt

k−1
∥2,ν︸ ︷︷ ︸

displacement of the target

(4)

then, we have
K∑

k=1
∥Γ∗Qθt+1

k−1
−Qθt+1

k
∥2

2,ν︸ ︷︷ ︸
sum of approx errors after optimization

≤
K∑

k=1
∥Γ∗Qθt

k−1
−Qθt

k
∥2

2,ν︸ ︷︷ ︸
sum of approx errors before optimization

(5)

We point out that the optimization procedure is designed to make Equation 4 valid, i.e., to maximize
the left side of the inequality. Indeed, for t ∈ N, k ∈ {1, .., K}, each θt+1

k is learned to minimize θ 7→∑
(s,a,r,s′)∈D LQN(θ|θt

k−1, s, a, r, s′) starting from θt
k. This is equivalent to minimizing θ 7→ ∥Γ∗Qθt

k−1
−Qθ∥2

2,ν

under the condition that the dataset of samples D is rich enough to represent the true Bellman operator as
proven in Proposition A.1 of Appendix A.

4.1 Practical implementation

The presented approach can be seen as a general framework to design iterated versions of standard value-
based algorithms. Indeed, i-QN is an approach orthogonal to the choice of LQN ; thus, it can enable multiple
simultaneous Bellman updates in any algorithm based on value function estimation. As an example, Algo-
rithm 1 showcases an iterated version of DQN (Mnih et al., 2015) that we call iterated Deep Q-Network (i-
DQN). We recall that when K = 1, the original algorithm is recovered. Similarly, Algorithm 2 is an iterated
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K 1 4 7 10 20
% of the time the CSAE 0 17 23 23 24does not decrease
Average decrease of the 0.3 1.5 2.6 3.9 7.8CSAE (×10−4)

% of the time Eq. 5 holds 100 100 100 100 100when Eq. 4 holds
Proportion of the CSAE’s 100 68 69 66 67decrease when Eq. 4 holds

Table 1: Empirical evaluation of the considered sum of approxi-
mation errors (CSAE) and Equations 4 and 5 on car-on-hill with
i-QN applied to FQI for different window sizes K.

version of SAC (Haarnoja et al., 2018) that we call iterated Soft Actor-Critic (i-SAC). In the actor-critic
setting, Polyak averaging (Lillicrap et al., 2015) is usually performed instead of hard updates. Therefore, we
adapt the way the targets are updated in i-SAC, i.e., we update the value of θ̄0 to τθ1 + (1 − τ)θ̄0, where
τ ∈ [0, 1] and the enforced chain structure will shift the rest of the parameters forward.

The availability of a sequence of approximations of consecutive Bellman updates raises the question of how
to use them to draw actions in a Q-learning setting and how to train the policy in an actor-critic setting. We
consider those choices to be similar as they both relate to the behavioral policy. We recall that, in sequential
approaches, the single online network is the only possible choice. For iterated Q-Network approaches, we
choose to sample a Q-function uniformly from the set of online networks to avoid the caveat of passive
learning identified by Ostrovski et al. (2021). We empirically justify this choice in Section 6.1.1, where we
investigate different sampling strategies.

5 Motivating example

In this section, we provide an empirical analysis of i-QN on fitted Q-iteration (FQI) in the car-on-hill
environment (Ernst et al., 2005) using non-linear function approximation (Riedmiller, 2005). The experiment
setup is detailed in Appendix C.2. We study i-FQI’s behavior with N = 40 Bellman iterations for varying
window sizes, K ∈ {1, 4, 7, 10, 20}. We recall that K = 1 corresponds to the regular FQI approach. As the
experiment is done offline, we impose a budget on the total number of non-parallelizable gradient steps. This
means that we have to shift the windows faster for lower values of K so that each algorithm has learned
N = 40 Bellman updates at the end of the training. On the left y-axis of Figure 5, we show that for higher
values of K, we obtain lower performance losses (in solid lines) after only a few Bellman iterations. In dashed
lines, we show that continuing the training further improves the performance as the iterated approach keeps
learning the last K−1 projection steps since the considered windows still contain those terms. This motivates
the idea of learning consecutive Bellman updates simultaneously.

We now push this analysis further by computing the key quantities introduced in Section 4. On the right
y-axis of Figure 5, the sum of the 40 approximation errors decreases as K increases. As expected, this is in
accordance with the aforementioned theoretical results of Theorem 3.4 from Farahmand (2011). The effect
of performing multiple Bellman updates is also evident from a visual interpretation of the plots, where one
can see that increasing the value of K results in shrinking the plots obtained for smaller values of K to the
left. This is explained by the ability of i-QN to look ahead of multiple Bellman iterations, thus anticipating
the behavior of less far-sighted variants and making better use of the sample. It is important to note that
car-on-hill needs approximately 20 FQI iterations to be solved, for which reason i-FQI with K = 20 has an
evident advantage over the other values of K.

As stated in Section 4, i-QN does not minimize the sum of approximation errors directly due to semi-
gradient updates. This can be verified empirically from the first line of Table 1 as the percentage of time
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the considered sum of approximation errors does not decrease (Equation 5 does not hold) is positive when
K > 1. Nonetheless, it appears that, on average, the considered sum of approximation errors decreases more
when K increases, as the second line of Table 1 indicates. This is coherent with the results shown in Figure 5,
as the sum of approximation errors is lower for higher values of K. The third line of Table 1 demonstrates
that when the proposed condition of Proposition 4.1 is verified (Equation 4 holds), the considered sum of
approximation errors always decreases (Equation 5 holds). This confirms that this condition is sufficient.
Finally, the last line of the table reports the proportion of the decrease in the considered sum of approximation
errors that happens when the condition of Proposition 4.1 is verified (Equation 4 holds) compared to when
it is not verified. The proposed condition is responsible for ≈ 70% of the decrease of the considered sum of
approximation errors. This shows that the proposed condition is relevant to explain i-QN’s ability to minimize
the sum of approximation errors for the considered example. For K = 1, this metric is at 100%, which is
expected since the proposed condition is equivalent to a decrease in the considered sum of approximation
errors. Indeed, when K = 1, the displacement to the target (the left term of Equation 4) is null since θt

0,
the only target parameter, is constant in t.

6 Experiments

We evaluate our proposed i-QN approach on deep value-based and actor-critic settings. As recommended
by Agarwal et al. (2021), we choose the interquartile mean (IQM) of the human normalized score to report
the results of our experiments with shaded regions showing pointwise 95% percentile stratified bootstrap
confidence intervals. IQM is a trade-off between the mean and the median where the tail of the score
distribution is removed on both sides to consider only 50% of the runs. 5 seeds are used for each Atari game,
and 10 seeds are used for each MuJoCo environment.

6.1 Atari 2600

We evaluate the iterated version of DQN and implicit quantile network (IQN) (Dabney et al., 2018) on 20
Atari 2600 games. Many implementations of Atari environments along with classical baselines are avail-
able (Castro et al., 2018; D’Eramo et al., 2021; Raffin et al., 2021; Huang et al., 2022). We choose to mimic
the implementation choices made in Dopamine RL (Castro et al., 2018) since it is the only one to release
the evaluation metric for the baselines that we consider and the only one to use the evaluation metric rec-
ommended by Machado et al. (2018). Namely, we use the game over signal to terminate an episode instead
of the life signal. The input given to the neural network is a concatenation of 4 frames in grayscale of
dimension 84 by 84. To get a new frame, we sample 4 frames from the Gym environment (Brockman et al.,
2016) configured with no frame-skip, and we apply a max pooling operation on the 2 last grayscale frames.
We use sticky actions to make the environment stochastic (with p = 0.25). The performance is the one
obtained during training. By choosing an identical setting as Castro et al. (2018), we leverage the baselines’
training performance reported in Dopamine RL. To ensure that the comparison is fair, we compared our
version of DQN and IQN to their version and verified their equivalence (see Figures 12 in Appendix C.3).

Hyperparameter settings. We use the same hyperparameters of the baselines, except for the target
update frequency, which we set 25% lower than the target update frequency of the baselines (6000 compared
to 8000). This choice is made to benefit from i-QN’s ability to learn each projection step with more gradient
steps and samples while shifting the window faster than sequential approaches. We stress that i-QN has
access to the same number of non-parallelizable gradient steps and the same number of samples. We choose
D = 30, and we let the Q-functions share the convolutional layers. We present the architecture of i-QN in
Figure 11 in Appendix C.3. Further details can be found in Table 3 in Appendix C.3. To ensure that our
implementation is trustworthy, Figure 12 in Appendix C.3 shows that the training performances of DQN
and IQN are comparable to the ones of i-DQN and i-IQN with K = 1, as expected.

Atari results. i-DQN with K = 5 outperforms DQN on the aggregation metric, as shown in Figure 6 (left),
both in terms of sample-efficiency and overall performance. In Figure 15 in Appendix E, the distribution of
final scores illustrates that i-DQN statistically dominates DQN on most of the scores. Notably, the iterated
version of IQN with K = 3 greatly outperforms the sequential approach. All the individual training curves
for the 20 Atari games are available in Figure 14 in Appendix E.
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Figure 6: Left: i-DQN and i-IQN outperform their respective sequential approach. Middle: i-DQN greatly
outperforms DQN with G = 1, which is a variant of vanilla DQN (G = 4) that has access to the same amount
of gradient steps as i-DQN. This shows that simply increasing the number of gradient steps of DQN is not
effective. Right: i-DQN with K = 4, T = 2000 parallelizes the training of DQN T = 8000 successfully since
it yields similar performances after 3125 projection steps (in orange). This parallelization saves samples and
gradient steps which can be used later to outperform DQN.

6.1.1 Ablation studies

We propose various ablation studies on different Atari games to help understand i-QN’s behavior.

Gradient steps executed in parallel. The iterated approach performs K times more gradient steps than
the sequential one as it considers K online networks instead of 1. Crucially, the batch of samples is shared
between the networks, which means that the iterated approach observes the same amount of samples during
training. Additionally, those additional gradient steps are executed in parallel so that the training time
remains controllable when enough parallel processing power is available. We refer to Appendix D for further
discussions. Nonetheless, we compare i-DQN with K = 4 (i-DQN, K = 4, G = 1) to a version of DQN which
has access to the same number of gradient steps (DQN, G = 1). We also set the target update frequency
of i-DQN T to be the same as DQN, i.e., 8000 so that the windows shift at equal speed. We report the
performances in Figure 6 (middle) and add a vanilla version of DQN (DQN, G = 4) for completeness. DQN
with G = 1 leads to overfitting while having a training time 89% longer than i-DQN. This result shows that
simply allowing DQN to perform more gradient steps is not beneficial.

Learning consecutive projection steps simultaneously. In Section 4, we argue that we can effectively
learn multiple Bellman updates simultaneously. We also provide a condition under which this idea is guaran-
teed to be beneficial. We now evaluate a version of i-DQN with K = 4, and with a target update frequency set
at a fourth of the one of DQN (T = 2000 instead of 8000). With this setting, each projection step is learned
on the same number of samples and gradient steps with DQN and i-DQN. We report the results in Figure 6
(right) and mark in orange the performance after 3125 (100 × 250000/8000 = 25 × 250000/2000 = 3125)
projection steps and in red the performance after 6250 projection steps. i-DQN requires 4 times fewer sam-
ples and gradient steps to reach those marked points compared to DQN since i-DQN’s window shifts 4 times
faster. Interestingly, the performances of i-DQN and DQN after 3125 projection steps are similar, showing
that waiting for one projection step to finish to learn the next one is not necessary. After the 6250 projection
steps, the performance of i-DQN is slightly below the one of DQN. We believe that this comes from the fact
that, at this point of the training, DQN has access to 4 times more environment interactions than i-DQN.
Nevertheless, by learning the 3 following projection steps while the first one is being learned, i-DQN is more
efficient than DQN.

Comparing different window sizes. In Figure 7 (left), we report the performances for K = 1, 5 and
10. Notably, higher performance is achieved with higher window sizes. In the main experiment presented
in Figure 6 (left), we choose K = 5 because it provides a good trade-off between sample efficiency and
additional training time. See Section D for more details about training time.
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Figure 7: Left: Ablation study on the number of Bellman updates K taken into account in the loss. Greater
performances are reached for greater values of K in Asteroids and Asterix. In Qbert, iDQN with K = 10 might
allow the agent to overfit the targets since each Bellman update is learned with 10 times more gradient steps.
We recall that DQN is equivalent to iDQN with K = 1. Right: i-DQN with K = 5 performs differently
than DQN + 5-step return on 4 randomly selected games (Breakout, DemonAttack, ChopperCommand, and
Krull). DQN + 3-step return can be improved by simultaneously learning 5 Bellman updates.
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Figure 8: Left: Ablation study on how actions are sampled when i-DQN interacts with the environment.
Right: Ablations on Asterix and Breakout indicate improved performance with target networks.

Iterated Q-network vs. n-step return. We point out that i-QN is not equivalent to n-step return
(Watkins, 1989). While our approach aims at learning multiple consecutive projection steps simultaneously,
n-step return applies Bellman updates considering a sequence of n consecutive rewards and the bootstrapped
target at the nth step. In other words, n-step return derives another empirical Bellman operator as it
computes the target as an interpolation between a one-step bootstrapping and a Monte-Carlo estimate.
Nonetheless, we compare i-DQN with K = 5 to DQN with 5-step return in Figure 7 (right). DQN with
5-step return behaves substantially worse than i-DQN with K = 5 on 4 randomly selected Atari games. The
individual training curves are shown in Figure 16 of Appendix E.

One parallel can be done to link the two approaches in the APE setting. Indeed, using n-step return can be
seen as applying the empirical Bellman operator n times. With n = 2, (Γ̂π)2Q(s, a) = r0 + γΓ̂πQ(s1, π(s1))
= r0 + γ(r1 + γQ(s2, π(s2))) = r0 + γr1 + γ2Q(s2, π(s2)). Thus, combining the idea of learning K Bellman
updates with n-step return artificially brings the length of the window to n × K where K consecutive
projections of the Bellman operator applied n times are learned. This fact is also discussed in Section 5.3
of Schmitt et al. (2022). It is worth noticing that this is not the case for AVI since the max operator is
not linear. With n = 2, (Γ̂∗)2Q(s, a) = r0 + γ maxa1 Γ̂∗Q(s1, a1) = r0 + γ maxa1(r1 + γ maxa2 Q(s2, a2)) ̸=
r0 + γr1 + γ2 maxa2 Q(s2, a2). Interestingly, n-step return can be seamlessly used with i-QN. In Figure 7,
we show that the iterated version of DQN with 3-step return outperforms its sequential counterpart.

Action sampling. As explained in Section 4, the availability of several online Q-functions corresponding
to K consecutive Bellman updates raises the question of which network to use for the sampling actions.
Informally, we can argue that along the chain of Q-functions in i-DQN, on the one hand, the first network
is the one with the best estimate of its respective Bellman update as it has seen the most samples, but it
is the most distant from the optimal Q-function. On the other hand, the last network is the less accurate
but the most far-sighted one. This creates a trade-off between accuracy and distance from the optimal
Q-function, that we face by sampling a network uniformly at each step. This also helps mitigate passive
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learning (Ostrovski et al., 2021) as each network can interact with the environment. In Figure 8 (left), we
compare the performance of our uniform sampling strategy to a variant of i-DQN where only the first and
last network sample actions. The uniform sampling strategy shows a slight superiority over the others.

Relevance of the target networks. We evaluate a version of i-DQN without target networks. In this
version, each online parameter θk is learned from the previous online parameter of the chain θk−1. In
Figure 8 (right), we compare this version of i-DQN to the vanilla version of i-DQN where each target
parameter θ̄k is updated to its respective online parameter θk every D gradient steps. Despite having fewer
memory requirements, the version of i-DQN without target networks obtains worse results and even drops
performance on Asterix. This supports the idea that target networks are useful for stabilizing the training.

In Appendix E, we present additional ablation studies about the choice of sharing the convolutional layers,
the distance between the networks during training, and a comparison between i-DQN and a version of DQN
with the same total number of parameters as i-DQN.

6.2 MuJoCo continuous control
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Figure 9: Training curves of i-SAC and i-DroQ
(K = 4) along with SAC and DroQ. The iter-
ated versions outperform their sequential coun-
terparts. The curves are normalized by the final
performance of SAC.

We evaluate our proposed iterated approach over two
actor-critic algorithms on 6 different MuJoCo environ-
ments. We build i-SAC on top of SAC and i-DroQ on top
of DroQ (Hiraoka et al., 2022). We set K = 4, meaning
that the iterated versions consider 4 Bellman updates in
the loss instead of 1. Therefore, we set the soft target up-
date rate τ to 4 times higher than the sequential baseline
algorithms (τ = 0.02 compared to 0.005) while keeping
all other hyperparameters identical. Figure 9 shows the
training performances of i-SAC and i-DroQ against their
respective baselines. The IQM return is normalized by
the final performance of SAC. Both iterated versions out-
perform their respective sequential counterparts. While
i-DroQ dominates DroQ until the end of the training at 1
million environment interactions, i-SAC finally converges
to the same performances as SAC. Per environment plots
are available in Figure 20 of Appendix F. In Figures 19
and 21 of Appendix F, we verify that the gain in perfor-
mances of i-SAC and i-DroQ over SAC and DroQ is not
due to difference in the soft target update rate τ . For
that, we make the soft target update rate of SAC and
DroQ match the one of i-SAC and i-DroQ. The iterated approaches still outperform the sequential ap-
proaches, validating that learning multiple Bellman updates in parallel is beneficial. Table 4 gathers all the
hyperparameters used in this section.

7 Discussion and conclusion

We have presented iterated Q-Network (i-QN), a new approach that considers multiple consecutive projection
steps in the loss to overcome the limitations of the one-step Bellman updates. We have theoretically and
empirically analyzed its benefit across several problems when applied to value-based and actor-critic methods.
Remarkably, i-IQN provides a 13% improvement over IQN final performances aggregated over 20 Atari
games. Future works could investigate the idea of learning several iterations in parallel for other sequential
RL algorithms. For example, trust-region methods are sequential algorithms where data collection and policy
optimization alternate sequentially.
Limitations. While i-QN is sample efficient, it requires additional training time and a larger memory
requirement than the sequential approach. We quantify this limitation in Appendix D. Importantly, if
enough parallel processing power is available, i-QN’s training time becomes similar to the one of a regular
Q-Network as the additional gradient steps used by i-QN are parallelizable.
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A Proofs

Theorem 3.4 from Farahmand (2011). Let N ∈ N∗, and ρ, ν two probability measures on S × A. For
any sequence (Qk)N

k=0 ∈ Q
N+1
Θ where Rγ depends on the reward function and the discount factor, we have

∥Q∗ −QπN ∥1,ρ ≤ CN,γ,Rγ
+ inf

r∈[0,1]
F (r; N, ρ, γ)

( ∑N
k=1 α2r

k ∥Γ∗Qk−1 −Qk∥2
2,ν

) 1
2

where CN,γ,Rγ
, F (r; N, ρ, γ), and (αk)N

k=0 do not depend on (Qk)N
k=0. πN is a greedy policy computed from

QN .

Proposition 4.1. Let t ∈ N, (θt
k)K

k=0 be a sequence of parameters of Θ, and ν be a probability distribution
over state-action pairs. If, for every k ∈ {1, .., K},

∥Γ∗Qθt
k−1
−Qθt

k
∥2,ν︸ ︷︷ ︸

kthapprox error before optimization

− ∥Γ∗Qθt
k−1
−Qθt+1

k
∥2,ν︸ ︷︷ ︸

kthapprox error after optimization

≥ ∥Γ∗Qθt+1
k−1
− Γ∗Qθt

k−1
∥2,ν︸ ︷︷ ︸

displacement of the target

(4)

then, we have
K∑

k=1
∥Γ∗Qθt+1

k−1
−Qθt+1

k
∥2

2,ν︸ ︷︷ ︸
sum of approx errors after optimization

≤
K∑

k=1
∥Γ∗Qθt

k−1
−Qθt

k
∥2

2,ν︸ ︷︷ ︸
sum of approx errors before optimization

(5)

Proof. For t ∈ N, let (θt
k)K

k=0 be a sequence of parameters of Θ and ν be a probability distribution over
state-action pairs. We assume that for every k ∈ {1, .., K} condition Equation 4 holds.

Now, we show that for every k ∈ {1, .., K}, ∥Γ∗Qθt+1
k−1
− Qθt+1

k
∥2,ν ≤ ∥Γ∗Qθt

k−1
− Qθt

k
∥2,ν . From there,

Equation 5 can be obtained by applying the square function to both sides of the inequality and summing
over k.

Let k ∈ {1, .., K}. To show that ∥Γ∗Qθt+1
k−1
−Qθt+1

k
∥2,ν ≤ ∥Γ∗Qθt

k−1
−Qθt

k
∥2,ν , we start with the left side of

the inequality

∥Γ∗Qθt+1
k−1
−Qθt+1

k
∥2,ν = ∥Γ∗Qθt+1

k−1
− Γ∗Qθt

k−1
+ Γ∗Qθt

k−1
−Qθt+1

k
∥2,ν

≤ ∥Γ∗Qθt+1
k−1
− Γ∗Qθt

k−1
∥2,ν + ∥Γ∗Qθt

k−1
−Qθt+1

k
∥2,ν

≤ ||Γ∗Qθt
k−1
−Qθt

k
||2,ν ,

The second last inequation comes from the triangular inequality, and the last inequation comes from the
assumption that Equation 4 holds.

Proposition A.1. Let (θ̄, θ) be a pair of parameters of Θ and D = {(s, a, r, s′)} be a set of samples. Let ν
be the distribution represented by the state-action pairs present in D. We note Ds,a = {(r, s′)|(s, a, r, s′) ∈
D},∀(s, a) ∈ D. If for every state-action pair (s, a) ∈ D, E(r,s′)∼Ds,a

[
Γ̂Qθ̄(s, a)

]
= ΓQθ̄(s, a), then,

∑
(s,a,r,s′)∈D

LQN(θ|θ̄, s, a, r, s′) = M∥Γ∗Qθ̄ −Qθ∥2
2,ν + constant w.r.t. θ (6)

where M is a constant w.r.t. θ. Thus, minimizing θ 7→
∑

(s,a,r,s′)∈D LQN(θ|θ̄, s, a, r, s′) is equivalent to
minimizing θ 7→ ∥Γ∗Qθ̄ −Qθ∥2

2,ν .
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Proof. The proof is inspired from Vincent et al. (2024b). Let (θ̄, θ) be a pair of parameters of Θ and
D = {(s, a, r, s′)} be a set of samples. Let ν be the distribution of the state-action pairs present in D.
In this proof, we note Γ̂ as Γ̂r,s′ to stress its dependency on the reward r and the next state s′. For
every state-action pair (s, a) in D, we define the set Ds,a = {(r, s′)|(s, a, r, s′) ∈ D} and assume that
E(r,s′)∼Ds,a

[Γ̂r,s′Qθ̄(s, a)] = ΓQθ̄(s, a). Additionally, we note M the cardinality of D, Ms,a the cardinality of
Ds,a and D̊ the set of unique state-action pairs in D. We write∑

(s,a,r,s′)∈D

LQN(θ|θ̄, s, a, r, s′) =
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)−Qθ(s, a)

)2

=
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a) + ΓQθ̄(s, a)−Qθ(s, a)

)2

=
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)2

+
∑

(s,a,r,s′)∈D

(ΓQθ̄(s, a)−Qθ̄(s, a))2

+2
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθ(s, a)).

The second last equation is obtained by introducing the term ΓQθ̄(s, a) and removing it. The last equation
is obtained by developing the previous squared term. Now, we study each of the three terms:

•
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)2
is independent of θ

•
∑

(s,a,r,s′)∈D (ΓQθ̄(s, a)−Qθ(s, a))2 equal to M × ||ΓQθ̄ −Qθ||22,ν by definition of ν.

• ∑
(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθ(s, a))

=
∑

(s,a)∈D̊

 ∑
(r,s′)∈Ds,a

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθ(s, a))

 = 0

since, for every (s, a) ∈ D̊,∑
(r,s′)∈Ds,a

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
= Ms,a

(
E(r,s′)∼Ds,a

[Γ̂r,s′Qθ̄(s, a)]− ΓQθ̄(s, a)
)

= 0,

the last equality holds from the assumption.

Thus, we have ∑
(s,a,r,s′)∈D

LQN(θ|θ̄, s, a, r, s′) = M × ||ΓQθ̄ −Qθ||22,ν + constant w.r.t θ

This is why minimizing θ 7→
∑

(s,a,r,s′)∈D LQN(θ|θ̄, s, a, r, s′) is equivalent to minimizing θ 7→ ∥Γ∗Qθ̄ −
Qθ∥2

2,ν .
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B Pseudocodes

Algorithm 2 Iterated Soft Actor-Critic (i-SAC). Modifications to SAC are marked in purple.
1: Initialize the policy parameters ϕ, 2× (K + 1) parameters ((θ1

k, θ2
k))K

k=0, and an empty replay buffer D.
2: repeat
3: Take action at ∼ πϕ(·|st); Observe reward rt, next state st+1; D ← D

⋃
{(st, at, rt, st+1)}.

4: for UTD updates do
5: Sample a mini-batch B = {(s, a, r, s′)} from D.
6: for k = 1, .., K; i = 1, 2 do [in parallel]
7: Compute the loss w.r.t. θi

k,

LSAC =
∑

(s,a,r,s′)∈B

(
r + γ

(
min

j∈{1,2}
Qθj

k−1
(s′, a′)− α log πϕ(a′|s′)

)
−Qθi

k

)2
, where a′ ∼ πϕ(·|s′).

8: Update θi
k from ∇θi

k
LSAC.

9: Update θi
0 ← τθi

1 + (1− τ)θi
0, for i ∈ {1, 2}.

10: Sample kb ∼ U{1, .., K}.
11: Compute the policy loss w.r.t ϕ, LActor = mini∈{1,2} Qθi

kb
(s, a)− α log πϕ(a|s), where a ∼ πϕ(·|s).

12: Update ϕ from ∇ϕLActor.

C Experiments details

We used the optimizer Adam (Kingma & Ba, 2015) for all experiments. We used JAX (Bradbury et al.,
2018) as a deep learning framework. We provide the source code in the supplementary material
and will publish it on github.com upon acceptance.

C.1 Behavior of Q-network and iterated Q-network on a Linear Quadratic Regulator
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Figure 10: Graphical representation of QN (left) and i-QN (right) in the space of Q-functions Q for the LQR
experiment.

Figures 2a and 2b are schematically representing the behavior of QN and i-QN approaches in the space of Q-
functions. Figure 10 shows that those representations are accurate for an offline problem: Linear Quadratic
Regulator (Bradtke, 1992). In this problem, the state and action spaces are continuous and one-dimensional.
The dynamics are linear: for a state s and an action a, the next state is given by s′ = 0.8s− 0.9a, and the
reward is quadratic r(s, a) = 0.5s2 + 0.4sa− 0.5a2. We choose to parametrize the space of Q-functions with
2 parameters (M, G) such that, for a state s and an action a, Q(s, a) = Ma2 + Gs2. To reduce the space of
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representable Q-functions, we constrain the parameter M to be negative and the parameter G to be between
−0.4 and 0.4. Starting from some initial parameters, we perform 30 gradient steps with a learning rate of
0.05 using the loss of QN and i-QN. Both figures show the space of representable Q-functions QΘ in green,
the optimal Q-function Q∗, the initial Q-function Q0 and its optimal Bellman update Γ∗Q0. The projection
of the optimal Bellman update is also shown with a dotted line. As we claim in the main paper, i-QN
manages to find a Q-function Q2 closer to the optimal Q-function Q∗ than Q1 found by QN. Figure 10 (left)
closely resembles Figure 2a. Likewise, Figure 10 (right) looks like Figure 2b, showing that the high-level
ideas presented in the paper are actually happening in practice.

C.2 Experiments on the car-on-hill environment

Experimental setting. The dataset contains 50.000 samples collected with a uniform policy from the
initial state [−0.5, 0]. We use a neural network with one hidden layer of 50 neurons. The batch size is 100
and we set D = 1. Each i-FQI run has access to 20.000 gradient steps. The results are average over 20
seeds. In Figure 5, we report the performance loss ∥Q∗ − QπN ∥ρ,1, where QπN is the action-value function
associated with the greedy policy of QN , which can be associated with the last network learned during
training. ρ is usually associated to the state-action distribution on which we would like the chosen policy to
perform well. Therefore, we choose ρ as a uniform distribution over the state space and action space on a
17× 17 grid as suggested by Ernst et al. (2005). In Figure 5, we compute the sum of approximation errors∑40

k=1 ∥Γ∗Qk−1 −Qk∥2
ν,2, where ν is the state-action distribution encountered during training, i.e., the data

stored in the replay buffer.

C.3 Experiments on the Atari games

Atari game selection. The Atari benchmark is a highly compute-intensive benchmark. Depending on
the hardware and the codebase, one seed for one Atari game can take between 1 day to 3 days to run DQN
on a GPU. This is why we could not afford to run the experiments on the 57 games with 5 seeds. The
20 games were chosen before doing the experiments and never changed afterward. They were chosen such
that the baselines and Rainbow have almost the same aggregated final scores for the 20 chosen games as the
aggregated final scores shared by Dopamine RL as shown in Table 2. The Atari games used for the ablation
studies were randomly selected. We stress that the purpose of those ablations is to highlight i-QN’s behavior
in the presented games, it is not meant to draw some conclusions on the general performance of i-QN over
the entire benchmark.

Table 2: The IQM Human normalized final scores of the baselines and Rainbow aggregated over the 55
available Atari games are similar to the ones aggregated over the 20 chosen games.

DQN Rainbow IQN
Final score over the 55 Atari games 1.29 1.71 1.76available in Dopamine RL

Final score over the 20 chosen Atari games 1.29 1.72 1.85
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DQN i-DQN

Figure 11: Losses and neural networks architectures of DQN and i-DQN. The dotted lines link the outputs
of the neural networks to the objects they represent. The flash signs stress how each projection step is being
learned, where Γ̂ is the empirical Bellman operator. The target networks are represented in blue while the
online networks are in purple. For i-DQN, the convolution layers of Q0 are stored separately since it is the
only target Q-function that is not updated every D steps.

DQN (our implementation)
DQN (dopamine)

i-DQN K=1 DQN + 3-step (our implementation)
DQN + 3-step (dopamine)

0 100 200
Num Frames (in millions)

0.0

2.5

5.0

7.5

IQ
M

 H
um

an
 N

or
m

 S
co

re

Breakout

0 100 200
Num Frames (in millions)

0.0

2.5

5.0

7.5
DemonAttack

IQN w/o 3-step (our implementation)
IQN w/o 3-step (dopamine)

i-IQN K=1 w/o 3-step IQN (our implementation)
IQN (dopamine)

0 100 200
Num Frames (in millions)

0.0

0.5

1.0

IQ
M

 H
um

an
 N

or
m

 S
co

re

KungFuMaster

0 100 200
Num Frames (in millions)

0.0

0.5

1.0

1.5
KungFuMaster

Figure 12: Left: Our implementations of DQN (top) and IQN (bottom) yield similar performance as the
implementation of Dopamine RL. This certifies that we can compare the results released in Dopamine RL
with our method. At the top, DQN and i-DQN with K = 1 have a similar behavior. This certifies the
trustworthiness of our code base. The same applies to IQN and i-IQN with K = 1 at the bottom. Right:
We draw similar conclusions when adding a 3-step return.
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Table 3: Summary of all hyperparameters used for
the Atari experiments. We note Convd

a,bC a 2D con-
volutional layer with C filters of size a×b and of stride
d, and FC E a fully connected layer with E neurons.

Environment
Discount factor γ 0.99
Horizon H 27 000
Full action space No
Reward clipping clip(−1, 1)

All algorithms
Number of epochs 200
Number of training 250 000steps per epochs
Type of the FIFOreplay buffer D
Initial number 20 000of samples in D
Maximum number 1 000 000of samples in D
Gradient step 4frequency G
Starting ϵ 1
Ending ϵ 10−2

ϵ linear decay 250 000duration
Batch size 32
Learning rate 6.25× 10−5

Adam ϵ 1.5× 10−4

Torso architecture
Conv4

8,832
−Conv2

4,464
−Conv1

3,364

Head architecture −FC 512
−FC nA

Activations ReLU
DQN & IQN

Target update 8 000frequency T

i-DQN & i-IQN
Target update 6 000frequency T
D 30

Table 4: Summary of all hyperparameters used for
the MuJoCo experiments. We note FC E a fully con-
nected layer with E neurons.

Environment
Discount factor γ 0.99
Horizon H 1 000

All algorithms
Number of 1 000 000training steps
Type of the FIFOreplay buffer D
Initial number 5 000of samples in D
Maximum number 1 000 000of samples in D
Update-To-Data 1UTD
Batch size 256
Learning rate 10−3

Adam β1 0.9
Policy delay 1
Actor and critic FC 256
architecture −FC 256

SAC & DroQ
Soft target update 5× 10−3
frequency τ

i-SAC & i-DroQ
Soft target update 2× 10−2
frequency τ
D 1
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D Training time and memory requirements

In Figure 13, we report the performances presented in the main experiments of the paper (Figure 6 (left)
and Figure 9) with the training time as the x-axis instead of the number of environment interactions.
Computations are made on an NVIDIA GeForce RTX 4090 Ti. For iDQN and iIQN, the game Breakout is
used to compute the training time. For iSAC and iDroQ, the training time is averaged over the 6 considered
environments. The iterated approach requires longer training time compared to the sequential approach.
Notably, i-QN reaches the final performances of the sequential approach faster as the first line of Table 5
reports. Indeed, i-IQN reaches IQN’s final performance 18h23m before IQN finished its training. Nonetheless,
we stress that the main focus of this work is on sample efficiency, as it remains the main bottleneck in practical
scenarios. We recall that DroQ and i-DroQ use a UTD of 20, which slows down the training significantly.
We also report the additional GPU vRAM usage of i-QN compared to QN on the second line of Table 5.
The additional memory requirements remain reasonable.
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Figure 13: i-QN and QN performances according to the training time on 20 Atari games (left) and 6 MuJoCo
environments (right). i-QN requires more training time than QN approaches. Nonetheless, i-QN reaches
QN’s final performances faster.

Table 5: Time efficiency and memory requirements. We report the difference between the time i-QN took to
reach QN’s final performance and QN’s training time as a measure of time efficiency. Despite taking longer
to train, i-QN is always more time-efficient than QN’s approaches for the four considered instances.

i-DQN vs DQN i-IQN vs IQN i-SAC vs SAC i-DroQ vs DroQ
for K = 5 for K = 3 for K = 4 for K = 4

Time saved by i-QN to reach 7h31m 18h23m 6m 1h55mQN’s final performance
Additional GPU 0.3 Gb 0.9 Gb 0.1 Gb 0.4 GbvRAM usage
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E Training curves for Atari games
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Figure 14: Training curves of i-DQN with K = 5 and i-IQN with K = 3 along with DQN, Rainbow and
i-IQN on 20 Atari games. As a reminder, IQN is also using a 3-step return. In most games, the iterated
approach outperforms its respective sequential approach.
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Figure 15: Performance profile. The figure shows the fraction of runs with a higher final score than a certain
threshold given by the x-axis. The iterated versions, i-DQN and i-IQN, statistically dominate their respective
sequential approach on most of the domain.
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Figure 16: i-DQN with K = 5 behaves differently than DQN + 5-step return. DQN + 3-step return is
boosted when learning K = 5 Bellman updates simultaneously (i-DQN K = 5 + 3-step).

Shared architecture vs. Independent networks. In Figure 17, we show the performance of i-DQN
when the convolution layers are shared and when the neural networks are independent from each other on 2
Atari games. In ChopperCommand, having fully independent networks seems more beneficial than sharing
the convolutional layers. We conjecture that this is due to the fact that the Bellman updates are far away
from each other, hence the difficulty of representing consecutive Bellman updates with shared convolutional
layers. Agarwal et al. (2020) share the same conclusion for Random Ensemble Mixture (REM) (Agarwal
et al., 2020). They explain that independent networks are more likely to cover a wider space in the space
of Q-functions. In CrazyClimber, both algorithms converge to the same score. Nonetheless, we argue that a
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Figure 17: Left: Independent networks can perform better than networks with shared convolutions. Right:
Inflating the number of parameters of DQN until it reaches the same number of parameters i-DQN with
K = 5 uses does not lead to performances as high as i-DQN on the 2 considered games. Notably, while
i-DQN uses the same architecture as DQN, the inflated version of DQN uses a larger architecture.
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Figure 18: Standard deviation of the output of the 5 online networks of i-DQN averaged over 3200 samples.
The standard deviation is greater than zero, indicating that the online networks are different from each
other. The signal has a tendency to decrease, which matches our intuition that the Q-functions become
increasingly close to each other as they get closer to the optimal Q-function.

shared architecture provides a reasonable trade-off between increased performances and additional memory
computation and training time.

Distance between the online networks. i-DQN heavily relies on the fact that the learned Q-functions
are located within different areas in the space of Q-functions. To verify this assumption, we computed the
standard deviation of the output of the learned Q-functions during the training in Figure 18. This figure
shows that the standard deviation among the Q-functions is indeed greater than zero across the 3 studied
games. Furthermore, the standard deviation decreases during training, suggesting they become increasingly
closer. This matches the intuition that at the end of the training, the iteration of the Q-functions should lie
at the boundary of the space of the space of representable Q-functions, close to each other.

i-DQN vs. DQN with an inflated number of parameters. i-DQN requires more parameters than
DQN as it learns K Bellman updates in parallel. We point out that each network of i-DQN uses the same
number of parameters as DQN, which means that both algorithms use the same amount of resources at
inference time. Nevertheless, we consider a version of DQN having access to the same number of parameters
as i-DQN by increasing the number of neurons in the last hidden layer. In Figure 17, the inflated version
of DQN does not provide an increase in performance as high as i-DQN. This supports the idea that i-QN’s
benefit lies in how the networks are organized to minimize the sum of approximation errors, as explained in
Section 4.

F Training curves for MuJoCo control problems
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Figure 19: The iterated versions of SAC and DroQ with K = 4 also outperform their sequential versions
when all the hyperparameters are the same.
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Figure 20: Training curves of i-SAC with K = 4, i-DroQ with K = 4 along with SAC and DroQ on 6
MuJoCo environments. In most problems, the iterated approach outperforms the sequential approach.
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Figure 21: Training curves of i-SAC with K = 4, i-DroQ with K = 4 along with SAC and DroQ on 6
MuJoCo environments. Compared to Figure 20, all algorithms use the same soft target update frequency
τ = 0.02. In most problems, the iterated approach outperforms the sequential approach.
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