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Figure 1: Applications of the proposed Motion Embeddings for customized video generation.
Our method supports a wide range of motion types, including various camera movements and object
motions. In each example, the first row shows the source video, while the second row shows the
output. Please refer to the supplementary videos for clearer visualization.

ABSTRACT

In this work, we present a novel approach for motion customization in video gen-
eration, addressing the widespread gap in the exploration of motion representation
within video generative models. Recognizing the unique challenges posed by the
spatiotemporal nature of video, our method introduces Motion Embeddings, a set
of explicit, temporally coherent embeddings derived from a given video. These
embeddings are designed to integrate seamlessly with the temporal transformer
modules of video diffusion models, modulating self-attention computations across
frames without compromising spatial integrity. Our approach provides a compact
and efficient solution to motion representation, utilizing two types of embeddings:
a Motion Query-Key Embedding to modulate the temporal attention map and a
Motion Value Embedding to modulate the attention values. Additionally, we in-
troduce an inference strategy that excludes spatial dimensions from the Motion
Query-Key Embedding and applies a debias operation to the Motion Value Em-
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bedding, both designed to debias appearance and ensure the embeddings focus
solely on motion. Our contributions include the introduction of a tailored motion
embedding for customization tasks and a demonstration of the practical advan-
tages and effectiveness of our method through extensive experiments.

1 INTRODUCTION

In recent years, generative models have rapidly evolved, achieving remarkable results across various
domains such as image (Rombach et al., 2022; Nichol et al., 2021; Ramesh et al., 2022; Betker
et al., 2023; Saharia et al., 2022) and video (He et al., 2022; Chen et al., 2023a; Guo et al., 2023;
Wang et al., 2023). Within the realm of imagery, customization is a popular topic, empowering
models to learn specific visual concepts from user-provided images at both the object and style
levels. These concepts are combined with the model’s extensive prior knowledge to produce diverse
and customized outcomes. The success of image customization has led to high expectations for
extending such capabilities to video generation models, which are developing rapidly and drawing
significant attention.

However, extending these techniques to Text-to-Video (T2V) generation introduces new challenges
due to the spatiotemporal nature of video. Unlike images, videos contain motion in addition to
appearance, making it essential to account for both. Current customization methods (Hu et al.,
2021; Mou et al., 2023; Sohn et al., 2023; Ye et al., 2023; Zhang & Agrawala, 2023; Gal et al.,
2022; Ruiz et al., 2023) primarily focus on appearance customization, neglecting motion, which is
critical in video. Motion customization deals with adapting specific movements or animations to
different objects or characters, a task complicated by the diverse shapes and dynamic changes over
time (Siarohin et al., 2019a;b; Yatim et al., 2023; Jeong et al., 2023). These methods, however, fail to
capture the dynamics of motion. For instance, textual inversion (Gal et al., 2022) learns embeddings
from images but lacks the ability to capture temporal correlations, which are essential for video
dynamics. Similarly, fine-tuning approaches like DreamBooth (Ruiz et al., 2023) and LoRA (Hu
et al., 2021) struggle to disentangle motion from appearance.

In this paper, we address the challenge of motion customization, focusing on the critical issue of
motion representation. The current state-of-the-art methods face several limitations: 1) Some ap-
proaches lack a clear representation of motion, as seen in Yatim et al. (2023), where motion is only
indirectly injected through loss construction and optimization at test time, leading to additional com-
putational overhead. 2) Some other methods (Jeong et al., 2023) attempt to parameterize motion as
a learnable representation, yet they fail to separate these parameters from the generative model. This
coupling compromises the generative model’s diversity after learning. 3) While there are also some
methods that attempt to separate motion representation from the generative model using techniques
like low-rank adaptation (LoRA) (Hu et al., 2021), such as in Motion Director (Zhao et al., 2023),
they lack a well-defined temporal design, limiting their effectiveness in capturing motion dynamics,
as evidenced by our experiments.

To address the aforementioned issues, we propose a novel framework for motion customization.
Our method learns explicit, temporally coherent embeddings, termed Motion Embeddings, from
a reference video. These embeddings are integrated into the temporal transformer modules of the
video diffusion model, modulating the self-attention across frames.

We introduce two types of motion embeddings: Motion Query-Key Embedding, which captures
global relationships between frames by influencing the temporal attention map (QK), and Motion
Value Embedding, which captures spatially varying movements across frames by modulating the
attention value (V). The Motion Query-Key Embedding excludes spatial dimensions (H and W )
to avoid capturing appearance information, as the temporal attention map inherently carries spatial
details of objects, which could entangle appearance information of the reference video and thus hin-
der motion transfer. While the Spatial-2D Motion Value Embedding may still risk capturing static
appearance information, we address this by introducing a debiasing strategy that models frame-to-
frame changes, ensuring that the embeddings primarily represent motion dynamics. This approach
is conceptually similar to techniques like optical flow, where motion is isolated by tracking changes
between frames, helping to prevent overfitting to specific appearance details and improving gener-
alization to novel content.
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In summary, our contributions are as follows:

• We propose a novel motion representation for video generation, addressing the key chal-
lenges in motion customization.

• We design two approaches to debias appearance for this motion representation: a 1D Mo-
tion Query-Key Embedding that captures global temporal relationships, and a 2D Motion
Value Embedding with a debias operation that captures spatially varying movements across
frames.

• Our method is validated through extensive experiments, demonstrating its effectiveness and
flexibility for integration with existing Text-to-Video frameworks.

2 RELATED WORK

Text-to-Video Generation. Text-to-Video (T2V) generation task aims to synthesize high-quality
video from user-provided text prompts, which are composed of the expected appearances and mo-
tions. Previously, Generative Adversarial Networks (GANs) (Vondrick et al., 2016; Saito et al.,
2017; Pan et al., 2017; Li et al., 2018; Tian et al., 2021) and Autoregressive Transformers (Yan
et al., 2021; Le Moing et al., 2021; Wu et al., 2022; Hong et al., 2022) have been widely explored
in this area. On the other hand, diffusion models have demonstrated powerful generation capa-
bilities in the field of Text-to-Image (T2I) generation (Rombach et al., 2022; Nichol et al., 2021;
Ramesh et al., 2022; Betker et al., 2023; Saharia et al., 2022) and have begun to extend to video
generation (He et al., 2022; Chen et al., 2023a; Wang et al., 2023; He et al., 2022). Recently, sev-
eral works have tried to transfer the pretrained T2I diffusion models to T2V generation models
by inserting temporal layers into the image generation networks such as AnimateDiff (Guo et al.,
2023), and Make-a-Video (Singer et al., 2022). These Text-to-Video (T2V) models approach frame
generation as a series of image creations, integrating a temporal transformer to bolster inter-frame
relationships—a notable deviation from Text-to-Image (T2I) models (He et al., 2022; Chen et al.,
2023a; Wang et al., 2023; Singer et al., 2022; Zhang et al., 2023; 2024; Chen et al., 2024; cerspense,
2023). Additionally, certain approaches incorporate an extra 3D convolutional layer to enhance tem-
poral consistency (cerspense, 2023; Wang et al., 2023). These T2V models are designed for video
generation through text inputs and may encounter difficulties when needed to produce videos with
customized motions.

Video Editing. Video editing generates video that adheres to the target prompt as well as preserves
the spatial layout and motion of the input video. As the basis of video editing, image editing has
achieved significant progress by manipulating the internal feature representation of prominent T2I
diffusion models (Cao et al., 2023; Chefer et al., 2023; Hertz et al., 2022; Ma et al., 2023b; Tu-
manyan et al., 2023; Patashnik et al., 2023; Bar-Tal et al., 2022; Qi et al., 2023; Liu et al., 2023).
MagicEdit (Liew et al., 2023) takes use of SDEdit(Meng et al., 2021) for each video frame to con-
duct high-fidelity editing. Tune-A-Video (Wu et al., 2023) finetunes a T2I model on the source video
and stylizes the video or replaces object categories via the fine-tuned model. Control-A-Video (Chen
et al., 2023b) presents Video-ControlNet, a T2V diffusion model that generates high-quality, consis-
tent videos with fine-grained control by incorporating spatial-temporal attention and novel noise ini-
tialization for motion coherence. TokenFlow(Geyer et al., 2023) performs frame-consistent editing
by the feature replacement between the nearest neighbor of target frames and keyframes. However,
these methods fall short as they just duplicate the original motion almost at pixel-level, resulting in
failures when being require significant structural deviation from the original video.

Video Motion Customization. Motion customization involves generating a video that maintains
the motion traits from a source video, such as direction, speed, and pose, while transforming the
dynamic object to match a text prompt’s specified visual characteristics. This process is distinct
from video editing (Bar-Tal et al., 2022; Chen et al., 2023b; Wu et al., 2023; Geyer et al., 2023; Liew
et al., 2023; Qi et al., 2023), which typically transfers motion between similar videos within the same
object category. In contrast, motion customization requires transferring motion across diverse object
categories, often involving significant shape and deformation changes over time, necessitating a deep
understanding of object appearance, dynamics, and scene interaction (Yatim et al., 2023; Jeong
et al., 2023; Zhao et al., 2023; Ling et al., 2024; Jeong et al., 2024). Diffusion Motion Transfer
(DMT) (Yatim et al., 2023) injects the motion of the reference video through the guidance of a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

handcrafted loss during inference, bringing additional computation costs that could not be ignored.
Video Motion Customization (VMC) (Jeong et al., 2023) encodes the motion into the parameters of
a T2V model. However, finetuning the original T2V model could seriously limit the diversity of the
generation model after learning the motion. Motion Director(Zhao et al., 2023) adopts LoRA(Hu
et al., 2021) to embed the motion outside the T2V model. Nevertheless, the structure of LoRA
limits the scalability and interpretability, as we could not easily integrate several reference motions
by these methods. Other works that represent motion using parameterization (Wang et al., 2024; He
et al., 2024) or trajectories (Ma et al., 2023a; Yin et al., 2023), but these approaches fall outside the
scope of our discussion on reference video-based methods.

3 METHODOLOGY

3.1 TEXT-TO-VIDEO DIFFUSION MODEL

In video diffusion models, the evolution from Text-to-Image (T2I) to Text-to-Video (T2V) models
is marked by the introduction of the temporal transformer module to the basic block. While T2V
models utilize spatial convolutional layers and spatial transformers in basic block for integrating
image features and textual information (Rombach et al., 2022; Nichol et al., 2021; Ramesh et al.,
2022; Betker et al., 2023; Saharia et al., 2022) , T2V models build on this by adding the temporal
transformer (He et al., 2022; Chen et al., 2023a; Guo et al., 2023; Wang et al., 2023). This module
is key for video generation, enabling the treatment of videos as sequences of batched images. It
specifically handles the inter-frame correlations through a frame-level self-attention mechanism,
ensuring the temporal continuity vital for dynamic video content.

In this module, an input spatiotemporal feature tensor is provided, initially shaped as X ∈
R1×C×N×H×W , where C,N,H,W represents channels, number of frames, height, and width re-
spectively. Batch size equals to one, and we omit the batch size dimension in our later notation
for simplicity. This tensor is subsequently transformed into a feature tensor F, with dimensions
F ∈ R(H×W )×N×C . The temporal attention mechanism (TA) within this module specifically tar-
gets the N dimension, corresponding to frames.

To facilitate this operation, F is projected through three distinct linear layers to generate the Query
(Q = WqF), Key (K = WkF), and Value (V = WvF) matrices, respectively. This setup enables
the execution of self-attention across the frame sequence, encapsulated by the formula:

TA(F) = softmax
(
QKT

√
dk

)
V, (1)

where Q, K, and V are the query, key, and value matrices obtained from F, and dk represents the
dimensionality of the key vectors, serving as a scaling factor to maintain numerical stability within
the softmax function. This temporal attention mechanism allows each frame’s updated feature to
gather information from other frames, enhancing the inter-frame relationships and capturing the
temporal continuity essential for video generation.

3.2 OUR PROPOSED METHOD

At the heart of our method for enhancing inter-frame dynamics in video models is the innovative
motion embedding concept:

M = {MQK,MV},
MQK = {mQK

1 ,mQK
2 , . . . ,mQK

L }, where each mQK
i ∈ R1×N×C ,

MV = {mV
1 ,m

V
2 , . . . ,m

V
L}, where each mV

i ∈ R(H∗W )×N×C .

(2)

We have designed two distinct types of motion embeddings, each influencing different parts of the
temporal attention computation. The Motion Query-Key Embedding mQK

i is a learnable vector
with the shape (1, N,C), while Motion Value Embedding mV

i is a learnable matrix with the shape
(H ×W,N,C). These embeddings are seamlessly integrated into the spatiotemporal feature tensor
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Figure 2: Motion Inversion within T2V diffusion models. The top depicts the training phase,
where motion embeddings M are learned by backpropagating the loss through the temporal trans-
former, influencing the spatiotemporal feature tensor F. These embeddings are then used to modify
the self-attention computations within the temporal transformer modules, ensuring enhanced inter-
frame dynamics. The bottom shows the inference phase, where an input text prompt guides the
generation of a coherent video sequence with the learned motion embeddings applied across the
frames, producing a customized video output with desired motion attributes.

F. The variable L denotes the total number of temporal attention modules within the model. Our
motion embeddings directly influence the self-attention computation as follows:

TAi(F) = softmax

(
(Wq(F+mQK

i ))(Wk(F+mQK
i ))T√

dk

)
(Wv(F+mV

i )), (3)

Training Obtaining this embedding is both efficient and convenient. Given a custom video x1:N
0 ,

N equals to number of frames of this video, we zero-initialize each motion embedding and train the
video diffusion model and backpropagate the gradient to the motion embedding:

M∗ = argmin
M

Et,ϵ

[∥∥ϵ1:Nt − ϵθ(x
1:N
t , t,M)

∥∥2
2

]
, (4)

where ϵt represents the noise variable at time step t, and ϵθ denotes the noise prediction from the
pre-trained video diffusion model parameterized by θ. The whole process is shown in Figure 3. Our
method also supports the loss formulation of (Jeong et al., 2023) and (Zhao et al., 2023), while the
latter we found in the experiment can boost our performance too.

Inference During inference time, we apply a differencing operation to modify the optimized mo-
tion value embedding and debias the appearance:

m̃V
i [:, j, :] =

{
mV

i [:, j, :], j = 1

mV
i [:, j, :]−mV

i [:, j − 1, :], j > 1
(5)

3.3 ANALYSIS

The motivation of our approach is to fully capture the motion information from the target video
without being influenced by its appearance. In this section, we analyze how MQK and MV is
designed to achieve this.
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Figure 3: Debiasing appearance from Motion Embeddings. Left: For the Motion Query-Key
Embedding, which influences the attention map, we exclude the spatial dimensions. Including them
would cause the attention map between frames to capture the object’s shape (e.g., the shape of
the tank in the original video is visible in the attention map). Right: Following the concept of
optical flow, we apply a debias operation to the Spatial-2D Motion Value Embedding, removing
static appearance and preserving dynamic motion.

Motion Query-Key Embedding (MQK) The Motion Query-Key Embedding MQK is designed
to influence the attention map within the temporal transformer modules by adjusting the query and
key components. By adding MQK to F before the projection to queries and keys via Equation 3,
we effectively modify the computation of the attention weights. These attention weights determine
how frames attend to each other across time, which are critical in modeling the motion of the target
video.

Additionally, the shape of mQK
i ∈ R1×N×C is designed to exclude spatial dimensions (H and W ),

which is crucial for removing appearance information. The rationale behind this is that the temporal
attention map models the relationships between spatial regions across frames, inherently carrying the
appearance information of objects. The temporal attention map has a shape of (H×W )×N×N . By
examining any one of the attention maps, which has the shape H ×W , the object’s shape becomes
apparent, as illustrated in Figure 3. If mQK

i included spatial dimensions, appearance details would
be captured in the embedding, limiting the ability to transfer motion to new content.

Motion Value Embedding (MV ) As MQK excludes spatial dimensions, it is better suited for
representing global motion (e.g., camera motion) but is less effective at capturing local motion (e.g.,
instance motion). To address this, we incorporate the Motion Value Embedding MV in our repre-
sentation. Specifically, mV

i ∈ R(H×W )×N×C includes spatial dimensions, allowing the embedding
to represent motion at each spatial location across time frames. This fine-grained representation
is essential for modeling local object movements and detailed motion information, enhancing the
realism and coherence of the generated videos.

However, MV may capture static appearance information, leading to overfitting and limiting gen-
eralization. To address this, we apply the differencing operation from Equation 5, which isolates
dynamic motion by subtracting the motion value embedding of the previous frame from the current
one, removing static appearance. This approach, similar to optical flow, ensures MV focuses on
motion dynamics, improving generalization to novel text prompts.

4 EXPERIMENT

In this section, we employ three motion customization methods as our baselines: Diffusion Mo-
tion Transfer - CVPR24 (DMT) (Yatim et al., 2023), Video Motion Customization - CVPR24
(VMC) (Jeong et al., 2023), and Motion Director (Zhao et al., 2023). For discussions with video
editing method, please refer to the supplementary files. To ensure a fair comparison, both our ap-
proach and the baseline methods are integrated with the same T2V model, ZeroScope (cerspense,
2023) in all experiments.
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Source Video

"A bike driving in a snowy forest"

"A train riding on rails in autumn view"

"A cat is running in a beach"

Source Video

“A dragon sitting in a flora garden”

“A bear sitting in a snowy mountain”

“A lion sitting in a forest”

Source Video

" A tiger walking in the forest "

“A camel walking on icy rocks in antarctica"

"An elephant walking on the rocks"

Source Video

"A motorbike driving in a city"

"A car driving in a city"

"A fish swimming in the lake"

(a)

(b)

Figure 4: Sample results of our method. Our framework demonstrates exceptional adaptability in
capturing a broad spectrum of movements, accurately representing everything from subtle gestures
to intricate dynamic actions across various source videos. It also exhibits remarkable flexibility in
responding to diverse textual prompts, enabling users to guide the synthesis process with descriptive
language for customized motion outputs. Furthermore, our method seamlessly integrates with a
range of T2V models such as (a) zero-scope (cerspense, 2023) and (b) animate-diff (Guo et al.,
2023), showcasing its effectiveness in enhancing video generation with contextually rich and varied
motion patterns.

To be consistent with prior work (Yatim et al., 2023; Jeong et al., 2023), our evaluation utilizes
source videos from the DAVIS dataset (Perazzi et al., 2016), WebVID (Bain et al., 2021), and var-
ious online resources. These videos represent a wide range of scenes and object categories and
include a variety of motion types. Comprehensive details on the validation set, prompts used, and
implementation specifics of both our method and the baselines are provided in the Supplementary
files. Figure 4 showcases examples of our method in action, illustrating its proficiency in managing
substantial alterations to the form and structure of deforming objects while preserving the integrity
of the original camera and object movements.
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"A boy walking in a field"
Ours DMT VMC Motion DirectorSource Video

“A fox sitting in a snowy mountain"

"A horse jumping into a river"

Figure 5: Qualitative results. Compared to DMT (Yatim et al., 2023), VMC (Jeong et al., 2023),
and Motion Director (Zhao et al., 2023), our method not only preserves the original video’s motion
trajectory and object poses but also generates visual features that align with text descriptions.

4.1 QUALITATIVE EVALUATION

As illustrated in Figure 5, our method offers a qualitative enhancement over baseline approaches. It
excels in preserving the motion trajectory and the object poses of the original video, as evidenced by
the consistent positioning and posture of objects between the initial and final frames. Additionally,
our technique demonstrates remarkable precision in generating visual features that are congruent
with textual descriptions. For instance, in the scenario “a boy walking in a field”, our model adeptly
transforms a “walking duck” into a “walking boy”, while preserving the original movement trajec-
tory. In another instance, “a fox sitting in a snowy mountain”, our approach adeptly embodies the
essence of a snow-capped mountain scene with high motion fidelity. In contrast, while Motion Di-
rector (Zhao et al., 2023) is capable of producing similar visual features of the snowy mountain, it
does not maintain the motion integrity of the original video as effectively as our method.

4.2 QUANTITATIVE EVALUATION

To thoroughly evaluate our method against baselines, we conducted assessments across multiple
dimensions:

Text Similarity. Following the precedent set by previous research (Geyer et al., 2023; Esser et al.,
2023; Jeong et al., 2023; Yatim et al., 2023), we utilize CLIP (Radford et al., 2021) to assess frame-
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Method Text
Similarity ↑ Motion

Fidelity ↑ Temporal
Consistency↑ FID ↓ User

Preference↑

DMT (Yatim et al., 2023) 0.2883 0.7879 0.9357 614.21 16.19%
VMC (Jeong et al., 2023) 0.2707 0.9372 0.9448 695.97 17.18%
MD (Zhao et al., 2023) 0.3042 0.9391 0.9330 614.07 27.27%

Ours 0.3113 0.9552 0.9354 550.38 39.35%

Table 1: Quantitatve comparisons with existing methods.

to-text similarity, calculating the average score to determine the accuracy of the edits in reflecting
the intended textual modifications.

Motion Fidelity. To evaluate motion transfer effectiveness, we employ the Motion Fidelity Score
introduced by (Yatim et al., 2023). This metric, which utilizes tracklets computed by an off-the-shelf
tracking model (Karaev et al., 2023), measures the similarity between the motion trajectories in the
unaligned videos, thus assessing how faithfully the output retains the input’s motion dynamics. The
Motion Fidelity Score is defined as:

1

m

∑
τ̃∈T̃

max
τ∈T

corr(τ, τ̃) +
1

n

∑
τ∈T

max
τ̃∈T̃

corr(τ, τ̃), (6)

where corr(τ, τ̃) indicates the normalized cross-correlation between tracklets τ from the input and
τ̃ from the output.

Those metrics above are considered for evaluating motion transfer tasks: conformance to the motion
of the source video and the depiction of the appearance described by the text prompts. In addition
to these primary metrics, quality evaluation is also conducted.

Temporal Consistency. Temporal consistency is widely used in video editing tasks to measure the
smoothness and coherence of a video sequence (Jeong et al., 2023; Zhao et al., 2023; Kahatapitiya
et al., 2024; Wu et al., 2023; Chen et al., 2023b). It is quantified by computing the average cosine
similarity between the CLIP image features of all frame pairs within the output video.

Fréchet Inception Distance (FID). The Fréchet Inception Distance (FID), widely recognized for
measuring the quality of images produced by generative models (Heusel et al., 2017), is applied in
our study. In our case, images derived from a selection of 89 videos from the DAVIS dataset (Perazzi
et al., 2016) are used as the reference set.

User Study. To rigorously evaluate our method’s effectiveness, we designed a user study that in-
volved 121 participants. They were presented with 10 randomly selected source videos paired with
corresponding text prompts, creating 10 unique scenarios that test the versatility of our approach
under varied conditions. For each scenario, participants were shown a set of 4 videos, each gener-
ated by a different method but under the same conditions of motion and text prompts. The survey
specifically asked participants to identify the video that best conformed to the combination of the
source video’s motion and the textual description provided.

Table 1 presents a summary of the results for each metric. Evaluations were performed on a set of
66 video-edit text pairs, comprising 22 unique videos, for all metrics except user preferences. Both
our method and Motion Director (Zhao et al., 2023) scored highly in text similarity. However, our
approach surpassed Motion Director in motion fidelity, reinforcing the findings of the qualitative
analysis. With respect to video quality, our method demonstrated a slight lag in temporal consis-
tency when compared to VMC (Jeong et al., 2023), attributable to a lesser number of parameters.
Nonetheless, in terms of individual frame quality, VMC was the least effective, significantly under-
performing compared to our method. In the user study, our approach garnered a preference rate of
39.35%, the highest among the four methods evaluated, which further substantiates our method’s
proficiency in preserving the original video’s motion and responding to text prompts.

4.3 ABLATION STUDY
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Figure 7: Visual Result of the Ablation Study. Left: Ablation of motion embedding design; Right:
Ablation of inference strategy. For better visualization, refer to the videos in the supplementary
files.

Figure 6: Ablation Study.

We conducted an ablation study of our method
from two key perspectives: the design of mo-
tion embeddings and the inference strategy.
For the motion embedding design, we evalu-
ated three configurations: (a) spatial-1D mQK

i

with spatial-1D mV
i , (b) spatial-2D mQK

i with
spatial-1D mV

i , (c) ours, and (d) spatial-2D
mQK

i with spatial-2D mV
i . For the inference

strategy, we compared our results with two
approaches: (e) normalize, which reduces the
mean value from mV

i , and (f) vanilla, which
does not use the debias operation defined in Equation 5. The results are shown in Figure 6. The
results demonstrate that our motion embedding design achieves a strong balance between capturing
the motion of the original videos and generalizing well to diverse text prompts, reducing overfit-
ting. Furthermore, after adopting our inference strategy, the text-to-video similarity is significantly
improved.

4.4 LIMITATIONS

Our performance relies on the generative priors acquired by the T2V model. Consequently, the
interplay between a specific target object and the motion in the input video may occasionally fall
outside the T2V model’s training distribution. On the other hand, our method may encounter chal-
lenges when the input video contains interfering motions from multiple objects, as this can affect the
quality of our motion embedding. This is because we learn the overall motion from the entire video
rather than focusing on the motion of a specific instance. Addressing this limitation by isolating
instance-level motion is a potential area for future improvement.

5 CONCLUSION

In conclusion, we presented a novel approach to motion customization in video generation, address-
ing the challenge of motion representation in generative models. Our Motion Embeddings efficiently
capture both global and spatial motion while preserving temporal coherence. Additionally, our infer-
ence strategy ensures motion-focused customization by removing appearance influences. Extensive
experiments demonstrate the effectiveness of our method, providing a strong foundation for future
advancements in instance-level motion learning.
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