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Abstract
Divisive Normalization and the Wilson–Cowan equations are well-known influential
models of nonlinear neural interaction (Carandini and Heeger in Nat Rev Neurosci
13(1):51, 2012;Wilson andCowan inKybernetik 13(2):55, 1973). However, they have
been always treated as different approaches and have not been analytically related yet.
In this work, we show that Divisive Normalization can be derived from the Wilson–
Cowan dynamics. Specifically, assuming that Divisive Normalization is the steady
state of the Wilson–Cowan differential equations, we find that the kernel that controls
neural interactions in Divisive Normalization depends on the Wilson–Cowan kernel
but also depends on the signal. A standard stability analysis of aWilson–Cowanmodel
with the parameters obtained from our relation shows that the Divisive Normalization
solution is a stable node. This stability suggests the appropriateness of our steady state
assumption. The proposed theory provides a mechanistic foundation for the sugges-
tions that have been done on the need of signal-dependent Divisive Normalization
in Coen-Cagli et al. (PLoS Comput Biol 8(3):e1002405, 2012). Moreover, this the-
ory explains the modifications that had to be introduced ad hoc in Gaussian kernels
of Divisive Normalization in Martinez-Garcia et al. (Front Neurosci 13:8, 2019) to
reproduce contrast responses in V1 cortex. Finally, the derived relation implies that
the Wilson–Cowan dynamics also reproduce visual masking and subjective image
distortion, which up to now had been explained mainly via Divisive Normalization.
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1 Introduction

A number of perceptual experiences in different modalities can be described with the
DivisiveNormalization interaction among the outputs of linear neurons (Carandini and
Heeger 1994, 2012). In particular, in vision, the perceptionof color (Hillis andBrainard
2005), texture (Watson and Solomon 1997), andmotion (Simoncelli and Heeger 1998)
seem to be mediated by this nonlinear interaction. Intuitively, this divisive interaction
modifies the response of a sensor by normalizing it with the responses of the neighbor
neurons, thus explaining inhibition by the surround.

The discussion on the circuits underlying the Divisive Normalization in Carandini
and Heeger (2012) suggests that there may be different architectures leading to this
specific computation. Recent results suggest specific mechanisms for Divisive Nor-
malization in certain situations (Sato et al. 2016), but the debate on the physiological
implementations is still open. On the other hand, a number of functional advantages
(Schwartz et al. 2009; Schwartz and Rieke 2011; Coen-Cagli et al. 2012; Coen-Cagli
and Schwartz 2013) suggest that the kernel that describes the interaction in Divi-
sive Normalization should be adaptive (i.e., signal or context dependent). Moreover,
the match between the linear receptive fields and the interaction kernel in the Divi-
sive Normalization is not trivial: The conventional Gaussian kernels in Watson and
Solomon (1997), Malo and Laparra (2010) had to be tuned by hand to reproduce
contrast responses (Martinez-Garcia et al. 2019).

These open questions imply that it is interesting to relate Divisive Normalization
to other models of neural interaction for a better understanding of its implementation,
the structure of the interaction kernel, and its eventual dependence with the signal.
Interesting possibilities to consider are the classical dynamic neural field models of
Wilson–Cowan (Wilson and Cowan 1972, 1973; Bressloff and Cowan 2003), Amari
(Amari 1977), or Grossberg (Grossberg 1968, 1988), all of which have a similar sub-
tractive nature (Chow and Karimipanah 2020): In subtractive models, the surround
modifies the activity of a given sensor by subtracting a weighted average of its neigh-
bor’s responses, as opposed to the division made in normalization models.

Subtractive and divisive adaptation models have been qualitatively related before
(Wilson and Humanski 1993; Bressloff et al. 2002). Both models have been shown to
have similar advantages in information-theoretic terms: The Wilson–Cowan interac-
tion in a neural layer uniformizes the probability density of the responses (Bertalmio
2014), and there is less redundancy among them (Gomez-Villa et al. 2020). Similarly,
Divisive Normalization layers reduce the relations between the responses (Malo et al.
2006), factorize the joint probability of the responses (Malo and Laparra 2010), and
maximize the transmitted information from the input (Malo 2020, 2022). Addition-
ally, both models provide similar descriptions of pattern discrimination (Wilson and
Humanski 1993; Bertalmio et al. 2017). However, despite all these similarities, no
direct analytical correspondence has been established between these models yet.

In this paper, we assume that the psychophysical behavior described by Divisive
Normalization comes from underlying neural interactions that follow the Wilson–
Cowan equations. In particular, we identify the Divisive Normalization response with
the stationary regime of a Wilson–Cowan system. From this identification, we derive
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an expression for the Divisive Normalization kernel in terms of the interaction kernel
of the Wilson–Cowan equations.

This analytically derived relation has the following interesting consequences:

(1) It has been suggested that Divisive Normalization should depend on the input
because of functional reasons (Coen-Cagli et al. 2012; Coen-Cagli and Schwartz
2013), but no physiological mechanism was proposed to implement this statistical
adaptation. The proposed relation of the Divisive Normalization with a dynamical
system with fixed wiring among neurons provides a mechanistic explanation for
this dependence with the input.

(2) The relation explains the modifications that had to be introduced ad hoc in the
kernel ofDivisiveNormalization inMartinez-Garcia et al. (2019) to reproduce con-
trast responses. This implies that the Wilson–Cowan dynamics reproduce visual
masking, which up to now had been mainly explained via Divisive Normalization
(Foley 1994; Watson and Solomon 1997).

(3) The relation allows to build effective image quality metrics based on the Wilson–
Cowan model, something which, to the best of our knowledge, has not been
considered before in the literature, as opposed to the many examples of metrics
based on Divisive Normalization (Teo and Heeger 1994; Laparra et al. 2010; Malo
and Laparra 2010; Laparra et al. 2017; Hepburn et al. 2020).

(4) A standard stability analysis of a Wilson–Cowan model with the parameters
obtained from our relation shows that the Divisive Normalization solution is a sta-
ble node of the dynamic model. This shows the appropriateness of our steady-state
assumption. Moreover, this stability justifies the straightforward use of Divisive
Normalization with time-varying stimuli, as in Simoncelli and Heeger (1998).

The structure of the paper is as follows. TheMaterials andMethods section reviews
the retina-V1 neural path and the contrast perception of visual patterns. We also intro-
duce the notation of the models: the Divisive Normalization and the Wilson–Cowan
equations. Besides, we recall some experimental facts that will be used to illustrate
the performance of the proposed relation: (1) Contrast responses curves imply certain
interactions between subbands (Cavanaugh 2000; Watson and Solomon 1997), (2) the
Divisive Normalization kernel must have a specific structure [identified in Martinez-
Garcia et al. (2019)] to reproduce contrast response curves, and (3) the shape of the
Divisive Normalization kernel should have a specific dependence with the surround-
ing signal (Cavanaugh et al. 2002a, b). In the Analytical Results section, we derive the
relation between the Divisive Normalization and the Wilson–Cowan equations based
on the steady-state assumption. The Numerical Experiments section illustrates with
simulations the mathematical properties and the perceptual consequences of the pro-
posed relation. First, we experimentally check the convergence of the Wilson–Cowan
solution to theDivisiveNormalization response in awide range ofmodel parameteriza-
tions.We quantify the error introduced by the approximations done to get the analytical
results. Moreover, we illustrate the appropriateness of the steady-state assumption by
showing that theDivisiveNormalization is a stable node of theWilson–Cowan system.
Then, we address contrast perception facts using the proposed relation to build a psy-
chophysically meaningful Wilson–Cowan model: We theoretically derive the specific
structure of the kernel that was previously inferred empirically (Martinez-Garcia et al.
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2019), we show that the proposed interaction kernel adapts with the signal, and as a
result, we reproduce general trends of contrast response curves. Finally, we discuss
the use of the derived kernel in predicting the perceptual metric of the image space.
The Final Remarks section concludes the paper.

2 Materials andMethods

In this work, the theory is illustrated in the context of models of the retina-cortex
pathway. The considered framework follows the approach suggested in Carandini and
Heeger (2012): a cascade of four isomorphic linear+nonlinear modules. These four
modules sequentially address brightness, contrast, frequency filtered contrast masked
in the spatial domain, and orientation/scale masking. An example of the transforms of
the input in such models is shown in Fig. 1.

In this general context, we focus on the cortical (fourth) layer: a set of linear sensors
with wavelet-like receptive fields modeling simple cells in V1, and the nonlinear
interaction between the responses of these linear sensors. Divisive Normalization has
been the conventional model used for the nonlinearity to describe contrast perception
psychophysics (Watson and Solomon 1997), but here we will explore the application
of the Wilson–Cowan model in the contrast perception context.

Below we introduce the notation of both models of neural interaction and the facts
on contrast perception that should be explained by the models.

2.1 Modeling Cortical Interactions

Our focus here is the last linear+nonlinear module of the retina-V1 cascade in Fig. 1,
and specifically the nonlinear layer that describes the interactions in the primary visual
cortex V1. The driving input of this final nonlinear layer is the vector of energies, e,
of the responses of linear wavelet-like simple cells, and the output of this interaction
is the vector of nonlinear responses x:

e
N

x (1)

In this work, the two models considered describe the interactionN between the linear
simple cells in V1. The Wilson–Cowan equations model neural firing rate dynamics
that may converge to a steady state. If that is the case, the long-term behavior of the
Wilson–Cowan equations may be similar to the Divisive Normalization model, since
the latter models static neural firing rates.

2.2 The Divisive Normalizationmodel

Forward transform.
The conventional expression of the canonical Divisive Normalization (Carandini

and Heeger 2012) uses an element-wise formulation:
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Fig. 1 Signal transforms in the retina-cortex pathway: a cascade of linear + nonlinear modules [example
from Martinez-Garcia et al. (2018)]. The input is the spatial distribution of the spectral irradiance at the
retina. (1) The linear part of the first layer consist of three positive spectral sensitivities (Long, Medium,
Short, LMS, wavelengths) and a linear recombination of the LMS values with positive/negative weights.
This leads to three tristimulus values in each spatial location: One of them is proportional to the luminance,
and the other two have opponent chromatic meaning (red-green and yellow-blue). These linear tristimulus
responses undergo adaptive saturation transforms. Perception of brightness is mediated by an adaptive
Weber-like nonlinearity applied to the luminance at each location. This nonlinearity enhances the response
in the regions with small linear input (low luminance). (2) The linear part of the second layer computes the
deviation of the brightness at each location from the local brightness. Then, this deviation is nonlinearly
normalized by the local brightness to give the local contrast. (3) The responses to local contrast are convolved
by center surround receptivefields (or filteredby theContrast SensitivityFunction). Then, the linearlyfiltered
contrast is nonlinearly normalized by the local contrast. Again normalization increases the response in the
regions with small input (low contrast). (4) After linear wavelet transform, each response is nonlinearly
normalized by the activity of the neurons in the surround. Again, the activity relatively increases in the
regions with low input. The common effect of the nonlinear modules throughout the network is response
equalization (Color figure online)
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xi = ki
ei

bi + ∑
j Hi j e j

(2)

where the output vector of nonlinear activations, x, depends on the energy of the
input linear wavelet responses, e, which are dimension-wise normalized by a sum of
neighbor energies of the input. For convenience for the derivations below, the transform
can be rewritten in matrix form Martinez-Garcia et al. (2018), Martinez-Garcia et al.
(2019):

x = Dk · D−1
(b+H ·e) · e (3)

where Dv are diagonal matrices with the vector v in the diagonal. The non-diagonal
nature of the interaction kernel H which is in the denominator, b+ H · e, implies that
the i-th element of the response is attenuated by the activity of the neighbor sensors, e j
with j �= i . Each rowof the kernel H describes how the energies of the neighbor simple
cells attenuate each simple cell after the interaction. Each element of the vectors b and
k represents the semisaturation and the dynamic range of the nonlinear response of
each sensor, respectively. This nonlinear interaction only affects the amplitude of the
responses, not its sign. As a result, for simplicity in the notation, throughout the work
x refers to the vector of absolute values of the responses. The sign of the normalized
responses is inherited from the sign of the linear wavelet responses.
Inverse transform.

The matrix notation (Martinez-Garcia et al. 2018, 2019) is convenient to derive
the analytical inverse of the Divisive Normalization, which will be used to obtain the
relation between the twomodels considered in this work. The inverse is given byMalo
et al. (2006), Martinez-Garcia et al. (2018), Martinez-Garcia et al. (2019):

e =
(
I − D

−1
k · Dx · H

)−1 · Db · D−1
k · x (4)

This inverse, originally proposed in the context of image coding (Malo et al. 2006),
has been used in other applications that require the reconstruction of the image (Camps
et al. 2008; Laparra et al. 2017).

2.3 TheWilson–CowanModel

The Wilson–Cowan dynamical system was proposed as a general model of the
inhibitory/excitatory interactions between neural populations, and as application, it
can be used to model the signal at specific stages in the visual pathway (Wilson and
Cowan 1972, 1973; Bressloff and Cowan 2003). InWilson–Cowanmodels, part of the
neural population (part of the coefficients in the vectors e and x) is excitatory and part
is inhibitory, meaning how their magnitude affects the neighbors (in additive or sub-
tractive way, respectively). Excitatory and inhibitory populations will be referred to as
ee, xe, and ei , xi , respectively. We will consider that these excitatory and inhibitory
neurons (or coefficients) are interleaved in the vectors that describe the responses. Or,
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for simplicity, one may also represent them as separate rows in the response vectors:

(
ee

ei

) N (
xe

xi

)

(5)

In any case, the arbitrary arrangement of the neurons in the vectors does not restrict
the generality of the formulation. The only effect of this choice is the interpretation of
the elements of the matrices that will represent the interaction between the neurons.
Dynamical system.

In Wilson–Cowan models (Wilson and Cowan 1972, 1973; Bressloff and Cowan
2003), the transformN is defined by differential equations that describe the temporal
variation of the activity of the populations. In particular, this variation is driven by
three factors:

– An external driving input (either ee or ei ), in our case the responses of the linear
V1 cells.

– The variation of the response of a population is auto-attenuated due to its own
activity.

– The variation of the response is amplified by the excitatory responses and is mod-
erated by the inhibitory responses.

Specifically, if in the notation of Bressloff et al. (2002), Bressloff and Cowan (2002,
2003), which considers no refractory period in V1 neurons, we explicitly identify the
excitatory and inhibitory populations as done originally in Wilson and Cowan (1973),
for a neuron tuned to the feature p, we have one of these (excitatory or inhibitory)
equations:

∂ xep(t)

∂t
= eep(t) − αe

p x
e
p(t) +

∫

Wee
pp′ f (xep′(t)) dp′ −

∫

Wei
pp′ f (xip′(t)) dp′

∂ xip(t)

∂t
= eip(t) − αi

p x
i
p(t) +

∫

Wie
pp′ f (xep′(t)) dp′ −

∫

Wii
pp′ f (xip′(t)) dp′ (6)

or, in matrix notation:

ẋe = ee − Dαe · xe + Wee · f (xe) − Wei · f (xi )

ẋ i = ei − Dαi · xi + Wie · f (xe) − Wii · f (xi ) (7)

whereWee,Wei ,Wie,Wii are the matrices that describe the excitatory and inhibitory
relations between sensors, the activation function f (·) is a dimension-wise saturat-
ing nonlinearity, and the elements of the vectors αe and α i are the auto-attenuation
parameters. The above matrices are usually considered to be a fixed set of connections
(wired relations), made of positive and negative Gaussian neighborhoods, that repre-
sent the local interaction between sensors (Bressloff and Cowan 2002, 2003; Chossat
and Faugeras 2009). Also, note that if in Eq. 7, the inhibitory and the excitatory
components are stacked together into a single vector (with some sort of arrangement
as in Eq. 5), the two equations in the traditional Wilson–Cowan formulation can be
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represented by a single expression, as in Bressloff and Cowan (2003), Chow and
Karimipanah (2020), here in matrix form:

ẋ = e − Dα · x − W · f (x) (8)

where

α =
(

αe

α i

)

, f (x) = f

(
xe

xi

)

, W =
(−Wee Wei

−Wie W i i

)

The above single-equation matrix formulation of the Wilson–Cowan model, Eq. 8,
is convenient to get the relation between the models and clearly shows the subtractive
nature of the interactions in the kernel W as opposed to the divisive nature of the
interactions due to the kernel H in Eq. 3.
Steady state and inverse.

The stationary solution of the above differential equation (obtained by taking ẋ = 0
in Eq. 8) leads to the following analytical inverse for static inputs:

e = Dα · x + W · f (x) (9)

As we will see in the Analytical Results section, the identification of the decoding
equations corresponding to both models, Eqs. 4 and 9, is the key to obtain simple
relations between their corresponding parameters.

2.4 Experimental Facts

2.4.1 Adaptive Contrast Response Curves

In the considered spatial vision context, the models should reproduce the fundamental
trends of contrast perception. Thus, the slope of the contrast response curves should
depend on the spatial frequency, so that the sensitivity at threshold contrast is different
for different spatial frequencies according to the Contrast Sensitivity Function (CSF)
(Campbell and Robson 1968). Also, the response curves should saturate with contrast
(Legge and Foley 1980; Legge 1981). Finally, the responses should attenuate with the
energy of the background or surround, and this additional saturation should depend
on the texture of the background (Foley 1994; Watson and Solomon 1997): If the
frequency/orientation of the test is similar to the frequency/orientation of the back-
ground, the decay should be stronger. This background-dependent adaptive saturation,
or masking, is mediated by cortical sensors tuned to spatial frequency with responses
that saturate depending on the background, as illustrated in Fig. 2.

The above trends are key to discard too simple models, and also to propose the
appropriatemodifications in themodel architecture to get reasonable results (Martinez-
Garcia et al. 2019).
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Fig. 2 Adaptive contrast response curves. Mean firing rate (response) of V1 neurons tuned to the signal as
a function of the signal contrast in two masking situations (adapted from Schwartz and Simoncelli (2001),
Cavanaugh (2000)). Note the decay in the responsewhen signal andmask do have the same spatio-frequency
characteristics (a), as opposed to the case where they do not (b). For visualization, the differences in the
curves are highlighted by the green circles (Color figure online)

2.4.2 Unexplained Kernel Structure in Divisive Normalization

In the Divisive Normalization setting, the masking interaction between tests and back-
grounds of different textures is classically described by using a Gaussian kernel in the
denominator of Eq. 3 in wavelet-like domains: the effect of the j-th wavelet sensor on
the attenuation of the i-th wavelet sensor decays with the distance in space between
the i-th and j-th sensors, but also with the spatial frequency and orientation (Watson
and Solomon 1997). We will refer to these unit-norm Gaussian kernels as Watson
and Solomon kernels (Watson and Solomon 1997) and will be represented by Hws.
Gaussian kernels are useful to describe the general behavior shown in Fig. 2: Activity
in close neighbors leads to strong decays in the response, while activity in neighbors
tuned to more distant features has smaller effect.

However, in order to have well-behaved responses in every subband with every
possible background, a special balance between the wavelet representation and the
Gaussian kernels is required.When using reasonable log-polarGabor basis or steerable
filters to model V1 receptive fields, as in Watson and Solomon (1997), Schwartz and
Simoncelli (2001), the energies of the sensors tuned to low frequencies are notably
higher than the energy of high-frequency sensors. Moreover, the smaller number of
sensors in low-frequency subbands in this kind of wavelet representations implies that
unit-norm Gaussian kernels have bigger values in coarse subbands. These two facts
overemphasize the impact of low-frequency responses on high-frequency responses.
Thus, in Martinez-Garcia et al. (2019) we found that classical unit-norm Gaussian
kernels require ad hoc extra modulation to avoid excessive effect of low-frequency
backgrounds on high-frequency tests. The appropriate wavelet-kernel balance was
then reestablished by introducing extra high-pass filters in the Gaussian kernel Hws,
with the aim to moderate the effect of low frequencies (Martinez-Garcia et al. 2019):

H = Dl · Hws · Dr (10)

In this new definition of the kernel: (1) the diagonal matrix at the right, Dr , pre-
weights the subbands of e to moderate the effect of low frequencies before computing
the interaction; and (2) the diagonal matrix at the left, Dl , sets the relative weight of
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Fig. 3 Experimental context-dependent interaction (Cavanaugh et al. 2002b) and statistical model (Coen-
Cagli et al. 2012). a Results of Cavanaugh et al. (2002b): images with a gray background represent the
stimuli. Cell relative responses are shown as points inside the black normalization circle. The distance from
the origin indicates the magnitude of the response, while its angle represents the location of the surrounding
stimulus. b Cell response predicted from the statistical model of Coen-Cagli et al. (2012), and probability
that center and surround receptive fields are co-assigned to the same normalization pool and contribute to the
Divisive Normalization of the model response. The probability of co-assignment depends on the covariance
with the surround, as shown below. c Different center-surround visual neighborhoods in a natural scene.
In each case, the activity of the sensors in the surround can be co-assigned to the activity in the center
(i.e., considered in the normalization pool) if the orientation of maximally responding sensors is consistent
(which is the case for four of the considered regions and not the case for the first). The horizontal surround
that is co-assigned with the corresponding center is highlighted in bold. dCovariance matrices learned from
natural images determine co-assignment: The orientation and relative position of the receptive fields are
represented by the black bars. (The thickness of the bar is proportional to the variance, while the thickness
of the red lines is proportional to the covariance between the two connected bars.) This figure has been
adapted from Coen-Cagli et al. (2012) (Color figure online)

the masking for each sensor, moderating low frequencies again. The vectors r and l
were tuned ad hoc in Martinez-Garcia et al. (2019) to get reasonable contrast response
curves, both for low- and high-frequency tests.

However, what is the explanation for this specific structure of the kernel matrix in
Eq. 10? And where do these two high-pass diagonal matrices come from?

2.4.3 Adaptive Nature of Kernel in Divisive Normalization

Previous physiological experiments on cats andmacaques demonstrated that the effect
of the surround on each cell does not come equally from all peripheral regions, showing
up the existence of a spatially asymmetric surround (Nelson and Frost 1985; Deangelis
et al. 1994; Walker et al. 1999; Cavanaugh et al. 2002a, b). As shown in Fig. 3a, the
experimental cell response is suppressed due to the surround, and this attenuation is
greater when the grating patches are iso-oriented and at the ends of the receptive field
(as defined by the axis of preferred orientation) (Cavanaugh et al. 2002b).
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In theDivisiveNormalization context, this asymmetry could be explainedwith non-
isotropic interaction kernels. Depending on the texture of the surround, the interaction
strength in certain direction may change. This would change the denominator, and
hence the gain in the response.

Coen-Cagli et al. (2012) proposed a specific statistical model to account for
these contextual dependencies. This model includes grouping and segmentation of
neighboring oriented features and leads to a flexible generalization of the Divisive
Normalization. Representative center-surround configurations considered in the sta-
tistical model are shown in Fig. 3c. A surround orientation can be either co-assigned
with the center group or not co-assigned. In the first case, the model assumes depen-
dence between center and surround and includes them both in the normalization pool
for the center. In the second case, the model assumes center-surround independence
and does not include the surround in the normalization pool. Figure3d shows the
covariance matrices learned from natural images between the variables associated
with center and surround in the proposed statistical model. As expected, the variances
of the center and its co-linear neighbors, and also the covariance between them, are
larger, due to the predominance of co-linear structures in natural images. The cell
response that is computationally obtained assuming their statistical model is shown
in Fig. 3b, together with the probability that center and surround receptive fields are
co-assigned to the same normalization pool and contribute then to the divisive normal-
ization of the model response. Note that the higher the probability of co-assignment
between the center and surround, the higher the suppression (or the lower the signal)
in the cell response.

This flexible (or adaptive) Divisive Normalization model based on image statis-
tics (Coen-Cagli et al. 2012) allows to explain the experimental asymmetry in the
center-surround modulation (Cavanaugh et al. 2002b). However, no direct mechanis-
tic approach has been proposed yet to describe how this adaptation in the Divisive
Normalization kernel may be implemented.

3 Analytical Results: Relation BetweenModels

The kernels that describe the relation between sensors in the Divisive Normalization
and theWilson–Cowanmodels, H andW , have similar qualitative roles: bothmoderate
the response, either by division or subtraction, taking into account the activity of the
neighbor sensors.

In this section, we derive the relation between both models assuming that the
Divisive Normalization behavior corresponds to the steady-state solution of the
Wilson–Cowan dynamics. This leads to an interesting analytical relation between
both kernels, H and W .

Under the steady-state assumption, it is possible to identify the different terms in
the decoding equations in both cases (Eqs. 4 and 9). However, just to get a simpler
analytical relation between both kernels, we make one extra simplification on each
model. Numerical experiments in the next section with natural inputs and a wide range
of model parameterizations show that these simplifications are acceptable in practice.
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First, in the Divisive Normalization model, Eq. 4, the identification may be simpler
by taking the series expansion of the inverse. This expansion was used in Malo et al.
(2006) because it clarifies the condition for invertibility:

(
I − D

−1
k · Dx · H

)−1 = I +
∞∑

n=1

(
D

−1
k · Dx · H

)n

The inverse exist if the eigenvalues of D−1
k · Dx · H are smaller than one so that

the series converges. In fact, if the eigenvalues are small, the inverse can be well
approximated by a small number of terms in the Maclaurin series. Taking into account
this approximation, Eq.4 may be written as:

e = Db · D−1
k · x +

(
D

−1
k · Dx · H

)
· Db · D−1

k · x +

+
(
D

−1
k · Dx · H

)2 · Db · D−1
k · x +

+
(
D

−1
k · Dx · H

)3 · Db · D−1
k · x + · · ·

e ≈
(
Db · D−1

k + D
−1
k · Dx · H · Db · D−1

k

)
· x (11)

Second, in the case of theWilson–Cowanmodel (Eq. 9) we approximate the satura-
tion function f (x) so that we can isolate the vector x. This can be done by expressing
f (x) through an Euler integration of n terms: f (x) = f (0) + ∫ x

0
d f
dx (x′)dx′ ≈

f (0) + ∑n−1
β=0

d f
dx (

β
n x) xn . Note that along the integration the derivatives are computed

at different points from 0 up to n−1
n x. If n = 1, we have the (in principle poor)

Maclaurin approximation, and if n → ∞, the result is perfect. In between, for finite
n, we have an approximation with certain accuracy. In this case, taking into account
that in the activation functions f (0) = 0, and calling gn(x) = 1

n

∑n−1
β=0

d f
dx (

β
n x), we

can write:

e ≈ (
Dα + W · Dgn(x)

) · x (12)

Now, the identification between the approximated versions of the decoding equa-
tions, Eqs. 11 and 12, is straightforward. As a result, we get the following relations
between the parameters of both models:

α = b
k

W = D( x
k )

· H · D−1(
k
b�gn(x)

) (13)

where the symbol � denotes the element-wise (or Hadamard) product, and the ratios
between vectors are also Hadamard divisions.

Note that the Divisive Normalization kernel which is compatible with Eq. 13, H =
D(

k
x

) ·W ·D(
k
b�gn(x)

), has exactly the same structure as the one in Eq. 10. Therefore,
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both models agree if the Divisive Normalization kernel inherits the structure from the
Wilson–Cowan kernel left- and right-multiplied by these diagonal matrices,D(

k
x

) and

D(
k
b�gn(x)

), respectively.

This theoretical result suggests an explanation for the structure that had to be intro-
duced ad hoc inMartinez-Garcia et al. (2019) just to reproduce contrast masking. Note
that the interaction in the Wilson–Cowan case may be understood as wiring between
sensors tuned to similar features, so a unit-norm Gaussian, W = Hws, is a reason-
able choice (Wilson and Cowan 1973; Chossat and Faugeras 2009). Note also that the
weights before and after W (the diagonal matrices) are signal dependent. Therefore,
a fixed wiring W implies that the kernel in Divisive Normalization should be adap-
tive. The one in the left, D(

k
x

), has a direct dependence on the inverse of the signal,

while the one in the right, D(
k
b�gn(x)

), depends on the derivatives of the activation

f (x). Next section shows that these vectors k
x and k

b � gn(x) do have the high-pass
frequency nature that explains why the low frequencies in e had to be attenuated ad
hoc by introducing Dl and Dr . We also show that the term of the right, D(

k
b�gn(x)

),

produces the shape changes needed on the interactions.
It is important to stress that the simplifications made in the decoding equations

to get the analytical relations in Eq. 13 were done only for the sake of simplicity in
the final relations obtained. In summary, the expressions in Eq.13 are exact for the
simplified versions of the models. Considering the full version of the models, Eq. 13
would be an approximation. However, the experiments below point out the validity of
this approximation, because: (a) we explicitly check that the errors are small in a range
of scenarios, and (b) we check that plugging these expressions into the full versions
of the models also leads to consistent results.

4 Numerical Experiments

The analysis of the proposed relation between the Divisive Normalization (DN) and
the Wilson–Cowan (WC) models is a three stage process. First, one should take bio-
logically plausible parameters (either in DN, in WC, or in both) and then use the
proposed expressions to build versions of the models supposed to behave similarly.
Second, one should check if the models obtained in that way actually behave similarly.
So that finally, third, one can elaborate on the consequences of this correspondence.

In this experimental analysis, in Sect. 4.1, we build a psychophysically inspired
Wilson–Cowan model for V1 from a Divisive Normalization with psychophysically
tuned parameters (Malo andSimoncelli 2015;Martinez-Garcia et al. 2018, 2019). This
model also preserves the basic properties of the interaction kernel and the saturation
function of the Wilson–Cowan literature (Wilson and Cowan 1973; Bressloff and
Cowan 2003; Chossat and Faugeras 2009). This Wilson–Cowan model should behave
similarly to the corresponding Divisive Normalization model.

Then, Sect. 4.2 experimentally checks the mathematical relation between the mod-
els. In particular, for a wide range of parameters: (a) we show that the integration of
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the Wilson–Cowan equation certainly converges to a solution which is close to its
corresponding Divisive Normalization; (b) we quantify the accuracy of the approx-
imations required to get the relation between the models; and (c) we show that the
Divisive Normalization solution is a stable node of the dynamical system governed
by the Wilson–Cowan equations.

Finally, in Sect. 4.3,we address different consequences on contrast perception using
the proposed relation: (a)Weanalyze the signal-dependent behavior of the theoretically
derived kernel and the benefits of the high-pass behavior to moderate the weight of the
low-frequency components; (b) we show that the shape of the interactions between
sensors changes depending on the surround; (c) we reproduce the contrast response
curves with the proposed signal-dependent kernel; and (d) we discuss the use of the
derived kernel in predicting the subjective metric of the image space.

4.1 Psychophysically Plausible Parameters for aWilson–CowanModel in V1

Apossibleway to check the relation between themodels inV1 consists of starting from
the (lower-level/mechanistic/physiological) Wilson–Cowan model and let it evolve to
see if it converges to the (psychophysical) Divisive Normalization response. To this
end, for our Wilson–Cowan model, we need reasonable α, W , and f (x), for e and x
defined in certain wavelet representation.

For the wavelet representation here, we assume 4-orientation steerable transforms
(Simoncelli et al. 1992) as a convenient model of the simple cells [as done in Schwartz
and Simoncelli (2001), Martinez-Garcia et al. (2018, 2019)]. In the experiments
involving the (computationally intensive) integration of the Wilson–Cowan differ-
ential equation, Sect. 4.2, we used wavelets with 3 scales in 40 × 40 images to speed
up the computation. But in the psychophysical illustrations, Sect. 4.3, we used 4 scales
in 64 × 64 images.

The reference parameters for the nonlinearity are taken from the Divisive Nor-
malization model in Martinez-Garcia et al. (2019). In that case, the parameters
corresponding to contrast computation, contrast sensitivity, and masking in the spatial
domain were directly measured usingMaximum Differentiation psychophysics (Malo
and Simoncelli 2015), while the parameters related to brightness and to masking in
the wavelet domain were tuned to reproduce subjective image quality data (Martinez-
Garcia et al. 2018) and contrast perception curves (Martinez-Garcia et al. 2019).

As stated after Eq. 13, we tookW as a Watson-Solomon separable Gaussian kernel
(Watson and Solomon 1997) with widths in space/frequency/orientation taken from
the psychophysically plausible values in Martinez-Garcia et al. (2019). In order to
include both excitatory and inhibitory populations, we complemented this initial ker-
nel with narrow excitatory neighborhoods whose width was a fraction of the original
inhibitory neighborhoods. Finally, we normalized the absolute amplitude of the neigh-
borhoods to have unit-norm center-surround interactions. Figure4a–c illustrates the
psychophysically sensible separable kernelsW . These unit-norm kernelsW scaled as
in Watson and Solomon (1997), Martinez-Garcia et al. (2019) are consistent with the
shapes used in the Wilson–Cowan literature (Bressloff and Cowan 2003; Chossat and
Faugeras 2009).
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Fig. 4 Psychophysically inspired parameters for Wilson–Cowan model. Illustration of the Gaussian neigh-
borhoods W with excitatory and inhibitory parts: separable interactions depending on departure in space
(a), frequency (b), and orientation (c). The spatial component of W is shown for the central location of
the considered visual field and the 24 cpd vertical subband. Following Watson and Solomon (Watson and
Solomon 1997), the Gaussian kernels (here difference of Gaussians) are separable in space, frequency,
and orientation. Therefore, lower-frequency subbands have coarser sampling (and thus higher amplitude)
but the same shape in space. The shape is also the same for subbands tuned to different orientations.
Equivalent separability applies for variations in frequency and orientation: The interactions in the plots (b)
and (c) are the same for every spatial location (and orientation and frequency, respectively). The above
plots display the (more intuitive) −W, where positive and negative values mean excitatory and negative
interaction, respectively, but note that, according to the sign in Eq. 8, positive weights are inhibitory. (d)
Auto-attenuation factor α. In this plot, the horizontal axis (wavelet coefficients in reverse order) can be
qualitatively understood as frequency so high frequencies display bigger attenuation. The panels (e) and
(f) show different options for the pointwise activation nonlinearity, f (x). In pink, we have the γ -function
proposed in Martinez-Garcia et al. (2018), and in red, we have the original proposal of Wilson–Cowan
(Wilson and Cowan 1973). In both cases, we show the approximations of these functions using gn(x) (for
increasing number of terms n), and the corresponding derivatives, which have an impact in the relation
between the kernels in the different models (Eq. 13) (Color figure online)
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Regarding the auto-attenuationwe simply took the constants k and b fromMartinez-
Garcia et al. (2019) and used the first equation of the proposed relation, Eq. 13, to
obtain α. Figure4d shows the α vector for the 3-scale wavelet (coefficients ordered
from low to high frequency). Note that the response of sensors tuned to higher fre-
quencies is more attenuated in the evolution of the differential equation, while low
frequencies have lower auto-attenuation.

Finally, Fig. 4e, f, displays different activations f (x) thatwe used in the experiments
together with representative Euler approximations, gn(x) x, and the functions related
to their derivatives, d fdx (x) and gn(x). These activation functions include the original-
activation inWilson and Cowan (1973), Bressloff and Cowan (2003), and the so-called
γ -activation inspired in retinal transduction (Martinez-Garcia et al. 2018). AppendixA
gives the expressions of these activation functions. In our wavelet case, the horizontal
and vertical axes of the function f (·) to be applied to each coefficient x of certain
subband are scaled by the average amplitude of the responses of the corresponding
linear sensors to natural images. With that scaling, the nonlinearities preserve the
relative scales of the input subbands in the vector e that comes from the linear filters.

In the next experiments, the above psychophysically sensible parameters (the ref-
erence values) are modified in several ways to show that the proposed relation works
for a wide range of model parameterizations. Specifically, (a) we explored different
widths of the interaction kernels by using five scaling factors applied to the reference
widths: fromunrealistically narrow (zero-width, identity kernels that disregard interac-
tions), to unrealistically wide kernels (where the reference widths are increased by an
order of magnitude); (b) we considered kernels with the above mentioned excitatory-
inhibitory nature, and kernels with just-inhibitory nature; and (c) we considered two
possible activations (the original-activation and the γ -activation). We considered a
total of 12 parameterizations of the models: 5 kernel widths × 2 excit-inhib con-
figurations × 1 activation (original-activ.) + 1 kernel width (the reference one) ×
2 excit-inhib configurations × 1 activation (the γ -activ.).

The interested reader has access to the specific values of the parameters in
Appendix A for the activations, and in the code that reproduces all the simulations of
the paper (described in Appendix 1).

4.2 Experimental Check of Mathematical Properties

4.2.1 Wilson–Cowan Systems Converge to the Divisive Normalization

The Wilson–Cowan expression, Eq. 8, defines an initial value problem where the
response at time zero evolves (or is updated) according to the right-hand side of the
differential equation. In our case, we assume that the initial value of the output is just
the input x(0) = e. Moreover, as we deal with static images, we assume that the input
is constant. And then, we solve this first-order differential equation by the simplest
(Euler) integration method:

x(t + Δt) = x(t) +
(
e − Dα · x(t) − W · f (x(t))

)
Δt (14)
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Fig. 5 Convergence to the Divisive Normalization solution (I): quantitative error. Percentage of relative
MSE between the solution of the Wilson–Cowan equations and the Divisive Normalization response as
a function of discrete time (steps in Euler integration). Left: relative MSE for different kernel widths and
activation/saturation functions in case of just inhibitory interactions.Right: relativeMSE for different kernel
widths and saturation functions in case of excitatory+inhibitory interactions. The configurations in pink and
red are the psychophysically meaningful ones, which achieve 0.6% and 2.7% relative MSE, respectively.
In all cases, the update of the solution tends to zero (results not shown) indicating the approach to a steady
state. The curves in bold style represent the median (50 quantile) over 45 natural images, and the curves in
light style (very close to the median) represent the 25 and 75 quantiles. This result suggests the successful
convergence of WC to DN for natural images over a wide range of model parameterizations (Color figure
online)

Figure 5 shows the evolution of the response obtained from this integration, applied
to 45 natural images taken from calibrated databases (Hateren and Schaaf 1998;
Laparra et al. 2012), using the biologically sensible parameters α, W and f (·) pre-
sented in Fig. 4 (Malo and Simoncelli 2015;Martinez-Garcia et al. 2018, 2019;Wilson
and Cowan 1973; Bressloff and Cowan 2003; Chossat and Faugeras 2009), and the
mentioned variations to cover awide range ofmodel parameterizations.Our Euler inte-
gration used a small enough discrete time step, Δt = 10−5, and the initial responses,
the vectors e, were computed using the first 3 layers of the model in Fig. 1 (Martinez-
Garcia et al. 2018, 2019) followed by a linear steerable wavelet of 4 orientations and 3
scales. The integration requires no approximation of the WC model, and the evolving
solution is checked against the corresponding DN response that uses the proposed
Eq. 13.

As can be seen, the solution of the Wilson–Cowan integration converges to the
Divisive Normalization solution because their difference (percentage of relative mean
squared error) decreases as it evolves in all the 12 considered parameterizations.
The relative MSE in the psychophysically meaningful situations (×1 width) is below
3% (lines in pink and red), and for the other configurations, it is always below 6%.
Therefore, the Divisive Normalization always explains more than 94% of the energy
of the Wilson–Cowan solution. Moreover, these results represent the steady states
because the updates of the solutions in the integrals always tend to zero (results not
shown).
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Fig. 6 Convergence to the Divisive Normalization solution (II): qualitative similarity. a Input image (stim-
ulus at the retina), b Responses of the linear simple cells of V1. Responses are spatially non-stationary,
see regions of very low amplitude highlighted in yellow and blue. c Steady state of the Wilson–Cowan
equation after 650 iterations of Eq. 14 with inhibitory kernel W of psychophysically sensible width and
γ -activation, d Corresponding Divisive Normalization response using the kernel given by Eq. 10. In this
example, the relative MSE between xWC and xDN is 0.93%, but, more importantly, note how the amplitude
of the response of the highlighted neurons has increased similarly in the nonlinear cases leading to a more
stationary response (Color figure online)

Figure 6 illustrates the qualitative similarity of the responses of the two models and
their comparable equalization effect in the wavelet domain. The nonlinear response
xWC was computed by integrating Eq. 14, and xDN was computed with Eq. 3.We used
the parameters introduced in Sect. 4.1 and the corresponding parameters for Divisive
Normalization using Eq. 13.

Note how the nonlinearities substantially increase the amplitude of the signal in the
regions where the linear response is low. The regions highlighted in blue and orange in
e display low activity compared to their neighbors because there are no edges in those
regions of the image. However, the corresponding neurons after Wilson–Cowan or
Normalization have increased their activity. The amplitude of the signal after the non-
linearities is more stationary across the subbands. Moreover, the nonlinearities lead
to responses where the image structure is less apparent: The activity of a neuron is
more independent from the activity of the neighbors. Equalization and increased inde-
pendence qualitatively suggested in Fig. 6 are consistent with previous (quantitative)
studies that report redundancy reduction both in Divisive Normalization (Schwartz
and Simoncelli 2001; Malo and Laparra 2010; Malo 2020), and in the Wilson–Cowan
model (Gomez-Villa et al. 2020).
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4.2.2 Quantification of the Accuracy of the Approximations

The proposed relation, Eq. 13, is based on two approximations:
– The approximation of the inverse of Divisive Normalization to obtain Eq. 11,

namely:
(
I − D

−1
k · Dx · H

)−1 ≈ I + D
−1
k · Dx · H .

– The approximation of f (x) in Wilson–Cowan to obtain Eq. 12, namely: f (x) ≈
gn(x) x =

(
1
n

∑n−1
β=0

d f
dx (β x

n )
)
x.

The accuracy of such approximations depends on the model parameters, e.g., the
shape and magnitude of H or f (·), and on the responses x to natural images. The low
amplitude of the coefficients of natural images in wavelet representations (Olshausen
and Field 1996; Malo et al. 2000) and the accuracy of similar approximations for psy-
chophysically sensible parameters (Malo et al. 2006) suggest that errors will be small.
However, in this section we explicitly compute both sides of the above expressions
(with and without approximation) for a range of representative images and model
parameterizations, and we compute the difference between both sides. This difference
is the error due to the approximation. We express the energy of the difference (the
mean squared error) in terms of percentage of the energy of the function with no
approximation: the relative MSE in %.

In Table 1, we show the relative MSE (in %) for both approximations (inverse and
f (x)) together with the error in convergence, also in relative MSE, for 12 different
model parameterizations. The approximations of f (x) were done using g10(x), i.e.,
computing derivatives in 10 points.

The approximations generally explain more than 90% of the energy of the original
magnitudes. The only exception is the approximation of the inverse of the Divisive
Normalization for the (unrealistic) zero-width kernel, where the relativeMSE amounts
to ∼ 30%. The deviation in this unrealistic case makes sense because reducing the
width of unit-volume kernels increases their height and hence the magnitude of H
increases so the term summed to the identity in the expression under consideration is
not as small. This leads to an increased error in the approximation.

Interestingly, in the whole range of parameterizations considered, the approxima-
tions do not have a big impact in the convergence error, which is the actual measure
of correspondence between the two models.

4.2.3 Stability Analysis of the Divisive Normalization Response

The stability of a dynamical system at the steady state is determined by the Jacobian
with regard to perturbations in the response: If the eigenvalues of this Jacobian are
all negative for this response, it is a stable node of the system (Logan 2015). In that
situation, the evolution of the perturbations is a vector field oriented toward the stable
node.

In our case, the Jacobian with regard to the output signal of the right-hand side of
the Wilson–Cowan differential equation, Eq.8, is:

J = −(Dα + W · D d f
dx (x)

) (15)
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Fig. 7 Stability of the Divisive Normalization solution (I). Eigenspectrum of the Jacobian of the right-hand
side of the Wilson–Cowan differential equation with psychophysically tuned parameters on natural images
(curves in pink and red), and different additional configurations (different widths and activation functions),
including just inhibitory interactions (Left) and excitatory–inhibitory interaction (right). The curves refer to
the median of the eigenvalues over 45 representative images extracted from the calibrated datasets (Hateren
and Schaaf 1998; Laparra et al. 2012). The standard deviation and quartile distance are so small that cannot
be seen in the plot. The result shows that the eigenvalues are all negative. This suggests that the Divisive
Normalization is a stable node of the system for natural images for a wide range of model parameterizations
(Color figure online)

Figure 7 shows the eigenvalues of this Jacobian using a wide range of parameters
(the 12 configurations obtained through variations of the reference values presented
in Sect. 4.1), with responses from a set of 45 representative natural images from
colorimetrically calibrated datasets (Hateren and Schaaf 1998; Laparra et al. 2012).
This result shows that all the eigenvalues are negative, thus suggesting that theDivisive
Normalization solution is a stable node of the dynamical system.

The stability of the system can be further illustrated by the visualization of the
vector field of perturbations in the phase space of the system (Logan 2015). In this
case, we visualize this vector field for the Divisive Normalization solution. As the
signals in our problem live in very high-dimensional spaces (the wavelet vectors in
this section have dimension 10,025), it is not possible to visualize the complete phase
space, so we just select some illustrative 3-dimensional and 2-dimensional examples.

Figure 8 (left) shows an example taking just 3 neurons of the V1 layer. In this case,
we took a particular image (the standard image Lena) and we focused on the response
of 3 specific sensors of the low-frequency scale of the Divisive Normalization vector:
the 9700, 9800, and 9900-th responses. In that way, we get the red circle in Fig. 8
(left). Arbitrary perturbations of the responses of these neurons lead to the dynamics
shown in the phase space: The vector field induced by the Jacobian implies that any
perturbation is sent back to the original (no-perturbation) response, which is, then, a
stable node of the system.

Similar behavior is obtained for coefficients of other subbands or other images. See
Fig. 8 (right), where, for simplicity, we consider perturbations in pairs of neurons.
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Fig. 8 Stability of the Divisive Normalization solution (II). Vector fields in the phase space generated
by the Jacobian of the psychophysically tuned Wilson–Cowan model. The example at the left (red dot)
corresponds to the response of 3 low-frequency sensors at the Divisive Normalization solution. This vector
field describes the evolution of the response if it is perturbed in arbitrary directions (the cardinal directions,
in red, or any combination of them). The result is general: Examples at the right show similar results for
pairs of sensors tuned to different frequencies for different input stimuli (Color figure online)

In summary, the Divisive Normalization solutions are stable nodes of the corre-
sponding Wilson–Cowan systems. This conclusion confirms the assumption under
the proposed relation: Divisive Normalization as a steady state of the Wilson–Cowan
dynamics.

4.3 Consequences on Contrast Perception

The proposed relation implies that theDivisiveNormalization kernel inherits the struc-
ture of the Wilson–Cowan interaction matrix (typically Gaussian (Wilson and Cowan
1973; Chossat and Faugeras 2009)), modified by some specific signal dependent diag-
onal matrices, as seen after Eq.13, and allows to explain a range of contrast perception
phenomena.

First, regarding the structure of the kernel, we show that our prediction is consistent
with previously required modifications of the Gaussian kernel in Divisive Normaliza-
tion to reproduce contrast perception (Martinez-Garcia et al. 2019). Second, we show
that the kernel in Divisive Normalization modifies its shape depending on the signal,
thus explaining the behavior previously reported in Cavanaugh et al. (2002b), Coen-
Cagli et al. (2012). Third, we use the predicted signal-dependent kernel to simulate
contrast response curves consistent with Foley (1994), Watson and Solomon (1997).
And finally, the proposed relation is also applied to reproduce the experimental visibil-
ity of spatial patterns in more general contexts as subjective image quality assessment
(Ghadiyaram and Bovik 2016; Ponomarenko et al. 2008, 2009).

In this section, we do not integrate the Wilson–Cowan differential equation, but
we use the expression for the steady-state solution with the kernel obtained from the
proposed relation. This alleviates computation so, as opposed to the previous Section,
in the following examples we use a wavelet representation of higher dimensionality,
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Fig. 9 Linear and nonlinear responses in V1 for an illustrative stimulus. a Retinal image composed of a
natural image and two synthetic patches of frequencies 24 and 12 cpd. This image goes through the first
stages of the model (see Fig. 1) up to the cortical layer, where a set of linear wavelet filters leads to the
responses with energy e, which are nonlinearly transformed into the responses x. b.1 Wavelet panel that
represents e. c.1Wavelet panel that represents x. The highlighted sensors in red and blue (tuned to different
locations of the 24 cpd scale, horizontal orientation) have characteristic responses given the image patterns
in those locations. The plots b.2 and c.2 show the vector representation of the wavelet responses arranged
according to the MatlabPyrTools convention (Simoncelli et al. 1992). These plots show how natural images
typically have bigger energy in the low-frequency sensors. d Input–output scatter plots at different spatial
frequencies, in cycles per degree (cpd), and demonstrate that Divisive Normalization (and the Wilson–
Cowan solution) imply adaptive saturating nonlinearities depending on the neighbors (i.e., a family of
sigmoid functions) (Color figure online)

with 4 scales and 4 orientations, applied on bigger images, 64 × 64. Regarding the
parameters, we use unit-norm Gaussian kernels in Hws or W , and constants k and
b also defined over 4 scales and 4 orientations, directly taken from Martinez-Garcia
et al. (2019).

4.3.1 Structure of the Kernel in Divisive Normalization

Here, we compare the empirical filters Dl and Dr that had to be introduced ad hoc in
Martinez-Garcia et al. (2019), with the theoretical ones obtained through Eq.13.

Before going into the details of the kernel, let’s get some intuition on the typical
structure of the vectors x and gn(x). Figure9 shows an illustrative stimulus with
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oriented textures and the corresponding responses of linear and nonlinear V1-like
sensors based on steerable wavelets. Typical responses for natural images are low-
pass signals (see the vectors in Fig. 9b.2, c.2). The response in each subband is an
adaptive (context dependent) nonlinear transduction (Fig. 9d). Each point in Fig. 9d
represents the input–output relation for each neuron in the subbands of the different
scales (from coarse to fine). As each neuron has a different neighborhood, there is
no simple input–output transduction function, but a scatter plot representing different
instances of an adaptive transduction.

The considered image is designed to lead to specific excitations in certain sensors
(subbands and locations in the wavelet domain). Note, for instance, the high- and
low-frequency synthetic patterns (24 and 12 cycles per degree, cpd, horizontal and
vertical, respectively) in the image regions highlighted with the red and blue dots. In
the wavelet representations, we also highlighted some specific sensors in red and blue
corresponding to the same spatial locations and the horizontal subband tuned to 24
cpd. Given the tuning properties of the neurons highlighted in red and blue, it makes
sense that wavelet sensor in red has bigger response than the sensor in blue.

With this knowledge of the signal in mind: (1) low-pass trend in x shown in Fig. 9,
(2) bigger derivative gn(x) for high frequencies because the derivative is higher for
low amplitude signals (see Fig. 4), and (3) the vector b is bigger for low frequencies
(Martinez-Garcia et al. 2019), we can understand the high-pass nature of the vec-
tors included in the diagonal matrices that appear at the left and right sides of the
theoretically derived kernel H = D(

k
x

) · W · D(
k
b�gn(x)

).

Figure 10 compares the empirical left and right vectors, l and r that were adjusted
ad hoc to reproduce contrast curves in Martinez-Garcia et al. (2019), with those based
on the theoretical relation proposed here. In this case, we only consider the comparison
with the psychophysically sensible parameterization since the ad hoc tuning was done
for that specific scenario. As these empirical filters were just qualitatively adjusted
in Martinez-Garcia et al. (2019), the reproduction of their high-pass nature and their
order of magnitude is more important than the specific MSE values.

The similarity of the structure of the empirical and theoretical interaction matrices
(Eqs. 10, 13) and the coincidence of empirical and theoretical filters (Fig. 10) suggest
that the proposed theory explains themodifications that had tobe introduced in classical
unit-norm kernels in Divisive Normalization to explain contrast response.

4.3.2 Shape Adaptation of the Kernel Depending on the Signal

Once we have shown the global high-pass nature of the vectors k
x and k

b � gn(x),
let’s see in more detail the signal-dependent adaptivity of the kernel. In order to do
so, let’s consider the interaction neighborhood of two particular sensors in the wavelet
representation of an illustrative stimulus with easy to understand features. Specifically,
the sensors are highlighted in red and blue in Fig. 9.

Figure 11 compares different versions of the two individual neighborhoods dis-
played in the same wavelet representation: left the unit-norm Gaussian kernels, Hws ,
and right the empirical kernel modulated by ad hoc pre- and post-filters, Eq. 10. In
these diagrams, lighter gray in each j-th sensor corresponds to bigger interaction with
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Fig. 10 Empirical and theoretical modulation of the Divisive Normalization kernel. Vectors in diagonal
matrices Dl and Dr that multiply the Gaussian kernel in the empirical tuning represented by Eq. 10 (top),
and in the theoretically derived Eq. 13 (bottom). These theoretical filters correspond to a specific natural
image and using the g10(x) approximation of the γ -activation. Themedian relative RMSEs for the predicted
filters over 45 natural images are 10.2% (for the left filter) and 5.4% (for the right filter). The difference
for the right filter using the original Wilson–Cowan activation and also g10(x) is 5.1% (curve not shown).
However, as the empirical filters were just ad hoc adjusted inMartinez-Garcia et al. (2019), here the relevant
is the reproduction of the required high-pass structure, not the MSE

the considered i-th sensor (highlighted in color). The gray values are normalized to
the global maximum in each case. Each subband displays two Gaussians. Obviously,
each Gaussian corresponds to only one of the sensors (the one highlighted in red or in
blue, depending on the spatial location of the Gaussian). We used a single wavelet dia-
gram since the two neighborhoods do not overlap, and there is no possible confusion
between them.

In the base-line unit-norm Gaussian case, Hws , a unit-volume Gaussian in space
is defined centered in the spatial location preferred by the i-th sensor. Then, the cor-
responding Gaussians at every subband are weighted by a factor that decays as a
Gaussian over scale and orientation from the maximum, centered at the subband of
the i-th sensor.

The problem with the unit-norm Gaussian in every scale is that the reduced set of
sensors for low-frequency scales lead to higher values of the kernel so that it has the
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Fig. 11 Gaussian and empirical interaction kernels for the sensors highlighted in red and light blue in Fig. 9.
Gaussian kernel (left) with overestimated contribution of low-frequency subbands (highlighted in orange).
Handcrafted kernel (right) to reduce the influence of low-frequency subbands (highlighted in green) (Color
figure online)

required volume. In that situation, the impact of activity in low-frequency subbands is
substantially higher. This fact, combined with the low-pass trend of wavelet signals,
implies a strong bias of the response and ruins the contrast masking curves. This
problem is represented by the relatively high values of the neighborhoods in the low-
frequency subbands highlighted in orange.

This overemphasis in the low-frequency scales was corrected ad hoc using right and
left multiplication in Eq.10 by handcrafted high-pass filters. The effect of these filters
is to reduce the values for the Gaussian neighborhoods at the low-frequency scales, as
seen in the empirical kernel in Fig. 11-right. The positive effect of the high-pass filters
is reducing the impact of the neighborhoods at low-frequency subbands (highlighted
in green).

In both cases (the classical Hws, and the handcrafted H = Dl · Hws ·Dr ), the size
of the interaction neighborhood (the interaction length) is signal independent. Note
that the neighborhoods for both sensors (red and blue) are the same, regardless of the
different stimulation that can be seen in Fig. 9.

Figure 12 shows the kernels obtained from Eq. 13. The three components of H
are: in Fig. 12a the term proportional to 1

x , in Fig. 12b the term based on Gaussian
neighborhoods W , and in Fig. 12c the term proportional to gn(x). Finally, Fig. 12d
shows the global result of the product of the three terms and Fig. 12e zooms on the
high-frequency horizontal subband that contains the co-linear situation considered in
the physiological experiments (Cavanaugh et al. 2002b).

These three terms have the following positive results: (1) the product by the high-
pass terms moderates the effect of the unit-norm Gaussian at low-frequency subbands
as in the empirical kernel tuned in Martinez-Garcia et al. (2019) shown in Fig. 11-
right, (2) the term proportional to 1

x scales the interaction length according to the
signal, and (3) the shape of the kernel depends on the signal because Hi j is modulated
by (gn(x)) j , and this implies that when the surround is aligned with the sensor, the
kernel elongates in that direction (as the probability of co-assignment in Fig. 3b). This
will lead to smaller responses when the sensor is flanked by co-linear stimuli [as in
Cavanaugh et al. results (Cavanaugh et al. 2002b)].
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Fig. 12 Changes in the shape of the interaction in the theoretically derived kernel. Panels a–c show the
isolated factors in the kernel matrix H , assuming a Gaussian wiring inW . The Gaussian component implies
interactions with low frequencies (highlighted in orange). d Shows the interaction kernel resulting from the
product of the three factors H = D(

k
x

) · W · D(
k
b�gn (x)

), for the two highlighted points. Here, we used

g10(x). Note the high-pass effect of the left- and right-matrix product overW , that removed the interaction
in the low-frequency subbands, now highlighted in dark green. e Zoom on the high-frequency horizontal
subband. The term depending on the derivatives implies changes of the shape of the kernel (from circular
to horizontal ellipses) when the context is a high contrast horizontal pattern. This is compatible with the
probabilities of co-assignment (Coen-Cagli et al. 2012) recalled in Fig. 3b (Color figure online)

In summary, deriving the Divisive Normalization as the steady state of a Wilson–
Cowan systemwithGaussian unit-normwiring explains two experimental facts: (1) the
high-pass filters that had to be added to the structure of the kernel in Divisive Nor-
malization to reproduce contrast responses (Martinez-Garcia et al. 2019), and (2) the
adaptive asymmetry of the kernel that changes its shape depending on the background
texture (Nelson and Frost 1985; Deangelis et al. 1994; Walker et al. 1999; Cavanaugh
et al. 2002a, b).

4.3.3 Contrast Response Curves from theWilson–CowanModel

The above results suggest that theWilson–Cowanmodel could successfully reproduce
contrast response curves and masking, which have not yet been addressed through this
model. Here, we explicitly check this hypothesis.

We can use the proposed relation, Eq. 13, to plug successful parameters of Divisive
Normalization tuned for contrast perception into the corresponding Wilson–Cowan
model. We can avoid the integration of the differential equation using the knowledge
of the steady state. The only problem to compute the response through the steady-state
solution is that the kernel of theDivisive Normalization depends on the (still unknown)
response.

In this case, we compute a first guess of the response, x̂, using the fixed handcrafted
kernel tuned in Martinez-Garcia et al. (2019), and then, this first guess is used to

123



35 Page 28 of 36 Journal of Nonlinear Science (2024) 34 :35

Fig. 13 Contrast response curves obtained from the Wilson–Cowan model. Contrast response curves for
low spatial frequency vertical tests (left) and high spatial frequency horizontal tests (right) seen on top of
backgrounds of different spatial frequencies, orientations, and contrasts (see representative stimuli in the
insets). The backgrounds include: (1) two spatial frequencies (low and high, corresponding to the top and
bottom rows, respectively); (2) two orientations (vertical and horizontal, as seen in the insets); and (3) four
different contrasts represented by the line styles (0.0, 0.15, 0.30, and 0.45, corresponding to the black
solid line, blue solid line, dotted blue line, and dashed blue line, respectively). The responses display the
qualitative trends of contrast perception: frequency selectivity, saturation with contrast, and cross-masking
depending on spatio-frequency similarity between test and background (Color figure online)

compute the proposed signal-dependent kernel, which in turn is used to compute the
actual response, x.

Figure 13 shows the response curves corresponding to neurons that are tuned to
low and high spatial frequency tests, as a function of the contrast of these tests located
on top of backgrounds of different contrast, spatial frequency, and orientation. In each
case, we considered four different contrasts for the background (represented by the
different line styles). Representative stimuli are shown as image patches inside each
plot. The results in this figure display the expected qualitative properties of contrast
perception:
Frequency selectivity.

The magnitude of the response depends on the frequency of the test: Responses for
the low-frequency test are bigger than the responses for the high-frequency test. This
frequency-dependent behavior in Fig. 13 is consistent with the Contrast Sensitivity
Function (Campbell and Robson 1968).
Saturation.

The responses increase with the contrast of the test, but this increase is nonlinear
(saturates), and the responses decrease with the contrast of the background. This
behavior in Fig. 13 is consistent with the contrast discrimination results in Legge and
Foley (1980), Legge (1981).
Cross-masking.
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Fig. 14 Subjective image distortion using the handcrafted kernel (Martinez-Garcia et al. 2019) (left), and
the kernel based onWilson–Cowan equations (right). For each scatter plot, the Pearson correlation between
Mean Opinion Scores (ordinates) and predicted image distortions (abscissas) is given. Differences in the
correlations are not statistically significant indicating the validity of the proposed relation

Reduction of the responses depends on the frequency similarity between test
and background. Note that the low-frequency test is more attenuated by the low-
frequency background of the same orientation than by the high-frequency background
of orthogonal orientation. Similarly, the high-frequency test is more affected by the
high-frequency background of the same orientation. This behavior in Fig. 13 is con-
sistent with cross-masking results in Foley (1994), Watson and Solomon (1997).

4.3.4 Metric in the Image Space from theWilson–CowanModel

As a result of the derived relation between models, Eq. 13, the Wilson–Cowan model
may also be used to predict subjective image distortion scores. In this section, we
explicitly check the performance of the Wilson–Cowan response to compute the vis-
ibility of distortions from neural differences following the same approach detailed in
the previous section regarding the computation of the signal-dependent kernel and its
use to obtain the steady state.

The TID database (Ponomarenko et al. 2008, 2009) contains natural images mod-
ified with many kinds of degradation and has the experimental subjective distortion
for each degraded image. Given a model, the theoretical prediction of the subjective
distortion is obtained from the modulus |xorig − xdistort|, i.e., the Euclidean difference
of the model responses to the original and to the degraded images.

Figure 14 compares these predictions (abscissas) with the experimental distortions
(ordinates) for the responses with a fixed interaction kernel (the conventional Divi-
sive Normalization approach, in blue) and with the proposed signal-adaptive kernel
obtained from the Wilson–Cowan model in red.
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The high values obtained for the Pearson’s correlation coefficients in both cases,
and the close similarities between the plots, prove the good performance of the models
and the validity of the proposed relation between them.

5 Final Remarks

In this paper, we derived an analytical relation between two well-known models of
nonlinear neural interaction: the Wilson–Cowan model (Wilson and Cowan 1972,
1973) and the Divisive Normalization model (Carandini and Heeger 1994, 2012).
Specifically, assuming that the Divisive Normalization is the steady-state solution of
the Wilson–Cowan differential equations, the Divisive Normalization interaction ker-
nel may be derived from theWilson–Cowan kernel weighted by two signal-dependent
contributions.

We showed the appropriateness of the proposed relation in a range ofmodel parame-
terizations by checking the convergence of theWilson–Cowan solution to the Divisive
Normalization solution, and by proving that the Divisive Normalization solution is a
stable node of the Wilson–Cowan system.

Moreover, the derived relation has the following implications in contrast perception:
(a) the specific structure obtained for the interaction kernel of Divisive Normalization
explains the need of high-pass filters for unit-norm Gaussian interactions to describe
contrast masking found in Martinez-Garcia et al. (2019); (b) the signal-dependent
kernel predicts elongations of the interaction neighborhood in backgrounds aligned
with the sensor, thus providing a mechanistic explanation to the adaptation facts found
in Cavanaugh et al. (2002a, b); and (c) low-level Wilson–Cowan dynamics may also
explain behavioral aspects that have been classically explained through Divisive Nor-
malization, such as contrast response curves (Foley 1994;Watson and Solomon 1997),
or image distortion metrics (Laparra et al. 2010; Berardino et al. 2017). This is the first
work that justifies why the Wilson–Cowan interaction successfully reproduces image
distortion metrics and contrast response curves. As stated in Bertalmío et al. (2020a),
there are not many works that explore the use of Wilson–Cowan equations to model
psychophysics, so the examples presented in this work are relevant to fill this gap.

The assumption of the discrete time step Δt in the Euler integration of the Wilson–
Cowan equations, Eq. 14, has implications which were not considered in this work.
Here, the specific value for Δt was just an arbitrary choice done for computational
convenience. If one could assume that this Δt = 10−5 is measured in seconds, as
the process converges in about 400–500 Euler steps (as shown in Fig. 5), this would
mean 4–5 ms to arrive at the steady-state. As an illustration, 4–5 ms would not be a
relevant time delay for visual processing of motion, because the cutoff frequency of
the temporal Contrast Sensitivity is about 70–100 Hz (so events below 10–15 ms are
disregarded), see Kelly (1979). However, here, the choice for this Δt is not based in
the biophysics of the neural interactions, and it may indeed be larger (Zeraati 2023).
If the interaction time is in fact larger, the convergence will take longer than 4–5 ms.
This would imply that the actual behavior would be given by the dynamic Wilson–
Cowan model and not by the Divisive Normalization approximation. This may imply
that the use of static models like DN should be limited to slow-varying stimuli, or that
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the use of DN is more correct on a certain region of spatiotemporal frequencies (or
speeds). Nevertheless, the detailed analysis of that region from a sensible biophysical
estimation of Δt is out of the scope here and a matter for further work.

Finally, the relation between models proposed here opens the possibility to analyze
Divisive Normalization from new perspectives, following methods that have been
developed for Wilson–Cowan systems (Destexhe and Sejnowski 2009). Similarly,
mechanisms that generalize the Wilson–Cowan equation such as the neurons with
intrinsically nonlinear receptive fields (Bertalmío et al. 2020b) could be analyzed via
information theoretic tools that have been used to quantify the performance of Divisive
Normalization (Malo 2020, 2022; Saproo and Serences 2014).
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A Activation Functions

A.1 Original Activation. Wilson and Cowan (Wilson and Cowan 1972, 1973) pro-
posed the use of typical sigmoids such as the logistic function as appropriate activation
functions:

f (x) = C

(
1

1 + e− x
e�

− 1

2

)

(16)

where C = e�
(

1
1+e−1 − 1

2

)−1
is just a scaling factor of the response and the domain

so that f (e�) = e�. In the work, we selected the constants e�, i.e., we scaled f (·),
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using the standard deviation of the linear responses of the V1 cells over the subbands.
In this way, the activation preserves the scale between the different subbands.

The derivative of this original activation function, invoked n times in gn(x), is given
by:

d f

dx
(x) = C

e�

e− x
e�

(
1 + e− x

e�
)2 (17)

A.2 γ -activation. Following (Turner and Rieke 2016) that uses power laws to
model activation functions, we also used another sigmoid inspired in the luminance-
brightness nonlinearities of the retinal photoreceptors (Martinez-Garcia et al. 2018).
Due to its similarity to the exponential γ -correction transforms, it is called γ -activation
or γ -saturation throughout the work. Regular exponential functions were modified
around the origin in Martinez-Garcia et al. (2018) in order to avoid and control the
singularity of the derivative in the origin:

f (x) =
{
sign(x)C |x|γ , if |x | ≥ ε

sign(x)
(
a |x| + b |x|2) , if |x | < ε

(18)

where γ < 1 so that the function saturates, and the constant C = (e�)1−γ ensures
that f (e�) = e�. In this work, γ = 0.6 and, as stated for the original activation, the
scaling e� was selected to preserve the relation between the standard deviations of
the different subbands in the linear responses. The neighborhood, ε, was selected to
be close to the origin ε = 1 × 10−3e�. The constants, a and b are chosen to ensure
continuity of the derivative at ε: a = (2 − γ )C εγ−1, and b = (γ − 1)C εγ−2.

The derivative of this function, useful to compute gn(x), is:

d f

dx
(x) =

{
γ C |x|γ−1, if |x | ≥ ε

a + 2 b |x|, if |x | < ε
(19)

Figure4 in themain text shows that both functions share the same qualitative proper-
ties: They are saturating sigmoids, with derivatives that peak at the origin and decrease
with the signal.

BMATLAB Code

This appendix lists the main MATLAB routines associated with each experiment
described in the main text. All the material is in http://isp.uv.es/docs/
DivNorm_from_Wilson_Cowan.zip. Detailed parameters of the models and
the instructions on how to use these routines are given in the corresponding *.m files.

– The Divisive Normalization retina-cortex model The MATLAB toolbox that imple-
ments the 4-layer network for spectral or color images considered in Fig. 1 is
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in BioMultiLayer_L_NL_color.zip. This toolbox includes the model, its inverse
and Jacobians, and a distortion metric based on the model.
The file demo_deep_DN_iso_color_spectral.m shows how to choose the param-
eters of the model, how to apply it to spectral images and images in opponent color
representations, and how to compute the responses, the Jacobians and the inverse.
The demo function demo_metric_deep_DN_iso_color.m shows how to represent
conventional digital images in the appropriate opponent color representation.

– Psychophysically sensible parameters for the Wilson–Cowan model The toolbox
includes the functions saturation_f.m and inv_saturation_f.m that compute and
invert the dimension-wise saturating response of the Wilson–Cowan model depicted in Sect. 4.1 of the
main text. These functions also compute the corresponding derivative with regard to the stimuli. The
routine Converg_Stability_ND_excit_inhibit.m defines and plots the parameters of the
Wilson–Cowan model based on psychophysically tuned Divisive Normalization.

– Experiments on convergence The connectivity W and the activation f are applied together in
integrability_WC_with_f_after_KindReview.m to check the convergence of the sys-
tem. That script applies Euler integration and shows the convergence of the dynamic solution to the
corresponding Divisive Normalization solution.

– Experiments on stability The stability of the dynamic Wilson–Cowan system is studied through
the eigendecomposition of the Jacobian that controls the amplification of the perturbations in
(Converg_Stability_ND_excit_inhibit.m), which includes visualizations of the phase
diagram.

– Signal-dependent kernel The script signal_dependent_kernel_with_f.m generates an illus-
trative image made of high contrast patterns with selected frequencies to stimulate specific subbands of
the models. Then, it computes the responses to such stimulus and the corresponding signal dependent-
filters according to the relations derived in the main text, Eq. 13. These theoretical filters are compared
to the empirical filters found in Martinez-Garcia et al. (2019). Finally, in environments where the sur-
round is aligned with the wavelet sensors, the shape of the interaction kernel is found to change as in
Cavanaugh et al. (2002b).

– Contrast response curvesThe script contrast_response_WC.m generates a series of noisyGabor
patterns of controlled frequency and contrast displayed on top of noisy sinusoids of different fre-
quencies, orientations, and contrasts. It computes the visibility of these patterns seen on top of the
backgrounds by applying the Divisive Normalization model with the signal-dependent kernel derived
from the Wilson–Cowan model. The visibility was computed from the response of the neurons tuned
to the tests.

– Image distortion metric The series of scripts images_TID_atd_thorugh_WC_model_x.m
compute the Divisive Normalization response with the signal-dependent kernel derived from the
Wilson–Cowan model for the original and distorted images of the TID database (previously expressed
in the appropriate ATD color space). Then, the Euclidean distance is applied to compute the visibility
of the distortions. The distances are computed by applying metric_deep_DN_iso_colorWC.m
that computes the responses by calling deep_model_DN_iso_colorWC.m.
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