

UNANCHORING THE MIND: DAE-GUIDED COUNTERFACTUAL REASONING FOR RARE DISEASE DIAGNOSIS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diagnosing rare diseases remains a persistent challenge, often hindered by *cognitive anchoring*: once clinicians settle on a common diagnosis, alternative—especially rare—explanations are often dismissed. To address this, we propose a human-centered counterfactual reasoning framework using a Denoising Autoencoder (DAE) to simulate *what-if* diagnostic scenarios that disrupt clinicians’ initial assumptions. Our model uniquely jointly learns (1) the true distribution of diseases and symptoms, and (2) human diagnostic behavior, revealing critical gaps between *medically possible* and *clinically considered* diagnoses. By strategically perturbing latent patient representations, it generates *contrastive counterfactuals* that highlight rare—but-plausible conditions—conditions typically overlooked due to cognitive bias. Unlike traditional decision-support tools, our system *proactively* suggests rare diseases not because they are statistically probable, but because they are *cognitively neglected*. Evaluated on three rare disease datasets, our approach outperforms standard machine learning classifiers in detecting rare conditions while maintaining strong performance on common diagnoses. Beyond boosting accuracy, it fosters *hypothesis-driven reasoning*, enhancing both diagnostic precision and clinician learning.

1 INTRODUCTION

Despite advances in machine learning for clinical diagnosis, *rare diseases remain notoriously difficult to identify* due to their low prevalence, heterogeneous manifestations, and frequent overlap with more common conditions (Schieppati et al., 2008; Griggs et al., 2009). Consider a patient presenting with persistent fatigue, joint pain, and skin rashes, clinicians often anchor on familiar diagnoses like lupus rather than considering rare alternatives such as Ehlers-Danlos syndrome. This diagnostic misdirection is not merely a result of statistical rarity or symptom ambiguity, but also due to a well-documented *cognitive bias* known as *anchoring*—clinicians' tendency to settle prematurely on an initial diagnosis and insufficiently revise it in light of new or contradictory evidence (Tversky & Kahneman, 1974; Saposnik et al., 2016; Croskerry, 2002; Li et al., 2023).

This *cognitive anchoring* introduces a significant bottleneck in *rare disease detection*, often leading to prolonged diagnostic delays, repeated misdiagnoses, and unnecessary interventions. Studies in clinical cognition have shown that medical decision-making is often driven by fast, heuristic-based thinking that prioritizes pattern recognition over analytical reassessment (Norman et al., 2024). This is especially problematic in the context of rare diseases, where diagnostic presentations often overlap with more common syndromes, creating fertile ground for premature closure. While previous machine learning efforts have primarily focused on enhancing accuracy through larger datasets or more powerful models (Juba & Le, 2019; Sun et al., 2017; Moreno-Barea et al., 2020), few have addressed the cognitive constraints that shape clinicians' interactions with model predictions, particularly under uncertainty. Moreover, existing studies indicate that clinicians may be unable to effectively integrate the AI's reasoning due to its opaque recommendations (Jussupow et al., 2021; Lebovitz et al., 2022), potentially exacerbating misdiagnoses (Jussupow et al., 2022).

Our work tackles the dual challenge of data sparsity and cognitive rigidity by introducing a diagnostic framework that not only *detects rare diseases* but also *mitigates the cognitive biases*—particularly *anchoring*—that hinder accurate diagnosis. Instead of merely maximizing predictive likelihood, our system acts as a cognitive aid, encouraging clinicians to consider alternative diagnostic hypotheses.

054 Drawing from cognitive science theories of bias mitigation (Croskerry, 2002) and leveraging recent
 055 advances in generative modeling, we design a Denoising Autoencoder (DAE) (Vincent et al., 2008)
 056 generative model to generate plausible diagnostic counterfactuals that promote reflective reasoning.
 057

058 Our DAE-based model is trained on annotated clinical data to learn both disease distributions and
 059 typical diagnostic behaviors. By perturbing the latent representation of a patient’s profile, the
 060 model generates alternative diagnostic paths—plausible yet cognitively overlooked possibilities—that
 061 suggest *follow-up tests*, outside the clinician’s immediate expectations. For example, it might suggest:

062 *The most likely rare disease overlapping with the current symptoms is Ehlers-*
 063 *Danlos syndrome. Consider additional tests such as genetic screening for con-*
 064 *nnective tissue disorders. If the results are positive, the probability of this diagnosis*
 065 *increases significantly.*

066 Unlike traditional AI systems that deliver static predictions, our framework promotes active cognitive
 067 engagement, helping clinicians *break habitual diagnostic patterns* and *rethink their assumptions*. By
 068 surfacing rare yet plausible conditions, it expands the diagnostic space, fosters reflective thinking,
 069 and supports more informed clinical decisions. As (Buçinca et al., 2021) have demonstrated, a
 070 mechanism that guides users to actively engage in critical thinking about initial assumptions enhances
 071 decision-making quality more effectively than merely providing predictions.

072 In our experiments, we evaluate the system’s effectiveness using three rare disease datasets. our
 073 method outperformed conventional machine learning (ML) classifiers in rare disease detection while
 074 preserving optimal performance on common disease diagnosis. Counterfactual *validation* was
 075 performed by comparing the model’s hypotheses with diagnoses made by *human clinicians* and
 076 assessments from *Large Language Models (LLMs)*. The results confirmed that our model could
 077 identify plausible but cognitively neglected conditions, thereby enhancing diagnostic precision and
 078 fostering clinician learning.

080 2 INHERENT CHALLENGES IN MODELING RARE DISEASE DIAGNOSIS

083 In clinical diagnosis, the fundamental task is to infer the underlying disease label $Y \in \mathcal{Y}$ from
 084 observed clinical evidence $X \in \mathcal{X}$, such as patient-reported symptoms. Both human clinicians and
 085 ML models aim to learn or approximate the mapping:

$$086 h : X \mapsto \hat{Y}, \quad \text{where } \hat{Y} \approx \arg \max_Y P(Y | X).$$

088 By Bayes’ theorem, this conditional probability can be expressed as:

$$089 P(Y | X) = \frac{P(X | Y) \cdot P(Y)}{P(X)},$$

092 where $P(Y)$ encodes prior knowledge of disease prevalence and $P(X | Y)$ reflects the data-
 093 generating process (e.g., symptom presentation) conditioned on a specific disease. However, in
 094 the context of *rare disease diagnosis*, this inferential process becomes fundamentally challenging, no
 095 matter for logistic regression, support vector machines, or even deep classifiers, are all subject to the
 096 same three critical limitations:

- 097 **Skewed priors.** Rare diseases typically have extremely small $P(Y)$. This prior imbalance biases
 098 both clinicians and ML models to favor common diagnoses, even when rare diseases are more
 099 plausible explanations.
- 100 **Overlapping symptom profiles.** Many hallmark symptoms of rare diseases (e.g., fatigue, muscle
 101 pain, or inflammation) are nonspecific and widely shared across common conditions. As a
 102 result, the likelihoods $P(X | Y_{\text{rare}})$ and $P(X | Y_{\text{common}})$ often overlap significantly, making
 103 discrimination between them highly uncertain.
- 104 **Incomplete evidence.** Key diagnostic features—such as genetic markers or specialized imag-
 105 ing—are frequently missing from the record, due to cost, lack of access, or simply being over-
 106 looked. This leads to an underspecified X , causing both humans and machines to rely on
 107 incomplete or biased feature sets. Such gaps often *reinforce* cognitive heuristics like *anchoring*,
 where initial impressions dominate the diagnostic path.

108 These challenges create a shared *algorithmic–cognitive bottleneck* across both humans and machines.
 109 Standard discriminative models $h : X \mapsto Y$, trained to directly map observed features to labels,
 110 inherit the same structural vulnerabilities as their human counterparts. Without mechanisms to
 111 uncover latent structures, handle missing information, or actively de-bias the inference process, both
 112 fall short in the critical task of detecting rare and underrepresented diseases.
 113

114 2.1 MOTIVATION FOR A LATENT-STATE GENERATIVE MODEL

115 These insights motivate the need for a new kind of AI-aided diagnostic framework—one that can:

- 118 • *Explicitly identify cases where the observed X lies in an ambiguous or overlapping region of the*
 119 *feature space;*
- 120 • *Hypothesize possible latent rare disease explanations even when current evidence is incomplete;*
- 121 • *Proactively recommend additional complementary tests* (e.g., genetic panels, imaging) *that can*
 122 *disambiguate competing diagnoses and help clinicians break out of anchored diagnostic pathways.*

123 A discriminative model alone cannot meet these goals, as it is designed only to map observed input
 124 X to a label prediction \hat{Y} and lacks any mechanism for reasoning about uncertainty, missing data,
 125 or counterfactual information acquisition. To address these limitations, we propose a *latent-state*
 126 *generative model* based on the Denoising Autoencoder (DAE) framework. This model explicitly learns
 127 a latent representation Z of the patient’s symptom input X and generates possible reconstructions
 128 and diagnostic outcomes in a controlled, interpretable manner. The goal is to assist both machine and
 129 human diagnostic reasoning by generating alternative hypotheses—especially those corresponding to
 130 rare conditions that might be missed due to low priors or heuristic bias.

131 The proposed latent-state generative model takes the following form (as illustrated in Figure.1):
 132

- 133 • **Input:** X (observed patient symptoms)
- 134 • **Latent state:** Z (learned stochastic representation of patient condition)
- 135 • **Outputs:**
 - 138 1. X' : A reconstructed or generated version of patient symptoms (counterfactual or
 139 prototypical symptom set)
 - 140 2. \hat{Y}^{AI} : Prediction of the true diagnosis based on latent state Z
 - 141 3. \hat{Y}^{human} : Model’s simulation of a human doctor’s likely diagnostic decision

143 3 OUR PROPOSED GENERATIVE MODEL FORMULATION

145 We assume access to a dataset of triplets $\{(X_i, Y_i^{\text{human}}, Y_i^{\text{true}})\}_{i=1}^N$, where $X_i \in \mathbb{R}^d$ represents patient
 146 features, $Y_i^{\text{true}} \in \{1, \dots, C\}$ is the ground-truth diagnosis, and Y_i^{human} is the clinician’s recorded
 147 label. Our goal is to learn a generative latent-state model that captures three components: the patient’s
 148 latent diagnostic state Z , the clinician’s decision Y^{human} , and the AI’s prediction Y^{AI} . By explicitly
 149 modeling the cognitive gap between human and AI reasoning, the model enables discrepancy-aware
 150 inference and supports bias-aware diagnostic support.

$$152 p_{\theta}(X, Y^{\text{AI}}, Y^{\text{human}}, Z) = p(Z)p_{\theta}(X | Z)p_{\theta}(Y^{\text{AI}} | Z)p_{\theta}(Y^{\text{human}} | \tilde{Z}) \quad (1) \\ 153$$

154 Here, $Z \in \mathbb{R}^k$ is a latent representation inferred from X , and \tilde{Z} denotes a modulated version of Z .
 155 Although humans and AI observe the same input X , their predictions can diverge due to: (1) cognitive
 156 load limiting human attention to parts of X , and (2) fundamentally different mapping functions. We
 157 explicitly reflect these factors in the design of our DAE-based generative model.

158 **Latent Representation Learning with Masked Denoising Autoencoder** Given that real-world
 159 clinical inputs $X \in \mathbb{R}^d$ often contain missing or underreported features, particularly for rare diseases,
 160 we employ a masked Denoising Autoencoder (mDAE) (Dupuy et al., 2024) strategy, to learn a robust
 161 and informative latent representation Z .

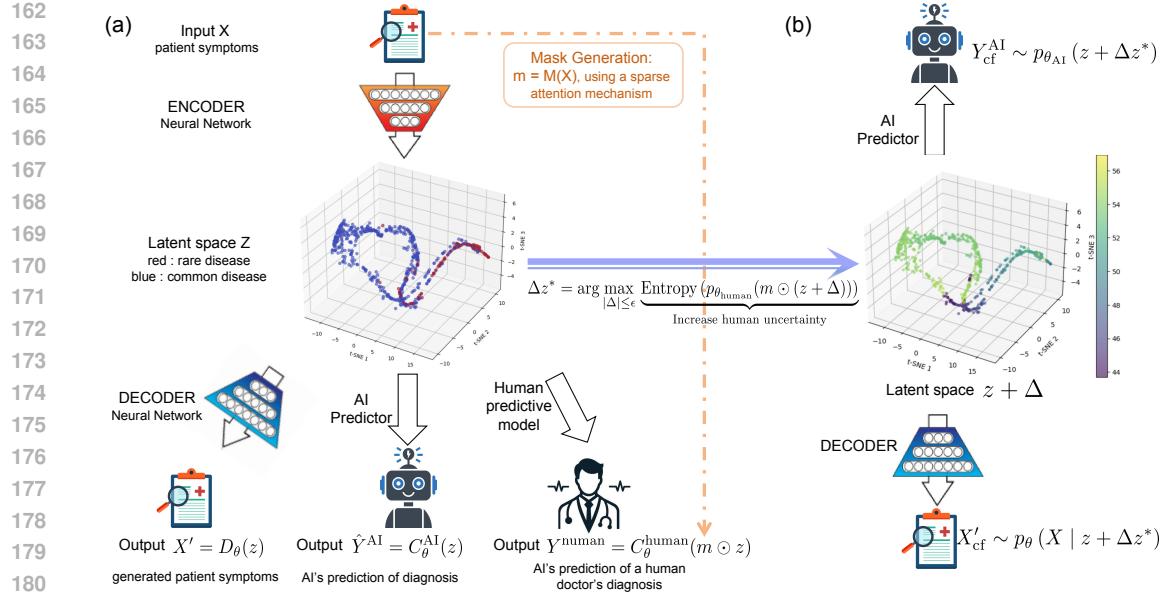


Figure 1: DAE-guided counterfactual reasoning framework. (a) DAE encodes patient features into a latent space Z , enabling dual predictors for AI and clinician diagnoses. (b) Counterfactuals are generated by perturbing latent vectors to increase uncertainty in human model. Then AI predictor can generate counterfactual diagnosis and decoder reconstructs the corresponding patient profile.

For each observed input X_i , we sample a binary mask $r_i \in \{0, 1\}^d$ to randomly drop a subset of observed entries, simulating incomplete or noisy records. The resulting corrupted input is $\tilde{X}_i = r_i \odot X_i$, which is then encoded to a latent distribution $q_{\phi}(Z_i | \tilde{X}_i)$. The decoder reconstructs the full input, and the reconstruction loss is computed only on the originally observed (i.e., uncorrupted) entries:

$$\mathcal{L}_{\text{recon}} = \mathbb{E}_{q_{\phi}(Z_i | \tilde{X}_i)} \left[\left\| (1 - r_i) \odot (X_i - \hat{X}_i) \right\|_2^2 \right] \quad (2)$$

This approach helps the model infer missing or overlooked features—like masked token prediction in language models—while learning robust, task-relevant representations. These generalizable embeddings enable effective downstream applications such as diagnosis prediction and modeling human-AI divergence.

Dual Classification Losses The latent code Z_i is leveraged to predict two diagnostic outcomes: the *ground-truth diagnosis* Y_i^{true} , and the *observed human diagnosis* Y_i^{human} . We define two separate classification objectives:

- **AI Prediction Loss (truth-matching):**

$$\mathcal{L}_{\text{AI}} = -\mathbb{E}_{q_{\phi}(Z_i | X_i)} \left[\sum_c \alpha_c (1 - p_c)^{\gamma} \log p_c \right], \quad \alpha_c \propto \frac{1}{\text{freq}(c)} \quad (3)$$

Here, $p_c = p_{\theta_{\text{AI}}}(Y_i^{\text{true}} = c | Z_i)$ denotes the predicted probability of class c under the AI classifier. This objective encourages the model to leverage the *full latent representation* Z_i to generate accurate, clinically grounded predictions aligned with the ground-truth diagnosis, using a classifier parameterized by θ_{AI} .

To address class imbalance—particularly prevalent in rare disease settings, we employ a focal loss variant (Lin et al., 2017) that dynamically down-weights well-represented, easily classified categories and emphasizes learning from rare or ambiguous cases. As the system is intended to assist clinicians

216 in complex diagnostic scenarios, this calibrated formulation promotes more *exploratory* AI behavior,
 217 enabling the model to surface atypical or underrecognized patterns that may otherwise be overlooked.
 218 Thus, the AI acts not only as a predictor but also as a discovery aid, supporting more comprehensive
 219 and inclusive clinical decision-making.

220 **• Human Simulation Loss (cognitive-matching):**

$$\mathcal{L}_{\text{human}} = \mathbb{E}_{q_{\phi}(Z_i|X_i)} \left[-\log p_{\theta_{\text{human}}} \left(Y_i^{\text{human}} \mid \tilde{Z}_i \right) \right] \quad (4)$$

224 Here, $\tilde{Z}_i = m_i \odot Z_i$ is a selectively masked version of the latent vector, where the learned attention
 225 mask $m_i \in [0, 1]^k$ gates which latent dimensions are used by the human prediction head. This reflects
 226 the idea that, given the same input X_i , *humans and AI may focus on different parts of the data and*
 227 *apply distinct cognitive functions to reach a diagnosis.*

229 Importantly, the prediction functions for AI and human simulation are parameterized separately, using
 230 θ_{AI} and θ_{human} respectively. This architectural asymmetry captures both attentional differences (via
 231 m_i) and functional differences in diagnostic reasoning, allowing us to explicitly model and analyze
 232 human-AI cognitive divergence.

233 **Modeling Human-AI Cognitive Gaps via Sparse Self-Attention Mask** Specifically, we compute
 234 the attention mask m_i using a learnable self-attention module:

$$m_i = \text{Softmax} \left(\frac{Q(X_i) K(X_i)^\top}{\sqrt{d}} \right) V(X_i) \quad (5)$$

239 where $Q(\cdot)$, $K(\cdot)$, $V(\cdot)$ are linear projections (as proposed in (Vaswani et al., 2017)) that produce
 240 query, key, and value vectors from the input X_i , and the output is pooled to form a k -dimensional
 241 attention vector. This attention mechanism identifies which latent features humans are likely to focus
 242 on, given the current case.

243 To ensure interpretability and mimic human cognitive constraints, we impose an ℓ_1 sparsity penalty
 244 on the attention mask:

$$\mathcal{L}_{\text{mask}} = \lambda_{\text{mask}} \cdot \|m_i\|_1 \quad (6)$$

247 This encourages the human prediction head to rely on a small subset of salient features, reflecting
 248 *limited cognitive bandwidth* and enhancing the *interpretability* of human diagnostic pathways.

249 **Contrastive Learning for Rare Disease Separability** To prevent rare disease embeddings from
 250 collapsing into common clusters, we introduce a contrastive loss:

$$\mathcal{L}_{\text{contrast}} = \sum_{(i,j,k)} \max(0, \delta + d(Z_i, Z_j) - d(Z_i, Z_k)),$$

255 where Z_i and Z_j are latent representations from the same rare disease class, and Z_k is from a common
 256 disease class.

257 This loss encourages embeddings of the same rare class to remain close while pushing them away
 258 from embeddings of common classes, thereby promoting greater separability and preserving the
 259 distinctiveness of rare conditions in the latent space.

261 **Cognitive Gap Identification: Discrepancy Between AI and Human Attention** To quantify
 262 the cognitive discrepancy between AI and human reasoning—especially in rare disease cases—we
 263 introduce a *cognitive gap loss*. This loss encourages the AI model to attend to features that may be
 264 under-utilized by human clinicians, highlighting potential diagnostic blind spots. Formally, we define
 265 the loss as:

$$\mathcal{L}_{\text{gap}} = \sum_{i: Y_i^{\text{true}} \in \text{rare}} \|m_i \odot \nabla_{Z_i} \log p_{\theta_{\text{AI}}}(Y_i^{\text{true}} \mid Z_i)\|_2^2,$$

268 where Z_i is the latent representation, $m_i \in [0, 1]^k$ is the learned attention mask approximating human
 269 focus, and $\nabla_{Z_i} \log p_{\theta_{\text{AI}}}(Y_i^{\text{true}} \mid Z_i)$ captures the sensitivity of the AI’s prediction to each latent
 270 feature.

270 By penalizing high-gradient regions aligned with human attention m_i , the model is encouraged to
 271 focus on dimensions that are often overlooked, especially in the context of rare diseases. This fosters
 272 attentional divergence in rare disease cases, where the AI can uncover atypical patterns that clinicians
 273 might miss due to cognitive biases.
 274

275 **3.1 TOTAL OBJECTIVE AND TRAINING CURRICULUM**
 276

277 The overall loss function is defined as:

278
$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{AI}} + \mathcal{L}_{\text{human}} + \gamma \mathcal{L}_{\text{contrast}} + \eta \mathcal{L}_{\text{mask}} + \xi \mathcal{L}_{\text{gap}}. \quad (7)$$

 279

280 The training process follows a staged curriculum, starting with the DAE warm-up using reconstruction
 281 loss, followed by the introduction of focal loss for rare disease prediction. The curriculum then
 282 adds human cognitive modeling and sparsity regularization, followed by contrastive learning for
 283 separating rare and common diseases. Finally, the cognitive gap loss is incorporated to address
 284 attention mismatches between AI and human clinicians.

285 We will train the DAE using the above loss function. Given the learned generative DAE model, we
 286 can design the following counterfactual generation tasks.
 287

288 **4 COUNTERFACTUAL GENERATION FOR COGNITIVE ANCHORING
 289 CORRECTION**
 290

291 To mitigate diagnostic errors from cognitive anchoring, we introduce a counterfactual generation
 292 mechanism that leverages the model’s probabilistic structure. Given patient data X , if $p_{\theta_{\text{AI}}}$ assigns
 293 *relatively high probability to a plausible diagnosis Y_{AI} —particularly a rare or under-considered
 294 one—that diverges from the human’s current diagnosis*, this triggers counterfactual generation to
 295 challenge the initial decision of human and guide follow-up evaluation or testing.

296 The **goal** of the counterfactual generation here is to
 297

298 *Disrupt doctors’ fixation on initial hypotheses by generating alternative diagnostic
 299 pathways, particularly for rare diseases.*

300 **Learning Optimal Perturbation** The perturbation is learned to increase uncertainty in the human
 301 (or human-approximating) model, thus exposing cognitive blind spots.
 302

303
$$\Delta z^* = \arg \max_{\|\Delta\| \leq \epsilon} \underbrace{\text{Entropy}(p_{\theta_{\text{human}}}(m \odot (z + \Delta)))}_{\text{Increase human uncertainty}} \quad (8)$$

 304

305 Here, $\|\Delta\| \leq \epsilon$ ensures that the changes remain within a medically interpretable range. Without
 306 perturbation, the AI’s prediction from the original z may align closely with the clinician’s current
 307 belief. By contrast, perturbing z explores latent variations that introduce diagnostic ambiguity from
 308 the human’s perspective—potentially uncovering under-recognized or rare conditions.
 309

310 **Counterfactual Output Generation** Once the optimal perturbation Δz^* is obtained, the system
 311 generates two outputs:
 312

- **AI Counterfactual Diagnosis**

313
$$Y_{\text{cf}}^{\text{AI}} \sim p_{\theta_{\text{AI}}}(z + \Delta z^*) \quad (9)$$

 314

315 This may yield a rare disease prediction that prompts reconsideration of the original diagnosis.
 316

- **Synthetic Patient Data Generation** An mDAE is used to reconstruct the corresponding
 318 patient profile:
 319

320
$$X'_{\text{cf}} \sim p_{\theta}(X \mid z + \Delta z^*) \quad (10)$$

 321

322 Here, X'_{cf} represents a plausible synthetic patient who presents similarly but includes key missing
 323 symptoms supporting the rare disease.

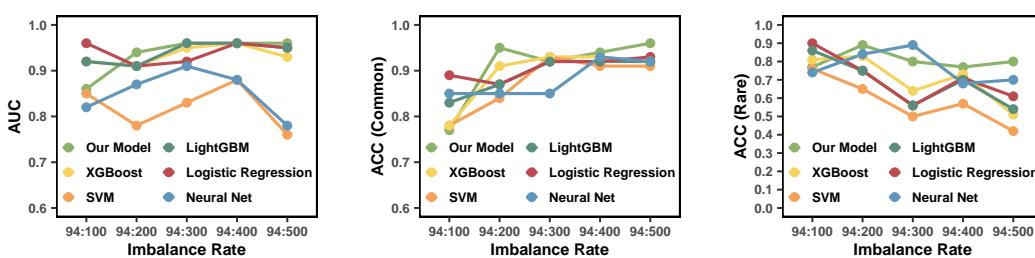
324 Finally, the system communicates the counterfactual insight as:

324
 325 "Consider alternative diagnoses with similar presentations: [AI-suggested disease
 326 Y_{cf}^{AI}]. If additional findings such as X'_{cf} were observed, the likelihood of this
 327 condition would increase to $p_{\theta_{AI}}(Y_{cf}^{AI} | z + \Delta)$."
 328

328 This form of explanation aims to encourage the clinician to reflect, reassess, and refine their diagnostic
 329 reasoning with evidence-informed support from the AI.
 330

331 5 EXPERIMENT

333 To evaluate the effectiveness of our proposed framework, we conducted extensive experiments
 334 designed to (i) validate robust performance and diagnostic accuracy for *rare disease* detection and (ii)
 335 assess the efficacy of counterfactual explanations in addressing cognitive gaps and guiding clinical
 336 decision-making.
 337

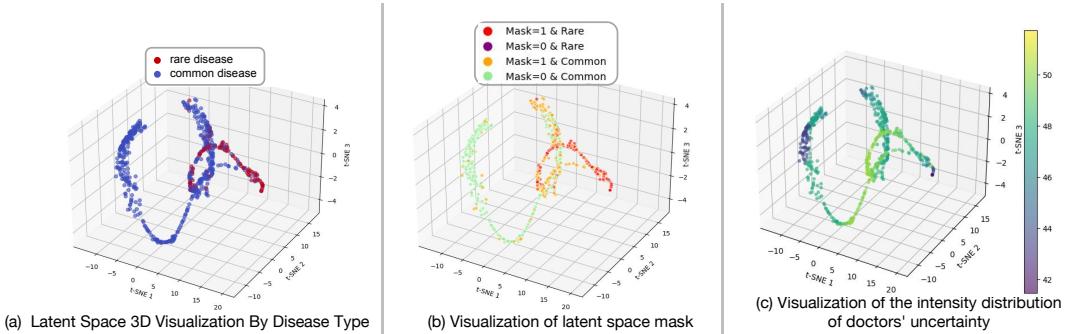

338 We used three private, real-world *rare disease* datasets that we constructed and curated in close col-
 339 laboration with a top-tier hospital, involving multiple departments and clinicians, covering **Gitelman**
 340 **syndrome**, **acromegaly**, and **hypertrophic cardiomyopathy (HCM)**. To support reproducibility, we
 341 additionally evaluate on a curated public rare disease dataset for **Granulomatosis with Polyangiitis**
 342 (GPA) derived from (Chen et al., 2024). Detailed dataset specifications are provided in Appendix B.
 343 Notably, High-quality datasets for rare diseases are scarce, and assembling high-quality rare disease
 344 datasets with research value is inherently challenging and constitutes a substantive contribution to the
 345 field.
 346

347 5.1 REPRESENTATIONAL AND PREDICTIVE CAPACITY

348 5.1.1 PREDICTION ON IMBALANCED DATA

349 The low prevalence of rare diseases leads to imbalanced datasets, posing challenges for conventional
 350 classifiers. We present results on a real-world Gitelman syndrome dataset, which has faced difficulties
 351 in predicting this disease, with an imbalance ratio of 94:100 to 94:500 (rare disease samples to
 352 common disease samples). Standard class-imbalance handling strategies were applied to all baselines,
 353 including focal loss for the neural network, SMOTE augmentation for SVM and logistic regression,
 354 and built-in imbalance handling for XGBoost and LightGBM.
 355

356 Our approach outperforms five typical classifiers, as shown in Figure 2, which reports AUC, accuracy
 357 for common diseases, and rare disease accuracy. Notably, our model's AUC improves with increasing
 358 imbalance, as the larger data volume provides more information for learning despite the greater skew.
 359



367 Figure 2: Comparison of model performance under imbalanced data.
 368

369 5.1.2 LATENT SPACE VISUALIZATION

371 We visualize the model's latent space using the Gitelman dataset in three distinct ways. These
 372 visualizations, shown in Figure. 3, offer valuable insights into the model's internal representations.
 373 Panel (a) shows the structural organization of latent embeddings, illustrating the model's ability
 374 to encode fine-grained phenotypic details that distinguish clinically similar samples. Panel (b)
 375 presents an attention map of clinician focus within the same space: mask values of 1 mark high
 376 clinical relevance regions, while 0 indicates lower priority, directly aligning attention with diagnostic
 377 importance. Panel (c) highlights features exerting significant influence on human classification
 378 decisions, exposing potential decision boundaries where predictions may shift. The visualization
 379

378 principle involves perturbing latent space vectors to maximize human prediction uncertainty, with
 379 the intensity distribution directly reflecting perturbation magnitude. Lighter colors denote higher
 380 diagnostic uncertainty, revealing critical knowledge gaps that could lead to misdiagnosis.
 381

393 Figure 3: Latent space visualization by disease type, clinician attention, and diagnostic uncertainty.
 394

395 Beyond these views, we also examine how each loss term in fine-tuning stage shapes the latent space
 396 via an ablation study in Appendix E. Removing contrastive, gap, or reconstruction loss degrades
 397 latent space representation quality, impairing the model’s ability to distinguish similar samples;
 398 removing prediction or mask-regularization loss degrades AI/human predictors, evidenced by lower
 399 AUC and visualizations.

400 5.1.3 AUC ACROSS DATASETS AND ABLATION EXPERIMENTS

402 We also report AI and human predictors’ AUC across 4 datasets (10-run avg \pm std, Table 1). The full
 403 model shows consistent strong performance, demonstrating robust, stable generalization. Ablations
 404 (removing one loss at a time in fine-tuning, stage-wise pretraining unchanged) corroborate each
 405 component’s necessity: removing AI loss notably degrades AI predictor AUC; removing human loss
 406 or mask-regularization loss severely harms human predictors. For specific details regarding the model
 407 architecture and hyperparameter selection, refer to F and G.

408
 409 Table 1: AUC metrics and ablations

	411 Gitelman		412 Acromegaly		413 HCM		414 GPA	
	415 AI	416 Human	417 AI	418 Human	419 AI	420 Human	421 AI	422 Human
Original	0.96\pm0.01	0.98\pm0.01	0.99\pm0.01	0.98\pm0.03	0.96\pm0.01	0.97\pm0.01	0.88\pm0.04	0.86\pm0.01
No AI loss	0.89 \pm 0.08	N/A	0.96 \pm 0.02	N/A	0.86 \pm 0.05	N/A	0.79 \pm 0.03	N/A
No human loss	N/A	0.61 \pm 0.14	N/A	0.87 \pm 0.07	N/A	0.73 \pm 0.12	N/A	0.72 \pm 0.02
No mask loss	N/A	0.90 \pm 0.08	N/A	0.94 \pm 0.05	N/A	0.92 \pm 0.02	N/A	0.81 \pm 0.03

423 5.2 LLM-HUMAN DUAL QUANTITATIVE EVALUATION OF COUNTERFACTUALS

425 To address the challenges and diagnostic needs in rare disease medicine, our model supports counter-
 426 factual analysis across diverse scenarios. We constructed three representative counterfactual scenarios:
 427 **Scenario 1:** Feature Completion for Low-Confidence Predictions, **Scenario 2:** AI-Human Prediction
 428 Discrepancy Resolution, and **Scenario 3:** Uncertainty-Driven Alternative Diagnoses. For detailed
 429 descriptions of these scenarios, please refer to Appendix D.

430 For a more comprehensive assessment, an LLM- and doctor-based evaluation framework is designed
 431 for evaluating counterfactual outcomes. Fig. 4 shows Prompt, LLM evaluations and doctor evaluations
 432 across three scenarios. For LLM prompting specifics and responses, See Appendix H.

433 **Evaluated by LLM** Since 2023, LLMs with advanced instruction-following and semantic compre-
 434 hension have enabled automated evaluation (Gao et al., 2025). In our framework, pre-trained LLMs
 435 assess counterfactuals using structured prompts, evaluating plausibility, relevance, and cognitive
 436 support across semantic, causal, and operational dimensions..

432 **Evaluated by Doctors** Clinical experts from a leading hospital validated rare disease counterfactuals
 433 for medical plausibility and clinical relevance, leveraging their domain expertise.
 434

Prompt Assume you are a specialist physician (nephrologist/endocrinologist/cardiologist) analyzing a case of [Gitelman syndrome/Acromegaly/Hypertrophic Cardiomyopathy (HCM)].	Background Information: Scenario one: When the original input contain missing values and generate low-confidence AI predictions..... Scenario two: When there are differences between the predictions of AI and the diagnoses of doctors..... Scenario three: Perturb the latent space along the direction of greatest diagnostic uncertainty as predicted by the physician.....	The goal is to explain the key diagnostic logic based on the provided changes in indicators and diagnostic probabilities.
Evaluation Form: 1. Summary of Clinical Significance on the diagnosis of [Gitelman syndrome/Acromegaly/HCM] ; 2. Explanation of Probability Changes ; 3. Clinical Value of 'NAN'(missing) Perturbations ; Value of Counterfactual Simulation.		
LLM Response an example of scenario one	an example of scenario two	an example of scenario three
Counterfactual OGTT suppression data uncovers definitive growth hormone non-suppression, redirecting diagnosis to acromegaly despite non-specific IGF-1 and basal GH. When initial features overlap common conditions and AI yields low-confidence predictions, flipped scenarios expose hidden evidence, correct testing for optimized clinical decision-making.	Alteration of missing bicarbonate and pH data reveals hidden metabolic alkalosis with renal potassium loss, redirecting diagnosis toward Gitelman syndrome despite normal serum potassium. In cases where AI and clinician assessments conflict, generating such scenarios illuminates differing decision pathways, mitigates anchoring bias, and prompts targeted investigations for optimized diagnostic workflow.	Sarcomere mutation, asymmetric hypertrophy, and SAM (LVOTO) drive HCM likelihood; reduced amyloid/TTR lowers ATTR. Family history and voltages support disease; dual pathology remains near threshold. Counterfactuals highlight sarcomere genetics and SAM, focusing on echo, genetic testing, family screening; borderline amyloid cues prompt biopsy/scintigraphy.
Doctor Evaluation The counterfactual case is highly valuable, clearly demonstrating the critical role of key tests in acromegaly diagnosis. The case is extremely useful. It helps break cognitive limitations and better assess Gitelman syndrome's possibility. A very valuable case. It quantifies undetected indicators' impact, improving differential diagnosis.		

454
 455 Figure 4: Illustration of prompt, LLM response segment and real world doctor evaluation segment.
 456

457 5.3 QUANTITATIVE EVALUATION OF COUNTERFACTUALS AGAINST BASELINES

458 **Baselines** We compare our method with two baseline approaches: REVISE (Joshi et al., 2019),
 459 which uses optimization within a generative model’s latent space, and CF-VAE (Nagesh et al., 2023),
 460 which optimizes a variational autoencoder alongside a binary prediction model.
 461

462 **Metrics** We evaluate counterfactuals based on two metrics: (1) **Label Flip Rate**: The proportion of
 463 counterfactuals correctly classified into the target class, indicating validity. (2) **Root Mean Squared
 464 Error (RMSE)**: Measures the perturbation magnitude between the counterfactual and original input,
 465 with lower RMSE indicating higher plausibility.

466 **Results** Table 2 compares our model, REVISE, CF-VAE, and an ablation experiment across four
 467 datasets. Our model achieves the highest label flip rate and lowest RMSE, outperforming all baselines
 468 in generating valid and minimally perturbed counterfactuals.
 469

470 Table 2: Performance metrics across four datasets.
 471

Model	Gitelman		Acromegaly		HCM		GPA	
	Label Flip Rate	RMSE						
REVISE	0.96±0.03	5.40±0.89	0.92±0.11	13.96±14.44	0.70±0.40	0.33±0.04	0.94±0.07	0.18±0.06
CFVAE	0.96±0.02	12.00±1.77	0.85±0.15	13.96±14.84	0.80±0.40	0.33±0.01	0.85±0.18	0.29±0.09
Our Model	1.00±0.00	1.93±0.76	1.00±0.00	0.18±0.10	1.00±0.00	0.10±0.13	1.00±0.00	0.12±0.03
Ablation	1.00±0.00	4.85±3.27	1.00±0.00	0.21±0.08	1.00±0.00	0.46±0.27	1.00±0.00	0.25±0.07

477 6 CONCLUSION

480 We introduced a human-centered counterfactual reasoning framework that perturbs latent patient
 481 representations via a DAE-based latent state generative model to counter cognitive anchoring in
 482 rare disease diagnosis. By generating realistic “what-if” scenarios, our method surfaces overlooked
 483 conditions and guides clinicians toward alternative hypotheses. A mixed LLM- and doctor-based
 484 evaluation confirms the scientific soundness and clinical relevance of the generated cases. This
 485 framework fosters reflective diagnostic reasoning, enhances interpretability, and offers a scalable tool
 for bridging human knowledge gaps in challenging medical scenarios.

486 REPRODUCIBILITY STATEMENT

487

488 If accepted, all codes and the public dataset used in this work will be made publicly available.

489

490 REFERENCES

491

492 Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z Gajos. To trust or to think: cognitive forcing
493 functions can reduce overreliance on ai in ai-assisted decision-making. *Proceedings of the ACM*
494 on *Human-computer Interaction*, 5(CSCW1):1–21, 2021.

495

496 Xuanzhong Chen, Xiaohao Mao, Qihan Guo, Lun Wang, Shuyang Zhang, and Ting Chen. Rarebench:
497 can llms serve as rare diseases specialists? In *Proceedings of the 30th ACM SIGKDD conference*
498 on *knowledge discovery and data mining*, pp. 4850–4861, 2024.

499

500 Pat Croskerry. Achieving quality in clinical decision making: Cognitive strategies and detection of
501 bias. *Academic Emergency Medicine*, 9(11):1184–1204, 2002. doi: <https://doi.org/10.1197/aemj.9.11.1184>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1197/aemj.9.11.1184>.

502

503 Mariette Dupuy, Marie Chavent, and Remi Dubois. mdae: modified denoising autoencoder for
504 missing data imputation. *arXiv preprint arXiv:2411.12847*, 2024.

505

506 Mingqi Gao, Xinyu Hu, Xunjian Yin, Jie Ruan, Xiao Pu, and Xiaojun Wan. Llm-based nlg evaluation:
507 Current status and challenges. *Computational Linguistics*, pp. 1–28, 2025.

508

509 Robert C Griggs, Mark Batshaw, Mary Dunkle, Rashmi Gopal-Srivastava, Edward Kaye, Jeffrey
510 Krischer, Tan Nguyen, Kathleen Paulus, Peter A Merkel, et al. Clinical research for rare disease:
511 opportunities, challenges, and solutions. *Molecular genetics and metabolism*, 96(1):20–26, 2009.

512

513 Stig Hellemans, Andres Algaba, Sam Verboven, and Vincent Ginis. Flexible counterfactual explana-
514 tions with generative models. *arXiv preprint arXiv:2502.17613*, 2025.

515

516 Shalmali Joshi, Oluwasanmi Koyejo, Warut Vigitbenjaronk, Been Kim, and Joydeep Ghosh. Towards
517 realistic individual recourse and actionable explanations in black-box decision making systems.
518 *arXiv preprint arXiv:1907.09615*, 2019.

519

520 Brendan Juba and Hai S. Le. Precision-recall versus accuracy and the role of large data sets.
521 *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):4039–4048, July 2019. doi:
522 10.1609/aaai.v33i01.33014039.

523

524 Ekaterina Jussupow, Kai Spohrer, Armin Heinzl, and Joshua Gawlitza. Augmenting medical diagnosis
525 decisions? an investigation into physicians’ decision-making process with artificial intelligence.
526 *Information Systems Research*, 32(3):713–735, 2021.

527

528 Ekaterina Jussupow, Kai Spohrer, and Armin Heinzl. Radiologists’ usage of diagnostic ai systems:
529 The role of diagnostic self-efficacy for sensemaking from confirmation and disconfirmation.
530 *Business & Information Systems Engineering*, 64(3):293–309, 2022.

531

532 Sarah Lebovitz, Hila Lifshitz-Assaf, and Natalia Levina. To engage or not to engage with ai for
533 critical judgments: How professionals deal with opacity when using ai for medical diagnosis.
534 *Organization science*, 33(1):126–148, 2022.

535

536 Min Hun Lee and Chong Jun Chew. Understanding the effect of counterfactual explanations on trust
537 and reliance on ai for human-ai collaborative clinical decision making. *Proceedings of the ACM*
538 on *Human-Computer Interaction*, 7(CSCW2):1–22, 2023.

539

540 Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your diffusion
541 model is secretly a zero-shot classifier. In *Proceedings of the IEEE/CVF International Conference*
542 on *Computer Vision*, pp. 2206–2217, 2023.

543

544 Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
545 object detection. *2017 IEEE International Conference on Computer Vision (ICCV)*, pp. 2999–3007,
546 2017.

540 Francisco J Moreno-Barea, José M Jerez, and Leonardo Franco. Improving classification accuracy
 541 using data augmentation on small data sets. *Expert Systems with Applications*, 161:113696, 2020.
 542

543 Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
 544 through diverse counterfactual explanations. In *Proceedings of the 2020 conference on fairness,
 545 accountability, and transparency*, pp. 607–617, 2020.

546 Supriya Nagesh, Nina Mishra, Yonatan Naamad, James M Rehg, Mehul A Shah, and Alexei Wagner.
 547 Explaining a machine learning decision to physicians via counterfactuals. In *Conference on Health,
 548 Inference, and Learning*, pp. 556–577. PMLR, 2023.

549 Daniel Nemirovsky, Nicolas Thiebaut, Ye Xu, and Abhishek Gupta. CounterGAN: Generating
 550 counterfactuals for real-time recourse and interpretability using residual gans. In *Uncertainty in
 551 Artificial Intelligence*, pp. 1488–1497. PMLR, 2022.

553 Geoff Norman, Thierry Pelaccia, Peter Wyer, and Jonathan Sherbino. Dual process models of clinical
 554 reasoning: the central role of knowledge in diagnostic expertise. *Journal of Evaluation in Clinical
 555 Practice*, 30(5):788–796, 2024.

556 Gustavo Saposnik, Donald Redelmeier, Christian C Ruff, and Philippe N Tobler. Cognitive biases
 557 associated with medical decisions: a systematic review. *BMC medical informatics and decision
 558 making*, 16:1–14, 2016.

560 Arrigo Schieppati, Jan-Inge Henter, Erica Daina, and Anita Aperia. Why rare diseases are an
 561 important medical and social issue. *The Lancet*, 371(9629):2039–2041, 2008.

562 Eleni Straitouri, Suhas Thejaswi, and Manuel Rodriguez. Controlling counterfactual harm in decision
 563 support systems based on prediction sets. *Advances in Neural Information Processing Systems*, 37:
 564 129443–129479, 2024.

566 Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
 567 effectiveness of data in deep learning era. In *Proceedings of the IEEE international conference on
 568 computer vision*, pp. 843–852, 2017.

569 Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and biases: Biases in
 570 judgments reveal some heuristics of thinking under uncertainty. *science*, 185(4157):1124–1131,
 571 1974.

572 Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by proto-
 573 types. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*,
 574 pp. 650–665. Springer, 2021.

576 Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 577 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Neural Information Processing
 578 Systems*, 2017.

579 Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning:
 580 A review. *arXiv preprint arXiv:2010.10596*, 2(1):1, 2020.

582 Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
 583 composing robust features with denoising autoencoders. In *Proceedings of the 25th international
 584 conference on Machine learning*, pp. 1096–1103, 2008.

585 Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
 586 the black box: Automated decisions and the gdpr. *Harv. JL & Tech.*, 31:841, 2017.

588 Lei Xu, Maria Skoulikidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
 589 data using conditional gan. *Advances in neural information processing systems*, 32, 2019.

590 Wenzhuo Yang, Jia Li, Caiming Xiong, and Steven CH Hoi. Mace: An efficient model-agnostic
 591 framework for counterfactual explanation. *arXiv preprint arXiv:2205.15540*, 2022.

593

594

A RELATED WORK

596 **Counterfactual Explanations** The evolution of counterfactual explanations has transitioned from
 597 optimizing feature perturbations (Wachter et al., 2017) to frameworks that prioritize human-AI
 598 collaboration and safety. Early methods focused on generating minimal feasible changes (e.g., DiCE
 599 (Mothilal et al., 2020)), but were criticized for ignoring user-specific constraints and real-world
 600 applicability (Verma et al., 2020). More recent work, including (Lee & Chew, 2023), highlights the
 601 role of counterfactuals in mitigating cognitive biases. (Lee & Chew, 2023) showed that exposing users
 602 to hypothetical scenarios reduces overreliance on erroneous AI predictions, particularly among non-
 603 experts susceptible to confirmation bias. This aligns with broader findings in human-AI interaction,
 604 where explanations must balance interpretability with decision accuracy (Buçinca et al., 2021;
 605 Straitouri et al., 2024). A significant advancement in this area is the formalization of counterfactual
 606 harm, defined as the risk that explanations may degrade human judgment. (Straitouri et al., 2024)
 607 introduced structural causal models with conformal risk control to bound harmful outcomes in
 608 clinical systems. Their approach integrates monotonicity assumptions (e.g., “higher biomarker values
 609 correlate with worse prognosis”) to ensure explanations align with domain knowledge, thereby
 610 addressing a gap in earlier optimization-based methods (Van Looveren & Klaise, 2021). This shift
 611 reflects a growing emphasis on safety-critical metrics, moving beyond traditional criteria like sparsity
 612 and realism (Verma et al., 2020).

613 **Counterfactual Generative Models** Generative models have been introduced to generate numerical
 614 counterfactuals, enabling dynamic adaptation to user constraints. Early GAN-based approaches, such
 615 as CounterRGAN (Nemirovsky et al., 2022), enforced immutable features via residual networks
 616 but lacked flexibility for real-time customization. FCEGAN (Hellemans et al., 2025) addresses
 617 this limitation by incorporating user-defined templates and dual discriminator losses, facilitating
 618 personalized explanations in domains like loan approvals (Yang et al., 2022). These frameworks
 619 align with CTGAN’s training-by-sampling strategy (Xu et al., 2019) to handle class imbalance, a
 620 persistent challenge in financial and medical datasets. While REVISE (Joshi et al., 2019) introduced
 621 a method for generating numerical counterfactuals using arbitrary generative models, it can produce
 622 unrealistic counterfactuals, making them unsuitable for healthcare applications, and is limited by
 623 the need for multiple calls to an optimization module. Although CFVAE (Nagesh et al., 2023) was
 624 designed for generating counterfactuals in healthcare settings using variational autoencoders, it does
 625 not account for realistic challenges in healthcare, such as class imbalance in rare disease cases and
 626 missing values in datasets. To overcome these limitations, we propose a novel method designed for
 627 healthcare applications, particularly in rare disease diagnosis. Our approach generates personalized
 628 counterfactuals for clinicians while handling missing values and class imbalance in the training data.

629

B EXPERIMENTAL DATASETS

630 To evaluate our method, we consider the following three private datasets.

631 **Gitelman Syndrome** This dataset comprises real clinical records from a top hospital, focusing
 632 on Gitelman syndrome (GS), a rare autosomal recessive renal tubulopathy. The data contains 594
 633 patients, including 94 diagnosed with GS and 500 non-GS individuals. Five key diagnostic features
 634 are included: *Serum Potassium*, *Urine Potassium*, *pH*, *Bicarbonate*, and *High Blood Pressure*, with
 635 labels derived from clinical diagnoses. To emulate real-world scenarios where critical test results are
 636 missing (a common challenge in rare disease diagnosis), we retain the missing values in the original
 637 data. This enables counterfactual analysis to quantify how missing tests impact predictions, thereby
 638 guiding clinicians to prioritize specific examinations for undiagnosed cases. The dataset is split into
 639 80%-20% train-test sets for GS classification, with subsequent counterfactual perturbation analysis
 640 performed in the latent space of the complete data. It should be noted that we retained the situation of
 641 data imbalance, which is to be consistent with the situation that the incidence of rare diseases in the
 642 real world is much lower. And despite this imbalance, our model still maintained good performance.

643 **Acromegaly** This dataset includes real-world clinical records from a top hospital, focusing on
 644 acromegaly, a chronic disorder caused by excessive growth hormone (GH) secretion, typically due
 645 to pituitary somatotroph adenomas. The data contains 181 patients, comprising 88 diagnosed with
 646 acromegaly and 93 non-acromegaly controls. Three clinically significant features are incorporated:
 647 *Serum GH*, *IGH-1*, and *OGTT-GH_min*, with labels derived from clinical diagnoses. To reflect realistic

648 data incompleteness, we retain naturally occurring missing values in the original dataset and explicitly
 649 record their positions. This facilitates counterfactual generation that aligns with clinical practice,
 650 allowing clinicians to evaluate how incomplete laboratory profiles influence diagnostic predictions.
 651 The dataset is partitioned into 80%-20% training-test sets for binary classification, followed by
 652 counterfactual perturbation and interpretability analysis in the latent space of the complete data to
 653 identify critical diagnostic drivers.

654 **Hypertrophic Cardiomyopathy (HCM)** This dataset includes real-world clinical records from
 655 a top hospital, focusing on hypertrophic cardiomyopathy (HCM), an inherited cardiac disorder
 656 characterized by abnormal myocardial thickening that may lead to ventricular outflow tract obstruction,
 657 arrhythmias, and heart failure. The data contains 36 patients, including 21 HCM-diagnosed individuals
 658 and 15 individuals with another rare disease (ATTR, amyloidosis trans-thyretin related) as the control
 659 group. Eight clinically significant features are incorporated: *Asymmetric Hypertrophy*, *SAM*, *Low*
 660 *Left Ventricular Voltage*, *High Left Ventricular Voltage*, *Family History*, *Sarcomere Gene Mutation*,
 661 *TTR Gene Mutation*, and *Amyloid Deposition*. Similarly, to preserve clinical authenticity, naturally
 662 occurring missing values in the original dataset are retained and explicitly mapped for interpretability.
 663 The dataset is partitioned into 80%-20% training-test splits for HCM classification. Post-training,
 664 counterfactual perturbation and causal analysis are conducted in the latent space of the complete data
 665 to identify critical diagnostic patterns and feature interactions.

666 **Granulomatosis with Polyangiitis (GPA)** This dataset, relevant to the context of the file s13023-
 667 019-1040-6.pdf, is derived from (Chen et al., 2024) and contains real-world clinical records targeting
 668 granulomatosis with polyangiitis (GPA), which is an ANCA-associated vasculitis frequently linked
 669 to PR3-ANCA and upper-airway/pulmonary involvement. The cohort includes 93 subjects in total,
 670 comprising 11 patients diagnosed with GPA and 82 non-GPA controls that are deliberately selected
 671 for their high clinical confusability with GPA in ENT (ear, nose, and throat) and respiratory presentations;
 672 it incorporates seven clinically meaningful binary features, namely *Otitis Media*, *Hemoptysis*,
 673 *Proteinase 3 Antibody Titer*, *Elevated (PR3-ANCA)*, *Cytoplasmic ANCA (c-ANCA) Present*, *Knee*
 674 *Pain (Bilateral)*, *Peripheral Cyanosis (one month to one year)*, and *Rhinitis*, with labels derived
 675 from clinical diagnoses. The dataset is split into an 80%-20% training-test partition for binary
 676 GPA classification, with naturally occurring missing values retained and their positions mapped;
 677 subsequent to the classification task, counterfactual perturbation and interpretability analysis are
 678 conducted in the latent space of the completed data to identify key diagnostic drivers and interactions
 679 between symptoms and serological indicators.

680 C RATIONALE FOR CHOOSING MASKED DENOISING AUTOENCODER 681 (mDAE): A COMPARISON WITH OTHER AUTOENCODER VARIANTS

682 To clarify why the Masked Denoising Autoencoder (mDAE) is selected for our framework rather
 683 than other autoencoder variants, we conduct a comparative analysis of Deterministic Autoencoder
 684 (AE), Variational Autoencoder (VAE), Denoising Autoencoder (DAE), and their derivatives, with a
 685 focus on their suitability for rare disease diagnostic scenarios:

686 **Deterministic Autoencoder (AE)** AEs lack mechanisms to handle noise or missing values, which
 687 are common in rare disease data. They overfit to sparse inputs, producing unreliable latent representations
 688 and counterfactuals, making them unsuitable.

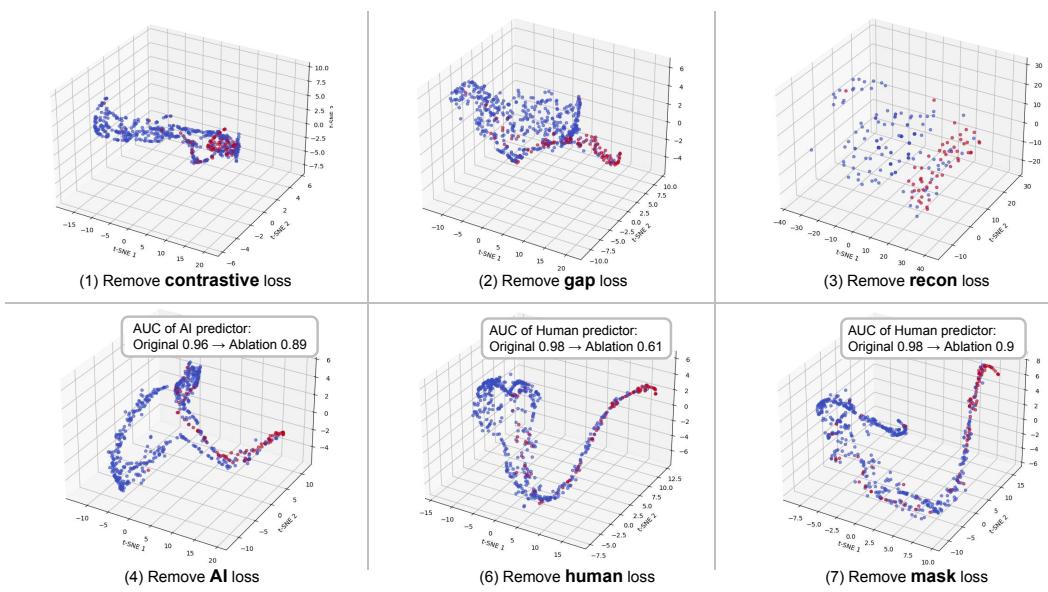
689 **Variational Autoencoder (VAE)** VAEs, as generative models, center on modeling the joint distribution
 690 information. Furthermore, their inherent stochasticity in latent spaces hinders precise, targeted
 691 counterfactuals needed to correct cognitive anchoring, often generating implausible clinical values
 692 and propagating biases via heuristic imputation of missing data, which limits clinical utility.

693 **Denoising Autoencoder (DAE) and Masked Denoising Autoencoder (mDAE)** DAEs are ex-
 694 plicitly designed to process corrupted or incomplete inputs, with a focus on modeling $p(\text{missing } \mathbf{x} \mid$
 695 $\text{observed } \mathbf{x})$. Standard DAEs enhance noise robustness but lack dedicated handling of missing data (a
 696 common challenge in rare disease), **a gap our masked DAE (mDAE) fills** by explicitly training on
 697 partially observed data via sparse masks to reconstruct complete profiles. It generates deterministic

702 latents for precise control over counterfactual perturbations and enforces physiological constraints to
 703 ensure clinically valid outputs in rare disease scenarios.
 704

705 D COUNTERFACTUAL SAMPLE GENERATION

707 To address the challenges and diagnostic needs in rare disease medicine, our model supports counterfactual
 708 analysis across diverse scenarios. In this section, we present three representative and
 709 practically relevant scenarios for detailed evaluation.
 710


711 **Scenario 1: Feature Completion for Low-Confidence Predictions:** When a patient’s original input
 712 features have missing values, overlap significantly with common disease characteristics, and yield
 713 low-confidence AI predictions for common diagnoses, our model generates counterfactual samples to
 714 address missing features. This refines clinical judgments and guides decision-making.

715 **Scenario 2: AI-Human Prediction Discrepancy Resolution:** In situations where AI predictions
 716 diverge from clinician diagnoses, our model produces counterfactual “flipped” samples to highlight
 717 the underlying differences in decision-making logic. These samples provide interpretable evidence
 718 that helps clinicians reconcile inconsistent conclusions.

719 **Scenario 3: Uncertainty-Driven Alternative Diagnoses:** By perturbing feature vectors in latent
 720 spaces where clinicians exhibit maximal diagnostic uncertainty, our model generates alternative
 721 diagnosis lists. This anchors cognitive bias correction and supports robust differential diagnosis.
 722

723 E LATENT SPACE VISUALIZATION WITH ABLATION STUDY

725 We conduct an ablation study to evaluate the necessity of each loss term in our model’s total loss
 726 function. Specifically, we visualize the distribution of the latent space when individually removing
 727 each loss component during fine-tuning (prior to fine-tuning, each component of our model, including
 728 DAE, AI predictor, mask net and human predictor, is first trained in stages with its corresponding loss
 729 function). As shown in Figure. 5, Our findings indicate that the removal of the contrastive loss, gap
 730 loss, or reconstruction loss degrades the quality of the latent space representation, thereby impairing
 731 the model’s ability to discriminate between similar samples.

752 Figure 5: Ablation study: loss function removal impact on latent space and model performance.
 753

754 In contrast, removal of the AI prediction loss, AI prediction loss or mask regularization loss impairs
 755 the performance of the AI predictor or human predictor, as depicted by the AUC changes in the figure,
 underscoring the indispensable role of each loss component in maintaining model effectiveness.

756 **F MODEL ARCHITECTURE DETAILS**
757758 **F.1 DAE ARCHITECTURES**
759760 The Denoising Autoencoder (DAE) architecture captures clinical feature mappings through an
761 Encoder and Decoder. The Encoder uses ELU activations to project raw features into a 32-dimensional
762 latent space, while the Decoder reconstructs inputs from this space. Categorical features are embedded
763 via a dedicated layer, and the design supports robust learning from incomplete data. Take the Gitelman
764 syndrome dataset as an example, key components are detailed in Table 3, which outlines layer
765 dimensions and functional roles.766 **Table 3: DAE architecture configuration**
767768
769

Component	Layers	Dimension	Functional Description
Encoder	Input Layer	5	Raw clinical features
	Hidden Layer	128	ELU-activated transformation: $h = \text{ELU}(Wx + b)$
	Latent Space	32	Bottleneck representation: z
	Embedding	8	Categorical feature encoding: $\text{onehot}(x)W_e$
Decoder	Input Layer	32	Latent space input: z
	Hidden Layer	128	Feature decoding: $h_d = \text{ELU}(W_dz + b_d)$
	Output Layer	5	Feature reconstruction: \hat{x}

778 **F.2 PREDICTOR ARCHITECTURES**
779780 The AI and human predictors, along with the attention mask network, are designed to explicitly
781 model the divergence between machine and clinician reasoning. The AI predictor operates in the
782 full latent space to generate ground truth-aligned diagnoses, while the human predictor uses a sparse
783 attention mask (generated by the mask network) to simulate cognitive constraints in clinical decision
784 making. Table 4 outlines the architecture details, including layer dimensions, activation functions,
785 and the attention mechanisms. This modular design supports interpretable counterfactual generation
786 by isolating human-AI cognitive gaps in the latent space.
787788 **Table 4: Predictor Architectures Configuration**
789790
791

Component	Layers	Dim/Num of Heads	Description
AI Predictor	Input Layer	32	ELU-activated projection into hidden space
	Hidden Layer	128	ELU transformation of latent features
	Output Layer	2	Produces class logits for prediction
Mask Network	Input Layer	5	ELU-activated linear embedding
	Attention Layer	4	Multi-head self-attention for contextual feature interaction
	Output Layer	32	Generates masking coefficients
Human Predictor	Input Layer	32	Takes the masked latent representation as input
	Hidden Layer	128	ELU transformation of masked latent space
	Output Layer	2	Produces class logits aligned with experts

802 **G TRAINING CONFIGURATION DETAILS**
803804 **G.1 HYPERPARAMETER AND LOSS WEIGHT SELECTION**
805806 All hyperparameters and loss weights were selected via a systematic grid search confined strictly to
807 the training set, ensuring that the independent 20% test set remained untouched throughout model
808 development and thereby preventing data leakage.
809

810 Within the 80% training set, we adopted a hold-out validation strategy: 70% of the data were used
 811 for model fitting, and the remaining 30% served as a validation subset to evaluate hyperparameter
 812 configurations.

813

- 814 • **Learning rate** was searched over the range $[10^{-5}, 10^{-3}]$.
- 815
- 816 • **Most loss function weights** were searched over a clinically relevant range of $[0.1, 2.0]$.
- 817
- 818 • **Mask sparsity loss weight**, due to its role as a regularization term requiring finer control to
 819 balance sparsity constraints and model performance, was searched over the narrower range
 820 of $[10^{-5}, 0.1]$.
- 821

822

823 Searches were guided by validation AUC, with priority given to configurations demonstrating stable
 824 performance (AUC variance < 0.02) across three random seeds. The final hyperparameters and loss
 825 weights were chosen based on the best validation AUC while ensuring model outputs remained within
 826 clinically plausible ranges.

827

828 G.2 STAGE-WISE TRAINING DETAILS

829

830 The model is trained in four stages: DAE warm-up, AI predictor training, joint human predictor and
 831 mask network training, and fine-tuning. Table 5 specifies the learning rate schedules, batch sizes, and
 832 regularization strategies (e.g., gradient clipping) for each phase on the Gitelman syndrome dataset.
 833 For instance, the DAE warm-up phase employs learning rate annealing and early stopping to stabilize
 834 latent space initialization. This staged approach balances model complexity and training stability
 835 while ensuring task-specific optimization.

836

837

838 Table 5: Progressive training strategy

839

840 Phase	841 Components	842 Learning Rate	843 Key Details
844 DAE Train	845 Encoder / Decoder	846 1e-4	847 • LR annealing 848 • Early stop 849 • Gradient clip ≤ 1.0 850 • Batch size 16
851 AI Predictor Train	852 AI Predictor Network	853 1e-4	854 • LR annealing 855 • Early stop 856 • Gradient clip ≤ 1.0 857 • Batch size 16
858 Human Predictor + Mask Net Train	859 Human Predictor Network, 860 Mask Network	861 1e-4	862 • LR annealing 863 • Early stop 864 • Gradient clip ≤ 1.0 865 • Batch size 16
866 Fine-Tuning	867 Full Network	868 1e-4	869 • Gradient clip ≤ 1.0 870 • Batch size 16

871

872 G.3 LOSS FUNCTION WEIGHT IN FINE-TUNING STAGE

873

874 The total training loss combines multiple objectives, including reconstruction, classification, con-
 875 trastive separation, and cognitive gap minimization. Table 6 defines the weights assigned to each
 876 loss component on the Gitelman syndrome dataset, emphasizing the balance between feature recon-
 877 struction (dominant in early stages) and rare/common disease separability (enforced via contrastive
 878 loss).

864
865
866 Table 6: Loss Function Specification
867
868
869
870
871
872

Loss Type	Weight	Function
Reconstruction	1	Reconstruct input features
AI	1	Maximize AI prediction accuracy
Human	1	Align with human diagnoses
Mask	0.001	Promote sparse attention masks
Contrastive	1.5	Separate rare/common diseases
Gap	1.5	Reduce human-AI attention gaps

873
874
875 H DETAILS OF PROMPTING LLM AND COUNTERFACTUAL EVALUATIONS
876
877

Figure. 6 illustrates the operational mechanism of prompting the LLM and LLM response across three counterfactual scenarios. For each scenario, a representative case is selected: the first from the acromegaly dataset, and the latter two from the Gitelman dataset. This visual depiction not only offers profound insights into the framework’s functionality but also provides a practical reference for clinicians and researchers, underscoring the significance of counterfactual reasoning in enhancing the differential diagnosis of rare diseases.

884
885 I BROADER IMPACT AND LIMITATION
886

887 This study aims to address the underdiagnosis of rare diseases caused by cognitive biases in clinical
888 decision-making. Our framework helps clinicians consider rare conditions more effectively through
889 generative counterfactuals, potentially reducing diagnostic delays and improving patient outcomes,
890 especially in underserved areas with limited specialized expertise. By modeling the cognitive gaps
891 between humans and AI, it promotes transparent and bias-aware collaboration, setting a practical
892 example for AI applications in healthcare and other high-stakes fields. Potential risks include
893 the possibility of over-relying on AI, which we mitigate by designing interpretable counterfactual
894 explanations to supplement, rather than replace, clinical judgment.

895 One key limitation of this study stems from the long-standing challenge of rare disease data acquisition
896 and sharing, a core bottleneck in rare disease research. Unlike common disease domains with
897 accessible public datasets, there is a severe scarcity of open, high-quality data resources for rare
898 diseases. To address this gap, our team invested over a year in close collaboration with a top-tier
899 hospital, engaging multiple departments and relying on substantial clinician effort—to construct
900 three private rare disease datasets tailored to this research. However, due to strict ethical and privacy
901 constraints, these datasets cannot be fully made public. To alleviate this limitation in the future,
902 we aim to develop and release a rare disease data simulator: this tool will generate synthetic data
903 with characteristics consistent with real rare disease cases, supporting the reproducibility of related
904 research while upholding privacy protection requirements.

905
906 J THE USE OF LARGE LANGUAGE MODELS (LLMs)
907

908 Large language models (LLMs) were used in this work exclusively for polishing the writing and
909 correcting grammar errors. All substantive research ideas, methodological design, and scientific
910 conclusions presented in this paper were independently developed and validated by the authors.
911

912
913 K ACKNOWLEDGMENTS
914

915 We would like to thank the doctors from various departments of the Top Hospital for their efforts
916 in providing the rare disease dataset, and for evaluating and offering valuable suggestions on our
917 counterfactual results.

918	System	Assume you are a specialist physician (nephrologist/endocrinologist/cardiologist) analyzing a case of [Gitelman syndrome/Acromegaly/Hypertrophic Cardiomyopathy (HCM)].		
919		Background Information: The counterfactual changes in clinical indicators in the following case are generated by perturbing the model along the direction of greatest diagnostic uncertainty as predicted by the physician. This method aims to provide a data-driven alternative perspective that may differ from the initial clinical judgment, helping to correct cognitive anchoring and enabling a more comprehensive assessment of rare diseases.		
920		The goal is to explain the key diagnostic logic based on the provided changes in indicators and diagnostic probabilities.		
921		Important Note for HCM: The HCM-related indicators (e.g., asymmetric hypertrophy, left ventricular voltage, family history, etc.) are binary variables (0 or 1), where 0 typically indicates negative/normal and 1 indicates positive/abnormal. These are not continuous physiological measurements.		
922		The final evaluation should include: Summary of Clinical Significance: Summarize the overall impact of key indicator changes on the diagnosis of [Gitelman syndrome/Acromegaly/HCM]. Explanation of Probability Changes: Summarize the main reasons for the changes in diagnostic probabilities. Clinical Value of 'nan' Perturbations (if applicable): Summarize the significance of perturbing 'nan' (missing) values for prompting further tests and diagnosing rare diseases. Value of Counterfactual Simulation: Briefly describe, based on its generation mechanism (perturbing in the direction of greatest uncertainty to correct cognitive anchoring), how this simulation helps clinical diagnosis, especially in avoiding premature exclusion of rare diseases.		
923	User	The key indicator changes for case {i+1} are as follows, where the original value of 'nan' indicates that the test was not performed: [Disease-specific indicators, e.g., for Gitelman: Urine Potassium, Bicarbonate, Serum Potassium, High Blood Pressure, pH; for Acromegaly: IGF-1, Serum GH, OGTT-GH; for HCM: Asymmetric Hypertrophy, Low/High Left Ventricular Voltage, Family History, Amyloid Deposition, Sarcomere Gene Mutation, LVOTO, SAM, TTR Gene Mutation] Diagnostic probability changes: Original (Common Disease/Rare Disease): {p_common}/{p_rare} After Perturbation (Common Disease/Rare Disease): {p_common_perturb}/{p_rare_perturb}		
924		Please provide a detailed process analysis and result evaluation based on the above data and your medical knowledge.		
925	LLM	<p>Case 1: Initially relying solely on IGF-1 and basal GH levels may not clarify the diagnosis (both may be at critical values or nonspecific), leading to similar probabilities for the rare disease (acromegaly) and common diseases (e.g., physiological GH fluctuations, other metabolic disorders). After perturbation, the OGTT-GH suppression test result directly confirms the diagnosis. The failure of GH to suppress during OGTT—a key pathological feature of acromegaly—exhibits extremely high specificity, effectively ruling out other common diseases. Omission of the critical OGTT-GH suppression test introduces diagnostic uncertainty and may lead to missed acromegaly (which requires OGTT for confirmation). The perturbed scenario highlights the irreplaceable role of this test.</p> <p>This simulation validates the impact of prioritizing key tests in rare disease diagnosis: for acromegaly, IGF-1 and basal GH provide only screening clues, while the OGTT-GH suppression test is the gold standard for confirmation. It prompts clinicians that if initial tests (IGF-1/GH) are abnormal but nonspecific, OGTT must be mandated to avoid diagnostic delays. By contrasting probability changes before and after perturbation, it reinforces the clinical logic that "rare diseases require specific tests," optimizing diagnostic workflow efficiency.</p> <p>Conclusion**: Abnormal results from the OGTT-GH suppression test are decisive evidence for acromegaly diagnosis. Their absence leads to diagnostic ambiguity, while supplementation significantly improves diagnostic specificity. Counterfactual simulation reveals the central role of key tests in rare disease differentiation, correcting clinicians' cognitive gaps.</p>	<p>Case 2: In the original data, clinicians may exclude Gitelman syndrome based solely on normal serum potassium and nonsignificant urine potassium, while AI can earlier identify the rare disease pattern of metabolic alkalosis mismatched with urine potassium excretion, unaffected by the "hypokalemia anchoring effect." After counterfactual perturbation, a bicarbonate level of 38 mmol/L and pH 7.6 clearly indicate metabolic alkalosis, prompting clinicians to reassess the possibility of renal tubular dysfunction.</p> <p>Value of Counterfactual Simulation: Overcoming Uncertainty: Clinicians initially believed "normal serum potassium rules out Gitelman syndrome," but counterfactual data drive re-evaluation of diagnostic logic.</p> <p>Correcting Cognitive Anchoring: The simulation targets clinicians' decision blind spots (e.g., undetected HCO₃⁻), pushing them to shift from a "common disease" framework to complex pathophysiological analysis.</p> <p>Educational Significance: Reminds clinicians to screen for Gitelman syndrome (e.g., via genetic testing or magnesium/calcium urine tests) when acid-base imbalance exists despite normal serum potassium.</p> <p>Clinical Significance: Highlights the need for complete blood gas and electrolyte tests in hypokalemia/alkalosis patients to avoid misdiagnosis due to missed key indicators.</p> <p>Conclusion**: This case demonstrates that counterfactual simulation, by supplementing critical evidence of metabolic alkalosis, helps clinicians overcome cognitive limitations of "hypokalemia" and "common disease priority," enabling more comprehensive evaluation of Gitelman syndrome. It underscores the tool's importance in rare disease differential diagnosis.</p>	<p>Case 3: The core feature of Gitelman syndrome is renal potassium wasting. Elevated urine potassium (>20 mmol/24h), when combined with hypokalemia (serum potassium 2.2 mmol/L), strongly supports renal tubular dysfunction (e.g., distal tubule NCC channel inactivation), distinguishing it from gastrointestinal potassium loss or inadequate intake. Metabolic alkalosis, a typical manifestation, is driven by renal hydrogen ion loss (via Na⁺-H⁺ exchange compensating for hypovolemia) and renin-angiotensin-aldosterone system (RAAS) activation related to hypomagnesemia. In the original diagnosis, missing urine potassium and HCO₃⁻ measurements may lead clinicians to default to "non-renal potassium loss" or "compensatory alkalosis," favoring common diseases (e.g., diarrhea, diuretic abuse). After perturbation, significantly elevated urine potassium and HCO₃⁻ directly indicate renal tubular dysfunction, consistent with Gitelman pathophysiology. Persistent hypokalemia (2.2 mmol/L) alongside elevated urine potassium creates a "hypokalemia-hyperuricosuria" paradox, a key marker distinguishing Gitelman syndrome from non-renal potassium loss.</p> <p>Value of Counterfactual Simulation: Cognitive Anchoring Correction: Perturbation targets the most uncertain indicators (undetected urine potassium and HCO₃⁻), breaking the "common disease first" mindset through simulated abnormal values and forcing rare disease reassessment.</p> <p>Avoiding Premature Rare Disease Exclusion: Clinicians may underestimate Gitelman syndrome due to incomplete testing or assuming "nan values indicate normalcy."</p> <p>Counterfactual simulation, via data-driven abnormal values, highlights the diagnostic weight of key indicators, prompting early rare disease differential diagnosis.</p> <p>Conclusion**: This case, by perturbing "nan" values of urine potassium and HCO₃⁻, reveals the critical paradox of Gitelman syndrome (hypokalemia + hyperuricosuria + metabolic alkalosis + no hypertension), significantly increasing its diagnostic probability. The value lies in quantifying the potential impact of undetected indicators, assisting clinicians in overcoming cognitive limitations and systematically improving differential diagnosis processes.</p>
926	Description	<p>In the presented cases:</p> <ol style="list-style-type: none"> 1. The true labels represent the actual disease status recorded in clinical practice. 2. For each indicator, the value before the arrow is the patient's actual test result (where "nan" indicates that the patient did not undergo that particular test), and the value after the arrow is the generated counterfactual indicator result. For missing indicators, the Δ change is calculated as the difference between the mean value of that indicator in the dataset and the counterfactual data. For other indicators, the Δ change is calculated as the difference between the original data and the counterfactual data. 3. The changes in prediction probabilities are obtained from a trained accurate AI model. The higher the score, the greater the likelihood. The cases respectively demonstrate the AI prediction results for the patient's original tests and the AI prediction results under counterfactual scenarios. Taking the first case below as an example: <p>When the original tests were conducted, the model predicted the probability of a common disease to be 0.7770 and that of a rare disease to be 0.2230. After counterfactual perturbation, the probability of a common disease dropped sharply to 0.1297, while the probability of a rare disease increased to 0.8703, intuitively showing the reversing effect of supplementing key indicators on the diagnostic tendency. This case indicates that the reasonable supplementation of key missing indicators can significantly change the AI diagnostic tendency through counterfactual reasoning, providing a quantitative reference for clinicians to identify potential rare diseases.</p>		

Figure 6: Prompting LLM and LLM response under three counterfactual scenarios

L COMPUTING INFRASTRUCTURE

All synthetic data experiments are performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz, 227 Gigabyte memory.