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ABSTRACT

Large-scale pre-trained multi-modal models (e.g., CLIP) demonstrate strong zero-
shot transfer capability in many discriminative tasks, e.g., image classification.
Their adaptation to zero-shot image-conditioned text generation tasks has drawn
increasing interest. Prior arts approach to zero-shot captioning by either utiliz-
ing the existing large language models (e.g., GPT-2) or pre-training the encoder-
decoder network in an end-to-end manner. However, the large language mod-
els may not generate sensible descriptions due to the task discrepancy between
captioning and language modeling, while the end-to-end pre-training requires
paired data and extensive computational resources. In this work, we propose
a simple framework, named DeCap, for zero-shot captioning. We introduce a
lightweight visual-aware language decoder. This decoder is both data-efficient
and computation-efficient: 1) it only requires the text data for training, easing the
burden on the collection of paired data. 2) it does not require end-to-end training.
When trained with text-only data, the decoder takes the text embedding extracted
from the off-the-shelf CLIP encoder as a prefix embedding. The challenge is that
the decoder is trained on the text corpus but at the inference stage, it needs to
generate captions based on visual inputs. Though the CLIP text embedding and
the visual embedding are correlated, the modality gap issue is widely observed
in multi-modal contrastive models that prevents us from directly taking the visual
embedding as the prefix embedding. We propose a training-free mechanism to
reduce the modality gap. We project the visual embedding into the CLIP text em-
bedding space, while the projected embedding retains the information of the visual
input. Taking the projected embedding as the prefix embedding, the decoder gen-
erates high-quality descriptions that match the visual input. The experiments show
that DeCap outperforms other zero-shot captioning methods and unpaired caption-
ing methods by a large margin on the typical image captioning benchmarks, i.e.,
MSCOCO and NoCaps. We apply DeCap to video captioning and achieve state-
of-the-art zero-shot performance on MSR-VTT and ActivityNet-Captions. The
code is available at https://github.com/dhg-wei/DeCap.

1 INTRODUCTION

The goal of image captioning is to automatically generate descriptions for given images. Models
(Anderson et al., 2018; Lu et al., 2017; Rennie et al., 2017; Zhang et al., 2021; Huang et al., 2021)
trained on human-annotated image-text pairs have achieved impressive results on typical image
captioning benchmarks. However, due to the small size and limited visual concepts of human-
annotated datasets, these models generalize poorly to images in the wild (Agrawal et al., 2019;
Tran et al., 2016; Wu et al., 2018). In this paper, to reduce the reliance on human-annotated paired
data and improve the generalization in real-world captioning scenarios, we propose a new zero-shot
captioning framework that requires text-only data for training.

Pre-training on web-scale noisy paired data has been demonstrated to be effective in learning ro-
bust multi-modal representations (Radford et al., 2021; Jia et al., 2021; Li et al., 2021; Alayrac
et al., 2022; Yu et al., 2022a; Wang et al., 2022; Zhu & Yang, 2020). Changpinyo et al. (2021) and
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Wang et al. (2021b) use web-scale image-text pairs to train a captioning model and achieve great
improvements on MSCOCO (Chen et al., 2015) and NoCaps (Agrawal et al., 2019) through the
pretraining-finetuning paradigm. However, these models show inferior zero-shot captioning perfor-
mance on MSCOCO, indicating that these methods still rely on human-annotated paired data for
fine-tuning. Besides, training with the captioning objective on web-scale data is not efficient, e.g.,
Wang et al. (2021b) train their model on ALIGN (Jia et al., 2021) and C4 (Raffel et al., 2020) about
1M steps using 512 TPU v3 chips (Jouppi et al., 2017).

Instead of directly training a captioning model in an end-to-end manner on web-scale image-text
pairs, another line of work (Tewel et al., 2022b; Su et al., 2022) achieves zero-shot captioning by
combining existing pre-trained models. Specifically, they use a pre-trained multi-modal model CLIP
(Radford et al., 2021) to guide a pre-trained language model (PLM), i.e., GPT-2 (Radford et al.,
2019), to generate sentences that match the given image. However, the inference speed of these
methods is slow because each word generation involves a CLIP text encoder forward. Besides,
language models pre-trained on various documents from webpages do not match well with caption-
ing tasks that aim to describe visual concepts and their relationships in a given image, resulting in
inferior performance on image captioning benchmarks.

In this paper, we propose a new framework, named DeCap, for zero-shot captioning. We aim to
decode sensible visual descriptions from the CLIP multi-modal embedding space. We do not use
paired image-text data during the decoder pre-training but only leverage the text data. This is more
flexible and efficient when the alignment between images and texts became noisier. Our DeCap
framework is described below: During pre-training, the text decoder is trained from scratch. The
goal is to invert the CLIP text encoder, i.e., a sentence is first encoded into an embedding by the
CLIP text encoder and later reconstructed by our text decoder. The decoder takes the text embed-
ding obtained from the CLIP text encoder as the prefix embedding. During zero-shot inference,
the difficulty lies in how to obtain a prefix embedding that can match the input image and be well
decoded by the decoder. The modality gap phenomenon (Liang et al., 2022b) is observed in multi-
modal contrastive models which prevents us from directly taking the visual embedding as the prefix
embedding. Ramesh et al. (2022) use paired data to learn a model to map the text embedding to
a corresponding image embedding. Instead of learning a model, we propose a training-free mech-
anism to project the image embedding into the CLIP text embedding space. Combining the text
decoder with the projection mechanism, we generate high-quality descriptions for given images.

Our main contributions are summarized as follows:

(1) We propose a new framework for zero-shot captioning. Our DeCap framework contains a pre-
trained contrastive model (i.e., CLIP) and a lightweight visual-aware language decoder taking the
CLIP embedding as input. Though our decoder is trained only on the text corpus, it can associate
both the visual embedding and the text embedding, thanks to the encoded multi-modal correlation
in the CLIP embedding space.

(2) We propose a training-free projection mechanism to reduce the modality gap in CLIP multi-
modal embedding space. We incorporate a simple support memory containing embeddings of the
text corpus in the pre-training stage. We project a visual embedding into the CLIP text embedding
space via the support memory. Experiments show that our proposed mechanism effectively reduces
the modality gap and significantly improves performance.

(3) Extensive experiments demonstrate DeCap can flexibly apply to various captioning scenarios.
DeCap outperforms other zero-shot captioning methods by a large margin on image captioning
benchmarks MSCOCO and NoCaps. DeCap trained on text-only data outperforms other unpaired
captioning methods on MSCOCO and Flickr30k. We apply DeCap to video captioning and achieve
state-of-the-art zero-shot results on MSR-VTT and ActivityNet-Captions.

2 RELATED WORK

CLIP in Captioning. Vision-language models (Radford et al., 2021; Jia et al., 2021; Yang et al.,
2022) trained with a contrastive loss show impressive ability in many discriminative tasks. However,
due to the absence of a text decoder during pre-training, these models can not be directly applied to
generative tasks, e.g., captioning. Prior work (Mokady et al., 2021; Barraco et al., 2022; Shen et al.,
2022) has applied CLIP to the image captioning task as a visual encoder. However, they ignore
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Figure 1: An overview of our framework. Our method is based on a pre-trained contrastive model
CLIP containing a text encoder and a visual encoder. We first learn a text decoder to generate
sentences conditioned on the CLIP text embedding. At inference, a training-free mechanism is used
to project the image embedding into the text embedding space with the help of a support memory.
The projected embedding is further decoded by the text decoder.

the CLIP text encoder and overlook the aligned multi-modal latent space provided by CLIP. In this
work, we train a text decoder with text-only data to invert the CLIP text encoder. By leveraging CLIP
multi-modal latent space, we apply CLIP to captioning tasks without additional pairwise training.

Zero-shot Captioning. Zero-shot captioning aims to generate image/video captions without human-
annotated data. Changpinyo et al. (2021); Wang et al. (2021b); Alayrac et al. (2022) train vision-
language models on noisy paired image-text data collected from the Web and evaluate on down-
stream benchmarks without fine-tuning. Another line of work achieves zero-shot captioning by
combining existing web-scale pre-trained models. ZeroCap (Tewel et al., 2022b) combines a multi-
modal model (e.g., CLIP) with a PLM (e.g., GPT-2). In each generation step, they use CLIP to
guide GPT-2 toward a desired visual direction via the proposed CLIP loss. Socratic Models (Zeng
et al., 2022) use a pre-trained VLM (Gu et al., 2021) to generate prompt templates for GPT-3 (Brown
et al., 2020) and then use CILP to retrieve the closest description to the image from the generated
candidates. In this work, we employ CLIP for zero-shot captioning. Different from the above work
using PLMs, we use text-only data to train a decoder from scratch.

Text Reconstruction. Prior work (Feng et al., 2019; Laina et al., 2019; Liu et al., 2021a;b) employ
a text reconstruction task to train a decoder for unpaired/unsupervised captioning tasks. Lacking a
well-aligned multi-modal latent space, most of these methods require complex pseudo-training or
adversarial training to align the decoder and visual input. Liu et al. (2021b) construct a knowledge
graph to correlate the representations of the visual and textual domains. However, this method needs
a well-defined knowledge graph and a multi-label classification task to train the knowledge graph,
which is difficult to apply to captioning tasks other than medical report generation. Benefiting from
CLIP, on the one hand, our decoder can be directly associated with visual input by utilizing the
aligned cross-modal embedding space of CLIP. On the other hand, our decoder can be trained on
various text data and applied to various captioning tasks.

3 METHOD

Our framework is shown in Figure 1. We learn a text decoder to convert the CLIP text encoder
(Sec. 3.1). This text decoder allows us to generate sentences based on the CLIP text embedding. At
inference, we propose a training-free mechanism to project the image embedding into the text em-
bedding space to reduce the modality gap between the text embedding space and image embedding
space (Sec. 3.2.1). We introduce more inference strategies for comparison (Sec. 3.2.2).

3.1 TEXT-ONLY DECODER PRE-TRAINING

Previous approaches (Tewel et al., 2022b; Su et al., 2022; Zeng et al., 2022) employ PLMs to gen-
erate diverse sentences for zero-shot captioning. However, PLMs trained on various documents
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from the webpages do not match well with captioning tasks that aim to describe visual concepts and
relationships in the given image.

Instead of employing a PLM, we train a text decoder from scratch to invert the CLIP text encoder.
Following recent work (Mokady et al., 2021; Wang et al., 2021b), we train our decoder using the
prefix language modeling. Specifically, given a sentence t = {word1, word2, ..., word|t|}, the
prefix language model Pθ learns to reconstruct t conditioned on the text embedding extracted by a
fixed CLIP text encoder. We regard the text embedding as a prefix to the caption. Our objective can
be described as:

LRecons(θ) = − 1

|t|

|t|∑
i=1

logPθ(wordi|word<i, Etext(t)), (1)

where Etext(·) means mapping a sentence to a ℓ2-normalized embedding space via the CLIP text
encoder. This decoder trained with text-only data in a self-supervised manner brings two benefits.
On the one hand, we can control the style of the generated sentences by adjusting the source of
text-only data. To generate task-specific descriptive captions, we train our decoder on text data from
human-annotated image descriptions and web-collected image captions. On the other hand, this text
decoder takes CLIP text embedding as the prefix embedding. The CLIP text embedding is optimized
to be correlated with the CLIP image embedding, making it possible to associate the text decoder
with visual input without any pairwise training.

3.2 INFERENCE STRATEGIES

In Sec. 3.1, we obtain a decoder that can generate descriptions conditioned on the CLIP text em-
bedding. At inference, the question is how to use the decoder to generate descriptions given the
CLIP image embedding. Due to the modality gap between CLIP image embedding space and text
embedding space, it is impractical to directly take the CLIP image embedding as the prefix embed-
ding. Ramesh et al. (2022) learn a prior model to map the text embedding to a corresponding image
embedding. However, this process requires paired data for training. We propose a training-free
mechanism to project the image embedding into text embedding space.

3.2.1 PROJECTION-BASED DECODING (PD)

Assuming that the language model Pθ is trained on a given text set T = {t1, t2, ..., tN}, where N
denotes the size of T . To represent the CLIP text embedding space, we maintain a support memory
M = {m1,m2, ...,mN}, where mi = Etext(ti). At inference, we aim to generate a caption for a
given image I . With the help of the support memory M , we can project the image embedding into
the text embedding space. Specifically, given the image embedding v = Eimage(I), we obtain its
representation in text embedding space by performing a weighted combination of all the embeddings
in support memory. To obtain the weights of these text embeddings, the cosine similarity between
v and m is calculated, scaled by a temperature parameter τ , and normalized by a softmax function.
The combined project vector vproj is calculated as:

vproj =

N∑
i=1

wi ∗mi =

N∑
i=1

exp((m⊤
i v)/τ)∑N

k=1 exp((m
⊤
k v)/τ)

∗mi, (2)

where wi is the weight of i-th text embedding in support memory. vproj is a combination of CLIP
text embeddings that can be used as the prefix embedding. We denote Pθ(x) as the auto-regressive
process of generating a sentence conditioned on the prefix embedding x. The final output can be
generated by Pθ(

vproj

||vproj ||2 ).

This projection-based method does not require additional training. It performs well across many
datasets and is flexible. The projected vector vproj can absorb the information from text embeddings
in the support memory, thereby generating diverse and accurate descriptions. On the other hand, the
text data used for training and stored in support memory can be different. We can select appropriate
text data to construct a new support memory according to the target domain. The image embedding
will then be projected into the new text embedding space, enabling DeCap to generalize quickly to
new domains without retraining.
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3.2.2 DISCUSSION

In order to investigate the impact of our decoder and projection-based mechanism, we have included
the following inference strategies for comparative analysis.

1) CLIPRe. We first consider a simple retrieval-based approach that does not require a decoder.
This approach is mentioned in Su et al. (2022). Given the image I and text set T = {t1, t2, ..., tn},
CLIPRe retrieves the most relevant texts from T based on the image-text similarity measured by
CLIP. This process can be formulated as: argmax t∈T sim(Eimage(I), Etext(t)), where sim de-
notes the cosine similarity. In all experiments, we use CLIPRe as our baseline, since it can well
reflect the zero-shot performance of the original CLIP without the decoder.

2) Visual Decoding (VD). Considering that text embeddings and image embeddings are correlated,
a simple approach is to directly use image embedding as the prefix embedding. We refer to this
method as Visual Decoding. This process can be formulated as Pθ(Eimage(I)). However, across
the experiments, this method does not achieve satisfying results in most scenarios, indicating that
there is a modality gap between CLIP image embeddings and text embeddings.

3) Nearest-neighbor Decoding (NND). Another simple method is to use the nearest text embedding
as the prefix embedding. Specifically, we first calculate the similarity between the image embed-
ding Eimage(I) and the text embeddings in M . Then, the nearest text embedding is directly used
as the prefix embedding. We refer to this method as Nearest-neighbor Decoding. This process can
be formulated as Pθ(argmaxm∈M sim(Eimage(I),m)). Ideally, NND and CLIPRe should attain
similar performance since the decoder learns to recover the origin text conditioned on the text em-
bedding. Interestingly, across our experiments, NND achieves better performance than CLIPRe in
most scenarios, suggesting that our decode may generate more descriptive sentences. Moreover, we
find that the performance could be further improved by reconstructing a new text corpus using the
decoder. More results and discussions can be found in Appendix B.

4 EXPERIMENTS

We conduct extensive experiments on captioning tasks including zero-shot image captioning, un-
paired image captioning, and video captioning. We demonstrate that DeCap can efficiently achieve
impressive results in diverse settings. In Sec. 4.1, we focus on zero-shot image captioning without
any human annotation. In Sec. 4.2, we focus on unpaired image captioning where the images and
the sentences are treated independently. In Sec. 4.3, we further apply DeCap to video captioning
tasks. In Sec. 4.4, we conduct detailed ablation studies for DeCap.

Implementation Details. We employ a frozen pre-trained Vit-B/32 CLIP model. We adopt a 4-
layer Transformer (Subramanian et al., 2018) with 4 attention heads as our language model. The size
of the hidden state is 768. By default, we use all the text data in the training set to train the language
model from scratch with a naive cross-entropy loss. All the text embeddings from the training
corpus are stored in the support memory unless specified otherwise. At inference, the temperature τ
in Eq. 2 is set to 1/150 in video captioning experiments, and 1/100 in image captioning experiments.
We report the results over four standard captioning evaluation metrics: BLEU@N (Papineni et al.,
2002), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam et al., 2015), and SPICE (Anderson
et al., 2016). Additionally, we use CLIP-SRef (Hessel et al., 2021) and CLIP-S to measure the text-
text similarity and text-image similarity, respectively. The beam search or constrained beam search
(Anderson et al., 2017) is not used in all our results.

4.1 ZERO-SHOT IMAGE CAPTIONING

In this section, we conduct zero-shot image captioning using webly-collected corpora. Traditional
image captioning methods rely on paired human-annotated data for training, which is difficult to
obtain and limited in scale and diversity. We consider three webly-collected corpora for DeCap
training: (1) CC3M (Sharma et al., 2018) contains three million image-description pairs collected
from the web. We only use the text descriptions (CC3M-text) for training. We use one million
descriptions randomly sampled from the 3M descriptions to construct the support memory. (2)
SS1M is a webly-collected corpus specifically designed for MSCOCO caption. Feng et al. (2019)
use the name of the eighty object classes in MSCOCO as keywords to crawl the descriptions from
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Methods Pre-training stage MSCOCO NoCaps val (CIDEr)
B@4 M C S In Near Out Overall

Changpinyo et al. (2021) CC3M - - - - 29.2 27.5 37.3 29.7
Changpinyo et al. (2021) CC12M - - - - 20.7 24.1 41.6 27.1

ZeroCap CLIP+GPT-2 2.6 11.5 14.6 5.5 - - - -
CLIPRe CLIP+CC3M-text 4.6 13.3 25.6 9.2 23.3 26.8 36.5 28.2

DeCap-VD CLIP+CC3M-text 1.2 10.4 8.1 5.8 8.4 8.0 10.2 8.5
DeCap-NND CLIP+CC3M-text 5.3 13.7 27.1 9.1 24.2 27.1 37.6 28.8

DeCap CLIP+CC3M-text 8.8 16.0 42.1 10.9 34.8 37.7 49.9 39.7
DeCap CLIP+SS1M 8.9 17.5 50.6 13.1 41.9 41.7 46.2 42.7
DeCap CLIP+Book Corpus 6.6 12.9 31.9 8.7 26.8 31.8 44.3 33.6

Table 1: Zero-shot captioning results on MSCOCO Karpathy-test split and NoCaps validation set.
(In: in-domain; Near: near-domain; Out: out-of-domain; B@4: BLEU@4; M: METEOR; C:
CIDEr; S: SPICE).

Shutterstock1, resulting in 2,322,628 distinct image descriptions in total. We reuse this corpus and
further remove sentences with more than fifteen words, obtaining 978,662 sentences. (3) Book
Corpus (Zhu et al., 2015) is a large collection of free novel books. Book Corpus is often used
for unsupervised pre-training of language models (Devlin et al., 2018) and we also use it to train
our language decoder, but for captioning tasks. The original Book Corpus data is large and many
sentences are not visual-related, which makes our decoder training inefficient. In practice, we find
that the norm of CLIP text embedding can coarsely filter out some sentences that are not related to
visual concepts. A sentence with a large norm is usually not visual-related. To improve training
efficiency, we only keep sentences with lengths less than 15 and norms less than 10 and obtain
6,217,799 sentences for training. We use one million sentences randomly sampled from the training
data to construct the support memory. In addition, we use “Attention! There is/are” as a prompt
for the model trained on Book Corpus. We find that DeCap trained on Book Corpus benefits from
prompt engineering, whereas DeCap trained on CC3M does not. More other prompts, results, and
analyses are in Appendix F.

The following zero-shot captioning methods are compared in this study. Changpinyo et al. (2021)
train a captioning model on webly-collected paired data and directly transfer it to downstream
datasets without fine-tuning. ZeroCap (Tewel et al., 2022b) is a training-free zero-shot caption-
ing method leveraging CLIP and GPT-2. DeCap also utilizes CLIP but trains a decoder from scratch
on a webly-collected corpus. Our DeCap uses projection-based decoding (PD) by default. We
compare it with another two inference strategies introduced in Sec. 3.2. We denote visual decoding
as DeCap-VD and nearest-neighbor decoding as DeCap-NND. All these methods target zero-shot
image captioning and do not use human-annotated data.

Results. Table 1 shows the zero-shot results on MSCOCO and NoCaps. DeCap attains a new
state-of-the-art on all metrics. On NoCaps, models pre-trained on webly-collected data achieve
better out-of-domain results. This is because the webly-collected data contain diverse visual con-
cepts. On MSCOCO, DeCap pre-trained on CC3M-text outperforms ZeroCap by 27.5% in CIDEr.
DeCap pre-trained on SS1M outperforms ZeroCap by 36% in CIDEr. DeCap trained on SS1M
achieves better performance than trained on CC3M (CIDEr: 50.6% vs. 42.1%), indicating that the
task-specific webly-collected corpus can further improve the performance of downstream datasets.
Besides, DeCap trained on Book Corpus still achieves better performance than ZeroCap. Notably,
both DeCap-BookCorpus and ZeroCap have not seen caption-related data.

4.2 UNPAIRED IMAGE CAPTIONING

To explore the potential of DeCap in more captioning scenarios, we consider the unpaired image
captioning setting, where the human-annotated image-sentence pairs are treated as unpaired images
and sentences. In Sec. 4.2.1, we investigate in-domain captioning where training data and test data
come from the same dataset, but the training data are unpaired. In Sec. 4.2.2, we consider the
cross-domain situation where training data and test data come from different distributions.

1https://www.shutterstock.com

6

https://www.shutterstock.com


Published as a conference paper at ICLR 2023

Method Data MSCOCO Flickr30K
P. I. T. B@4 M C S B@4 M C S

Supervised Methods

BUTD ✓ 36.2 27.0 113.5 20.3 27.3 21.7 56.6 16.0
CLIPCap ✓ 33.5 27.5 113.1 21.1 - - - -
Barraco et al. (2022) ✓ 36.0 27.8 114.9 20.8 - - - -
CLIP-VL ✓ 37.5 28.1 123.1 21.9 - - - -

Train on unpaired data. Zero-shot inference on image-text pairs

UVC-VI † 22.0 21.4 72.3 - - - - -
Feng et al. (2019) ✓ ✓ 18.6 17.9 54.9 11.1 - - - -
Laina et al. (2019) ✓ ✓ 19.3 20.2 61.8 12.9 - - - -
ESPER-Style ✓ ✓ 21.9 21.9 78.2 - - - - -
ESPER-Free ✓ 6.3 13.3 29.1 - - - - -
ZeroCap∗ ✓ 7.0 15.4 34.5 9.2 5.4 11.8 16.8 6.2
Magic ✓ 12.9 17.4 49.3 11.3 6.4 13.1 20.4 7.1
CLIPRe ✓ 12.4 20.4 53.4 14.8 9.8 18.2 31.7 12.0

DeCap-VD ✓ 5.0 15.5 25.7 9.8 5.8 15.0 13.0 8.2
DeCap-NND ✓ 15.3 21.2 62.9 15.8 12.9 17.2 35.2 10.9
DeCap ✓ 24.7 25.0 91.2 18.7 21.2 21.8 56.7 15.2

Table 2: In-domain captioning results on MSCOCO and Flickr30K. “∗” denotes results from Su
et al. (2022). “P.”, “I.” and “T.” denote paired data, unpaired image data and unpaired text data,
respectively. †: UVC-VI is a special approach that requires image-Chinese paired data for training,
and we regard it as an unpaired method here because it does not use image-English pairs.

4.2.1 IN-DOMAIN CAPTIONING

We compare DeCap with supervised methods and other unpaired image captioning methods. (1)
Supervised methods: BUTD (Anderson et al., 2018) is a classic method that uses Faster R-CNN
(Ren et al., 2015) to extract visual features. CLIPCap (Mokady et al., 2021), CLIP-VL (Shen
et al., 2021) and Barraco et al. (2022) are recent approaches employing CLIP as the visual encoder.
(2) Unpaired methods: Laina et al. (2019) and Feng et al. (2019) treat the images and captions from
the MSCOCO training set as unpaired data. UVC-VI (Liu et al., 2021a) uses image-Chinese pairs
(Wu et al., 2019) for training. (3) (CLIP+GPT2)-based methods: ZeroCap (Tewel et al., 2022b),
Magic (Su et al., 2022) and ESPER-Style (Yu et al., 2022b) finetune the GPT-2 on captions from
the training set. (4) ESPER-Free (Yu et al., 2022b) uses reinforcement learning to align multimodal
inputs to language model generations. (5) CLIPRe is a retrieval-based baseline. (6) Our DeCap,
DeCap-VD and DeCap-NND. Our decoder is trained on captions from the training set, and text
embeddings of all the training captions are maintained in the support memory.

Results. Table 2 shows the results on MSCOCO and Flickr30K. Overall, DeCap outperforms recent
unpaired approaches by a large margin. Especially on Flickr30K, DeCap is competitive with the
supervised learning method BUTD. Two conclusions can be drawn: (1) CLIP provides aligned
multi-modal representations for captioning tasks. Compared to the unpaired methods that use a
visual concept detector to construct a multi-modal embedding space, the CLIP-based methods could
achieve competitive results using only text data. (2) Our decoder and the projection mechanism
are crucial for high performance. Compared to CLIPRe, DeCap-NND further decodes the nearest-
neighbor text embeddings resulting in higher performance, indicating that our decoder can generate
more descriptive sentences. DeCap-VD achieves inferior performance, demonstrating that there
is a large modality gap between CLIP image embedding and text embedding, demonstrating the
necessity of our projection mechanism.

4.2.2 CROSS-DOMAIN CAPTIONING

We evaluate the following methods on MSCOCO and Flickr30K in the cross-domain setting where
the training data and testing data are from different datasets. (1) Zhao et al. (2020) generate pseudo
image-text pairs for the target domain using a retrieval model trained on the source domain. (2)
Magic (Su et al., 2022) finetunes GPT-2 on text data from the source domain. (3) CLIPRe-S uses
text data from the source domain as galleries. (4) DeCap trains the decoder on text data from the
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source domain. (5) DeCap-TT trains the decoder on text data from the source domain and uses
captions from the target domain to construct the support memory.

Results. Table 3 shows the results. Unlike the traditional cross-domain method (Zhao et al., 2020)
which relies on paired source domain data and requires training on the target domain, recent CLIP-
based text-only methods require text-only data from the source domain for training. DeCap signif-
icantly outperforms other text-only methods, e.g., Magic (Su et al., 2022) and CLIPRe-S, on the
cross-domain evaluation. Moreover, if the text data from the target domain is accessible, DeCap-TT
significantly improves the captioning performance (e.g., CIDEr is improved from 44.4% to 63.1%)
without any additional training. It simply employs text embedding from the target domain as the
support memory. These results demonstrate the strong capabilities of DeCap in cross-domain gen-
eralization and the effectiveness of our projection-based decoding mechanism.

Methods Data MSCOCO to Flickr30K Flickr30K to MSCOCO
S.P. S.T. T.I. T.T. B@4 M C S B@4 M C S

Zhao et al. (2020)∗ ✓ ✓ ✓ ✓ 24.1 19.5 52.8 - - - - -
Magic ✓ 6.2 12.2 17.5 5.9 5.2 12.5 18.3 5.7

CLIPRe-S ✓ 9.8 16.7 30.1 10.3 6.0 16.0 26.5 10.2

DeCap-VD ✓ 6.5 13.8 19.1 7.0 3.6 13.7 9.4 6.7
DeCap-NND ✓ 12.0 15.5 28.6 10.1 7.5 15.9 28.0 9.6

DeCap ✓ 16.3 17.9 35.7 11.1 12.1 18.0 44.4 10.9
DeCap-TT ✓ ✓ 17.7 20.2 42.0 13.8 19.7 20.9 63.1 13.9

Table 3: Cross-domain image captioning evaluation. “*” means using CIDEr optimization (Rennie
et al., 2017). (“S.P.”: Source paired data; “S.T.”: Source text data; “T.I.”: Target image data; “T.T.”:
Target text data).

4.3 VIDEO CAPTIONING

In this section, we apply DeCap to the video captioning task. We conduct the experiments on MSR-
VTT (Xu et al., 2016), Activity-Captions (Caba Heilbron et al., 2015), and VATEX (Wang et al.,
2019). Notably, we only download 5182 raw test videos out of 6000 VATEX public test videos
because some videos are unavailable. In Activity-Captions, we use ground-truth proposals following
Krishna et al. (2017). We apply the same DeCap for video captioning. We consider three different
data sources for decoder training: (1) Generic corpus. We train our decoder on Book Corpus which
is a generic corpus used for unsupervised learning of language models. (2) Image captions. We
train our decoder on captions from MSCOCO and CC3M, which are collected or annotated for
image captioning tasks. (3) Video captions. We extract the text annotations in the training set of
video captioning datasets. The former two can be viewed as the zero-shot video captioning setting
without any video-related data for training.

At inference, we use a pooling mechanism on frame-level features to obtain a video-level feature.
Specifically, for each proposal, we directly randomly sample k frames f1, f2, ..., fk from the clip.
We use a mean pooling mechanism on the frame-level features extracted by the CLIP image encoder
to obtain a video-level feature. In all experiments, k is set to 10.

Results. Table 4 shows the results. DeCap trained on image captions outperforms the recent
zero-shot captioning approaches on standard captioning metrics and achieves competitive results
on CLIP-S and CLIP-SRef metrics. Notably, unlike other methods, DeCap does not directly take
CLIP visual-text similarity as the optimization objective. Moreover, DeCap trained on video cap-
tions can further improve performance. These results demonstrate that DeCap can easily apply to
video captioning with a simple random sampling strategy and temporal mean pooling mechanism.

4.4 ABLATION STUDY

The size of training data. A key question is how much text data we need to train the decoder
from scratch. To investigate the effect of training data size, we sample different scale data from
MSCOCO. At inference, we use the same support memory (full training set, 560K captions) for
all experiments. The results are in Figure 2 (left). Overall, DeCap benefits from a large data size.
Compared with training on the full set, the CIDEr score drops from 91.2% to 81.5% when using only
1% of data (5.6K captions). The result indicates that DeCap is data-efficient. It shows a promising
direction in its application in data-limited scenarios.
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Methods Setting Metrics
B@4 M C CLIP-SRef CLIP-S

Results on MSR-VTT test set

VNS-GRU† (Chen et al., 2020) Supervised 45.3 29.9 53.0 0.739 0.626
SemSynAN† (Perez-Martin et al., 2021) 46.4 30.4 51.9 0.733 0.619

UVC-VI Trained on VATEX-Chinese 38.9 27.8 44.5 - -(Wang et al., 2019)

ZeroCap†

Zero-shot

2.3 12.9 5.8 0.739 0.710
MAGIC† 5.5 13.3 7.4 0.628 0.566

Tewel et al. (2022a)† 3.0 14.6 11.3 0.785 0.775
DeCap-BookCorpus 6.0 12.7 12.3 0.772 0.719

DeCap-CC3M 6.2 14.9 15.0 0.792 0.736
DeCap-COCO 14.7 20.4 18.6 0.761 0.697

CLIPRe-MSR

MSR-VTT text only

10.2 18.8 19.9 0.835 0.852
DeCap-VD-MSR 5.9 16.3 10.2 0.765 0.722

DeCap-NND-MSR 13.1 20.2 24.4 0.805 0.771
DeCap-MSR 23.1 23.6 34.8 0.823 0.770

Results on ActivityNet- Caption ae-test (Lei et al., 2020)

Reasoner (Liang et al., 2022a) Supervised 12.5 16.4 30.0 - -
PDVC (Wang et al., 2021a) 11.8 15.9 27.3 - -

DeCap-BookCorpus
Zero-shot

0.4 4.4 10.0 0.734 0.750
DeCap-CC3M 0.7 5.3 12.4 0.761 0.814
DeCap-COCO 1.1 6.6 15.0 0.727 0.753

CLIPRe-ACT

ActivityNet-Captions text only

1.4 8.2 15.1 0.830 0.871
DeCap-VD-ACT 1.1 6.6 10.2 0.682 0.712

DeCap-NND-ACT 1.9 8.3 15.5 0.745 0.775
DeCap-ACT 2.3 9.4 20.6 0.767 0.797

Results on VATEX public test set

VaTeX (Wang et al., 2019) Supervised 28.4 21.7 45.1 - -

DeCap-BookCorpus
Zero-shot

4.1 9.9 11.8 0.761 0.731
DeCap-CC3M 7.3 12.6 18.4 0.804 0.802
DeCap-COCO 13.1 15.3 18.7 0.769 0.755

CLIPRe-VATEX

VATEX-Captions text only

11.1 17.0 27.1 0.835 0.877
DeCap-VD-VATEX 7.4 12.9 13.8 0.732 0.733

DeCap-NND-VATEX 14.8 18.1 32.4 0.809 0.811
DeCap-VATEX 21.3 20.7 43.1 0.834 0.824

Table 4: Video captioning evaluation results. “†” denotes the result from Tewel et al.
(2022a). DeCap-BookCorpus, DeCap-CC3M, DeCap-COCO, DeCap-MSR, DeCap-ACT and
DeCap-VATEX denote the model is trained on text data from Book Corpus, CC3M, MSCOCO,
MSR-VTT, Activity-Captions, and DeCap-VATEX, respectively.

Figure 2: Ablation study on the training data size (left) and the support memory size (right).
The size of the support memory. To investigate the effect of support memory size, we first train
the language model on the full training set (560K captions). At inference, we randomly sample
different ratio text embeddings as the support memory. The results are in Figure 2 (right). Overall,
DeCap and CLIPRe both benefit from a large support memory. Moreover, when using only 1%
data as the support memory, the performance drops slightly (3.8% performance drop in CIDEr). It
indicates that we can maintain a relatively small support memory to achieve competitive results with
acceptable storage and computation costs. Additionally, we provide a filtering strategy to reduce the
number of support embeddings in Appendix E. We visualize the support memory and the projection
embedding in Appendix G. We add an inference speed analysis to Appendix D.

5 CONCLUSION

We propose a simple framework for zero-shot captioning and introduce a lightweight visual-aware
language decoder that is both data-efficient and computation-efficient. We propose a training-free
mechanism to project the visual embedding to text embedding space, significantly reducing the
modality gap issue. By combining the decoder with the projection mechanism, we significantly
outperform existing zero-shot methods, establishing a new state-of-the-art in MSCOCO, MSR-VTT,
and ActivityNet-Captions. In the future, our DeCap framework may be adapted to other zero-shot
text generation problems, e.g., visual dialog.
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A MORE IMPLEMENTATION DETAILS

We employ a frozen pre-trained Vit-B/32 CLIP model as our cross-modal feature extractor. We adopt
a lighting 4-layer Transformer (Subramanian et al., 2018) with 4 attention heads as our decoder
(hidden state size 768) following the details (Radford et al., 2019). A linear layer trained with the
decoder is used to project the CLIP embedding from 512 to 768 dimensions. The training data size
and hyper-parameter for different datasets are summarized in Table 5.

MSCOCO Flickr30K CC3M SS1M MSR-VTT Activity-Captions Book Corpus

Training size 560K 30K 3M 978K 140K 37K 6M
Training steps 40K 20K 200K 150K 20K 8K 400K
Warmup steps 2K 2K 2K 2K 2K 1K 2K

Batch size 128
Learning rate 1e−5

Label smoothing 0.1
Optimizer AdamW (Loshchilov & Hutter, 2018) with default hyperparameters

Table 5: Training data size and hyper-parameter

B DISCUSSION ABOUT THE RECONSTRUCTION

In Sec. 3.2.2, we introduce the CLIPRe and Nearest-neighbor Decoding (NND) method. Given an
image and its CLIP image embedding, both CLIPRe and NND first retrieve the most relative text
embedding mt in the support memory according to the image-text cosine similarity. CLIPRe then
adopts the original sentence t of the mt as the caption. NND uses the decoder to generate a sentence
t∗ conditioned on mt. Ideally, the generated sentence t∗ should be the same as the original sentence
t, because the decoder learns to reconstruct t conditioned on the mt. However, according to the
experiments in Sec. 4.2.1, we find NND outperforms CLIPRe in most metrics. To figure out the
reason, we conduct the following experiments.

We first train our decoder on the MSCOCO training set with Eq. 1. To investigate the effect of the
text decoder, we construct a new corpus T ∗ = {t∗1, t∗2, ..., t∗N}, where t∗ = Pθ(Etext(t)), t is the
original sentence in MSCOCO training set and t∗ is the reconstructed sentence. We adopt this new
corpus as the support memory.

Table 6 shows the results. The reconstructed dataset improves the performance of CLIPRe on all
metrics, especially on CIDEr, from 53.4% to 63.6% (+10.2%). DeCap adopting the new corpus as
the support memory could further improve the CIDEr score to 95.1% (+3.9%). The result demon-
strates that the sentences generated by our method can better describe the images in MSCOCO. We
think the reason is that our decoding process has a denoising effect, which can remove some out-
liers captions in the training set. Another open question here is whether such a denoised dataset can
improve the performance of other fully supervised methods. We leave this as our future work.

B@4 M C S

CLIPRe 12.4 20.4 53.4 14.8
CLIPRe-recons 14.9 (+2.5) 21.5 (+1.1) 63.6 (+10.2) 16.2 (+1.4)

DeCap 24.7 25.0 91.2 18.7
DeCap-recons 26.5 (+1.8) 24.9 (-0.1) 95.1 (+3.9) 18.6 (-0.1)

Table 6: Results on MSCOCO Karpathy-test split. CLIPRe-recons and DeCap-recons denote using
the reconstructed corpus as the support memory.

C PRETRAINING-FINETUNING.

An interesting question is whether DeCap can benefit from the pretraining-finetuning paradigm.
Table 7 shows the results. Notably, we only use text data for training in both pre-training and
fine-tuning. Compared to training on MSCOCO, the model trained on CC3M achieves better per-
formance in the out-of-domain case, improving the CIDEr metric from 25.8% to 48.7%. This is
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Pre-training data Fine-tuning data Memory data CIDEr
in near out overall

MSCOCO - MSCOCO 65.2 47.8 25.8 45.9
CC3M - CC3M 34.7 35.9 48.7 38.3
CC3M MSCOCO MSCOCO 72.7 61.9 43.9 58.2
CC3M - MSCOCO 70.1 60.4 44.5 58.6

Table 7: Results of DeCap on NoCaps validation split. We only use the text data for both pre-training
and fine-tuning.

because CC3M covers more diverse classes than MSCOCO. By fine-tuning the pre-trained model
on MSCOCO, we find that the overall performance is greatly improved, obtaining an overall CIDEr
of 58.2%. It indicates that our method benefits from the pretraining-finetuning paradigm. By di-
rectly changing the support memory without fine-tuning, DeCap achieves comparable performance
as fine-tuning. It suggests that our method can be easily adapted to new domains without training,
requiring only some text data from new domains.

D THE INFERENCE SPEED

Table 8 shows the inference speed of DeCap. Decap is 113x faster than ZeroCap. Because DeCap
does not involve gradient updates and multiple text encoder forwards during the inference. Besides,
the decoder used in DeCap is more lightweight compared to the GPT-2 employed in ZeroCap. It
is worth mentioning that the time cost of embedding projection is negligible compared to image
encoding and text decoding.

Image encoding Embedding projection Language decoding All FPS(CLIP image encoder) (1M support memory)

ZeroCap 32.68 ms - 11285.36 ms 11318.04 ms 0.088
DeCap 31.75 ms 0.38 ms 68.54 ms 100.67 ms 9.933

Table 8: The inference speed of ZeroCap and DeCap. The experiment is conducted on a single
Nvidia RTX2080Ti GPU. Both DeCap and ZeroCap do not use the beam search. We report the
average time cost of captioning 100 images with batch size 1.

E AN EFFICIENT STRATEGY TO REDUCE THE NUMBER OF SUPPORT
EMBEDDINGS

To make DeCap more practical, we provide a method that does not degrade DeCap performance but
can significantly reduce the number of support embeddings. In the original DeCap, we randomly
sample sentences from the training set to construct the support memory. However, the semantics
between sentences is highly repetitive. A simple but effective method is to filter the features in the
support memory according to the cosine similarity. Specifically, given a text feature and the existing
support memory, if the maximum cosine similarity between the feature and the support memory is
greater than a threshold, the feature will not be stored in the support memory. We set the threshold to
0.8 and construct a new support memory with the filtering strategy. Table 9 shows that this strategy
can significantly reduce the number of support embeddings from 1M to 0.14M and thus reduce the
additional memory cost from 1.02GB to 0.14GB without performance degradation.

Similarity filter The number of support embeddings Additional memory cost CIDEr

False 1M 1.02GB 42.2
False 0.14M (randomly sampled from 1M) 0.14GB 38.2 (-4.0)
True 0.14M (Filtering from 1M) 0.14GB 42.3 (+0.1)

Table 9: The result of filtering strategy. We use the same 1M sentences in this experiment.
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F PROMPT ENGINEERING

Prior work (Tewel et al., 2022b; Wang et al., 2021b) found that a prefix prompt “a picture of”
improves the quality of decoded captions. We study the effect of the prompt on our special decoder
trained with a text reconstruction task. We consider two decoders trained on CC3M-text and Book
Corpus, respectively. At inference, we take the “prefix embedding + prompts” as the input of the
decoder. We test a set of prompts as shown in Table 10. The results show that the decoder trained
on Book Corpus benefits from the prompt engineering, while the decoder trained on CC3M hurts
from the prompt engineering in most cases. Although CC3M is a dataset collected automatically
from the Web, it is well-filtered by some human-designed strategies. Therefore, most of the text
data in CC3M are caption-related, and the redundant prompt design will destroy its original text
structure, resulting in performance degradation. BookCorpus is a popular large-scale text corpus,
especially for unsupervised learning of language models. Most of the sentences in Bookcorpus
are not originally intended to describe pictures. A well-designed prompt can allow the decoder to
generate sentences that match the captioning task.

Prompt DeCap-BookCorpus DeCap-CC3M

None 21.8 42.1 (+0.0)

“A photo of” 20.4 (-1.4) 38.3 (-3.8)
“A picture of” 20.8 (-1.0) 36.8 (-5.3)
“There is/are” 27.1 (+5.3) 40.7 (-1.4)

“See! There is/are” 30.4 (+8.6) 40.9 (-1.2)
“Attention! There is/are” 31.9 (+10.1) 42.2 (+0.1)

Table 10: Zero-shot captioning results on MSCOCO Karpathy split with different prompts.

G VISUALIZATION OF THE EMBEDDINGS

Figure 3 shows the support embeddings and category embeddings from MSCOCO. The support em-
beddings from the clip text encoder are divided into different clusters according to the semantics.
In Figure 4(a), we sample 500 image-text pairs from the MSCOCO training set and visualize their
embeddings extracted by the CLIP encoder. As we can see, there is a clear modality gap between
CLIP text embeddings and image embeddings. Figure 4(b) and Figure 4(c) show that the projection
method can effectively reduce this modality gap. Figure 4(d) shows that the projected embedding
is close to the embeddings of human-labeled captions in the latent space. Besides, compared to
CLIPRe embedding, the projected embedding is more central, indicating that the projected embed-
ding absorbs the information of the support embeddings and nicely preserves the visual information.

Figure 3: Visualization of support embeddings and category embeddings from MSCOCO in 2D
space by t-SNE (Van der Maaten & Hinton, 2008). We randomly sample 10,000 embeddings from
the support memory for visualization.
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Figure 4: Visualization of embeddings in 2D space by t-SNE. We construct the support memory
using text embeddings from MSCOCO training set and randomly sample 500 embeddings from the
support memory for visualization.

H EXAMPLES OF GENERATED CAPTIONS

We visualize the generated captions of some images from the MSCOCO Karpathy-test split in Figure
5. We show the captions generated by the DeCap model trained on MSCOCO and CC3M. The
captions from DeCap-MSCOCO and DeCap-CC3M have visible style differences.
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Man standing in open door of car on a 
desert road.
a man on a vehicle that is in a desert area

person, touring the desert - driven vehicle on 
the tip

A traffic light surrounded by trees near a tall 
building.
a traffic light is shown over two street signs

an image shows a traffic light on the 
intersection of two streets

Ground Truth:

DeCap-MSCOCO:

DeCap-CC3M:  

A group of people walking on a street by 
some cars.
a couple of women walking on a street near 
a bus
japanese city : street photography of person 
on the streets

a bunch of zebras stand in some tall grass

a zebra standing in a field of three zebras

zebra in the steppe in the national park -
photo

a group of people wind surfing at dusk at a 
beach
a man is on the beach flying a kite 

person, a surfer, flies at the sea, image

Ground Truth:

DeCap-MSCOCO:

DeCap-CC3M:  

A baseball player is squatting down with his 
mitt raised.
a baseball player at the pitch preparing to 
hit a ball 
baseball player makes a pitch during the 
game against person

A panda bear with its hand to its mouth

a panda bear sitting in its enclosure

panda eats in the zoo, a chinese panda was 
photographed in the winter day

a black and white dog with a collar looking 
out a large window
a dog looking out a window and a black dog 

dog looking out the window, sad

Ground Truth:

DeCap-MSCOCO:

DeCap-CC3M:  

A smart phone at different angles with 
windows
a smart phone is shown with a smart phone

a modern smartphone with the release of the 
digital, a new generation of social media 

A kitchen sink with a bowl of cereal next to it

a kitchen scene with a stove being cooked 

a photo of person cooking in the kitchen of a 
- stove 

a group of people wind surfing at dusk at a 
beach
a pizza with several toppings is being cooked 
on a pan
a pizza is cooked in a homemade pan, 
chopped ingredients

Ground Truth:

DeCap-MSCOCO:

DeCap-CC3M:  

A large brown bear laying on top of a giant 
rock.
a bear resting on a rock in an enclosure 

a bear, a common animal, is resting in the 
medium photo

Figure 5: Generated captions for images from the MSCOCO Karpathy-test split. DeCap-MSCOCO
and DeCap-CC3M denote DeCap trained on the MSCOCO training set and CC3M training set,
respectively.
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