
Geometry of Concepts in Next-token Prediction:
Neural-Collapse Meets Semantics

Yize Zhao1, Christos Thrampoulidis1
1The University of British Columbia

zhaoyize@ece.ubc.ca, cthrampo@ece.ubc.ca

Modern language models, trained through the conceptually simple next-token
prediction (NTP) objective, demonstrate a remarkable ability to capture meaning
despite being trained only on explicit (context, next-word) pairs. This raises a fun-
damental question: How do these models extract and encode latent concepts—such
as semantic dichotomies like true/false and male/female, or grammatical distinc-
tions like nouns/verbs—during training? We discover that these latent concepts are
inherently encoded in the singular value decomposition of a data sparsity matrix,
which captures the support structure of conditional next-word probabilities. While
NTP training never explicitly constructs this matrix, the emergent word and context
embeddings naturally factor it, thereby capturing linguistic structure. Our results
reveal a new form of neural-collapse geometry of latent concepts in NTP that goes
beyond traditional geometry of embeddings studied previously in balanced one-hot
classification settings. Furthermore, while sharing conceptual similarities with clas-
sical distributional semantics, our results reveals how neural models can acquire
semantic concepts during training without explicitly constructing co-occurrence
matrices.

1. Introduction
The remarkable ability of language models to capture meaning raises a fundamental question: How
do these models encode information from natural language training data into representations that enable
their impressive capabilities? Consider modern causal models trained with autoregressive next-token
prediction (NTP), where the objective is conceptually simple: for each context (sequence of preceding
tokens) in a text corpus, minimize the cross-entropy loss between predicted and actual next tokens.
At the end of training, the model learns d-dimensional vector representations for each token (called
word embeddings) and each context (called context embeddings). This naturally leads to the
question: How is the geometry of these representations of words and contexts learned by NTP training
determined by the statistics of the training data?

Recent work Zhao et al. [2024] has shown that when the model is sufficiently large and well-trained,
NTP training yields word and context embeddings that correspond to matrix factorization of (a
centered version of) what we call the data sparsity matrix—a binary matrix where entry (z, j) is 1 if
and only if word z appears as the next token of the j-th context in the training corpus.
While this finding provides insight into how models encode explicit training signals, it opens up a
deeper question about themechanisms of latent semantic learning. Language, presented to themodel
as explicit (context, word) pairs, carries meaning through latent semantic information. Thus, we ask:
How do models trained with NTP extract and encode latent concepts? For instance, how do they capture
semantic concepts like true/false and male/female, or grammatical concepts like nouns/verbs? This
question is particularly challenging because, unlike the explicit (context, next-token) pairs captured
in the data sparsity matrix, the concepts are never directly observable by the NTP training objective.
Our key finding reveals that the encoding of latent linguistic concepts through NTP training follows
a remarkably simple mechanism: the learnt concepts are inherently encoded in the singular value
decomposition (SVD) of the centered data sparsity matrix. Specifically, we show that the principal
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components of the data sparsity matrix correspond to distinct grammatical and semantic concepts,
with singular values quantifying their significance, and singular vectors capturing how these con-
cepts manifest in words and contexts. Crucially, while NTP training never explicitly constructs or
decomposes the data sparsity matrix, the emergent word and context embeddings naturally factor
this matrix Zhao et al. [2024], thereby capturing latent linguistic structure.
Our finding makes individual contributions and establishes a link between two previously discon-
nected literatures:
First, our results provide new insights into the literature on distributional semantics by explaining
how NTP training implements semantic encoding through an implicit SVD factorization of a data
matrix. While this shares similarities with classical latent semantic analysis our message differs
in two crucial ways: (1) NTP training never explicitly constructs a data membership matrix of
embeddings/next-tokens or explicitly computes its SVD, and (2) the data membership matrix that
NTP implicitly processes to acquire semantic information is a centered data sparsity matrix, distinct
from the classical count-type matrices considered in the LSA literature.
Second, we extend the literature on neural collapse geometries beyond its traditional focus on
balanced, one-hot supervised classification settings . By analyzing NTP in language modeling as an
inherently imbalanced multilabel problem, we reveal the rich structure of the data sparsity matrix:
its SVD factors, when examined feature-wise, expose the semantic structure present in the data.

2. Background

2.1. Setup: NTP Objective as Sparse Soft-Label Classification
We define vocabulary V = [V ] := {1, . . . , V }, where zt ∈ V represent tokens/words within sequences
z1:t = (z1, . . . , zt). The NTP task is to predict a target token z := zt from context x := z1:t−1 using
training data Tn := {(xi, zi)}i∈[n], where xi ∈ X := Vt−1 and zi ∈ V for each i ∈ [n], and the context
length t− 1 ranges from 0 to T − 1.
A model fθ′ : X → V is trained, where fθ′(x) = Whθ(x), withW ∈ RV×d as the decoding matrix
and θ parameterizing the context to embedding map hθ : X → Rd. The model minimizes the
empirical cross-entropy (CE) loss, using either MLP, LSTM, or Transformer (TF) architectures for
embedding.
Sparse-Label Representation: Following Thrampoulidis [2024], we interpret the next-token pre-
diction (NTP) objective as classifying among m ≤ n unique contexts x̄1, . . . , x̄m. Each context x̄j

is associated with a sparse label vector p̂j ∈ ∆V−1 in the V − 1 dimensional probability simplex,
representing the conditional distribution of next tokens. The sparsity is both a sampling artifact and
inherent at the population level (not all tokens from the vocabulary are valid next-tokens of a given
context in natural language data). We further let π̂j denote the empirical probability for context x̄j .
The NTP training objective can be expressed as:

CE(θ′) =
∑
j∈[m]

π̂j · ℓ (Whθ(x̄j); p̂j) , (1)

where ℓ measures the deviation between the model’s logits Whθ(x̄j) for context j and its corre-
sponding soft-label vector p̂j . Unless otherwise specified, we use the standard cross-entropy (CE)
loss for NTP training:

ℓ (Whθ(x̄j); p̂j) = −
∑
z∈V

p̂j,z log (Sz(Whθ(x̄j))) .

Here, Sz(·) : RV → [0, 1] denotes the z-th component of the softmax function S(), which maps the
model’s V -dimensional logits to the (V − 1)-dimensional probability simplex.
For later use, it is convenient to define the supportmatrixS ∈ {0, 1}V×m of the conditional probability
matrix P = [p̂1, . . . , p̂m] ∈ RV×m. Formally, S[z, j] = 1 if and only if p̂j,z := P [z, j] > 0. For each
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Figure 1: Notation and setup

context j, we also define its support-set Sj = {z ∈ V |S[z, j] = 1}, which contains all tokens that
appear at least once as next-tokens following context j in the training data. We refer to tokens in
Sj as in-support tokens for context j, and all others as off-support tokens. Finally, Central to our
analysis is the centered support matrix

S̃ := (IV −
1

V
1V 1

⊤
V )S (2)

with entries
S̃[z, j] =

{
1− |Sj |

V , if z ∈ Sj
− |Sj |

V , if z ̸∈ Sj
.

For convenience, we refer to S̃ as the data sparsity matrix, though note that unlike the support
matrix S, its entries are not binary due to the centering operation.
We illustrate the notation and setup in Fig. 1.

2.2. Geometry of Words and Contexts
Following Zhao et al. [2024], we assume sufficient model expressivity, allowing to optimize context
embeddings in (1) freely, instead of abiding by their architecture-specific parameterization. This
leads to the following training objective

min
W ,H

CE(WH) +
λ

2
∥W ∥2 + λ

2
∥H∥2. (NTP-UFM)

which jointly optimizes the matrices of word and context embeddings W ∈ RV×d and H :=
[h1, . . . ,hm] ∈ Rd×m. Since the minimization is unconstrained for both variables, we follow the
neural collapse literature in referring to this as the unconstrained features model (UFM) for NTP
training. The resulting log-bilinear model bears similarities to those in word2vec Mikolov et al.
[2013a,b] andGloVe Pennington et al. [2014a], with two key distinctions: (1) it optimizes embeddings
for both words and contexts rather than just words, and (2) it serves as a mathematically tractable
abstraction of training a sufficiently expressive neural architecture. In (NTP-UFM), we have also
added ridge-regularization with weight λ > 0.
Recent work Zhao et al. [2024] has analyzed the geometry of solutions to (NTP-UFM) when λ→ 0.
This limit (referred to in the literature as the regularization-path Rosset et al. [2003], Ji et al. [2020])
serves as a proxy for the limiting behavior of gradient descent (GD) training as the number of
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iterations approaches infinity. For large embedding dimensions d ≥ V 1, as λ → 0 (modeling the
regime where the model is trained long-enough), Zhao et al. [2024] showed the following properties
regarding word embeddings W , matrix embeddingsH , and logits L = WH :

1. Logits Convergence: The logit matrix L decomposes into two orthogonal components: (1)
a sparse matrix Lin and (2) a diverging component aligned with Lmm. Here, Lmm is the
solution to a nuclear-norm minimization problem that enforces two key constraints: logits
of out-of-support tokens must exceed those of in-support tokens, while all in-support tokens
must have equal logits. As training progresses, the second component grows unboundedly
in norm, making Lmm the dominant component when the logit matrix L is normalized.
Importantly, Lmm depends solely on the data support matrix S.

2. SVD factors of Lmm While word and context embeddings grow unboundedly in magni-
tude (mirroring logit behavior), their normalized versions exhibit directional convergence.
Specifically, the normalized word embeddings converge toWmm = UΣ1/2R and context
embeddings to Hmm = R⊤Σ1/2V ⊤, where UΣV ⊤ is the singular value decomposition of
Lmm and R is a partial orthogonal matrix.

3. Data-sparsity matrix as proxy: The data sparsity matrix S̃ (see Eq. (2)) is a good proxy for
Lmm. Thus, the word and context embedings’s geometries are specified by the SVD of S̃.

To sum up, Zhao et al. [2024] shows that the geometry of word and context embeddings learnt by
NTP training are determined by the left and right (respectively) singular factors of the data sparsity
matrix S̃. In what follows, we denote the SVD decomposition of S̃ as

S̃ := UΣV ⊤, (3)
whereU ∈ RV×r, V ∈ Rm×r withU⊤U = V ⊤V = Ir , and the singular valuesΣ = diag(σ1, . . . , σr)
are ordered:

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 .

3. Geometry of Concepts

3.1. Motivating questions
In this section, we use a simple numerical example to motivate our investigation into the geometry
of concepts.
Consider NTP training on the (context, next-token) pairs shown in Fig. 2, where we also display the
sparse conditional probability matrix P . Following Section 2.1, we train the model using objective
(NTP-UFM) on this dataset. The resulting word and context embeddings, visualized through a
2D projection in Fig. 2, reveal a clear geometric structure: negative words and their associated
contexts cluster on the left, while positive ones group on the right. This natural separation suggests
the emergence of latent concept information—specifically, a "positive" versus "negative" semantic
distinction—that shapes the embedding geometry.
As a first heuristic way to quantify this structure, we compute centroid embeddings for positive
and negative examples, which we interpret as representations of "positive" and "negative" concepts.
These concept embeddings form antipodal regions in the embedding space, with neutral contexts
(such as "the book is" and "the movie is") positioned near their boundary. This emergent structure

1As noted in Zhao et al. [2024], while this assumption differs from current practice in state-of-the-art LLMs,
the geometry of word/context embeddings remains rich even in this setting. Importantly, this assumption is
less restrictive than requiring d > C in one-hot classification settings with C classes. There, due to collapse of
embeddings from the same class, d > C effectively requires the dimension to exceed the number of training
examples. In contrast, for NTP training, the number of contexts m can be (and typically is) much larger
than the embedding dimension d, allowing for rich geometric arrangements of context embeddings in the
lower-dimensional space.
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Figure 2: NTP geometry on amotivating example; see Sec. 3.1. For better illustration the
synthetic training data (Left) follows the simple structure: context “the [subject] is” and
next token “[attribute].” The model’s embedding dimension exceeds the vocabulary
size (d > V = 10), and the plot is generated by projecting embeddings into 2D
using PCA. Word (red) and context (blue) embeddings emerge from the soft-label
structure of the sparse context–next-tokenmatrix (inset), which governs the embedding
geometry. Concept representations (boxes) here are computed by averaging the related
context embeddings. This paper shows how to systematically obtain the concept
geometry from the SVD of a centered data-sparsity matrix.

raises two key questions: (1) How do these concept embeddings interact with and influence the
geometry of word and context embeddings? (2) How does next-token prediction training lead to
concept embeddings that capture semantic information?
To address these questions systematically and move beyond our initial heuristic analysis, recall
from Sec. 2.2 that word and context embeddings encode the row and column space information
of the training data matrix S̃. Specifically, word embeddings can be expressed as W = U

√
ΣR,

where U comes from the SVD of the centered data-sparsity matrix S̃ = UΣV ⊤. In other words,
word embeddings are scaled and rotated versions of the left singular vectors U , which encode the
row-space of S̃.
The structure of S̃ provides crucial insight: its rows correspond to words, and words appearing
in similar contexts—like “dog” and “cat” in sentences about animals—naturally have similar row
patterns. Consequently, U may capture these semantic relationships, with its columns forming
an abstract “concept basis” where a word’s projection onto these axes reflects its association with
specific concepts.
This observation leads to our central motivating question: Does U encode meaningful semantic
information, and how does this structure emerge? Understanding U may reveal how linguistic
patterns in training data shape embedding geometry and reflect latent semantic groupings.

3.2. Principal components of the data-sparsity matrix

Recall the centered sparsity matrix S̃ and its SVD in (3). Adopting terminology from Saxe et al.
[2019], the columns uk ∈ RV ,vk ∈ Rm, k ∈ [r] of U ,V can be thought of as word and context
analyzer vectors for concept k. For each word z ∈ V and each word-concept k ∈ [r], the component
uk[z] represents how present or absent is a word z in concept k. Respectively for contexts.

5



Each analyzer vector can be interpreted as a representation of the alignment of tokens or contexts
with respect to a specific concept. Specifically, a positive value in the analyzer vector indicates that
the token or context is associated with the corresponding concept. A negative value suggests that
the token or context is not associated with the concept, or is oppositional to it. The absolute value
represents the strength of the association. A larger positive value implies stronger alignment with
the concept, while a larger negative value indicates stronger opposition.
Intuitively, a concept is a latent factor that humans—or language models—consider when processing
or generating text. For example, the context “The largest city in Canada is” may embody a concept
related to Canada. Words like “Toronto,” “Canada,” and “maple” align with this concept. This is a
clear, explicit example, but not all concepts have meanings that are easily interpretable by humans.
Many latent concepts captured by the model may be implicit or abstract Piantadosi et al. [2024].
To illustrate these ideas and to clearly highlight the semantic information, we constructed a simplified
toy dataset using a fixed syntax as follows: “The [subject] is [attribute]”, and the attribute is
semantically related to the subject. The task involves predicting the last token (the attribute). This
design ensures that the syntactic structure is not critical during training and, therefore, will not be
extracted as a concept. Fig. 3 confirms that the concepts extracted from the SVD contain important
semantic information inherent in the data.

(A) Sparsity Pattern (B)SVD Decomposition

Figure 3: (A) The transpose of the support matrix S of a toy illustrative example,
where each row represents a possible next-token and each column a context. (B) The
SVD of the centered data-sparsity matrix S̃, illustrating how each SVD dimension may
be associated with semantic meanings. For instance, in the Us matrix, the first column
represents the “animal-plant” dimension: tokens such as “furry” and “mobile” strongly
correlate with animal traits and positively influence the first dimension, whereas
“decorative” and “perennial” negatively relate, indicating plant traits. Similarly, the
first row ofVT

s shows a significant positive alignment with “Canary is” and “Salmon
is”, suggesting strong animal characteristics, while negative values for “Oak is” and
“Rose is” reinforce their association with plant attributes.

To find the geometry of concepts in the embedding space and relationships between concepts and
the word/context embeddings, we define word-concept representations ud

k and context-concept
representations vd

k for k ∈ [r] as projections onto the spaces of word and context representations,
respectively.

ud
k = W⊤uk , (4)

vd
k = Hvk . (5)

This definition ensures that tokens or contexts more aligned with a specific concept have embeddings
closer to the concept’s representation, asmeasured by a larger dot product. Fig. 4 offers a visualization
the geometry of concepts and word/context embeddings in the embedding space.
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Figure 4: Visualization of (Left) context concepts and context embeddings, and (Right)
word concepts and word embeddings in the embedding space. For both plots, the
embeddings (red lines) represent individual words or contexts. The first and second
concept axes are indicated by blue and green lines, respectively. The projection of each
word/context embedding onto these axes quantifies the extent to which the word or
context embodies the respective concept. For example, on the left plot, words like
“Canary is” and “Salmon is” project closely along the animal end of the blue axis
(animal-plant), indicating strong animal characteristics. Conversely, “Oak is” and
“Rose is” align more towards the plant end, illustrating their plant-related attributes.
On the right plot, the word “furry” strongly projects onto the animal side of the red
axis, denoting an animal-related trait, while “decorative” projects towards the plant
side, associating it with plant traits.

3.3. Rate of learning

Inspired by Saxe et al. [2019], we investigate here the rate of learning for each concept during
next-token prediction training.
We train themodel using objective (NTP-UFM) on a toy synthetic dataset with embedding dimension
d = 18 = V equal to the vocabulary size. This setup serves two purposes: the unconstrained feature
model allows embeddings to optimize freely, while setting d = V ensures the model can learn all
concepts (represented by the rank(S̃) orthonormal basis vectors from the SVD).
We track the evolution of singular values of the logit matrix during training. As shown in Figure 5,
our results confirm the finding from Saxe et al. [2019]: concepts associated with larger singular
values are learned faster. This pattern holds for both square loss (as in Saxe et al. [2019]) and the
cross-entropy (CE) loss commonly used in NTP. While the CE loss leads to diverging singular values
unlike the square loss, the relative ordering remains consistent—singular values that ultimately
show maximal divergence also begin diverging earlier in training. A formal characterization of this
behavior for CE loss remains an interesting direction for future work.

3.4. Hierarchical structure of the Language

By analyzing the SVD heatmaps and the learning curves of singular values generated from the toy
example of Fig. 3, we observe that concepts associated with larger singular values correspond to
broader categories, such as the "animal-plant" concept with the largest singular value. These broader
categories are also learned faster, suggesting a progression in concept learning: general, high-level
concepts are learned earlier, while finer, more specific distinctions within these categories are learned
later.
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Figure 5: Evolution of singular values of the logit matrix during training. Both plots
show that dominant concepts (corresponding to larger singular values) are learned first.
(Left) With squared loss, singular values converge to those of the optimal solution,
demonstrating learning saturation. (Right) With CE loss, singular values grow un-
boundedly while maintaining their relative ordering, reflecting the continuous growth
of embedding norms characteristic of CE training.

To represent this progression and the relationships among concepts, we propose a tree structure.
In this structure, shallower branches represent broader, more significant categories, while deeper
branches represent more specific, less significant categories. Semantically similar tokens or concepts
are expected to share deeper common ancestors, while dissimilar ones share only shallower ancestors.
We model this hierarchical structure using Agglomerative Clustering Müllner [2011] applied to
the rows and columns of the centered sparsity matrix. Agglomerative Clustering is a bottom-up
approach that starts with individual points and iteratively merges them into clusters to form a
hierarchy. Here, rows of the centered data-sparsity matrix represent feature vectors for words, while
columns represent feature vectors for contexts. This approach aligns with the intuition that tokens
followed by more similar contexts are more semantically related, and vice versa for contexts.
The hierarchical structure constructed in this way reflects the progressive differentiation observed
during learning. Shallower branches of the tree represent concepts associated with larger singular
values that are learned earlier, while deeper branches capture finer distinctions learned later.
The dendrogram in Fig. 6 illustrates this hierarchy, revealing distinct clusters corresponding to broad
semantic categories initially learned, with finer distinctions emerging at deeper branch levels.

3.5. Word (Context) analogy

Our formalization provides insight into the phenomenon of word analogy—linguistic comparisons
of the form "A is to B as C is to D" where semantic relationships between word pairs are preserved. A
classic example is "man is to woman as king is to queen," where the semantic difference captures the
concept of "gender." Prior works have empirically reported that word embeddings often reflect such
relationships through vector arithmetic: wman − wwoman = wking − wqueen Mikolov et al. [2013b],
Levy and Goldberg [2014], Arora et al. [2016].
We explain this phenomenon through our semantic framework. Our key insight is that semantic
meaning in language manifests through individual or combined latent concepts. As demonstrated
in Sec. 3.2 and Fig. 4, these concepts correspond to specific directions in the embedding space.
Consequently, a change in semantics should also correspond to a linear shift in the embedding
space. Therefore, if two word pairs share the same semantic change, the corresponding shifts in the
embedding space should also be identical.
This intuition can be formalized using contextualized word embeddings, where word meaning
depends on context. Let ∆sz1−z2 = sz1 − sz2 denote the semantic change between words (where
sz is the z-th row of S), and∆sj1−j2 = sj1 − sj2 denote the change between contexts (where sj is
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Figure 6: (Left) Dendrogram of subjects depicting the initial categorization phases in
the semantic learning process, where fundamental distinctions between entities like
animals and plants are learned first. (Right) Dendrogram of properties demonstrates
subsequent learning stages, where specific attributes such as ’furry’ or ’perennial’
are distinguished, reflecting the layered complexity of semantic understanding in
hierarchical learning models.

the j-th column). Our analysis demonstrates that if the semantic change between two word pairs is
equivalent, then their embeddings also exhibit equivalent linear transformations. Specifically,

∆sz1−z2 = ∆sz′
1−z′

2
=⇒ wz1 −wz2 = wz′

1
−wz′

2
.

A detailed mathematical argument supporting this conclusion is provided in Appendix B. This
analogy also extends to contexts.

4. Experiment

4.1. Setup
To confirm that semantic and syntactic information is encoded in the concepts extracted from the
data-sparsity matrix, we conducted experiments using the TinyStories dataset Eldan and Li [2023].
We employed a limited-vocabulary word-level tokenizer, retaining only the top 500 most frequent
word-level tokens, while categorizing all other tokens as "unknown." From the dataset, we extracted
the 500 most common sequences of lengths between 2 and 6 tokens and calculated their empirical
distributions. Using this data, we applied Singular Value Decomposition to the data-sparsity matrix
to analyze its underlying structure.

4.2. Visualization and Interpretation
Building on the single-dimensional concept visualization used in the simpler toy examples in Sec. 3,
we extend the analysis to a multidimensional approach to accommodate the larger scale of the dataset
and the increased number of tokens, contexts, and concepts. While single-dimensional analysis
is limited to broad categorizations (e.g., positive vs. negative), this multidimensional approach
allows us to examine combinations of multiple semantic dimensions, providing a more detailed and
nuanced understanding of the embedding geometry.
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Each row of U represents a word’s analyzer vector, and each column corresponds to a latent concept
captured by S̃. A multidimensional approach examines howwords align across multiple dimensions
simultaneously. For example, instead of categorizing words into two broad groups based on a
single dimension (e.g., positive or negative), we analyze combinations of k dimensions. We denote
such combinations as C = [c1, c2, . . . , ck], where each ci ∈ {Pos,Neg} specifies the sign of the
corresponding component of the analyzer vector. For a word z, we determine its membership in a
specific group defined by C as:

Membership(z;C) =

{
1, if sign(uci [z]) = ci ∀ci ∈ C,

0, otherwise.
Here, uci [z] represents the ci-th component of the analyzer vector for word z. This classification
allows us to group words based on their alignment with multiple semantic dimensions, reflecting
the multidimensional geometry of the embedding space.

4.3. Results
We find specific combinations of concept dimensions reveal strong semantic or syntactic information.
While complete results for combinations of the first 3, 4, and 5 dimensions are deferred to the
Appendix, we highlight a few examples below:

• [Neg, Pos, Neg, Neg, Neg]: This combination in the first five dimensions encodes past-tense
verbs (Fig. 7 (a)).

• [Neg, Neg, Pos, Neg, Pos]: This combination encodes present-tense verbs (Fig. 7 (b)).
• [Pos, Pos, Neg, Pos, Pos, Pos]: This combination in the first six dimensions encodes prepositions

(Fig. 7 (c)).
• [Pos, Pos, Pos, Pos, Neg, Neg]: This combination encodes proper names in the dataset (Fig. 7

(d)).

These results demonstrate that combinations of concept dimensions effectively capture complex
semantic and syntactic structures in the data. The alignment of semantic groupings with multidi-
mensional embeddings confirms the relationship between linguistic patterns and the geometry of
word and context embeddings learned by NTP training.

Figure 7: Word clouds illustrating semantic information encoded by specific com-
binations of concept dimensions. (a) Past-tense verbs, (b) Present-tense verbs, (c)
Prepositions, and (d) Proper names. Larger word sizes indicate words that are more
representative of their category, emphasizing their prominence within that specific
semantic configuration. Larger word sizes indicate words that are more representative
of their category, emphasizing their prominence within that specific semantic configu-
ration.

5. Discussion

5.1. d < V

Our analysis thus far has assumed that the embedding dimension d is at least as large as the rank of
the data-sparsity matrix, which is guaranteed when d ≥ V . Under this condition, we have shown
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that word and context embeddings form a geometric structure capable of representing all concepts
encoded in the data-sparsity matrix’s singular factors. Moreover, as demonstrated in Zhao et al.
[2024], gradient descent training naturally aligns embeddings with this structure.
However, modern language models typically employ embedding dimensions d smaller than the
vocabulary size V . This raises a fundamental question: What subset of concepts can such models
effectively capture? We hypothesize that during NTP training, these models learn to represent the d
most significant concepts, corresponding to the largest singular values of the data-sparsity matrix.
As a preliminary investigation of this hypothesis, we trained NTP-UFM on a small synthetic dataset.
Fig. 5 shows the evolution of the learned logit matrix’s singular values during training, revealing
convergence to the d largest singular values of the data-sparsity matrix. For this experiment, we used
square loss rather than cross-entropy, as it exhibits better-behaved dynamics where singular values
remain bounded during training, making their evolution more tractable to track Saxe et al. [2019].
While these initial results support our hypothesis, a deeper investigation of embedding behavior in
the more practically relevant setting of d < V remains an important direction for future work.

5.2. Role of Autoregression

We have shown that concepts emerge during NTP training as principal directions of the data-sparsity
matrix S̃, a centered version of the support matrix S. Each column j of S corresponds to a distinct
context and can be viewed as a binary (multi-)label vector sj , where entries of 1 indicate tokens that
appear as next-tokens for that context in the training data. The concepts learned during training are
thus determined by the principal directions of this label matrix, with their importance captured by
the corresponding singular values.
This analysis reveals that concepts—including semantic relationships—are implicitly encoded in
the supervised component of the NTP task through interactions between context labels. At first
glance, this might seem limiting: contexts can intuitively relate to each other not only through shared
next-tokens (their labels), but also through the intrinsic structure of the contexts themselves, such as
overlapping constituent tokens.
We argue that this second form of interaction is naturally captured through the autoregressive nature
of training. In autoregressive NTP, the model processes labels for progressively longer contexts.
While a context (z1, . . . , zt) contributes to concept formation through its distribution over next-tokens
zt+1, autoregressive parsing ensures that its components zt, zt−1, etc. also shape concepts through
the labels of shorter subsequences (z1, . . . , zt−1), (z1, . . . , zt−2), and so on—each representing distinct
columns in S.
In other words, the rich contextual information inherent in autoregressive training manifests in
concept formation through multiple, diversely interacting columns in the support matrix. The
practice of forming (context, next-token) pairs through overlapping context windows naturally
produces fine-grained label information, creating rich sparsity patterns in S (and consequently in
S̃). These patterns yield nontrivial concepts with varying levels of significance, as reflected in their
contributions to word and context embeddings.

5.3. Connection to neural collapse geometries in one-hot classification

Following our previous discussion, we formally define concepts as principal components of the
data-sparsity matrix—a centered version of the support matrix S that serves as the label matrix in
NTP. The richness of concepts and their varying significance emerges from the interplay of labels
across different contexts.
Consider the extreme case with minimal label richness: each context is followed by exactly one
next-token, with contexts distributed equally across the vocabulary. Here, S can be rearranged
as IV ⊗ 1⊤m/V , yielding trivial concepts: all singular directions contribute equally to each word’s
meaning and carry equal importance, reflecting the balanced label distribution in both S and S̃.
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This setting parallels standard balanced one-hot classification (with V classes and equal examples
per class), as encountered in image classification. The neural collapse literature has extensively
analyzed this setting, showing that last-layer embeddings (context embeddings) and weights (word
embeddings) form highly symmetric aligned structures in d-dimensional space Papyan et al. [2020]
(see Related Works). The symmetry of these geometric structures reflects the symmetric nature of S,
where labels induce no interesting conceptual structure.
However, such balanced one-hot settings never occur in natural language NTP Zhao et al. [2024].
Instead, as discussed in Sec. 5.2, autoregressive NTP produces rich label formations that yield diverse,
interpretable concepts. In these richer settings, S induces a conceptual geometry that complements
the embedding geometry studied in the neural collapse literature, thus extending its scope.
To make this connection explicit, we demonstrate that interpretable concepts emerge even in one-hot
classification—the traditional focus of neural collapse literature—given minimal deviation from
perfect balance. Consider the simplest imbalanced setting: STEP imbalances with ratio R, where V/2
majority classes each have R > 1 times more samples than the remaining minority classes (assuming
one example per minority class for simplicity). In this setting, each column of S̃ has V − 1 entries
equal to −1/V and one entry (corresponding to the example’s class) equal to 1− 1/V . While this
structure is consistent across all examples, majority classes contribute more columns with 1− 1/V
entries in their corresponding rows.
Previous work Thrampoulidis et al. [2022] has shown that in this setting, the learned logit matrix
converges to S̃, with embeddings emerging from its left/right singular factors. We now demonstrate
how these SVD factors induce interpretable embeddings. The singular values of S̃ exhibit a three-tier
structure:

σ1 = . . . = σV/2−1 =
√
R > σV/2 =

√
(R+ 1)/2 > σV/2+1 = . . . = σV = 1

This hierarchy reveals three distinct levels of conceptual significance. To interpret these concepts, we
examine the left singular vectors matrix U , which as shown in Thrampoulidis et al. [2022], takes a
sparse block form:

U =

 F −
√

1
V 1 0

0
√

1
V 1 F

 ∈ RV×(V−1) ,

where F ∈ RV/2×(V/2−1) is an orthonormal basis of the subspace orthogonal to 1V/2.2

The structure ofU reveals three distinct types of concepts, corresponding to the three tiers of singular
values: (1) The first V/2− 1 columns have non-zero entries only for majority classes, representing
distinctions among majority classes. (2) The middle column (with singular value

√
(R+ 1)/2)

has opposite-signed entries for majority versus minority classes, encoding the majority-minority
distinction. (3) The last V/2− 1 columns have non-zero entries only for minority classes, capturing
distinctions among minority classes.
This structure reveals a hierarchical learning process: the network first learns to distinguish between
majority classes, then learns the majority-minority dichotomy, and finally learns to differentiate
between minority classes.

6. Related Works
Word embeddings and semantic analysis in neural probabilistic language models. The word2vec
architecture Mikolov et al. [2013a,b] and its variants, notably GloVe Pennington et al. [2014b],
represent seminal early neural probabilistic language models. These simple log-bilinear models,
trained on large text corpora, revolutionized word embedding learning. As noted in Zhao et al.

2For concreteness, F can be constructed using the discrete cosine transform matrix, excluding the constant
column: F[i, j] =

√
4
V

· cos
(

π(2i−1)j
V

)
for i ∈ [V/2], j ∈ [V/2− 1]
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[2024], NTP-UFM shares structural similarities with these early models, though in both their work
and ours, it serves as a tractable abstraction rather than a practical architecture. Our approach differs
by learning both context and word embeddings, following modern practice. The foundational work
of Levy and Goldberg [2014] connected word2vec’s geometry to matrix factorization of the pointwise
mutual information (PMI) matrix—a specialized word co-occurrence matrix. Subsequent works
Levy et al. [2015], Turney and Pantel [2010], Baroni and Lenci [2010] empirically demonstrated
semantic interpretations of the PMI matrix’s singular factors and principal components. Building on
Zhao et al. [2024], which formalizes a modern version of Levy and Goldberg [2014]’s results, our
investigation of concepts differs from this classical literature in two key aspects: (a) We study the
NTP setting where both context and word embeddings are learned, yielding concepts that relate
to both words and contexts; (b) Our data-sparsity matrix differs fundamentally from classical PMI
matrices: it is a centered version of the data support matrix (independent of specific next-token
probabilities) and has different structural properties—being orthogonal and non-square, unlike the
word2vec setting.

Superposition and feature steering Our work was partly motivated by recent compelling literature
suggesting that embeddings can be decomposed into linear combinations of a finite set of semantic
concepts Bricken et al. [2023], Yun et al. [2023], Park et al. [2023]. These insights from mechanistic
interpretability have led to practical applications in "feature steering"—where model behavior can be
controlled by manipulating concept representations through addition or subtraction Durmus et al.
[2024], Konen et al. [2024]. Our analysis complements the mechanistic interpretability approach by
providing a systematic framework for understanding how concepts emerge naturally as principal
components from training data statistics. Exploring deeper connections between our theoretical
framework and the mechanistic interpretability literature remains an intriguing direction for future
work. For completeness, we note that Park et al. [2023, 2024] also investigate geometric properties of
concept directions, albeit through fundamentally different technical approaches, assumptions, and
perspectives, making direct comparison of our findings infeasible.

Saxe et al.’s closed-form dynamics of two-layer linear network training. Our work draws inspi-
ration from Saxe et al. [2013, 2019]. Conceptually, Saxe et al. [2019] uses a two-layer linear neural
network as a theoretical proxy to study the emergence of semantic knowledge in human cognition,
providing mathematical justifications for phenomena observed in cognitive semantics literature.
A key insight from their work is that even a simple two-layer linear network with orthogonal in-
puts can yield rich and meaningful conclusions about semantic learning. While two-layer neural
networks represent perhaps the simplest instances of non-linear learning, their training dynamics
generally remain analytically intractable. However, Saxe et al. [2013] (with aspects later formalized
in Gidel et al. [2019]) demonstrated that with square loss, orthogonal inputs, and sufficiently small
initialization, these dynamics admit exact closed-form solutions. This mathematical characteriza-
tion underlies their results on semantic information development through singular factors of the
network’s input-output correlation matrix. We make a novel connection to this line of work: the
unconstrained features model (UFM) fits perfectly within the framework studied by Saxe et al. [2013,
2019]. Specifically, the UFM can be viewed as a linear two-layer network where the input dimension
equals the number of input examples (in our case, the number of contextsm). This connection is
valuable in two directions: First, the UFM—recently popularized through neural collapse litera-
ture (see below)—provides perhaps the most natural and practical setting satisfying Saxe et al.’s
seemingly restrictive orthogonal input assumptions. Second, this connection allows us to leverage
Saxe et al.’s earlier results in the evolving neural collapse literature. Despite these methodological
similarities with Saxe et al. [2019], our work differs in motivation and interpretation. We focus
specifically on NTP and how semantic and grammatical concepts emerge from natural language
data, rather than general cognitive development. Additionally, we primarily focus on CE loss which
is typically used in NTP training.

Neural-collapse geometries. Our results contribute to the recent literature on the neural collapse
(NC) phenomenon Papyan et al. [2020]. Originally observed in one-hot classification training of
DNNs, neural collapse describes two key properties of well-trained, sufficiently expressive DNNs:
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(1) NC: embeddings of examples from the same class collapse to their class mean, and (2) ETF-
geometry: class-mean embeddings form a simplex equiangular tight frame (ETF), being equinorm
andmaximally separated, with classifierweights exhibiting the same structure and aligningwith their
respective class-mean embeddings. This phenomenon, consistently observed across diverse datasets
and architectures, has sparked extensive research interest, generating hundreds of publications.
One fundamental direction, which forms the basis for many extensions, focuses on explaining NC’s
emergence through the unconstrained features model (UFM). This model abstracts training as joint
optimization of last-layer embeddings (unconstrained by architecture) and classifier weights Mixon
et al. [2022], Fang et al. [2021]. Multiple influential works have proven NC emergence by analyzing
the UFM’s global optima Zhu et al. [2021], Súkeník et al. [2023], Han et al. [2021], Tirer and Bruna
[2022], with extensions to various loss functions beyond cross-entropy, including square loss Zhou
et al. [2022a] and supervised contrastive loss Zhou et al. [2022b]. Most early works maintained the
original assumptions from ?: balanced data (equal examples per class) and embedding dimension d
exceeding the number of classes C. Recent work has explored d < C settings, though often requiring
additional assumptions on the loss function Jiang et al. [2023], Liu et al. [2023]. More substantial
progress has emerged in the d > C regime with unbalanced data, where Thrampoulidis et al. [2022]
provided a complete characterization for step-imbalanced data (where examples are distributed
equally within minority classes and equally within majority classes). They introduced the SELI
(simplex-encoding labels interpolation) geometry, showing that logits interpolate a simplex-encoding
matrix—a centered version of the one-hot encodingmatrix. The embeddings and classifier vectors are
then determined, up to rotation and scaling, by the singular vectors of this matrix. The SELI geometry
emerges as a special case of the richer geometries characterized in the NTP setting by Zhao et al.
[2024]. Togetherwith Li et al. [2023], theseworks stand alone in extending geometric characterization
beyond one-hot encoding—to soft-label and multilabel settings respectively. Specifically, Zhao et al.
[2024] analyzes the soft-label setting arising in NTP training on natural language, showing that word
and context embeddings are determined by the singular factors of the data sparsity matrix. Our
work deepens this understanding by revealing that these SVD factors encode conceptual meaning,
thereby extending neural collapse geometry to capture not only the structure of embeddings but
also the organization of latent concepts.

7. Conclusions
This work provides novel insights into how next-token prediction training inherently encodes latent
linguistic concepts, unveiling a deep connection between data geometry and semantic representation.
By linking the singular value decomposition of the data sparsity matrix to the learned embeddings,
we demonstrate that modern language models capture semantic and grammatical structures without
explicit co-occurrence analysis or predefined concept constraints. This emergent geometry tran-
scends classical approaches like latent semantic analysis, offering a unified framework to explain
the acquisition of concepts ranging from broad categories to fine-grained ones. Additionally, our
findings extend the scope of neural collapse geometries to imbalanced multilabel settings, offering a
richer interpretation of embeddings and their alignment with principal semantic dimensions. This
theoretical framework not only illuminates the structural properties of embeddings but also provides
practical implications for interpreting and steering model behavior through concept manipulation.
This work aims to deepen our understanding of the mechanisms by which LLMs learn and represent
semantics, suggesting pathways for more human-like understanding in artificial intelligence.
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A. From sparsity language pattern to concepts via SVD

Recall the centered sparsity patter matrix S̃ and its SVD

S̃ = UΣV ⊤, where U ∈ RV×r,Σ ∈ Rr×r,V ∈ Rm×r and U⊤U = V ⊤V = Ir ,

and the singular values Σ = diag(σ1, . . . , σr) are ordered:
σ1 ≥ σ2 ≥ . . . ≥ σr > 0 .

Adopting terminology from Saxe et al. [2019], denote uk ∈ RV ,vk ∈ Rm, k ∈ [r] the columns of
U ,V which can be thought of asword and context analyzer vectors for concept k. For each word
z ∈ V and each word-concept k ∈ [r], the component uk[z] represents how present or absent is a word
z in context k. Respectively for contexts.
We think of column dimensions of U as semantic dimensions that capture semantic categories
Q: How do we define word-concept and context-concept representations, i.e. d-dimensional repre-
sentations of word and context analyzer vectors for various concepts?
Let W ∈ RV×d and H ∈ Rd×m be the representations of words and contexts. We then define
word-concept representations ud

k context-concept representations and vd
k for k ∈ [r] as projections

onto the spaces of word and context representations, respectively. Specifically, let projection matrices
PW = W⊤(WW⊤)−†W and PH = H(H⊤H)−†H⊤

That is,
ud
k = PWW⊤uk (6)

vd
k = PHHvk . (7)

Let’s now simplify these by using the known SVD representation of W and H . Using this represen-
tation (i.e. useW ←W∞,H ←H∞) we compute

PW = RR⊤ = PH .

Thus,
ud
k = RR⊤R

√
ΣU⊤uk = σkRek = W⊤uk (8)

vd
k = σkRek = Hvk =

∑
j∈[m]

vk[j] · hj (9)

Thus, the d-dimensional representations of word and context analyzer vectors are the same. We
thus refer to ud

k = vd
k = Rek as the representation of concept k. In other words, the k-th concept

representation is given by a weighted average of word or context embeddings with weights taken
by the resppective context analyzer vectors.

B. Word (Context) Analogy

B.1. Definition
A word/context analogy is a linguistic comparison between two pairs of words or concepts, where
the semantic relationship between the first pair (A and B) is mirrored by the relationship between
the second pair (C and D). This can be expressed as: "A is to B as C is to D."

B.2. Claim
The "change in semantics" of a pair of contexts or words is represented by a linear shift in the
embedding space, supporting the widely observed phenomenon of word analogy.
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Figure 8: evolution of the learned logit matrix’s singular values during training for
10 = d < V , note that the 10 singular values are converging to the d largest singular
values

B.3. Argument
Building on the idea of contextualized word embeddings—where the meaning of a word is defined
by its context—we define the change in semantics between two words as:

∆sz1−z2 = sz1 − sz2.

sz1 is the z1th row of S̃? Similarly, the change in semantics between two contexts is defined as:
∆sj1−j2 = sj1 − sj2.

We hypothesize that if ∆sz1−z2 = ∆sz1′−z2′ , then the difference in word embeddings satisfies:
wz1 − wz2 = wz1′ − wz2′ .

To analyze this, recall the decomposition S = UΣV ⊤, where:

∆sz1−z2 = sz1 − sz2 =

r∑
k=1

σkuz1,kv
⊤
k − σkuz2,kv

⊤
k =

r∑
k=1

σk(uz1,k − uz2,k)v
⊤
k .

vk are orthogonal, ∆sz1−z2 = ∆sz1′−z2′ holds if and only if:
σk(uz1,k − uz2,k) = σk(uz1′,k − uz2′,k) ∀k : .

From our theory, the embedding difference is expressed as:

wz1 − wz2 = (uz1 − uz2)
√
ΣR.

If σk(uz1−uz2) = σk(uz1′ −uz2′), then (wz1−wz2)
√
Σ = (wz1′ −wz2′)

√
Σ. Therefore, if the analogy

holds in the support space, it also holds in the embedding space.

C. Additional Experiment Results

C.1. d > V

C.2. More results on TinyStories
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Figure 9: Analysis on combinations of 3 concept dimensions
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Figure 10: Analysis on combinations of 4 concept dimensions
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Figure 11: Analysis on combinations of 5 concept dimensions
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Figure 12: Analysis on combinations of 6 concept dimensions
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