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ABSTRACT

Diagnosing rare diseases remains a persistent challenge, often hindered by cogni-
tive anchoring: once clinicians settle on a common diagnosis, alternative-especially
rare-explanations are often dismissed. To address this, we propose a human-
centered counterfactual reasoning framework using a Denoising Autoencoder
(DAE) to simulate what-if diagnostic scenarios that disrupt clinicians’ initial as-
sumptions. Our model uniquely jointly learns (1) the true distribution of diseases
and symptoms, and (2) human diagnostic behavior, revealing critical gaps between
medically possible and clinically considered diagnoses. By strategically perturbing
latent patient representations, it generates contrastive counterfactuals that highlight
rare-but-plausible conditions—conditions typically overlooked due to cognitive
bias. Unlike traditional decision-support tools, our system proactively suggests rare
diseases not because they are statistically probable, but because they are cognitively
neglected. Evaluated on three rare disease datasets, our approach outperforms
standard machine learning classifiers in detecting rare conditions while maintaining
strong performance on common diagnoses. Beyond boosting accuracy, it fosters
hypothesis-driven reasoning, enhancing both diagnostic precision and clinician
learning.

1 INTRODUCTION

Despite advances in machine learning for clinical diagnosis, rare diseases remain notoriously difficult
to identify due to their low prevalence, heterogeneous manifestations, and frequent overlap with
more common conditions (Schieppati et al., 2008; Griggs et al., 2009). Consider a patient presenting
with persistent fatigue, joint pain, and skin rashes, clinicians often anchor on familiar diagnoses like
lupus rather than considering rare alternatives such as Ehlers-Danlos syndrome. This diagnostic
misdirection is not merely a result of statistical rarity or symptom ambiguity, but also due to a
well-documented cognitive bias known as anchoring—clinicians’ tendency to settle prematurely on
an initial diagnosis and insufficiently revise it in light of new or contradictory evidence (Tversky &
Kahneman, 1974; Saposnik et al., 2016; Croskerry, 2002; Li et al., 2023).

This cognitive anchoring introduces a significant bottleneck in rare disease detection, often leading
to prolonged diagnostic delays, repeated misdiagnoses, and unnecessary interventions. Studies in
clinical cognition have shown that medical decision-making is often driven by fast, heuristic-based
thinking that prioritizes pattern recognition over analytical reassessment (Norman et al., 2024).
This is especially problematic in the context of rare diseases, where diagnostic presentations often
overlap with more common syndromes, creating fertile ground for premature closure. While previous
machine learning efforts have primarily focused on enhancing accuracy through larger datasets
or more powerful models (Juba & Le, 2019; Sun et al., 2017; Moreno-Barea et al., 2020), few
have addressed the cognitive constraints that shape clinicians’ interactions with model predictions,
particularly under uncertainty. Moreover, existing studies indicate that clinicians may be unable to
effectively integrate the AI’s reasoning due to its opaque recommendations (Jussupow et al., 2021;
Lebovitz et al., 2022), potentially exacerbating misdiagnoses (Jussupow et al., 2022).

Our work tackles the dual challenge of data sparsity and cognitive rigidity by introducing a diagnostic
framework that not only detects rare diseases but also mitigates the cognitive biases—particularly
anchoring—that hinder accurate diagnosis. Instead of merely maximizing predictive likelihood, our
system acts as a cognitive aid, encouraging clinicians to consider alternative diagnostic hypotheses.

1
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Drawing from cognitive science theories of bias mitigation (Croskerry, 2002) and leveraging recent
advances in generative modeling, we design a Denoising Autoencoder (DAE) (Vincent et al., 2008)
generative model to generate plausible diagnostic counterfactuals that promote reflective reasoning.

Our DAE-based model is trained on annotated clinical data to learn both disease distributions and
typical diagnostic behaviors. By perturbing the latent representation of a patient’s profile, the
model generates alternative diagnostic paths—plausible yet cognitively overlooked possibilities—that
suggest follow-up tests, outside the clinician’s immediate expectations. For example, it might suggest:

The most likely rare disease overlapping with the current symptoms is Ehlers-
Danlos syndrome. Consider additional tests such as genetic screening for con-
nective tissue disorders. If the results are positive, the probability of this diagnosis
increases significantly.

Unlike traditional AI systems that deliver static predictions, our framework promotes active cognitive
engagement, helping cliniciansbreak habitual diagnostic patterns and rethink their assumptions. By
surfacing rare yet plausible conditions, it expands the diagnostic space, fosters reflective thinking,
and supports more informed clinical decisions. As (Buçinca et al., 2021) have demonstrated, a
mechanism that guides users to actively engage in critical thinking about initial assumptions enhances
decision-making quality more effectively than merely providing predictions.

In our experiments, we evaluate the system’s effectiveness using three rare disease datasets. our
method outperformed conventional machine learning (ML) classifiers in rare disease detection while
preserving optimal performance on common disease diagnosis. Counterfactual validation was
performed by comparing the model’s hypotheses with diagnoses made by human clinicians and
assessments from Large Language Models (LLMs). The results confirmed that our model could
identify plausible but cognitively neglected conditions, thereby enhancing diagnostic precision and
fostering clinician learning.

2 INHERENT CHALLENGES IN MODELING RARE DISEASE DIAGNOSIS

In clinical diagnosis, the fundamental task is to infer the underlying disease label Y ∈ Y from
observed clinical evidence X ∈ X , such as patient-reported symptoms. Both human clinicians and
ML models aim to learn or approximate the mapping:

h : X 7→ Ŷ , where Ŷ ≈ argmax
Y

P (Y | X).

By Bayes’ theorem, this conditional probability can be expressed as:

P (Y | X) =
P (X | Y ) · P (Y )

P (X)
,

where P (Y ) encodes prior knowledge of disease prevalence and P (X | Y ) reflects the data-
generating process (e.g., symptom presentation) conditioned on a specific disease. However, in
the context of rare disease diagnosis, this inferential process becomes fundamentally challenging, no
matter for logistic regression, support vector machines, or even deep classifiers, are all subject to the
same three critical limitations:

1. Skewed priors. Rare diseases typically have extremely small P (Y ). This prior imbalance biases
both clinicians and ML models to favor common diagnoses, even when rare diseases are more
plausible explanations.

2. Overlapping symptom profiles. Many hallmark symptoms of rare diseases (e.g., fatigue, muscle
pain, or inflammation) are nonspecific and widely shared across common conditions. As a
result, the likelihoods P (X | Yrare) and P (X | Ycommon) often overlap significantly, making
discrimination between them highly uncertain.

3. Incomplete evidence. Key diagnostic features—such as genetic markers or specialized imag-
ing—are frequently missing from the record, due to cost, lack of access, or simply being over-
looked. This leads to an underspecified X , causing both humans and machines to rely on
incomplete or biased feature sets. Such gaps often reinforce cognitive heuristics like anchoring,
where initial impressions dominate the diagnostic path.

2
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These challenges create a shared algorithmic–cognitive bottleneck across both humans and machines.
Standard discriminative models h : X 7→ Y , trained to directly map observed features to labels,
inherit the same structural vulnerabilities as their human counterparts. Without mechanisms to
uncover latent structures, handle missing information, or actively de-bias the inference process, both
fall short in the critical task of detecting rare and underrepresented diseases.

2.1 MOTIVATION FOR A LATENT-STATE GENERATIVE MODEL

These insights motivate the need for a new kind of AI-aided diagnostic framework—one that can:

• Explicitly identify cases where the observed X lies in an ambiguous or overlapping region of the
feature space;

• Hypothesize possible latent rare disease explanations even when current evidence is incomplete;
• Proactively recommend additional complementary tests (e.g., genetic panels, imaging) that can

disambiguate competing diagnoses and help clinicians break out of anchored diagnostic pathways.

A discriminative model alone cannot meet these goals, as it is designed only to map observed input
X to a label prediction Ŷ and lacks any mechanism for reasoning about uncertainty, missing data,
or counterfactual information acquisition. To address these limitations, we propose a latent-state
generative model based on the Denoising Autoencoder (DAE) framework. This model explicitly learns
a latent representation Z of the patient’s symptom input X and generates possible reconstructions
and diagnostic outcomes in a controlled, interpretable manner. The goal is to assist both machine and
human diagnostic reasoning by generating alternative hypotheses—especially those corresponding to
rare conditions that might be missed due to low priors or heuristic bias.

The proposed latent-state generative model takes the following form (as illustrated in Figure.1):

• Input: X (observed patient symptoms)
• Latent state: Z (learned stochastic representation of patient condition)
• Outputs:

1. X ′: A reconstructed or generated version of patient symptoms (counterfactual or
prototypical symptom set)

2. Ŷ AI: Prediction of the true diagnosis based on latent state Z

3. Ŷ human: Model’s simulation of a human doctor’s likely diagnostic decision

3 OUR PROPOSED GENERATIVE MODEL FORMULATION

We assume access to a dataset of triplets
{(

Xi, Y
human
i , Y true

i

)}N
i=1

, where Xi ∈ Rd represents patient
features, Y true

i ∈ {1, . . . , C} is the ground-truth diagnosis, and Y human
i is the clinician’s recorded

label. Our goal is to learn a generative latent-state model that captures three components: the patient’s
latent diagnostic state Z, the clinician’s decision Y human, and the Al’s prediction Y AI. By explicitly
modeling the cognitive gap between human and AI reasoning, the model enables discrepancy-aware
inference and supports bias-aware diagnostic support.

pθ
(
X,Y AI, Y human , Z

)
= p(Z)pθ(X | Z)pθ

(
Y AI | Z

)
pθ

(
Y human | Z̃

)
(1)

Here, Z ∈ Rk is a latent representation inferred from X , and Z̃ denotes a modulated version of Z.
Although humans and AI observe the same input X , their predictions can diverge due to: (1) cognitive
load limiting human attention to parts of X , and (2) fundamentally different mapping functions. We
explicitly reflect these factors in the design of our DAE-based generative model.

Latent Representation Learning with Masked Denoising Autoencoder Given that real-world
clinical inputs X ∈ Rd often contain missing or underreported features, particularly for rare diseases,
we employ a masked Denoising Autoencoder (mDAE) (Dupuy et al., 2024) strategy, to learn a robust
and informative latent representation Z.

3
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AI’s prediction of diagnosis
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Mask Generation: 
m = M(X), using a sparse 

attention mechanism 

AI 
Predictor

Latent space 

DECODER

(a) (b)

Figure 1: DAE-guided counterfactual reasoning framework. (a) DAE encodes patient features into
a latent space, enabling dual predictors for AI and clinician diagnoses. (b) Counterfactuals are
generated by perturbing latent vectors to increase uncertainty in human model. Then AI predictor can
generate counterfactual diagnosis and decoder reconstructs the corresponding patient profile.

For each observed input Xi, we sample a binary mask ri ∈ {0, 1}d to randomly drop a subset of
observed entries, simulating incomplete or noisy records. The resulting corrupted input is X̃i =

ri ⊙Xi, which is then encoded to a latent distribution qϕ

(
Zi | X̃i

)
. The decoder reconstructs the

full input, and the reconstruction loss is computed only on the originally observed (i.e., uncorrupted)
entries:

Lrecon = Eqϕ(Zi|X̃i)

[∥∥∥(1− ri)⊙
(
Xi − X̂i

)∥∥∥2
2

]
(2)

This approach helps the model infer missing or overlooked features—like masked token prediction
in language models—while learning robust, task-relevant representations. These generalizable
embeddings enable effective downstream applications such as diagnosis prediction and modeling
human-AI divergence.

Dual Classification Losses The latent code Zi is leveraged to predict two diagnostic outcomes: the
ground-truth diagnosis Y true

i , and the observed human diagnosis Y human
i .

We define two separate classification objectives:

• AI Prediction Loss (truth-matching):

LAI = −Eqϕ(Zi|Xi)

[∑
c

αc(1− pc)
γ log pc

]
, αc ∝

1

freq(c)
(3)

Here, pc = pθAI (Y
true
i = c | Zi) denotes the predicted probability of class c under the AI classi-

fier. This objective encourages the model to leverage the full latent representation Zi to generate
accurate, clinically grounded predictions aligned with the ground-truth diagnosis, using a classifier
parameterized by θAI.

To address class imbalance-particularly prevalent in rare disease settings, we employ a focal loss
variant (Lin et al., 2017) that dynamically down-weights well-represented, easily classified categories
and emphasizes learning from rare or ambiguous cases. As the system is intended to assist clinicians

4
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in complex diagnostic scenarios, this calibrated formulation promotes more exploratory AI behavior,
enabling the model to surface atypical or underrecognized patterns that may otherwise be overlooked.
Thus, the AI acts not only as a predictor but also as a discovery aid, supporting more comprehensive
and inclusive clinical decision-making.

• Human Simulation Loss (cognitive-matching):

Lhuman = Eqϕ(Zi|Xi)

[
− log pθhuman

(
Y human
i | Z̃i

)]
(4)

Here, Z̃i = mi ⊙ Zi is a selectively masked version of the latent vector, where the learned attention
mask mi ∈ [0, 1]k gates which latent dimensions are used by the human prediction head. This reflects
the idea that, given the same input Xi, humans and AI may focus on different parts of the data and
apply distinct cognitive functions to reach a diagnosis.

Importantly, the prediction functions for AI and human simulation are parameterized separately, using
θAI and θhuman respectively. This architectural asymmetry captures both attentional differences (via
mi) and functional differences in diagnostic reasoning, allowing us to explicitly model and analyze
human-AI cognitive divergence.

Modeling Human-AI Cognitive Gaps via Sparse Self-Attention Mask Specifically, we compute
the attention mask mi using a learnable self-attention module:

mi = Softmax

(
Q (Xi)K (Xi)

⊤
√
d

)
V (Xi) (5)

where Q(·),K(·), V (·) are linear projections (as proposed in (Vaswani et al., 2017)) that produce
query, key, and value vectors from the input Xi, and the output is pooled to form a k-dimensional
attention vector. This attention mechanism identifies which latent features humans are likely to focus
on, given the current case.

To ensure interpretability and mimic human cognitive constraints, we impose an ℓ1 sparsity penalty
on the attention mask:

Lmask = λmask · ∥mi∥1 (6)

This encourages the human prediction head to rely on a small subset of salient features, reflecting
limited cognitive bandwidth and enhancing the interpretability of human diagnostic pathways.

Contrastive Learning for Rare Disease Separability To prevent rare disease embeddings from
collapsing into common clusters, we introduce a contrastive loss:

Lcontrast =
∑

(i,j,k)

max
(
0, δ + d(Zi, Zj)− d(Zi, Zk)

)
,

where Zi and Zj are latent representations from the same rare disease class, and Zk is from a common
disease class.

This loss encourages embeddings of the same rare class to remain close while pushing them away
from embeddings of common classes, thereby promoting greater separability and preserving the
distinctiveness of rare conditions in the latent space.

Cognitive Gap Identification: Discrepancy Between AI and Human Attention To quantify
the cognitive discrepancy between AI and human reasoning—especially in rare disease cases—we
introduce a cognitive gap loss. This loss encourages the AI model to attend to features that may be
under-utilized by human clinicians, highlighting potential diagnostic blind spots. Formally, we define
the loss as:

Lgap =
∑

i:Y true
i ∈rare

∥∥mi ⊙∇Zi log pθAI(Y
true
i | Zi)

∥∥2
2
,

where Zi is the latent representation, mi ∈ [0, 1]k is the learned attention mask approximating human
focus, and ∇Zi

log pθAI
(Y true

i | Zi) captures the sensitivity of the AI’s prediction to each latent
feature.

5
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By penalizing high-gradient regions aligned with human attention mi, the model is encouraged to
focus on dimensions that are often overlooked, especially in the context of rare diseases. This fosters
attentional divergence in rare disease cases, where the AI can uncover atypical patterns that clinicians
might miss due to cognitive biases.

3.1 TOTAL OBJECTIVE AND TRAINING CURRICULUM

The overall loss function is defined as:

Ltotal = Lrec + LAI + Lhuman + γLcontrast + ηLmask + ξLgap . (7)

The training process follows a staged curriculum, starting with the DAE warm-up using reconstruction
loss, followed by the introduction of focal loss for rare disease prediction. The curriculum then
adds human cognitive modeling and sparsity regularization, followed by contrastive learning for
separating rare and common diseases. Finally, the cognitive gap loss is incorporated to address
attention mismatches between Al and human clinicians.

We will train the DAE using the above loss function. Given the learned generative DAE model, we
can design the following counterfactual generation tasks.

4 COUNTERFACTUAL GENERATION FOR COGNITIVE ANCHORING
CORRECTION

To mitigate diagnostic errors from cognitive anchoring, we introduce a counterfactual generation
mechanism that leverages the model’s probabilistic structure. Given patient data X , if pθAI assigns
relatively high probability to a plausible diagnosis YAI—particularly a rare or under-considered
one—that diverges from the human’s current diagnosis, this triggers counterfactual generation to
challenge the initial decision of human and guide follow-up evaluation or testing.

The goal of the counterfactual generation here is to

Disrupt doctors’ fixation on initial hypotheses by generating alternative diagnostic
pathways, particularly for rare diseases.

Learning Optimal Perturbation The perturbation is learned to increase uncertainty in the human
(or human-approximating) model, thus exposing cognitive blind spots.

∆z∗ = arg max
∥∆∥≤ϵ

Entropy (pθhuman(m⊙ (z +∆)))︸ ︷︷ ︸
Increase human uncertainty

(8)

Here, ∥∆∥ ≤ ϵ ensures that the changes remain within a medically interpretable range. Without
perturbation, the Al’s prediction from the original z may align closely with the clinician’s current
belief. By contrast, perturbing z explores latent variations that introduce diagnostic ambiguity from
the human’s perspective-potentially uncovering under-recognized or rare conditions.

Counterfactual Output Generation Once the optimal perturbation ∆z∗ is obtained, the system
generates two outputs:

• Al Counterfactual Diagnosis
Y AI
cf ∼ pθAI

(z +∆z∗) (9)

This may yield a rare disease prediction that prompts reconsideration of the original diagnosis.

• Synthetic Patient Data Generation An mDAE is used to reconstruct the corresponding
patient profile:

X ′
cf ∼ pθ (X | z +∆z∗) (10)

Here, X ′
cf represents a plausible synthetic patient who presents similarly but includes key missing

symptoms supporting the rare disease.

Finally, the system communicates the counterfactual insight as:

6
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"Consider alternative diagnoses with similar presentations: [Al-suggested disease
Y AI
cf ]. If additional findings such as X ′

cf were observed, the likelihood of this
condition would increase to pθAI

(Y AI
cf | z +∆)."

This form of explanation aims to encourage the clinician to reflect, reassess, and refine their diagnostic
reasoning with evidence-informed support from the AI.

5 EXPERIMENT

To evaluate the effectiveness of our proposed framework, we conducted extensive experiments
designed to (i) validate robust performance and diagnostic accuracy for rare disease detection and (ii)
assess the efficacy of counterfactual explanations in addressing cognitive gaps and guiding clinical
decision-making.

We used three private, real-world rare disease datasets that we constructed and curated in close col-
laboration with a top-tier hospital, involving multiple departments and clinicians, covering Gitelman
syndrome, acromegaly, and hypertrophic cardiomyopathy (HCM). To support reproducibility, we
additionally evaluate on a curated public rare disease dataset for Granulomatosis with Polyangiitis
(GPA) derived from (Chen et al., 2024). Detailed dataset specifications are provided in Appendix B.
Notably, High-quality datasets for rare diseases are scarce, and assembling high-quality rare disease
datasets with research value is inherently challenging and constitutes a substantive contribution to the
field.

5.1 REPRESENTATIONAL AND PREDICTIVE CAPACITY

5.1.1 PREDICTION ON IMBALANCED DATA

The low prevalence of rare diseases leads to imbalanced datasets, posing challenges for conventional
classifiers. We present results on a real-world Gitelman syndrome dataset, which has faced difficulties
in predicting this disease, with an imbalance ratio of 94:100 to 94:500 (rare disease samples to
common disease samples). Standard class-imbalance handling strategies were applied to all baselines,
including focal loss for the neural network, SMOTE augmentation for SVM and logistic regression,
and built-in imbalance handling for XGBoost and LightGBM.

Our approach outperforms five typical classifiers, as shown in Figure 2, which reports AUC, accuracy
for common diseases, and rare disease accuracy. Notably, our model’s AUC improves with increasing
imbalance, as the larger data volume provides more information for learning despite the greater skew.
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Figure 2: Comparison of model performance under imbalanced data.

5.1.2 LATENT SPACE VISUALIZATION

We visualize the model’s latent space using the Gitelman dataset in three distinct ways. These
visualizations, shown in Figure. 3, offer valuable insights into the model’s internal representations.
Panel (a) shows the structural organization of latent embeddings, illustrating the model’s ability
to encode fine-grained phenotypic details that distinguish clinically similar samples. Panel (b)
presents an attention map of clinician focus within the same space: mask values of 1 mark high
clinical relevance regions, while 0 indicates lower priority, directly aligning attention with diagnostic
importance. Panel (c) highlights features exerting significant influence on human classification
decisions, exposing potential decision boundaries where predictions may shift. The visualization
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principle involves perturbing latent space vectors to maximize human prediction uncertainty, with
the intensity distribution directly reflecting perturbation magnitude. Lighter colors denote higher
diagnostic uncertainty, revealing critical knowledge gaps that could lead to misdiagnosis.

     rare disease
     common disease

(a)  Latent Space 3D Visualization By Disease Type (b) Visualization of latent space mask
(c) Visualization of the intensity distribution 

of doctors' uncertainty

          

Figure 3: Latent space visualization by disease type, clinician attention, and diagnostic uncertainty.

Beyond these views, we also examine how each loss term in fine-tuning stage shapes the latent space
via an ablation study in Appendix E. Removing contrastive, gap, or reconstruction loss degrades
latent space representation quality, impairing the model’s ability to distinguish similar samples;
removing prediction or mask-regularization loss degrades AI/human predictors, evidenced by lower
AUC and visualizations.

5.1.3 AUC ACROSS DATASETS AND ABLATION EXPERIMENTS

We also report AI and human predictors’ AUC across 4 datasets (10-run avg ± std, Table 1). The full
model shows consistent strong performance, demonstrating robust, stable generalization. Ablations
(removing one loss at a time in fine-tuning, stage-wise pretraining unchanged) corroborate each
component’s necessity: removing AI loss notably degrades AI predictor AUC; removing human loss
or mask-regularization loss severely harms human predictors. For specific details regarding the model
architecture and hyperparameter selection, refer to F and G.

Table 1: AUC metrics and ablations

Gitelman Acromegaly HCM GPA

AI Human AI Human AI Human AI Human

Original 0.96±0.01 0.98±0.01 0.99±0.01 0.98±0.03 0.96±0.01 0.97±0.01 0.88±0.04 0.86±0.01
No AI loss 0.89±0.08 N/A 0.96±0.02 N/A 0.86±0.05 N/A 0.79±0.03 N/A
No human loss N/A 0.61±0.14 N/A 0.87±0.07 N/A 0.73±0.12 N/A 0.72±0.02
No mask loss N/A 0.90±0.08 N/A 0.94±0.05 N/A 0.92±0.02 N/A 0.81±0.03

5.2 LLM-HUMAN DUAL QUANTITATIVE EVALUATION OF COUNTERFACTUALS

To address the challenges and diagnostic needs in rare disease medicine, our model supports counter-
factual analysis across diverse scenarios. We constructed three representative counterfactual scenarios:
Scenario 1: Feature Completion for Low-Confidence Predictions, Scenario 2: AI-Human Prediction
Discrepancy Resolution, and Scenario 3: Uncertainty-Driven Alternative Diagnoses. For detailed
descriptions of these scenarios, please refer to Appendix D.

For a more comprehensive assessment, an LLM- and doctor-based evaluation framework is designed
for evaluating counterfactual outcomes. Fig. 4 shows Prompt, LLM evaluations and doctor evaluations
across three scenarios. For LLM prompting specifics and responses, See Appendix H.

Evaluated by LLM Since 2023, LLMs with advanced instruction-following and semantic compre-
hension have enabled automated evaluation (Gao et al., 2025). In our framework, pre-trained LLMs
assess counterfactuals using structured prompts, evaluating plausibility, relevance, and cognitive
support across semantic, causal, and operational dimensions..
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Evaluated by Doctors Clinical experts from a leading hospital validated rare disease counterfactu-
als for medical plausibility and clinical relevance, leveraging their domain expertise.

Alteration of missing bicarbonate and pH data 
reveals hidden metabolic alkalosis with renal 
potassium loss, redirecting diagnosis toward 
Gitelman syndrome despite normal serum 
potassium. 
In cases where AI and clinician assessments 
conflict, generating such scenarios illuminates 
differing decision pathways, mitigates anchoring 
bias, and prompts targeted investigations for 
optimized diagnostic workflow.

Assume you are a specialist physician (nephrologist/endocrinologist/cardiologist) analyzing a case of [Gitelman syndrome/Acromegaly/Hypertrophic 
Cardiomyopathy (HCM)].

Background Information: 
Scenario one: When the original input contain missing values and generate low-confidence AI predictions……
Scenario two: When there are differences between the predictions of AI and the diagnoses of doctors……
Scenario three:  Perturbe the latent space along the direction of greatest diagnostic uncertainty as predicted by the physician……

The goal is to explain the key diagnostic logic based on the provided changes in indicators and diagnostic probabilities.

Evaluation Form:
1. Summary of Clinical Significance on the diagnosis of [Gitelman syndrome/Acromegaly/HCM] ; 2. Explanation of Probability Changes ; 3. Clinical 
Value of 'NAN'(missing) Perturbations ; Value of Counterfactual Simulation.

Prompt 

LLM Response  

Doctor Evaluation 

an example of scenario one

Sarcomere mutation, asymmetric hypertrophy, 
and SAM (LVOTO) drive HCM l ikel ihood; 
reduced amyloid/TTR lowers ATTR. Family 
history and voltages support disease; dual 
pathology remains near threshold.

Counterfactuals highlight sarcomere genetics 
and SAM, focusing on echo, genetic testing, 
family screening; borderline amyloid cues 
prompt biopsy/scintigraphy.

an example of scenario two an example of scenario three

Counter fac tua l  OGTT suppress ion  da ta 
u n c o v e r s  d e f i n i t i v e  g r o w t h  h o r m o n e 
non-suppression, redirecting diagnosis to 
acromegaly despite non-specific IGF-1 and 
basal GH. 
When initial features overlap common conditions 
and AI yields low-confidence predictions, flipped 
scenarios expose hidden evidence, correct 
anchoring biases, and mandate disease-specific 
testing for optimized clinical decision-making.

This counterfactual case is highly valuable, 
clearly demonstrating the critical role of key tests 
in acromegaly diagnosis.

The case is extremely useful. It helps break 
cognitive limitations and better assess Gitelman 
syndrome's possibility.

A very valuable case. It quantifies undetected 
indicators '  impact,  improving di f ferent ia l 
diagnosis.

Figure 4: Illustration of prompt, LLM response segment and real world doctor evaluation segment.

5.3 QUANTITATIVE EVALUATION OF COUNTERFACTUALS AGAINST BASELINES

Baselines We compare our method with two baseline approaches: REVISE (Joshi et al., 2019),
which uses optimization within a generative model’s latent space, and CF-VAE (Nagesh et al., 2023),
which optimizes a variational autoencoder alongside a binary prediction model.

Metrics We evaluate counterfactuals based on two metrics: (1) Label Flip Rate: The proportion of
counterfactuals correctly classified into the target class, indicating validity. (2) Root Mean Squared
Error (RMSE): Measures the perturbation magnitude between the counterfactual and original input,
with lower RMSE indicating higher plausibility.

Results Table 2 compares our model, REVISE, CF-VAE, and an ablation experiment across four
datasets. Our model achieves the highest label flip rate and lowest RMSE, outperforming all baselines
in generating valid and minimally perturbed counterfactuals.

Table 2: Performance metrics across four datasets.

Gitelman Acromegaly HCM GPA

Model Label Flip Rate RMSE Label Flip Rate RMSE Label Flip Rate RMSE Label Flip Rate RMSE

REVISE 0.96±0.03 5.40±0.89 0.92±0.11 13.96±14.44 0.70±0.40 0.33±0.04 0.94±0.07 0.18±0.06
CFVAE 0.96±0.02 12.00±1.77 0.85±0.15 13.96±14.84 0.80±0.40 0.33±0.01 0.85±0.18 0.29±0.09
Our Model 1.00±0.00 1.93±0.76 1.00±0.00 0.18±0.10 1.00±0.00 0.10±0.13 1.00±0.00 0.12±0.03
Ablation 1.00±0.00 4.85±3.27 1.00±0.00 0.21±0.08 1.00±0.00 0.46±0.27 1.00±0.00 0.25±0.07

6 CONCLUSION

We introduced a human-centered counterfactual reasoning framework that perturbs latent patient
representations via a DAE-based latent state generative model to counter cognitive anchoring in
rare disease diagnosis. By generating realistic “what-if” scenarios, our method surfaces overlooked
conditions and guides clinicians toward alternative hypotheses. A mixed LLM- and doctor-based
evaluation confirms the scientific soundness and clinical relevance of the generated cases. This
framework fosters reflective diagnostic reasoning, enhances interpretability, and offers a scalable tool
for bridging human knowledge gaps in challenging medical scenarios.
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A RELATED WORK

Counterfactual Explanations The evolution of counterfactual explanations has transitioned from
optimizing feature perturbations (Wachter et al., 2017) to frameworks that prioritize human-AI
collaboration and safety. Early methods focused on generating minimal feasible changes (e.g., DiCE
(Mothilal et al., 2020)), but were criticized for ignoring user-specific constraints and real-world
applicability (Verma et al., 2020). More recent work, including (Lee & Chew, 2023), highlights the
role of counterfactuals in mitigating cognitive biases. (Lee & Chew, 2023) showed that exposing users
to hypothetical scenarios reduces overreliance on erroneous AI predictions, particularly among non-
experts susceptible to confirmation bias. This aligns with broader findings in human-AI interaction,
where explanations must balance interpretability with decision accuracy (Buçinca et al., 2021;
Straitouri et al., 2024). A significant advancement in this area is the formalization of counterfactual
harm, defined as the risk that explanations may degrade human judgment. (Straitouri et al., 2024)
introduced structural causal models with conformal risk control to bound harmful outcomes in
clinical systems. Their approach integrates monotonicity assumptions (e.g., “higher biomarker values
correlate with worse prognosis”) to ensure explanations align with domain knowledge, thereby
addressing a gap in earlier optimization-based methods (Van Looveren & Klaise, 2021). This shift
reflects a growing emphasis on safety-critical metrics, moving beyond traditional criteria like sparsity
and realism (Verma et al., 2020).

Counterfactual Generative Models Generative models have been introduced to generate numerical
counterfactuals, enabling dynamic adaptation to user constraints. Early GAN-based approaches, such
as CounterRGAN (Nemirovsky et al., 2022), enforced immutable features via residual networks
but lacked flexibility for real-time customization. FCEGAN (Hellemans et al., 2025) addresses
this limitation by incorporating user-defined templates and dual discriminator losses, facilitating
personalized explanations in domains like loan approvals (Yang et al., 2022). These frameworks
align with CTGAN’s training-by-sampling strategy (Xu et al., 2019) to handle class imbalance, a
persistent challenge in financial and medical datasets. While REVISE (Joshi et al., 2019) introduced
a method for generating numerical counterfactuals using arbitrary generative models, it can produce
unrealistic counterfactuals, making them unsuitable for healthcare applications, and is limited by
the need for multiple calls to an optimization module. Although CFVAE (Nagesh et al., 2023) was
designed for generating counterfactuals in healthcare settings using variational autoencoders, it does
not account for realistic challenges in healthcare, such as class imbalance in rare disease cases and
missing values in datasets. To overcome these limitations, we propose a novel method designed for
healthcare applications, particularly in rare disease diagnosis. Our approach generates personalized
counterfactuals for clinicians while handling missing values and class imbalance in the training data.

B EXPERIMENTAL DATASETS

To evaluate our method, we consider the following three private datasets.

Gitelman Syndrome This dataset comprises real clinical records from a top hospital, focusing
on Gitelman syndrome (GS), a rare autosomal recessive renal tubulopathy. The data contains 594
patients, including 94 diagnosed with GS and 500 non-GS individuals. Five key diagnostic features
are included: Serum Potassium, Urine Potassium, pH, Bicarbonate, and High Blood Pressure, with
labels derived from clinical diagnoses. To emulate real-world scenarios where critical test results are
missing (a common challenge in rare disease diagnosis), we retain the missing values in the original
data. This enables counterfactual analysis to quantify how missing tests impact predictions, thereby
guiding clinicians to prioritize specific examinations for undiagnosed cases. The dataset is split into
80%-20% train-test sets for GS classification, with subsequent counterfactual perturbation analysis
performed in the latent space of the complete data. It should be noted that we retained the situation of
data imbalance, which is to be consistent with the situation that the incidence of rare diseases in the
real world is much lower. And despite this imbalance, our model still maintained good performance.

Acromegaly This dataset includes real-world clinical records from a top hospital, focusing on
acromegaly, a chronic disorder caused by excessive growth hormone (GH) secretion, typically due
to pituitary somatotroph adenomas. The data contains 181 patients, comprising 88 diagnosed with
acromegaly and 93 non-acromegaly controls. Three clinically significant features are incorporated:
Serum GH, IGH-1, and OGTT-GH_min, with labels derived from clinical diagnoses. To reflect realistic
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data incompleteness, we retain naturally occurring missing values in the original dataset and explicitly
record their positions. This facilitates counterfactual generation that aligns with clinical practice,
allowing clinicians to evaluate how incomplete laboratory profiles influence diagnostic predictions.
The dataset is partitioned into 80%-20% training-test sets for binary classification, followed by
counterfactual perturbation and interpretability analysis in the latent space of the complete data to
identify critical diagnostic drivers.

Hypertrophic Cardiomyopathy (HCM) This dataset includes real-world clinical records from
a top hospital, focusing on hypertrophic cardiomyopathy (HCM), an inherited cardiac disorder
characterized by abnormal myocardial thickening that may lead to ventricular outflow tract obstruction,
arrhythmias, and heart failure. The data contains 36 patients, including 21 HCM-diagnosed individuals
and 15 individuals with another rare disease (ATTR, amyloidosis trans-thyretin related) as the control
group. Eight clinically significant features are incorporated: Asymmetric Hypertrophy, SAM, Low
Left Ventricular Voltage, High Left Ventricular Voltage, Family History, Sarcomere Gene Mutation,
TTR Gene Mutation, and Amyloid Deposition. Similarly, to preserve clinical authenticity, naturally
occurring missing values in the original dataset are retained and explicitly mapped for interpretability.
The dataset is partitioned into 80%-20% training-test splits for HCM classification. Post-training,
counterfactual perturbation and causal analysis are conducted in the latent space of the complete data
to identify critical diagnostic patterns and feature interactions.

Granulomatosis with Polyangiitis (GPA) This dataset, relevant to the context of the file s13023-
019-1040-6.pdf, is derived from (Chen et al., 2024) and contains real-world clinical records targeting
granulomatosis with polyangiitis (GPA), which is an ANCA-associated vasculitis frequently linked
to PR3-ANCA and upper-airway/pulmonary involvement. The cohort includes 93 subjects in total,
comprising 11 patients diagnosed with GPA and 82 non-GPA controls that are deliberately selected
for their high clinical confusability with GPA in ENT (ear, nose, and throat) and respiratory presenta-
tions; it incorporates seven clinically meaningful binary features, namely Otitis Media, Hemoptysis,
Proteinase 3 Antibody Titer, Elevated (PR3-ANCA), Cytoplasmic ANCA (c-ANCA) Present, Knee
Pain (Bilateral), Peripheral Cyanosis (one month to one year), and Rhinitis, with labels derived
from clinical diagnoses. The dataset is split into an 80%-20% training–test partition for binary
GPA classification, with naturally occurring missing values retained and their positions mapped;
subsequent to the classification task, counterfactual perturbation and interpretability analysis are
conducted in the latent space of the completed data to identify key diagnostic drivers and interactions
between symptoms and serological indicators.

C RATIONALE FOR CHOOSING MASKED DENOISING AUTOENCODER
(MDAE): A COMPARISON WITH OTHER AUTOENCODER VARIANTS

To clarify why the Masked Denoising Autoencoder (mDAE) is selected for our framework rather
than other autoencoder variants, we conduct a comparative analysis of Deterministic Autoencoder
(AE), Variational Autoencoder (VAE), Denoising Autoencoder (DAE), and their derivatives, with a
focus on their suitability for rare disease diagnostic scenarios:

Deterministic Autoencoder (AE) AEs lack mechanisms to handle noise or missing values, which
are common in rare disease data. They overfit to sparse inputs, producing unreliable latent representa-
tions and counterfactuals, making them unsuitable.

Variational Autoencoder (VAE) VAEs, as generative models, center on modeling the joint distri-
bution information. Furthermore, their inherent stochasticity in latent spaces hinders precise, targeted
counterfactuals needed to correct cognitive anchoring, often generating implausible clinical values
and propagating biases via heuristic imputation of missing data, which limits clinical utility.

Denoising Autoencoder (DAE) and Masked Denoising Autoencoder (mDAE) DAEs are ex-
plicitly designed to process corrupted or incomplete inputs, with a focus on modeling p(missing x |
observed x). Standard DAEs enhance noise robustness but lack dedicated handling of missing data (a
common challenge in rare disease), a gap our masked DAE (mDAE) fills by explicitly training on
partially observed data via sparse masks to reconstruct complete profiles. It generates deterministic
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latents for precise control over counterfactual perturbations and enforces physiological constraints to
ensure clinically valid outputs in rare disease scenarios.

D COUNTERFACTUAL SAMPLE GENERATION

To address the challenges and diagnostic needs in rare disease medicine, our model supports coun-
terfactual analysis across diverse scenarios. In this section, we present three representative and
practically relevant scenarios for detailed evaluation.

Scenario 1: Feature Completion for Low-Confidence Predictions: When a patient’s original input
features have missing values, overlap significantly with common disease characteristics, and yield
low-confidence AI predictions for common diagnoses, our model generates counterfactual samples to
address missing features. This refines clinical judgments and guides decision-making.

Scenario 2: AI-Human Prediction Discrepancy Resolution: In situations where AI predictions
diverge from clinician diagnoses, our model produces counterfactual “flipped” samples to highlight
the underlying differences in decision-making logic. These samples provide interpretable evidence
that helps clinicians reconcile inconsistent conclusions.

Scenario 3: Uncertainty-Driven Alternative Diagnoses: By perturbing feature vectors in latent
spaces where clinicians exhibit maximal diagnostic uncertainty, our model generates alternative
diagnosis lists. This anchors cognitive bias correction and supports robust differential diagnosis.

E LATENT SPACE VISUALIZATION WITH ABLATION STUDY

We conduct an ablation study to evaluate the necessity of each loss term in our model’s total loss
function. Specifically, we visualize the distribution of the latent space when individually removing
each loss component during fine-tuning (prior to fine-tuning, each component of our model, including
DAE, AI predictor, mask net and human predictor, is first trained in stages with its corresponding loss
function). As shown in Figure. 5, Our findings indicate that the removal of the contrastive loss, gap
loss, or reconstruction loss degrades the quality of the latent space representation, thereby impairing
the model’s ability to discriminate between similar samples.

(1) Remove contrastive loss (2) Remove gap loss (3) Remove recon loss

(4) Remove AI loss (6) Remove human loss (7) Remove mask loss

AUC of AI predictor: 
Original 0.96 → Ablation 0.89

AUC of Human predictor: 
Original 0.98 → Ablation 0.61

AUC of Human predictor: 
Original 0.98 → Ablation 0.9

Figure 5: Ablation study: loss function removal impact on latent space and model performance.

In contrast, removal of the AI prediction loss, AI prediction loss or mask regularization loss impairs
the performance of the AI predictor or human predictor, as depicted by the AUC changes in the figure,
underscoring the indispensable role of each loss component in maintaining model effectiveness.
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F MODEL ARCHITECTURE DETAILS

F.1 DAE ARCHITECTURES

The Denoising Autoencoder (DAE) architecture captures clinical feature mappings through an
Encoder and Decoder. The Encoder uses ELU activations to project raw features into a 32-dimensional
latent space, while the Decoder reconstructs inputs from this space. Categorical features are embedded
via a dedicated layer, and the design supports robust learning from incomplete data. Take the Gitelman
syndrome dataset as an example, key components are detailed in Table 3, which outlines layer
dimensions and functional roles.

Table 3: DAE architecture configuration

Component Layers Dimension Functional Description

Encoder

Input Layer 5 Raw clinical features
Hidden Layer 128 ELU-activated transformation: h = ELU(Wx+

b)
Latent Space 32 Bottleneck representation: z
Embedding 8 Categorical feature encoding: onehot(x)We

Decoder
Input Layer 32 Latent space input: z
Hidden Layer 128 Feature decoding: hd = ELU(Wdz + bd)
Output Layer 5 Feature reconstruction: x̂

F.2 PREDICTOR ARCHITECTURES

The AI and human predictors, along with the attention mask network, are designed to explicitly
model the divergence between machine and clinician reasoning. The AI predictor operates in the
full latent space to generate ground truth-aligned diagnoses, while the human predictor uses a sparse
attention mask (generated by the mask network) to simulate cognitive constraints in clinical decision
making. Table 4 outlines the architecture details, including layer dimensions, activation functions,
and the attention mechanisms. This modular design supports interpretable counterfactual generation
by isolating human-AI cognitive gaps in the latent space.

Table 4: Predictor Architectures Configuration

Component Layers Dim/Num of Heads Description

AI Predictor
Input Layer 32 ELU-activated projection into hidden space
Hidden Layer 128 ELU transformation of latent features
Output Layer 2 Produces class logits for prediction

Mask Network
Input Layer 5 ELU-activated linear embedding
Attention Layer 4 Multi-head self-attention for contextual feature

interaction
Output Layer 32 Generates masking coefficients

Human Predictor
Input Layer 32 Takes the masked latent representation as input
Hidden Layer 128 ELU transformation of masked latent space
Output Layer 2 Produces class logits aligned with experts

G TRAINING CONFIGURATION DETAILS

G.1 HYPERPARAMETER AND LOSS WEIGHT SELECTION

All hyperparameters and loss weights were selected via a systematic grid search confined strictly to
the training set, ensuring that the independent 20% test set remained untouched throughout model
development and thereby preventing data leakage.
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Within the 80% training set, we adopted a hold-out validation strategy: 70% of the data were used
for model fitting, and the remaining 30% served as a validation subset to evaluate hyperparameter
configurations.

• Learning rate was searched over the range [10−5, 10−3].

• Most loss function weights were searched over a clinically relevant range of [0.1, 2.0].

• Mask sparsity loss weight, due to its role as a regularization term requiring finer control to
balance sparsity constraints and model performance, was searched over the narrower range
of [10−5, 0.1].

Searches were guided by validation AUC, with priority given to configurations demonstrating stable
performance (AUC variance < 0.02) across three random seeds. The final hyperparameters and loss
weights were chosen based on the best validation AUC while ensuring model outputs remained within
clinically plausible ranges.

G.2 STAGE-WISE TRAINING DETAILS

The model is trained in four stages: DAE warm-up, AI predictor training, joint human predictor and
mask network training, and fine-tuning. Table 5 specifies the learning rate schedules, batch sizes, and
regularization strategies (e.g., gradient clipping) for each phase on the Gitelman syndrome dataset.
For instance, the DAE warm-up phase employs learning rate annealing and early stopping to stabilize
latent space initialization. This staged approach balances model complexity and training stability
while ensuring task-specific optimization.

Table 5: Progressive training strategy

Phase Components Learning Rate Key Details

DAE Train Encoder / Decoder 1e-4 • LR annealing
• Early stop
• Gradient clip ≤ 1.0
• Batch size 16

AI Predictor Train AI Predictor Network 1e-4 • LR annealing
• Early stop
• Gradient clip ≤ 1.0
• Batch size 16

Human Predictor + Mask Net Train Human Predictor Network,
Mask Network

1e-4 • LR annealing
• Early stop
• Gradient clip ≤ 1.0
• Batch size 16

Fine-Tuning Full Network 1e-4 • Gradient clip ≤ 1.0
• Batch size 16

G.3 LOSS FUNCTION WEIGHT IN FINE-TUNING STAGE

The total training loss combines multiple objectives, including reconstruction, classification, con-
trastive separation, and cognitive gap minimization. Table 6 defines the weights assigned to each
loss component on the Gitelman syndrome dataset, emphasizing the balance between feature recon-
struction (dominant in early stages) and rare/common disease separability (enforced via contrastive
loss).
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Table 6: Loss Function Specification

Loss Type Weight Function

Reconstruction 1 Reconstruct input features
AI 1 Maximize AI prediction accuracy
Human 1 Align with human diagnoses
Mask 0.001 Promote sparse attention masks masks
Contrastive 1.5 Separate rare/common diseases
Gap 1.5 Reduce human-AI attention gaps

H DETAILS OF PROMPTING LLM AND COUNTERFACTUAL EVALUATIONS

Figure. 6 illustrates the operational mechanism of prompting the LLM and LLM response across
three counterfactual scenarios. For each scenario, a representative case is selected: the first from
the acromegaly dataset, and the latter two from the Gitelman dataset. This visual depiction not only
offers profound insights into the framework’s functionality but also provides a practical reference for
clinicians and researchers, underscoring the significance of counterfactual reasoning in enhancing the
differential diagnosis of rare diseases.

I BROADER IMPACT AND LIMITATION

This study aims to address the underdiagnosis of rare diseases caused by cognitive biases in clinical
decision-making. Our framework helps clinicians consider rare conditions more effectively through
generative counterfactuals, potentially reducing diagnostic delays and improving patient outcomes,
especially in underserved areas with limited specialized expertise. By modeling the cognitive gaps
between humans and AI, it promotes transparent and bias-aware collaboration, setting a practical
example for AI applications in healthcare and other high-stakes fields. Potential risks include
the possibility of over-relying on AI, which we mitigate by designing interpretable counterfactual
explanations to supplement, rather than replace, clinical judgment.

One key limitation of this study stems from the long-standing challenge of rare disease data acquisition
and sharing, a core bottleneck in rare disease research. Unlike common disease domains with
accessible public datasets, there is a severe scarcity of open, high-quality data resources for rare
diseases. To address this gap, our team invested over a year in close collaboration with a top-tier
hospital, engaging multiple departments and relying on substantial clinician effort—to construct
three private rare disease datasets tailored to this research. However, due to strict ethical and privacy
constraints, these datasets cannot be fully made public. To alleviate this limitation in the future,
we aim to develop and release a rare disease data simulator: this tool will generate synthetic data
with characteristics consistent with real rare disease cases, supporting the reproducibility of related
research while upholding privacy protection requirements.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in this work exclusively for polishing the writing and
correcting grammar errors. All substantive research ideas, methodological design, and scientific
conclusions presented in this paper were independently developed and validated by the authors.
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System
Prompt

LLM
Response

Assume you are a specialist physician (nephrologist/endocrinologist/cardiologist) analyzing a case of [Gitelman syndrome/Acromegaly/Hypertrophic
Cardiomyopathy (HCM)].

Background Information: The counterfactual changes in clinical indicators in the following case are generated by perturbing the model along the direction of
greatest diagnostic uncertainty as predicted by the physician. This method aims to provide a data-driven alternative perspective that may differ from the
initial clinical judgment, helping to correct cognitive anchoring and enabling a more comprehensive assessment of rare diseases.

The goal is to explain the key diagnostic logic based on the provided changes in indicators and diagnostic probabilities.

Important Note for HCM: The HCM-related indicators (e.g., asymmetric hypertrophy, left ventricular voltage, family history, etc.) are binary variables (0 or
1), where 0 typically indicates negative/normal and 1 indicates positive/abnormal. These are not continuous physiological measurements.

The final evaluation should include:
Summary of Clinical Significance: Summarize the overall impact of key indicator changes on the diagnosis of [Gitelman syndrome/Acromegaly/HCM].
Explanation of Probability Changes: Summarize the main reasons for the changes in diagnostic probabilities.
Clinical Value of 'nan' Perturbations (if applicable): Summarize the significance of perturbing 'nan' (missing) values for prompting further tests and
diagnosing rare diseases.
Value of Counterfactual Simulation: Briefly describe, based on its generation mechanism (perturbing in the direction of greatest uncertainty to correct
cognitive anchoring), how this simulation helps clinical diagnosis, especially in avoiding premature exclusion of rare diseases.

User
Prompt

The key indicator changes for case {i+1} are as follows, where the original value of 'nan' indicates that the test was not performed:
[Disease-specific indicators, e.g., for Gitelman: Urine Potassium, Bicarbonate, Serum Potassium, High Blood Pressure, pH; for Acromegaly: IGF-1, Serum
GH, OGTT-GH; for HCM: Asymmetric Hypertrophy, Low/High Left Ventricular Voltage, Family History, Amyloid Deposition, Sarcomere Gene Mutation,
LVOTO, SAM, TTR Gene Mutation]
Diagnostic probability changes:
Original (Common Disease/Rare Disease): {p_common}/{p_rare}
After Perturbation (Common Disease/Rare Disease): {p_common_perturb}/{p_rare_perturb}
Please provide a detailed process analysis and result evaluation based on the above data and your medical knowledge.

Case 1:

Initially relying solely on IGF-1 and basal GH
levels may not clarify the diagnosis (both may be
at critical values or nonspecific), leading to
similar probabilities for the rare disease
(acromegaly) and common diseases (e.g.,
physiological GH fluctuations, other metabolic
disorders). After perturbation, the OGTT-GH
suppression test result directly confirms the
diagnosis. The failure of GH to suppress during
OGTT—a key pathological feature of
acromegaly—exhibits extremely high specificity,
effectively ruling out other common diseases.
Omission of the critical OGTT-GH suppression
test introduces diagnostic uncertainty and may
lead to missed acromegaly (which requires
OGTT for confirmation). The perturbed
scenario highlights the irreplaceable role of this
test.

This simulation validates the impact of
prioritizing key tests in rare disease diagnosis:
for acromegaly, IGF-1 and basal GH provide
only screening clues, while the OGTT-GH
suppression test is the gold standard for
confirmation. It prompts clinicians that if initial
tests (IGF-1/GH) are abnormal but nonspecific,
OGTT must be mandated to avoid diagnostic
delays. By contrasting probability changes
before and after perturbation, it reinforces the
clinical logic that "rare diseases require specific
tests," optimizing diagnostic workflow
efficiency.

**Conclusion**: Abnormal results from the
OGTT-GH suppression test are decisive evidence
for acromegaly diagnosis. Their absence leads to
diagnostic ambiguity, while supplementation
significantly improves diagnostic specificity.
Counterfactual simulation reveals the central
role of key tests in rare disease differentiation,
correcting clinicians’ cognitive gaps.

Case 2:

In the original data, clinicians may exclude
Gitelman syndrome based solely on normal
serum potassium and nonsignificant urine
potassium, while AI can earlier identify the rare
disease pattern of metabolic alkalosis
mismatched with urine potassium excretion,
unaffected by the "hypokalemia anchoring
effect." After counterfactual perturbation, a
bicarbonate level of 38 mmol/L and pH 7.6
clearly indicate metabolic alkalosis, prompting
clinicians to reassess the possibility of renal
tubular dysfunction.

Value of Counterfactual Simulation:
Overcoming Uncertainty: Clinicians initially
believed "normal serum potassium rules out
Gitelman syndrome," but counterfactual data
drive re-evaluation of diagnostic logic.
Correcting Cognitive Anchoring: The simulation
targets clinicians’ decision blind spots (e.g.,
undetected HCO3-), pushing them to shift from
a "common disease" framework to complex
pathophysiological analysis.
Educational Significance: Reminds clinicians to
screen for Gitelman syndrome (e.g., via genetic
testing or magnesium/calcium urine tests) when
acid-base imbalance exists despite normal serum
potassium.
Clinical Significance: Highlights the need for
complete blood gas and electrolyte tests in
hypokalemia/alkalosis patients to avoid
misdiagnosis due to missed key indicators.

**Conclusion**: This case demonstrates that
counterfactual simulation, by supplementing
critical evidence of metabolic alkalosis, helps
clinicians overcome cognitive limitations of
"hypokalemia" and "common disease priority,"
enabling more comprehensive evaluation of
Gitelman syndrome. It underscores the tool’s
importance in rare disease differential diagnosis.

Case 3:

The core feature of Gitelman syndrome is renal potassium
wasting. Elevated urine potassium (>20 mmol/24h), when
combined with hypokalemia (serum potassium 2.2
mmol/L), strongly supports renal tubular dysfunction (e.g.,
distal tubule NCC channel inactivation), distinguishing it
from gastrointestinal potassium loss or inadequate intake.
Metabolic alkalosis, a typical manifestation, is driven by
renal hydrogen ion loss (via Na⁺-H⁺ exchange
compensating for hypovolemia) and renin-angiotensin-
aldosterone system (RAAS) activation related to
hypomagnesemia. In the original diagnosis, missing urine
potassium and HCO₃⁻ measurements may lead clinicians to
default to "non-renal potassium loss" or "compensatory
alkalosis," favoring common diseases (e.g., diarrhea,
diuretic abuse). After perturbation, significantly elevated
urine potassium and HCO₃⁻ directly indicate renal tubular
dysfunction, consistent with Gitelman pathophysiology.
Persistent hypokalemia (2.2 mmol/L) alongside elevated
urine potassium creates a "hypokalemia-hyperuricosuria"
paradox, a key marker distinguishing Gitelman syndrome
from non-renal potassium loss.

Value of Counterfactual Simulation:
Cognitive Anchoring Correction: Perturbation targets the
most uncertain indicators (undetected urine potassium and
HCO₃⁻), breaking the "common disease first" mindset
through simulated abnormal values and forcing rare
disease reassessment.
Avoiding Premature Rare Disease Exclusion: Clinicians
may underestimate Gitelman syndrome due to incomplete
testing or assuming "nan values indicate normalcy."
Counterfactual simulation, via data-driven abnormal
values, highlights the diagnostic weight of key indicators,
prompting early rare disease differential diagnosis.

**Conclusion**: This case, by perturbing "nan" values of
urine potassium and HCO₃⁻, reveals the critical paradox of
Gitelman syndrome (hypokalemia + hyperuricosuria +
metabolic alkalosis + no hypertension), significantly
increasing its diagnostic probability. The value lies in
quantifying the potential impact of undetected indicators,
assisting clinicians in overcoming cognitive limitations and
systematically improving differential diagnosis processes.

In the presented cases:
1. The true labels represent the actual disease status recorded in clinical practice.
2. For each indicator, the value before the arrow is the patient's actual test result (where "nan" indicates that the patient did not undergo that particular test),
and the value after the arrow is the generated counterfactual indicator result. For missing indicators, the Δ change is calculated as the difference between the
mean value of that indicator in the dataset and the counterfactual data. For other indicators, the Δ change is calculated as the difference between the original
data and the counterfactual data.
3. The changes in prediction probabilities are obtained from a trained accurate AI model. The higher the score, the greater the likelihood. The cases
respectively demonstrate the AI prediction results for the patient's original tests and the AI prediction results under counterfactual scenarios. Taking the first
case below as an example:
When the original tests were conducted, the model predicted the probability of a common disease to be 0.7770 and that of a rare disease to be 0.2230. After
counterfactual perturbation, the probability of a common disease dropped sharply to 0.1297, while the probability of a rare disease increased to 0.8703,
intuitively showing the reversing effect of supplementing key indicators on the diagnostic tendency. This case indicates that the reasonable supplementation of
key missing indicators can significantly change the AI diagnostic tendency through counterfactual reasoning, providing a quantitative reference for clinicians
to identify potential rare diseases. 

Descrption

Figure 6: Prompting LLM and LLM response under three counterfactual scenarios

L COMPUTING INFRASTRUCTURE

All synthetic data experiments are performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R)
Gold 6248R CPU @ 3.00GHz, 227 Gigabyte memory.
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