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Abstract

When an agent is in a multi-agent environment, it may face previously unseen
opponents, and it is a challenge to cooperate with other agents to accomplish
the task together or to maximize its own rewards. Most opponent modeling
methods deal with the non-stationarity caused by unknown opponent policies
via predicting the opponent’s actions. However, focusing on the opponent’s action
is shortsighted, which also constrains the adaptability to unknown opponents in
complex tasks. In this paper, we propose opponent modeling based on subgoal
inference, which infers the opponent’s subgoals through historical trajectories. As
subgoals are likely to be shared by different opponent policies, predicting subgoals
can yield better generalization to unknown opponents. Additionally, we design two
subgoal selection modes for cooperative games and general-sum games respectively.
Empirically, we show that our method achieves more effective adaptation than
existing methods in a variety of tasks.

1 Introduction

Figure 1: Infer the goal of others

Autonomous agents are systems capable of making deci-
sions and acting independently in their environment, often
operating without direct human intervention [3]. These
agents can either cooperate with or compete against each
other, depending on the context. In cooperative scenar-
ios, many multi-agent reinforcement learning (MARL)
methods [20, 41, 33, 38] aim to bridge the information
gap between agents [44] by training agents in a central-
ized manner, called centralized training with decentralized
execution, enabling agents to work together seamlessly
to accomplish cooperative tasks. Alternatively, fully de-
centralized methods[17, 40] seek to break free from the
constraints of centralized training, allowing agents to reach
collaboration in a simpler and decentralized manner. In
competitive scenarios, NFSP [15], PSRO [19], and Deep-
Nash [29] employ self-play to train agents for equilibrium strategies, allowing agents to adapt and
improve their policy. By considering how the agent affects the expected learning progress of other
agents, LOLA [10] and COLA [49] apply opponent shaping to this setting. Overall, these methods
focus on training agents in a way that accounts for their interactions, resulting in a set of policies that
enable effective collaboration or competition within a group of agents.

While the above methods emphasizes the collective behavior of agents, it is also crucial to consider
the role of individual agents, particularly self-interested agents, in these multi-agent environments.
A self-interested agent [37, 12] operates with the primary goal of maximizing its own benefits,
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even when interacting with other agents. When the objectives of a self-interested agent align with
those of the team, this scenario falls under ad-hoc teamwork [21, 8, 39]; however, in more general
cases, these interactions are framed as noncooperative games [34, 23, 45]. A key technique for
self-interested agents in such settings is opponent modeling[24, 3], which enables them to analyze
and predict the actions, goals, and beliefs of other agents. By modeling the intentions and policies
of other agents, the training process of the agent might be stabilized [27]. Many studies rely on
predicting the actions [14, 16, 13, 25, 26], goals [32, 31], and returns [42] of opponents during
training. Then, the autonomous agent can adapt to different or unseen opponents by using the
predictions or representations that are produced by the relevant modules.

Although a lot of the existing methods concentrate on modeling the opponent’s actions, we argue
that such an approach is short-sighted, pedantical, and highly complex. Generally, modeling an
opponent’s actions just predicts what it will do at the next step. Intuitively, it is more beneficial for
the agent to make decisions if it knows the situation of the opponent several steps ahead. Predicting
the actions over a few steps has high uncertainty. For example, to reach the goal point of (2, 2), an
opponent moves from (0, 0) following the action sequence <↑, ↑,→,→> by four steps (Cartesian
coordinates). But, there are also 5 other action sequences, i.e., <↑,→, ↑,→>,<↑,→,→, ↑>,<→
, ↑, ↑,→>,<→, ↑,→, ↑>,<→,→, ↑, ↑>, that can lead to the same goal. Obviously, the complexity
and uncertainty of predicting the action sequence are much higher than the goal itself. Other methods
that claim to predict the opponent’s goal [31, 32], but without explicitly making a connection to the
opponent’s goal or just predicting the goal at the next step, are essentially as shortsighted as modeling
actions.

Inspired by the fact that humans can predict the opponent’s goal by observing the opponent’s actions
for several steps as illustrated in Figure 1, in this paper, we propose Opponent Modeling based
on subGoals inference (OMG), which uses variational inference to predict the opponent’s future
subgoals from historical trajectories. The trajectory of an opponent’s policy consists of a set of
subgoals, and the trajectories of different policies may contain the same subgoals. This combinatorial
property of the subgoals facilitates the generalization of the agent to unseen opponents’ policies.
Moreover, we design two manners for selecting subgoals, which are applied to cooperative games
and general sum games, respectively. Empirically, OMG outperforms existing opponent modeling
methods in a variety of multi-agent environments, demonstrating the superiority of inferring subgoals
over predicting actions.

2 Related Work

Opponent modeling. Opponent modeling plays a crucial role in enhancing the robustness and
stability of reinforcement learning [27]. Given the presence of diverse opponent policies in multi-
agent environments, the autonomous agent faces a significant challenge in learning resilient policies.
When an agent perceives an opponent as part of the environment, the resulting environment becomes
inherently unstable and intricate. To address this challenge, one straightforward method involves
equipping the agent with the ability to incorporate information about its opponent, including aspects
like the opponent’s behavior, goals, and beliefs [3], i.e., opponent modeling. It gives the agent a
deeper insight and prediction ability about the opponent’s policy. Thus, the autonomous agent views
the environment as less unstable and can simply use single-agent reinforcement learning methods.

A common approach to modeling the policy of an opponent is predicting the opponent’s actions.
DRON [14] and DPIQN [16] extend DQN [22] by adding another network that estimates the
opponents’ actions from the observations. The DQN uses the hidden layer of this network to improve
its policy. Variational auto-encoders can also be used to model the opponent’s policy [25], which
results in probabilistic representations instead of fixed vectors. PR2 [48] and TP-MCTS [47] combine
the idea of recursive reasoning, nested form as “the agent believes [that the opponent believes (that the
agent believes ...)]”, based on modeling the action of the opponent. Some works focus on modeling
beliefs. [53] combined the sequential and hierarchical variational auto-encoders to construct a belief
inference model using meta-learning, for belief inference. [51] introduced landmarks into the behavior
model and improved the model by the action sequence of the opponents, so as to recognize and
compare the opponent’s intention.

Another key aspect of opponent modeling is to infer the opponent’s goal. [5] formulated the goal
recognition as a Markov decision process (MDP) and calculated the posterior probability of the
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Figure 2: Diagram of OMG. During the interaction phase, OMG infers the subgoal from the historical
trajectory. The CVAE ϕ acts as an inference model, deducing the opponent subgoal denoted as ĝ. The
inferred subgoal serves as input for the policy model Q(s, ĝ, a). In the update phase, OMG examines
the entire trajectory in a hindsight manner to select subgoals ḡ as priors for training the inference
model. The subgoal selector employs a value-based heuristic to choose a state from the next few
steps and then encodes it into a subgoal using the pre-trained VAE ψ.

goal by Bayes’ rule based on a prior goal library. ToMnet [31] aims to give the agent a human-like
Theory of Mind. It uses three networks to infer the agent’s goal and action from previous and
present information. SOM [32] implements the Theory of Mind with a goal library from a different
perspective. SOM uses its own policy, the opponent’s observation, and the opponent’s action to work
backward to learn the opponent’s goal distribution by gradient ascent. These methods either require a
prior goal library or infer implicit “goals” that are not supervised by ground truth goals.

In some scenarios, opponents may continuously learn during interaction. Meta-MAPG [18] combines
Meta-PG [1] and LOLA [10], and focuses on the problem of the non-stationary environment caused
by the continuous learning of opponents. MBOM [50] simultaneously targets a variety of adversaries,
fixed policy, or continuous learning, by modeling the possible policies that an opponent may form,
combined with Bayesian inference to generate an opponent’s imagined policy. GSCU [11] chooses
online between a real-time greedy strategy and a fixed conservative strategy through Bayesian belief
in competitive environments. Unlike these methods, in this paper, we consider the most common
setting where opponents have unseen, diverse, but fixed policies during test.

Goal-conditioned RL. Goal-conditioned reinforcement learning is an extension of the single-agent
algorithm. Most works focus on learning a goal-conditioned policy, where the goals are usually
predefined [30, 52]. Some works consider acquiring subgoals automatically to accelerate learning.
[28] proposed a method that uses expert trajectories to generate subgoals, while [7] proposed to
incorporate imaginary subgoals into policy learning to facilitate learning complex tasks, where
subgoals are measured by value functions. Unlike existing goal-conditioned RL methods, we aim to
infer the subgoal of the opponent and condition the agent policy on the inferred subgoal.

3 Preliminaries

In general, we consider an n-agent stochastic game M = (S,A1, . . . ,An,P,R1, . . . ,Rn, γ), where
S is the state space, Ai is the action space of agent i ∈ [1, . . . , n], A =

∏n
i=1 Ai is the joint action

space of agents, P : S × A × S → [0, 1] is a transition function, Ri : S × A → R is the reward
function of agent i , and γ ∈ [0, 1) is the discount factor. The policy of agent i is πi, and the joint
policy of other agents is π−i(a−i|s) = ∏

j ̸=i π
j(aj |s), where a−i is the joint action except agent
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i. All agents interact with the environment simultaneously without communication. The historical
trajectory is available, i.e., for agent i at timestep t, τt = {s0, ai0, a−i0 , . . . , st−1, a

i
t−1, a

−i
t−1} is

observable. The goal of the agent i is to maximize its expected cumulative discount rewards:

E
st+1∼P(·|st,ait,a−it ),

a∼πi(·|st),a−it ∼π−i(·|st)

[ ∞∑

t=0

γtRi(st, a
i
t, a

−i
t )

]
. (1)

For convenience, the learning agent treats all other agents as a joint opponent with the joint action
a−i ∼ π−i(·|s) and reward r−i. The action and reward of the learning agent are respectively denoted
as a ∼ π(·|s) and r for notation simplicity.

If an agent treats other agents as part of the environment and ignores the non-stationarity posed by the
change of other agents’ policies as independent Q-learning [43, 44]. Its Q-function Q is updated by:

Q(st, at) = EP(st+1|st,a−i,a)[r + γmax
a

Q(st+1, a)]. (2)

Opponent modeling typically predicts the actions of other agents to address the non-stationary
problem. The opponent model uses historical trajectory as input to predict ã−i ∼ π̃(·|τ), where ã−i
is the estimate of a−i. Then, its Q-function is updated as:

Q(st, ã
−i
t , at) = EP(st+1|st,a−i,a)[r + γmax

a
Q(st+1, ã

−i
t+1, a)]. (3)

Note that we cast our discussion here to Q-learning. All can be similarly applied to other RL methods,
such as PPO [36].

4 Method

In this section, we present our method, opponent modeling based on subgoals inference (OMG).
First, we discuss learning policies with the opponent’s subgoals, compared to learning based on the
opponent’s actions. Then, we introduce our opponent model that infers the opponent’s subgoals using
a value-based heuristic.

4.1 Policy Learning with Opponent’s Subgoals

In Equation (3), the traditional opponent modeling with the opponent’s actions is introduced. Here,
we introduce policy learning with the opponent’s subgoals.

The opponent’s subgoals offer a more structured representation compared to individual actions.
Subgoals represent feature embeddings of future states that the opponent aims to achieve based
on its policy. Although diverse action sequences can lead to the same state, focusing on subgoals
provides a higher-level understanding of the opponent’s long-term intentions. Instead of gaining
new information, subgoal modeling reinterprets observed data to emphasize long-term objectives,
reducing variability and improving learning efficiency [24]. By concentrating on the opponent’s
desired states rather than individual actions, the agent can achieve more stable and effective policy
learning.

The opponent’s subgoal distribution is determined by the opponent’s action sequence, i.e., the
opponent’s policy, but the subgoal space is still the representation of the state space. Here we decouple
the subgoal from the opponent’s policy and just consider decision-making problems conditioned
on the opponent’s subgoal. Formally, we transform the original stochastic game M into a state-
augmented MDP, defined by MG = (S,G,Ai,P,Ri, γ), where G is the subgoal space. G is a
representation of future states the opponent may go, |G| ≤ |S|.
The state-augmented MDP’s state space S extends to the MDP with state-subgoal pairs (S,G).
Therefore, the agent’s Q-function based on the opponent’s subgoal is updated as:

Q(st, gt, at) = EP(st+1|st,a−i,a)[r + γmax
a

Q(st+1, gt, a)]. (4)

Here the pair (st+1, gt) is used instead of (st+1, gt+1), as we assume that the next state of (st, gt)
follows the same goal. In the framework of OMG, gt and gt+1 will reach the same state at the end of
the episode.
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Figure 1: Learned Q-values using tabular Q-learning in an 11× 11 gridworld. The agent and the opponent start from the S1

and S2, respectively. The two reward points are D1 and D2, and the reward will only be given to the agent who arrives first.
The opponent executes one of policies πo1 and πo2 , which target D1 and D2, respectively.
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(b) training steps = 1e7

Figure 1: Learned Q-values using tabular Q-learning in an 11× 11 gridworld. The agent and the opponent start from the S1

and S2, respectively. The two reward points are D1 and D2, and the reward will only be given to the agent who arrives first.
The opponent executes one of policies πo1 and πo2 , which target D1 and D2, respectively.
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(b) training steps = 1e7

Figure 3: Learned Q-values using tabular Q-learning in an 11 × 11 gridworld. The agent and the
opponent start from the S1 and S2, respectively. The two rewarding grids are D1 and D2, and the
reward will only be given to the agent who arrives first. The opponent executes one of policies π−i

1

and π−i
2 , which target D1 and D2, respectively. The g and a−i are obtained from an oracle.

(s, a−i, a) is more numerous than (s, g, a) in the Q-table. When there are fewer (s, g, a) than165

(s, a−i, a), the method using (s, g, a) naturally holds the advantage of faster learning than the method166

of (s, a−i, a). The quantity of (s, g, a) is contingent upon the goal selection, and we present an167

analysis of the quantitative relationship between pair (s, g) and (s, a−i), see Appendix B. In short,168

the number of (s, g) is significantly smaller than that of (s, a−i) in our method. Next, we explain169

how the opponent model secures these benefits.170

4.2 Opponent Modeling Based on Subgoal Inference171

Our opponent modeling consists of two components: subgoal inference model and subgoal selector.172

The subgoal inference model employs the historical trajectory to predict the opponent’s subgoal,173

serving as input for the policy during the interaction phase. The subgoal selector scrutinizes the entire174

historical trajectory using a value-based heuristic to choose the appropriate subgoal for training the175

inference model during the update phase.176

Subgoal inference model. The subgoal g represents a feature embedding of a future state. Specifi-177

cally, for a trajectory {s0, a0, a−i0 , . . . , st, at, a
−i
t , . . . , sT }, the state corresponding to subgoal gt at178

st is one of future states Nt = {st+1, st+2, . . . , sT }, denoted as sgt and determined by the subgoal179

selector.180

The objective of the subgoal inference model is to infer gt from the historical trajectory τt =181

{s0, a0, a−i0 , . . . , st−1, at−1, a
−i
t−1}. This aligns with the intuitive hypothesis that the opponent’s182

intention can often be inferred after just a few initial actions.183

Here, we introduce variational inference and employ a conditional variational auto-encoder (CVAE)184

as the subgoal inference model. In this model, we represent the subgoal posterior probability as185

qϕ(ĝt|τt, st) and the likelihood estimate as pθ(st|ĝt, τt) with ϕ and θ respectively denoting the186

network parameters. The subgoal prior model, denoted as pψ , is a pre-trained variational autoencoder187

(VAE) using the states previously collected in the environment, and produces the subgoal prior188

pψ(ḡt|sgt ) given the subgoal state sgt chosen by the subgoal selector.189

Further details about the network architecture are provided in Figure 2. The optimization objective of190

the subgoal inference model is:191

< θ̂, ϕ̂ >= argmax
θ,ϕ

Eqϕ(ĝt|τt,st)
[
log pθ(st|ĝt, τt)

]
−KL

(
qϕ(ĝt|τt, st)∥pψ(ḡt|sgt )

)
. (5)

where the term pψ(g|sg) in the KL divergence accounts for the prior distribution and is pre-trained.192

The purpose of including the KL divergence term is to prevent collapse of the inference model.193

Subgoal selector. The primary objective of the subgoal selector is to choose the appropriate future194

state of the subgoal state sgt from Nt as input to the prior model. The choice of the subgoal state plays195

a significant role in shaping the agent’s behavior and leaning towards either optimism or conservatism.196
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(b) training steps = 1e7

Figure 1: Learned Q-values using tabular Q-learning in an 11× 11 gridworld. The agent and the opponent start from the S1

and S2, respectively. The two reward points are D1 and D2, and the reward will only be given to the agent who arrives first.
The opponent executes one of policies πo1 and πo2 , which target D1 and D2, respectively.
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Figure 1: Learned Q-values using tabular Q-learning in an 11× 11 gridworld. The agent and the opponent start from the S1

and S2, respectively. The two reward points are D1 and D2, and the reward will only be given to the agent who arrives first.
The opponent executes one of policies πo1 and πo2 , which target D1 and D2, respectively.
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(b) training steps = 1e7

Figure 3: Learned Q-values using tabular Q-learning in an 11 × 11 gridworld. The agent and the
opponent start from the S1 and S2, respectively. The two rewarding grids are D1 and D2, and the
reward will only be given to the agent who arrives first. The opponent executes one of policies π−i

1

and π−i
2 , which target D1 and D2, respectively. The g and a−i are obtained from an oracle.

(s, a−i, a) is more numerous than (s, g, a) in the Q-table. When there are fewer (s, g, a) than165

(s, a−i, a), the method using (s, g, a) naturally holds the advantage of faster learning than the method166

of (s, a−i, a). The quantity of (s, g, a) is contingent upon the goal selection, and we present an167

analysis of the quantitative relationship between pair (s, g) and (s, a−i), see Appendix B. In short,168

the number of (s, g) is significantly smaller than that of (s, a−i) in our method. Next, we explain169

how the opponent model secures these benefits.170

4.2 Opponent Modeling Based on Subgoal Inference171

Our opponent modeling consists of two components: subgoal inference model and subgoal selector.172

The subgoal inference model employs the historical trajectory to predict the opponent’s subgoal,173

serving as input for the policy during the interaction phase. The subgoal selector scrutinizes the entire174

historical trajectory using a value-based heuristic to choose the appropriate subgoal for training the175

inference model during the update phase.176

Subgoal inference model. The subgoal g represents a feature embedding of a future state. Specifi-177

cally, for a trajectory {s0, a0, a−i0 , . . . , st, at, a
−i
t , . . . , sT }, the state corresponding to subgoal gt at178

st is one of future states Nt = {st+1, st+2, . . . , sT }, denoted as sgt and determined by the subgoal179

selector.180

The objective of the subgoal inference model is to infer gt from the historical trajectory τt =181

{s0, a0, a−i0 , . . . , st−1, at−1, a
−i
t−1}. This aligns with the intuitive hypothesis that the opponent’s182

intention can often be inferred after just a few initial actions.183

Here, we introduce variational inference and employ a conditional variational auto-encoder (CVAE)184

as the subgoal inference model. In this model, we represent the subgoal posterior probability as185

qϕ(ĝt|τt, st) and the likelihood estimate as pθ(st|ĝt, τt) with ϕ and θ respectively denoting the186

network parameters. The subgoal prior model, denoted as pψ , is a pre-trained variational autoencoder187

(VAE) using the states previously collected in the environment, and produces the subgoal prior188

pψ(ḡt|sgt ) given the subgoal state sgt chosen by the subgoal selector.189

Further details about the network architecture are provided in Figure 2. The optimization objective of190

the subgoal inference model is:191

< θ̂, ϕ̂ >= argmax
θ,ϕ

Eqϕ(ĝt|τt,st)
[
log pθ(st|ĝt, τt)

]
−KL

(
qϕ(ĝt|τt, st)∥pψ(ḡt|sgt )

)
. (5)

where the term pψ(g|sg) in the KL divergence accounts for the prior distribution and is pre-trained.192

The purpose of including the KL divergence term is to prevent collapse of the inference model.193

Subgoal selector. The primary objective of the subgoal selector is to choose the appropriate future194

state of the subgoal state sgt from Nt as input to the prior model. The choice of the subgoal state plays195

a significant role in shaping the agent’s behavior and leaning towards either optimism or conservatism.196
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reward will only be given to the agent who arrives first. The opponent executes one of policies π−i
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and π−i
2 , which target D1 and D2, respectively. The g and a−i are obtained from an oracle.

Q-values with opponent’s subgoals are just as effective as with opponent’s actions. We carry out an
experiment in an 11× 11 gridworld with two agents, as detailed in Figure 3. After convergence, the
Q-value increases as the agent gets closer to the rewarding grid, indicating a meaningful Q-value with
the opponent’s subgoal, as shown in Figure 3(b).

Effective opponent’s subgoals enhance policy learning. The Q-value using the opponent’s action
learns slower than the Q-value with the opponent’s subgoal in Figure 3(a), resulting from the tuple
(s, a−i, a) is more numerous than (s, g, a) in the Q-table. When there are fewer (s, g, a) than
(s, a−i, a), the method using (s, g, a) naturally holds the advantage of faster learning than the method
of (s, a−i, a). The quantity of (s, g, a) is contingent upon the goal selection, and we present an
analysis of the quantitative relationship between pair (s, g) and (s, a−i), see Appendix A. In short,
the number of (s, g) is significantly smaller than that of (s, a−i) in our method. Next, we explain
how the opponent model secures these benefits.

4.2 Opponent Modeling Based on Subgoal Inference

Our opponent modeling consists of two components: subgoal inference model and subgoal selector.
The subgoal inference model employs the historical trajectory to predict the opponent’s subgoal,
serving as input for the policy during the interaction phase. The subgoal selector scrutinizes the entire
historical trajectory using a value-based heuristic to choose the appropriate subgoal for training the
inference model during the update phase.

Subgoal inference model. The subgoal g represents a feature embedding of a future state. Specifi-
cally, for a trajectory {s0, a0, a−i0 , . . . , st, at, a

−i
t , . . . , sT }, the state corresponding to subgoal gt at

st is one of future states Nt = {st+1, st+2, . . . , sT }, denoted as sgt and determined by the subgoal
selector.

The objective of the subgoal inference model is to infer gt from the historical trajectory τt =
{s0, a0, a−i0 , . . . , st−1, at−1, a

−i
t−1}. This aligns with the intuitive hypothesis that the opponent’s

intention can often be inferred after just a few initial actions.

Here, we introduce variational inference and employ a conditional variational auto-encoder (CVAE)
as the subgoal inference model. In this model, we represent the subgoal posterior probability as
qϕ(ĝt|τt, st) and the likelihood estimate as pθ(st|ĝt, τt) with ϕ and θ respectively denoting the
network parameters. The subgoal prior model, denoted as pψ , is a pre-trained variational autoencoder
(VAE) using the states previously collected in the environment, and produces the subgoal prior
pψ(ḡt|sgt ) given the subgoal state sgt chosen by the subgoal selector.

Further details about the network architecture are provided in Figure 2. The optimization objective of
the subgoal inference model is:

< θ̂, ϕ̂ >= argmax
θ,ϕ

Eqϕ(ĝt|τt,st)
[
log pθ(st|ĝt, τt)

]
−KL

(
qϕ(ĝt|τt, st)∥pψ(ḡt|sgt )

)
. (5)
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Algorithm 1 OMG
1: Preparation:
2: Interact with ν opponents to collect s and train the prior model pψ
3: Initialize subgoal inference model parameters ϕ and θ
4: Initialize Q-network Q and the replay buffer D
5: repeat
6: Interaction phase
7: Observe state s
8: Infer ĝ by subgoal inference model qϕ(ĝ|τ, s)
9: Choose action a by maxaQ(s, ĝ, a) with ϵ-greedy

10: Store experience (s, a, a−i, r) in replay buffer D
11: Update phase
12: if time to update then
13: Obtain prior subgoal ḡ by (6) or (7)
14: Calculate subgoal g by (8)
15: Update Q-network by (4)
16: Update subgoal inference model qϕ and pθ by (5)
17: end if
18: until convergence

where the term pψ(g|sg) in the KL divergence accounts for the prior distribution and is pre-trained.
The purpose of including the KL divergence term is to prevent collapse of the inference model.

Subgoal selector. The primary objective of the subgoal selector is to choose the appropriate future
state of the subgoal state sgt from Nt as input to the prior model. The choice of the subgoal state plays
a significant role in shaping the agent’s behavior and leaning towards either optimism or conservatism.
This is especially critical when dealing with cooperative games and general-sum games, where the
dynamics of interactions are complex and multifaceted. In these contexts, we provide two distinct
manners for the subgoal selection:

ḡt = argmax
si∈NH

t

Eg∼pψ(·|si)V (st, g) (6)

ḡt = argmin
si∈NH

t

Eg∼pψ(·|si)V (st, g), (7)

where V (s, g) = EaQ(s, g, a), NH
t is the set of future states {st+1, · · · , st+H}. As discussed in

Section 4.1, the quantity of (s, g) pairs is crucial. Selecting candidate subgoal states is pivotal in this
regard. Thus, we use states within the next H timesteps instead of all future states. The choice of H
gives a tradeoff between the agent’s generalization to diverse opponents induced by the fact that the
subgoals of different trajectory fragments have combinatorial properties and the learning difficulty
incurred by the increased opponent subgoals.

As indicated in Equation (6), we pinpoint the subgoal within an H-horizon that maximizes the
V-value. The agent incorporates this to optimize the Q-function, thus adopting an optimistic strategy
akin to the maximax strategy [6], which applies to cooperative games. Conversely, if we choose
the subgoal as in Equation (7), it corresponds to the subgoal yielding the lowest value. The agent
then employs this for learning Q-function, leading to a conservative strategy similar to the minimax
strategy, which is commonly used in general-sum games.

The subgoal selector and the subgoal inference model as a whole constitute our opponent modeling
module. During the interaction phase, the subgoal inference model is used to get the inferred subgoal
ĝ, which is combined with the state as the input to the Q-network. During the update phase, the
prior subgoal ḡ generated by the subgoal selector is provided to the inference model for training.
The subgoal inference model is unstable at the beginning, which may disturb the updating of the
Q-network. Therefore, we use the following combination of the prior subgoal ḡ and the inferred
subgoal ĝ as the input of Q-network,

gt = ĝtI(η > ϵ) + ḡtI(η ≤ ϵ), η ∼ U [0, 1], (8)
where ϵ is a hyperparameter that decreases to zero over training. We will further empirically study
this in Section 5.4.

For completeness, the full procedure of OMG is given in Algorithm 1.
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Figure 4: (a) Performance in Foraging. The red bar shows the total score obtained by the agent. The
blue bar illustrates the number of steps in each episode. The results show that OMG can converge to
the same score as the baselines but end the episode in fewer steps because it predicts the opponent’s
goal. (b) Performance in Predator-Prey. The results show the score obtained by the agent as a predator
with two other uncontrolled predators, and OMG outperforms the baselines.

5 Experiments

First, we evaluate OMG’s training performance in two environments (discrete and continuous
state spaces) and then test its generalization to opponents with unseen policies in a more complex
environment. In all the experiments, the baselines have the same neural network architectures as
OMG. All the methods are trained for five runs with different random seeds, and results are presented
using mean and standard deviation. More details about experimental settings and hyperparameters
are available in Appendix B. To ensure reproducibility, we include the code in the supplementary
material and will make it open-source upon acceptance.

We experiment in the following three multi-agent environments. Foraging [2, 4] is an 8× 8 gridworld
where the agent aims to collect foods. Predator-Prey [20] is a three-against-one scenario with
continuous space where the agent collaborates with predators to capture prey. SMAC [35] is a high-
dimensional environment for collaborative multi-agent reinforcement learning based on StarCraft II,
where the agent cooperates with a set of opponents with unknown policies to accomplish tasks.

5.1 Baselines

In the experiments, we implement two variants of OMG, OMG-optimistic and OMG-conservative,
based on the subgoal selection manners in Equation (6) and Equation (7), respectively. OMG
compared with the following methods:

• Naïve OM [14] uses observation to directly model the opponent’s policy, which assists the
agent in decision-making by predicting the opponent’s actions.

• LIAM [26] uses the observations and actions of the opponent with an encoder-decoder
architecture, and the model learns to extract representations about the opponent, conditioned
only on the local observations of the controlled agent.

• D3QN & PPO & IQL [46, 36, 43] are classical RL algorithms without opponent modeling.

We use D3QN, PPO, and IQL as the backbone algorithms in Foraging, Predator-Prey, and SMAC,
respectively, to reproduce the performance of baselines. The versions of OMG that are based on
D3QN and IQL incorporate “dueling" and “double" tricks over Algorithm 1. For OMG based on
PPO, please refer to Appendix F for details.

5.2 Performance of Training

We evaluate the performance of OMG on Foraging and Predator-Prey, and the results are shown in
Figure 4(a) and Figure 4(b), respectively. In the foraging environment, our method attains similar
scores to the baseline methods, and both the agent and the opponent achieve comparable scores.
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Figure 5: Test performance of cooperation with unseen opponents in 8m (a), 3s_vs_5z (b) and
2c_vs_64zg (c) maps of SMAC. The X-axis represents the opponent’s policies, and “homologue”
refers to the policy learned by the same algorithm, while "non-homologue" represents different ones;
e.g. 7 homologue refers to 7 opponents from 8 agents trained by the same algorithm (QMIX, VDN or
IQL) on the 8m, and 7 non-homologue involves 7 opponents from different runs of those algorithms.
The results show that OMG-optimistic outperforms all baselines. The results are averaged over
collaborating with 30 opponents of different policies, with 95% confidence intervals.

OMG has a shorter episode length compared to other methods because OMG can predict the subgoal
that the opponent is heading to and thus avoid wasting steps in the same direction. In addition, the
results show that OMG-conservative is more suitable than OMG-optimistic in this scenario since this
is a general-sum game. The baselines based on action modeling, LIAM and Naïve OM, demonstrate
comparable performance, whereas D3QN without opponent modeling, exhibits subpar results. In
the predator-prey environment, the agent acts as the predator and collaborates with the other two
uncontrolled predators to catch the prey. The results in Figure 4(b) show that OMG obviously
outperforms action modeling methods, which demonstrates that OMG can also work efficiently in
continuous state space. PPO without opponent modeling can hardly improve performance in training
due to the non-stationarity caused by opponents. OMG-optimistic slightly performs better than
OMG-conservative because OMG-optimistic is suitable for the cooperative game.

5.3 Generalization to Unknown Opponents

We evaluate the generalization of OMG in a more complex multi-agent environment, SMAC, which
enables the opponents to exhibit more diverse policies. The experimental results of 8m, 3s_vs_5z
and 2c_vs_64zg are shown in Figure 5. Without opponent modeling, IQL struggles to adapt to
various unknown opponents, resulting in poor performance, especially when the opponents are
non-homologue. This underscores the effectiveness of opponent modeling in autonomous agent tasks.
LIAM and Naïve OM, the action modeling methods, contribute to the team’s improved win rate to
some extent. The mediocre performance of OMG-conservative is attributed to its overly cautious
subgoal selection. OMG-conservative is on par with IQL, which is consistent with the “conservative”.
OMG-optimistic surpasses the baseline methods, indicating that OMG-optimistic can generalize well
to unknown collaborators through positive subgoal selection.

5.4 Ablation Study

The ablation study is conducted for the network structure of the inference model, subgoal selection,
and hyperparameter horizon H . OMG uses CVAE as the inference model. Here, we instead employ
supervised learning to train an inference model using the subgoal selector’s output ḡt, obtained from
either Equation (6) or Equation (7). This model is referred to as OMG-supervised. The results in the
foraging environment are presented in Figure 6(a). The results indicate that OMG-optimistic and
OMG-conservative outperform their counterparts, which is attributed to the enhanced adaptability of
variational inference to the uncertainty in the opponent’s policy. Dealing with multiple opponents
employing distinct policies poses a challenge for supervised learning, as establishing a mapping
relationship between historical trajectories and subgoals becomes intricate.
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(a) Inference model architectures
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Figure 6: Ablation study in Foraging. In (a), methods on the X-axis labeled with “supv” indicate that
the inference model uses an MLP instead of a CVAE. In (b) OMG-random, OMG-1s, and OMG-3s
represent subgoals selected from the opponent’s future states: randomly, at the next step, and at the
third step, respectively.
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Figure 7: Ablation study of OMG in Foraging. (a) and (b) compares OMGs with different subgoal
inputs for policy learning. (c) and (d) show ablation study for the hyperparameter horizon H .

In the OMG, the subgoal is selected by choosing the state within the future H steps that either
maximizes or minimizes the value function V (s, g). To explore the impact of different subgoal
selection strategies, we introduced three alternatives: random selection within the H steps (OMG-
random), selecting the first step as the subgoal (OMG-1s), and selecting the third step as the subgoal
(OMG-3s). The results, presented in Figure 6(b), suggest that the choice of subgoal selection strategy
significantly affects performance, with OMG’s strategy leading to more effective training compared
to the alternatives. We also observe that the subgoal often remains constant over consecutive time
steps for OMG-supervised. Further details can be found in Appendix D.

We further investigate our design choice on the subgoal selection for the policy. During the policy
update, Equation (8) (i.e., g) is utilized. As pψ is pre-trained and fixed during the update phase, ḡ
remains stable. On the other hand, ĝ, which represents the inferred subgoal when executing the policy,
also stabilizes as the training steps increase. Thus, we choose a gradual transition of g from ḡ to
ĝ, which should help avoid instability during the training of the subgoal inference model. Here we
perform the experiments in the foraging environment with different subgoal inputs for the policy,
i.e., g, ĝ, ḡ. As shown in Figure 7(a) and Figure 7(b), OMG with g indeed shows faster and better
convergence.

The parameter H denotes the horizon of the subgoal selector. The ablation experiment results are
shown in Figure 7(c) and Figure 7(d). It is observed that an appropriate horizon value is neither
excessively high nor excessively low. WhenH = 1, it is essentially equivalent to combining with QSS
[9] and opponent modeling, which can be interpreted as another way of action modeling. However, if
H is set too large, such as H = 10, the agent may skip important states in the trajectory, leading to a
degradation in performance. Therefore, selecting an appropriate value for H is crucial in achieving
satisfactory results.

5.5 Inferred Subgoal Analysis

We analyze the predictive performance of the opponent model. In Figure 8(a), we plot the ratio of
that an opponent’s future trajectory passes through the opponent’s subgoal state, termed subgoal
hit ratio. The subgoal state is reconstructed by the inferred subgoal ĝ using the decoder of the
subgoal prior model. The subgoal hit rate gradually improves during training, which indicates that
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Figure 8: Subgoal analysis of OMG in Foraging. The subgoal hit rates for OMG-conservative and
OMG-optimistic are shown in Figure 8(a). In Figure 8(b), the agent controls player 1 (white), and
the opponent controls player 2 (blue). The blue circle represents the state obtained through the
reconstruction of the subgoal inferred by the agent. The figure illustrates the difference between
OMG-conservative and OMG-optimistic under the same initial state and opponent policy.

the subgoal-based opponent modeling is able to predict the future state of the opponent. OMG
tends to predict the opponent’s future state several steps ahead as the subgoal, rather than focusing
solely on the next step. This kind of prediction requires validation over multiple steps, and the agent
policy conditioned on the predicted subgoal may also influence the behavior of the opponent. These
make it challenging to verify the predicted subgoal. Consequently, the overall hit ratio remains
at a moderate level at the end of training. There is a small gap between the subgoal hit rates of
OMG-conservative and OMG-optimistic, which leads to a longer episode length for OMG-optimistic
than OMG-conservative, as illustrated in Figure 8(b). The root cause lies in the differences in the
subgoal selection between OMG-conservative and OMG-optimistic. More details can be found in
Appendix E.

6 Conclusion and Limitation

In this paper, we introduce OMG, a novel method for opponent modeling based on subgoal inference.
OMG is a simple and efficient opponent modeling method and can be combined with various RL
algorithms. Unlike most opponent modeling methods, which primarily focus on predicting the
opponent’s actions, OMG focuses on modeling the opponent’s subgoals. Specifically, it leverages the
value function of the policy to guide the selection of subgoals, which yields two variants of OMG
for cooperative and general-sum games, respectively. Empirical results demonstrate the remarkable
performance achieved by OMG, as compared to baselines based on action modeling, and that OMG
exhibits better generalization when cooperating with opponents with unknown policies. We analyze
the subgoals obtained by the inference model, and the results show they closely correlate with the
opponent’s trajectory. The limitation of OMG is it cannot handle open multi-agent systems where
agents may enter and leave during the interaction. This is left for future work.
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A Analysis of (s, g)

In opponent modeling, we usually build (s, g) and (s, a−i) by observing the opponent’s action
trajectories. We construct a tree to describe the trajectories of the opponent’s action sequences,
as shown in Figure 9. The non-leaf nodes and edges represent the state and opponent’s action
respectively. Without loss of generality, we simplify the problem by using a complete tree with the
leaf node as goal. The length of the action sequences is k and the opponent action space is denoted as
A. We compare the number of (s, a) and (s, g) that can be observed via trajectories, and their sets
are denoted as Sa and Sg respectively. The sizes of Sa and Sg as:

card(Sa) =
k−1∑

l=0

∑

s∈S(l)

nA =
nkA − 1

nA − 1
nA

card(Sg) =
k−1∑

l=0

∑

s∈S(l)

∑

g∈G
I(s→ g)

≤ |G|+ nA · |G|
nA

+ · · ·+ nk−1
A · |G|

nk−1
A

= k|G|,

where S(l) represents the set of all states of depth l in the tree. s→ g means g is reachable from s.
nA is the size of A. Let card(Sg) ≤ card(Sa), we get a bound over |G|, as Equation (9). When the
goal number of our method is within the bound, the number of expanded states can be significantly
reduced, which means the RL algorithm learns faster than those methods based on action modeling.

card(Sg) ≤ card(Sa) ⇒ |G| ≤ nA
k

nkA − 1

(nA − 1)
=
nA
k

|S|. (9)
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Figure 9: Illustration of opponent’s decision tree. Circles, edges, and squares represent state nodes,
action, and goal nodes respectively.

When |G| is below nA/k times the number of observed states, the goal-based opponent modeling
method proves more advantageous compared to the methods based on action modeling. Consequently,
this criterion can be met by maintaining a relatively modest value for k. Due to our method favoring
the adoption of extreme values as goal states, a limited quantity of such states exist. So, it is loosely
bound of |G| for OMG.
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B Experiments settings

Multi-Agent Environments. Foraging environment [2, 4] is an 8×8 gridworld with full observation,
containing two players: the agent and the opponent. At the beginning of each round, the players and
three foods are randomly generated in the environment. The goal of the agent is to collect all foods
as quickly as possible. The agent can move in four directions or pick up the food. The agent must
judge the opponent’s target food as soon as possible to avoid futile actions for the same food.

Predator-Prey [20] is a three-against-one multi-agent environment with a continuous space. Three
predators coordinate to touch the prey, and all participants have full observation. The agent acts as
one of the predators, and the opponents are the other two predators and the prey, which leads to the
non-stationarity of the environment from the agent’s view despite not belonging to one camp. The
agent aims to maximize its reward and therefore needs to collaborate with the other two predators to
complete the encirclement and cut the prey’s escape route.

SMAC [35] is a high-dimensional partial observation complex environment for research in the field of
collaborative MARL based on StarCraft II. The agent joins a set of opponents with unknown policies
to accomplish the task. The only way to accomplish the task is to collaborate with the other agents.
The agent’s goal is to complete the task with a group of opponents controlled by unknown policies.

Opponent. The autonomous agent is trained in a multi-agent environment, where it interacts with
the opponents controlled by a set of pre-trained policies. At the onset of each episode, the opponent’s
policy is selected randomly from the set. In the case of SMAC, the autonomous agent’s index is also
randomly determined. For Foraging, Predator-Prey, and SMAC environments, D3QN, PPO, and
QMIX are used to train the opponents, respectively. All the opponents in the training set comprise 10
distinct policies.

In SMAC, the test set consists of 30 opponents with different policies, trained by the IQL, VDN
[41], and QMIX [33]. In 8m, the opponents are reorganized into three groups: 7 homologues, 6
homologues, and 7 non-homologues. In 3s_vs_5z, the opponents falls into two groups: 2 homologues
and 2 non-homologues. Here, homologue refers to the policy from the same algorithm with the same
parameters, and non-homologue represents the policy from two different algorithms. The remaining
agent is controlled by OMG or baseline algorithms.

When assessing the performance of the autonomous agent in the SMAC with a test set, these
opponents in the set are trained separately using IQL, VDN, and QMIX, with 10 instances for each
training method. To illustrate the dissimilarity of the test opponent’s policies, we utilize a set of
identical states to acquire the action vectors of the policy in the test set. We visualize the action
vectors, as demonstrated in Figure 10. The figure shows the diversity of test set policies employed by
the test opponents. The test results are averaged over 100 episodes of fine-tuning, with 5 random
seeds.
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Figure 10: The distribution of the opponent’s policy for the test of generalization.
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Pre-train the subgoal’s prior model. The subgoal’s prior model pψ(ḡ|sg) is a VAE that learns from
a set of states that are collected while training opponents. The optimization objective of VAE is :

< ω̂, ψ̂ >= argmax
ω,ψ

Eg∼qψ(g|s)
[
log pω(s|g)

]
−KL

(
qψ(g|s)||N (0, 1)

)
. (10)

The decoder pω(s|g) is also used to reconstruct the subgoal state, as discussed in Section 5.5.

Hyperparameters. All hyperparameters are listed in Table 1.

Table 1: Hyperparameters

RL Algorithm

Q-based RL Foraging(D3QN) SMAC(IQL) Policy-based RL Predator-prey(PPO)

hidden units MLP[64, 32] RNN[64, 64] hidden units MLP[64, 32]
activation function ReLU ReLU activation function ReLU
optimizer Adam RMSProp optimizer Adam
learning rate 0.005 0.0005 learning rate 0.0005
target update interval 100 200 num. of updates 10
epsilon start 0.5 0 value discount factor 0.99
epsilon end 0.95 0.95 GAE parameter 0.99
epsilon anneal time 4500 50000 clip parameter 0.115
batch size 32 32 max grad norm 0.5
buffer size 5000 5000

Opponent model

hidden units MLP[64, 32] MLP[64, 32] MLP[64, 32]
learning rate 0.001 0.001 0.001
subgoal horizon H 5 10 5
KL weight 0.001 0.001 0.001
∆η 0.001 0.001 0.001
ϵ start 0.5 0.5 0.5
ϵ anneal time 50000 50000 50000

The computational resources for the experiments are as follows: the CPU is Intel(R) Xeon(R)
Platinum 8280 CPU @ 2.70GHz, and the GPU is A100-PCIE-40GB.

C Performance of CTDE agent in autonomous agent task

The motivation of this paper is to address the autonomous agent through opponent modeling. The
question is, can the CTDE agents be adapted to do tasks like autonomous agents? The two domain
are fundamentally different, and the training method of CTDE doesn’t work well in such situations
because it hasn’t been exposed to a variety of opponents during its training. We conducted tests in 8m
where QMIX acts as the agent with opponents of test set.

Table 2: Test performance on 8m

opponent type 7 non-homologue 6 homologue 7 homologue

QMIX 21.6% 65.6% 61.0%
OMG-optim 70.5% 86.8% 90.2%

This training paradigm employed by QMIX leads to a lack of generalization for different opponents.
Using the same training methodology for QMIX as OMG leads to a degradation in IQL,which already
serves as one of the existing baselines. The test results indicate that opponents trained using different
methods and seeds are not homogeneous, which poses challenges for cooperation.
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D sg selection frequency

In Equation (6) and Equation (7), subgoals are selected from NH
t = {st+k|1 ≤ k ≤ H}, where NH

t
is a sliding window. If the value is monotonic along the trajectory, a possible case is that different
subgoals ḡ are chosen at each step. We used 100 trajectories and counted the selection frequency
within the trajectory, as shown in Table 3.

Table 3: The proportion of each st+k in NH
t .

k 1 2 3 4 5

proportion 35.4% 20.0% 22.8% 19.3% 2.5%

The results suggest that in multi-agent settings, characterized by cooperative and competitive interac-
tions among agents, the value function displays multiple peaks along the trajectory. Additionally, the
selected subgoals exhibit a certain level of continuity over several steps.

E Details for Inferred Subgoal Analysis

Subgoal hit ratio. Define the opponent’s trajectory sequence from t = 0 to t = T as T =

(s0, s1, . . . , sT ), and the agent’s prediction from time t = 0 to t = T − 1 as T̂ = (ŝ0, ŝ1, . . . , ŝT−1).
Let Ti = (si, si+1, . . . , sT ) represent the opponent’s trajectory from step i onward.

The subgoal hit ratio is calculated as follows:

subgoal hit ratio =
|{ŝt | ŝt ∈ Tt, t = 0, 1, . . . , T − 1}|

|T |

where {ŝt | ŝt ∈ Tt, t = 0, 1, . . . , T − 1} represents the set of predicted states that are also present
in the opponent’s future trajectory starting from the current time step t.

For example, the opponent’s trajectory is T = (s1, s2, s3, s4, s5). For each time step, the relevant
opponent trajectory is: T0 = (s1, s2, s3, s4, s5), T1 = (s2, s3, s4, s5), T2 = (s3, s4, s5), T3 =

(s4, s5). The agent’s predictions are T̂ = (s3, s1, s5, s5). The matched predicted states are {s3, s5}.

Thus, the hit ratio is calculated as:

subgoal hit ratio =
|{s3, s5}|

|{s1, s2, s3, s4, s5}|
=

2

5
= 0.4

The complete trajectory of the example in Figure 8(b) is shown below:

step=0 step=1 step=2 step=3 step=4 step=5 step=6 step=7 step=8 step=9

(a) OMG-conserv

step=0 step=1 step=2 step=3 step=4 step=5 step=6 step=7 step=8 step=9 step=10 step=11

(b) OMG-optim

Figure 11: Illustration of inferred subgoal state
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F OMG based on PPO

Algorithm 2 OMG based on PPO
1: Preparation:
2: Interact with ν opponents to collect s and train the prior model fψ
3: Initialize subgoal inference model parameters τ and θ
4: Initialize policy parameters δ and value function parameters φ
5: for k=0,1,2,... do
6: Interaction phase
7: Observe state s and last opponent’s action a−i
8: Infer the subgoal ĝ by subgoal inference model qϕ(g|τ)
9: Choose action a by πδk(·|s, ĝ)

10: Store experience (s, a, a−i, r) in buffer Dk
11: Update phase
12: Calculate prior subgoal ḡ by Equation (6) or Equation (7)
13: Calculate subgoal g by Equation (8)
14: Update policy parameters by

δk+1 = argmax
δ

1

|Dk|T
∑

τ∈Dk

T∑

t=0

min
( πδ(at|st)
πδk(at|st)

Aπδk (st, at), g(ϵ, A
πδk (st, at))

)
(11)

15: Update value parameters by

φk+1 = argmin
φ

1

|Dk|T
∑

τ∈Dk

T∑

t=0

(Vφ(st)− R̂t)
2 (12)

16: Update inference model qϕ and pθ by Equation (5)
17: end for
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately summarize the paper’s contributions
by outlining the OMG method, its application to cooperative and general-sum games, and
its superior performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not have strict theoretical results. Appendix A offers example
analysis, shedding light on the insights of the method presented in this paper, though it has
not yet advanced to the theoretical level.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The algorithm is described in detail as Algorithm 1 and Algorithm 2. The code
is provided in the supplemental material, and all hyperparameters and environment Settings
are listed in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is provided in the supplemental material, and all hyperparameters
and environment Settings are listed in the Appendix B.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details of the environment and experimental setup are detailed in the Ap-
pendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the methods are trained for five runs with different random seeds, and
results are presented using mean and standard deviation. This is mentioned in first paragraph
of Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After careful comparison with the NeurIPS Code of Ethics, we were confident
that no guidelines were violated.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All baselines and environments are cited with the original paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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