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ABSTRACT

Black-box prompt learning has proven to be an effective approach for customiz-
ing large language models (LLMs) offered as services to address various down-
stream tasks. Within this domain, policy gradient-based methods have garnered
substantial attention as a prominent approach for learning discrete prompts. How-
ever, the highly imbalanced data distribution in the real world limits the appli-
cability of such approaches by influencing LLMs’ tendency to favor certain cat-
egories. To tackle the challenge posed by imbalanced data, this paper pioneers
the integration of pairwise AUC loss into the policy gradient optimization of dis-
crete text prompts and proposes learning discrete prompts with doubly policy
gradient. Unfortunately, the doubly policy gradient estimation suffers from two
variance components, resulting in unstable optimization. As a further improve-
ment, we propose (1) a novel unbiased variance-reduced doubly policy gradient
estimator and (2) incorporating the STORM variance reduction technique. Ulti-
mately, we introduce a novel momentum-based discrete prompt learning method
with doubly policy gradient (mDP-DPG). Crucially, we provide theoretical con-
vergence guarantees for mDP-DPG within standard frameworks. The experimen-
tal results show that mDP-DPG surpasses baseline approaches across diverse im-
balanced text classification datasets, emphasizing the advantages of our proposed
approach for tackling data imbalance. Our code is available at the following URL:
https://anonymous.4open.science/r/DPDPG-1ECB.

1 INTRODUCTION

Large language models (LLMs) have achieved milestone accomplishments on a wide range of nat-
ural language processing (NLP) tasks (Brown et al., 2020; Devlin et al., 2018; Raffel et al., 2020).
However, the increasing parameters pose challenges for tuning. Prompting has emerged as the
parameter-efficient paradigm for adapting LLMs to specific NLP tasks (Li & Liang, 2021; Lester
et al., 2021; Liu et al., 2023). Well-crafted prompts can effectively enhance the performance of
LLMs on various downstream tasks instead of retraining. Recently, considering that most exist-
ing LLMs, such as GPT-4, only provide cloud-based API services, researchers have introduced the
Language-Model-as-a-Service scenario, where users are limited to interacting with LLMs solely
through APIs, creating a black-box setting (Sun et al., 2022b;a). Black-box prompt learning has
been an effective strategy for adapting LLMs to downstream tasks due to the opacity of black-box
LLMs (Deng et al., 2022; Prasad et al., 2022; Diao et al., 2022).

Currently, much attention has been focused on black-box discrete prompt learning, with policy
gradient-based methods becoming highly influential (Diao et al., 2022; Lin et al., 2023). Within
these investigations, discrete prompt learning is treated as a distribution optimization problem, using
policy gradient to update the prompt distribution and overcome the issue of inaccessible gradients in
black-box LLMs. However, these efforts focus solely on vanilla text classification without any addi-
tional handling of imbalanced data. These imply that adapting them to address the class imbalance
problem to bridge the gap between LLM services and downstream tasks while providing theoretical
convergence guarantees remains a significant challenge.
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Departing from idealized situations, real-world data usually features severe class distribution imbal-
ances, where certain minority classes are markedly less prevalent than majority classes in classifi-
cation problems (Henning et al., 2022). For example, non-hateful tweets are more prevalent than
hateful ones on Twitter (Waseem & Hovy, 2016), and the positive and negative reviews on Amazon
are also imbalanced. Specifically, the ratio of negative to positive movie reviews is approximately
6.24, while it is as high as 9.75 for book reviews (Gao et al., 2021).

Simultaneously, imbalanced class distributions hinder prompt learning by making LLMs more likely
to prioritize well-represented classes, which in turn lowers prompt performance. Dong et al. (2022)
initially identified this phenomenon within the computer vision (CV) domain, noting that prompts
could benefit models on long-tail data, but their performance still lagged far behind the state-of-
the-art. Similarly, class imbalance issues also impact the NLP black-box prompt learning. When
the downstream task is a text classification problem, cross-entropy is typically chosen to build the
objective function. However, this becomes unreasonable in the presence of imbalanced data since
the minority class data have little influence, leading to the aforementioned issues (Liu et al., 2020).

A common approach in previous research for addressing imbalanced class distributions is to use
AUC (Area Under the ROC Curve) maximization as the optimization objective. The AUC is de-
fined as the probability that the prediction score for a positive example exceeds that for a negative
example in statistical terms (Hanley & McNeil, 1982; 1983), and AUC maximization is proposed
to address the imbalanced data problem (Zhao et al., 2011; Yuan et al., 2020). However, high
variance emerges as a major challenge in the learning process of prompts in two respects. Firstly,
the sampling of prompts from the prompt distribution introduces inherent randomness, making the
optimization process unstable. Secondly, sampling both positive and negative examples for AUC
maximization will also introduce high variance. In scenarios with imbalanced classes, the sampling
of data for training not only amplifies the disparity between majority and minority classes but also
increases the variance of gradient estimation during optimization. This duality of variance poses sig-
nificant difficulties in effectively learning prompts that generalize well across all classes, particularly
in settings with highly imbalanced data.

In order to tackle the above problems, we propose a novel momentum-based discrete prompt learn-
ing method with doubly policy gradient (mDP-DPG) that utilizes AUC maximization to adapt
LLMs to downstream tasks with imbalanced data. By minimizing AUC’s pairwise surrogate loss us-
ing policy gradient, mDP-DPG prevents prompts from being degraded by the majority class, thereby
preserving performance. Moreover, due to the doubly sampling of examples during gradient estima-
tion, we refer to the policy gradient in mDP-DPG as the doubly sampled policy gradient, abbreviated
as doubly policy gradient. We further propose an unbiased, variance-reduced doubly policy gradi-
ent estimator (VR-DPGE) to improve convergence in practice. While the estimator suffers from
variance, stochastic sampling of mini-batches from the dataset also introduces variance into gradi-
ent estimation. To reduce the dual variance, we introduce the momentum-based variance reduction
strategy STORM (Cutkosky & Orabona, 2019; Huang et al., 2020). STORM does not rely on con-
structing variance-reduced gradients through giant batch sizes, as SVRG does (Johnson & Zhang,
2013; Xiao & Zhang, 2014). Instead, it employs a variant of momentum, making it can be seam-
lessly integrated into the optimization of pairwise AUC loss for variance reduction. Additionally,
unlike other policy gradient-based methods for black-box discrete prompt learning, mDP-DPG has
rigorous theoretical convergence guarantees.

The main contributions of this work are summarized as follows:

1. We propose a novel momentum-based discrete prompt learning method named mDP-DPG,
which introduces VR-DPGE and STROM strategy to address challenges posed by dual
variance. Using pairwise AUC loss as objective function, mDP-DPG preserves prompts’
performance in downstream tasks with class imbalance. As far as we know, we are the first
to discuss how to address imbalanced data in, NLP prompt learning.

2. We establish rigorous theoretical analysis of the mDP-DPG. Specifically, we provide proof
that mDP-DPG achieves an oracle complexity of O(1/ϵ3), validating its effectiveness in
optimizing the pairwise AUC loss for black-box prompt learning in the context of imbal-
anced data.

3. Numerous experimental results on RoBERTa-large, GPT2-XL, and Llmma3 show that our
method achieve state-of-the-art across various class imbalance datasets, demonstrating the
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effectiveness of prompts learned through mDP-DPG on imbalanced data. Furthermore,
our research findings confirm that imbalanced data negatively impacts prompt learning,
emphasizing the importance of imbalanced prompt learning.

2 RELATED WORKS

Black-Box Prompt Learning. There is a significant amount of research focusing on black-box
prompt learning, which has achieved promising results in NLP tasks (Brown et al., 2020; Prasad
et al., 2022; Han et al., 2023; Hou et al., 2023). Prompts come in two formats: continuous and
discrete. The continuous prompt is a series of vectors, which concatenates with token embeddings.
Sun et al. (2022b) propose the black-box tuning (BBT) framework, which optimizes prompts in
low-dimensional subspace and obtains continuous prompts in the original space through a random
matrix. Sun et al. (2022a) present an improved version of BBT that adds continuous prompt prefixes
to each hidden layer of LLM. Zheng et al. (2023) point out the inappropriateness of random matric
in Sun et al. (2022b) and leverage meta-learning to identify the optimal subspace. On the other hand,
the discrete prompt is a sequence of tokens, which is more appropriate for real applications. Deng
et al. (2022) formulate discrete prompt learning as a reinforcement learning problem and generate
discrete prompts using policy network. Diao et al. (2022) utilize policy gradients to optimize the
distribution of the discrete prompt. Zhao et al. (2023) introduce a genetic algorithm to search for
discrete prompts guided by LLMs predictive probabilities.

AUC Maximization. AUC maximization is a machine learning paradigm aimed at maximizing the
AUC score of models. A substantial amount of research has been dedicated to this topic, integrating
it with various contexts such as supervised learning (Joachims, 2005), semi-supervised learning
(Iwata et al., 2020), online learning (Gao et al., 2016), and federated learning (Yuan et al., 2021).
Many algorithms frequently minimize the pairwise surrogate loss for AUC maximization. Zhao
et al. (2011) propose two online AUC maximization algorithms, which utilize the reservoir sampling
technique to avoid memorizing all training samples. Gao et al. (2016) focus on the challenge of
optimizing with only a single pass of training samples and propose a regression-based algorithm
using square surrogate loss. The issue of the pairwise surrogate loss lies in the necessity to construct
sample pairs from opposite classes. To overcome this challenge, Ying et al. (2016) demonstrate the
equivalence between AUC optimization and the saddle point problem. Liu et al. (2020) extend the
aforementioned equivalence to the case of deep neural network models.

Variance Reduction. In optimization problems, variance reduction is a frequently utilized improve-
ment method (Cutkosky & Orabona, 2019). Numerous variance reduction techniques necessitate
setting gradient checkpoints and calculating gradients at these checkpoints with giant batch sizes
Johnson & Zhang (2013); Fang et al. (2018); Zhou et al. (2018). Cutkosky & Orabona (2019) pro-
pose a variance reduction technique based on the momentum variant, termed STORM, which facil-
itates variance reduction in non-convex optimization without giant batch sizes. Huang et al. (2020)
propose a similar variance reduction technique for zero-order optimization to accelerate black-box
minimization and minimax optimization problems.

3 METHODOLOGY

In this section, we first present the problem formulation in Section 3.1, where we define discrete
prompt learning with the pairwise AUC loss as the objective function. Subsequently, in Sections
3.2 and 3.3, we discuss how to address the challenges posed by the dual variance in optimization.
Specifically, in Section 3.2, we present VR-DPGE to reduce the variance introduced by prompt
sampling in the doubly policy gradient estimation. In Section 3.3, we introduce a momentum-based
variance reduction technique to reduce the dual variance.

Notations. Let D ≜ {(XXX1, y1), (XXX2, y2), . . . , (XXXM , yM )} denote a set of training data with cardi-
nality M . For any m ∈ {1, 2, . . . ,M}, XXXm represents an input training example (e.g., a piece of
text), and ym ∈ {−1, 1} denotes its corresponding label. We use T (·) to represent a tokenizer
that converts an input text to a token vector, and Sm ≜ T (XXXm) as the m-th token vector. Let
D̃ ≜ {(S1, y1), (S2, y2), . . . , (SM , yM )} be the set of tuples composed of token vectors and labels.
Discrete prompt is defined as a token vector with n discrete tokens T = [t1, t2, . . . , tn]. For any
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i ∈ {1, 2, . . . , n}, the word ti ∈ W andW is the set consisting of tokens from a given vocabulary.
Let S ∈ {S1,S2, . . . ,SM} denotes any token vectors, then the user query to a black-box LLM h(·)
is denoted as h([T,S]), i.e. h([T,S]) denote the prediction of the LLM h(·) on an input [T,S]. For
p ∈ N∗, 1p denotes the vector of size p composed only of ones.

3.1 PROBLEM STATEMENT

Discrete Prompt Learning. Discrete prompt learning aims to learn a discrete textual prompt con-
sisting of n tokens, which is a more pragmatic scenario. Diao et al. (2022) formulate discrete
prompt learning as a distribution optimization problem. Specifically, they assume each token of the
prompt is sampled from the independent categorical distribution ti ∼ Cat(pi), where pi ∈ C and
C = {x : ∥x∥1 = 1, 0 ≤ x ≤ 1}. The component pi,j denotes the probability of sampling the j-th
token from the vocabularyW . By denoting C the subset of R|W|×n such that for any p ∈ C (where
pi denotes a column of p), pi ∈ C, the objective function during optimization is as follows:

min
p∈C

E(S,y)ET[ℓ(h([T,S]), y)] = min
p∈C

E(S,y)ΣTℓ(h([T,S]), y)P (T) (1)

where ℓ(·) is the loss function that evaluates the prediction of the black-box LLM h(·) based on the
ground truth label y. P (T) =

∏n
i=1 P (ti) is the joint probability of the discrete prompt T. To avoid

confusion, we refer to pi as the token distribution and the joint distribution p of n token distributions
as the prompt distribution.

AUC maximization. AUC is a common metric for evaluating model performance in imbalanced
binary classification problems and AUC maximization is a form of pairwise learning that aims to
maximize the AUC score during the model training. By employing the square loss as the surro-
gate, which is statistically consistent with AUC (Gao & Zhou, 2012), AUC maximization can be
formulated as

argmin
f

E[(1− f(x) + f(x′))2|y = +1, y′ = −1] (2)

Discrete Prompt Learning with AUC maximization. We propose employing pairwise AUC loss
for black-box discrete prompt learning to address the challenge posed by class imbalance in prompt
learning. Therefore, we can formulate the objective of black-box prompt learning that minimizes
the expected risk L(p) as follows

p∗ = argmin
p∈C
L(p) = argmin

p∈C
E(S,y)E(S′,y′)ETL(h([T, ·]), (S, y), (S′, y′)) (3)

where L(h([T, ·]), (S, y), (S′, y′)) is the pairwise AUC square loss given a discrete prompt T and a
pair of samples (S, y), (S′, y′).

L(h([T, ·]), (S, y), (S′, y′)) =

{
(1− h([T,S]) + h([T,S′]))2, if y = +1 and y′ = −1,
0, otherwise.

(4)

In real-world applications, instead of minimizing the expected risk L(p), we consider an indepen-
dent and identically distributed training set D̃ and the empirical risk LM (p) of the pairwise loss
function on D̃ is as follows

p∗ = argmin
p∈C
LM (p) = argmin

p∈C

1

M(M − 1)
Σi,j∈D̃,i̸=j ETL(h([T, ·]), (Si, yi), (Sj , yj))︸ ︷︷ ︸

Fi,j(p)

(5)

3.2 REDUCE VARIANCE IN PROMPT SAMPLING WITH VR-DPGE

Now black-box discrete prompt learning with AUC maximization transforms into the task of solving
the black-box pairwise learning problem. Given a pair of samples (Si, yi) and (Sj , yj), we can
formulate doubly stochastic gradient ∇pFi,j(p) as equation 6 with the aid of the policy gradient
estimator for solving problem 5. Due to the double sampling, we refer to equation 6 doubly sampled
policy gradient, abbreviated as doubly policy gradient.

∇pFi,j(p) =∇pETL(h([T, ·]), (Si, yi), (Sj , yj))

=ΣTL(h([T, ·]), (Si, yi), (Sj , yj))∇pP (T)

=ΣTL(h([T, ·]), (Si, yi), (Sj , yj))P (T)∇plogP (T)

=ETL(h([T, ·]), (Si, yi), (Sj , yj))∇plogP (T)

(6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

BLACK-BOX LLM API

Doubly Policy Gradient

sa
m

pl
in

g

Prompt
Vo

ca
bu

la
ry

Imbalanced Data

Negative Positive

sampling

reduceenhence

variance

Figure 1: Overview of mDP-DPG. In each iteration, the positive and negative example batches are
concatenated with the sampled prompts and input into the LLM to obtain predictions. Spos

t+1 and
Sneg
t+1 represent the sets of sampled positive and negative examples in the t-th iteration, respectively.

Tt are prompts sampled from distribution pt

where P (T) =
∏n

i=1 P (ti) denotes the joint probability of the prompt T. Considering ti =W[ji],
i.e. the i-th token in T is the ji-th token in W 1, and ti ∼ Cat(pi), we can give explicitly
∇plogP (T) as follow (proof in Appendix A),

∇pi,j logP (ti) =

{
1

pi,ji
j = ji

0 j ̸= ji
(7)

However, due to the randomness introduced by prompt sampling, the doubly policy gradient suf-
fers from high variance, which adversely affects convergence, just as in policy gradient estimation
(Sutton et al., 1999; Rezende et al., 2014). We implement VR-DPGE, which incorporates a baseline
subtraction term to reduce variance (Greensmith et al., 2004). Compared to the high variance of loss
values, the difference between the loss value and the baseline term has a lower variance, which facil-
itates more stable gradient estimation. By defining mini-batch S = {(Spos

q , yposq ), (Sneg
q , ynegq )}Bq=1

and LB(h([T, ·]), S) = 1
BΣqL(h([T, ·]), (Spos

q , yposq ), (Sneg
q , ynegq )), we can replace ∇pFi,j(p) by

VR-DPGE gp as equation 8.

gp :=Lavg1|W|1
⊤
n +

1

I − 1
Σk∇plogP (T(k))(LB(h([T

(k), ·]), S)− Lavg) (8)

with Lavg := 1
IΣkLB(h([T

(k), ·]), S). T(k) represents the k-th prompt obtained from I prompt
samplings. Lavg1|W|1

⊤
n is the unbiased correction term to ensure unbiasedness of the VR-DPGE

and the theoretical guarantee is Lemma 1.

3.3 REDUCE DUAL VARIANCE WITH MOMENTUM TECHNIQUE

The sampling of positive and negative examples also introduces high variance, especially in the case
of highly imbalanced data, and the dual variance from this and prompt sampling poses substantial
difficulties for imbalanced discrete prompt learning. However, various variance reduction tech-
niques typically require giant batch sizes to compute the gradient in the checkpoint, such as SVRG,
which is difficult to apply to pairwise learning because the number of positive and negative sample

1The vocabulary W is constructed following Diao et al. (2022)
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combinations is substantial. Therefore, we further employ the momentum-based variance reduction
strategy STORM. Specifically, mDP-DPG uses a variant of momentum mt+1 (line 16 in Algorithm
1) as the update direction. The content of Lemma 4 demonstrates that the momentum-based strat-
egy effectively reduces the dual variance. The bound in Lemma 4 contains terms that decay with
the momentum parameter θt, showing that variance of the moving average mt+1 is systematically
reduced over iterations, leading to a more stable and accurate approximation of the true gradient.

As illustrated in Algorithm 1 and Figure 1, mDP-DPG addresses the class imbalance issue in down-
stream tasks by minimizing the pairwise AUC surrogate loss. In each iteration, we randomly pick B
positive and negative sample pairs from D̃ to compute pairwise loss. To estimate the doubly policy
gradient, we sample I prompts according to the prompt distribution pt+1 in the current iteration.
Specifically, pt+1,i is the i-th token distribution of the prompt distribution pt+1 updated by momen-
tum technique in the t-th iteration. For the sampled prompt T(k), we concatenate it with all positive
and negative samples in the mini-batch to construct the input for the LLM. Then, we calculate
gpt+1,St

based on LLM predictions and similarly obtain gpt,St
. Ultimately, we can determine the

update direction mt+1 for the next iteration and projC(·) in the update step is a projection function
that projects updated prompt distribution to the constraint set C following Diao et al. (2022).

Algorithm 1 mDP-DPG

Input: Dataset D̃, hyperparameters k, ξ, c, γ
Initialization: Construct S1 = {(Spos

q , yposq ), (Sneg
q , ynegq )}Bq=1 from D̃ in the same way as Line

5-9, then compute m1 = gp1,S1 .
1: for t = 1, . . . , T do
2: Learning rate ηt =

k
(ξ+t)1/3

3: Update p̃t+1 = projC(pt − γmt), pt+1 = pt + ηt(p̃t+1 − pt)
4: Compute θt+1 = cη2t
5: St+1 = ∅
6: for q ≤ B do
7: Sample positive (Spos

q , yposq ) and negative (Sneg
q , ynegq ) examples from D̃, respectively.

8: St+1 = St+1 ∪ {(Spos
q , yposq ), (Sneg

q , ynegq )}
9: end for

10: for k ≤ I do
11: Sample j

(k)
1 ∼ Cat(pt+1,1), . . . , j(k)n ∼ Cat(pt+1,n)

12: T(k) = t
(k)
1 . . . t

(k)
n =W[j

(k)
1 ] . . .W[j

(k)
n ]

13: end for
14: Lavg = 1

IΣkLB(h([T
(k), ·]), St+1)

15: gpt+1,St+1
= Lavg1|W|1

⊤
n + 1

I−1Σk∇pt+1
logP (T(k))(LB(h([T

(k), ·]), St+1)− Lavg)

16: Compute mt+1 = gpt+1,St+1
+ (1− θt+1)[mt − gpt,St+1

]
17: end for
Output: pR with R chosen uniformly at random in {1, . . . , T}. (pT in practice).

4 CONVERGENCE ANALYSIS

In this section, we provide theoretical convergence guarantees for the proposed mDP-DPG algo-
rithm. We first introduce some necessary assumptions and definitions. Then, we analyze the con-
vergence properties of mDP-DPG, showing that it achieves an oracle complexity of O(1/ϵ3).

Lemma 1 (Unbiasedness of the VR-DPGE estimator, Proof in Appendix B.1). Consider gp the
VR-DPGE policy gradient estimator in equation 8. For any p in the constraint set (i.e. such that
each pi for i in [n] defines a categorical probability distribution), such an estimate is an unbiased
estimate of the policy gradient, i.e.:

ESE{T(k)}I
k=1

gp = ∇pESETLB(h([T, ·]), S).

Assumption 1 (Finiteness of the loss). We assume that there is a constant C > 0 such that for any
prompt T and any batch of data S, we have |LB(h([T, ·]), S)| ≤ C.

6
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Remark 1. Note that if one uses a loss LB(h([T, ·]), S) which could be arbitrary large (for in-
stance if LB is the cross-entropy function), in practice one can always clip such value to ensure
boundedness (indeed, since we consider black-box optimization through reinforcement learning in
our paper, even if the clipping operation is non-differentiable, optimization of such loss function will
still be possible).

Lemma 2 (Smoothness of the loss, Proof in Appendix B.2). Let us denote C the subset of R|W|×n

such that for any p ∈ C, pi ∈ C (where pi denotes a column of p). Let us denote Pp the probability
distribution on prompts T parameterized by p ∈ C. Then, ESET∼PpLB(h([T, ·]), S) is a smooth-
function of p on its domain, with constant L =

√
n|W|C, that is, for any (p,p′) ∈ C2:

∥∇ESET∼PpLB(h([T, ·]), S)−∇ESET∼Pp′LB(h([T, ·]), S)∥ ≤ L∥p− p′∥. (9)

Assumption 2 (Boundedness of the variance of the gradient). We assume the following bound on
the variance of the VR-DPGE gradient estimator. For any p ∈ C:

ESET

∣∣∣∣gp −∇pL(p)
∣∣∣∣2 ≤ σ2

1/I + σ2
2/B,

where σ1 denotes the variance introduced by the random selection of vocabularies and σ2 denotes
the variance introduced by the random selection of pairs of positive-negative examples.

Remark 2 (Proof in Appendix B.3). Even if Assumption 2 is not verified for C = {p ∈ R|W|×n :
∀i ∈ [n], ∥pi∥1 = 1,∀j ∈ [|W|], 0 ≤ pj,i ≤ 1}, it is actually verified if one ensures some lower
bound on the values of p, i.e. it is verified on the set C = {p ∈ R|W|×n : ∀i ∈ [n], ∥pi∥1 =
1,∀j ∈ [|W|], ν ≤ pj,i ≤ 1}, for some ν ∈ (0, 1], as we prove in Appendix B.3. In the experiments
however, we could take ν = 0 (i.e. we could keep the original constraint C), which still worked well
in practice.

4.1 CONVERGENCE RESULTS

Convergence for projected stochastic gradient descent is usually measured in terms of the expected
squared norm of the gradient mapping, which we will define below. Since we proved above that the
function we consider is smooth and the stochastic gradient is bounded, and the set we project onto
is bounded, we can establish the following convergence result:

Theorem 1 (Convergence rate of mDP-DPG, proof in Appendix B.4). Suppose that {pt}Tt=1 are
generated from mDP-DPG. Let ηt = k

(ξ+t)1/3
, 0 < γ ≤ min{ ξ

1/3

2Lk ,
1

2
√
2L
}, c ≥ 2

3k3 + 5
4 , ξ ≥

max{2, k3, c3k3}, then we have

1

T

T∑
t=1

E∥GC(pt, γ)∥ ≤
2
√
2M

T 1/2
ξ1/6 +

2
√
2M

T 1/3
, (10)

where GC(pt, ηt) := 1
ηt

(pt − projC(pt − ηt∇L(pt))) and M = L(p1)−L∗

γk + ξ1/3σ2

k +

2c2σ2k3 log(ξ + T ), where σ2 is an abbreviation of the upper bound in Assumption 2.

Remark 3. In order to obtain an ϵ-solution ( 1
T

∑T
t=1 E∥GC(pt, γ)∥ ≤ ϵ), we need to choose T =

1
ϵ3 I = O(1). Thus the total oracle complexity is O( 1

ϵ3 ).

Remark 4. The theorems demonstrate that the proposed framework, with variance-reduction tech-
niques and momentum-based updates, ensures convergence towards a prompt distribution that mini-
mizes the empirical risk of the pairwise AUC loss. This implies that the learned prompts are expected
to be optimal in terms of performance for the downstream task under the given black-box constraints.

5 EXPERIMENTS

In this section, we present the experiment setups and provide the results and analysis of both the
main experiments and ablation studies. Due to space constraints, additional experimental results are
provided in the Appendix D.
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5.1 EXPERIMENT SETUPS

Datasets. To evaluate the effectiveness of our methods, we conduct experiments on 4 datasets
including 2 widely used datasets from the GLUE benchmark (Wang et al., 2018), CoLA (Warstadt
et al., 2018), MRPC (Dolan & Brockett, 2005),and 2 real-world class imbalanced datasets: Amazon
books and electronics reviews (McAuley et al., 2015). For GLUE benchmark, we perform down-
sampling on datasets with a given imbalanced ratio (negative to positive samples ratio) τ = 20, 50
to construct the imbalanced scenarios. For 2 real-world datasets, we down-sample datasets with
τ = 10, which facilitates experiments and closely approximates the original imbalance ratio. We
use AUC to measure the performance of handling imbalanced data.

Backbone Models. We select RoBERTa-large (Liu et al., 2019), GPT2-XL (Radford et al., 2019),
Llama3 (AI@Meta, 2024) as our backbone models and conduct experiments separately. These
models have approximately 355M, 1.5B, and 8B parameters, respectively.

Baselines. We compare our proposed methods with the following black-box prompt learning meth-
ods under the same experimental settings: Manual Prompt performs the zero-shot evaluation on
the LLMs with human-written templates, and the results can serve as initial points. BBT optimizes
the continuous prompts in a random low-dimensional subspace through covariance matrix adapta-
tion evolution strategy (Sun et al., 2022b). GAP3 introduces a genetic algorithm that considers the
prompt as individual and employs auxiliary LLM to generate discrete prompts from the empty (Zhao
et al., 2023). BDPL utilizes policy gradients to optimize discrete prompt distribution as mentioned
in Section 3.1 (Diao et al., 2022).

Implementation Details. The proposed methods and all baselines are implemented using PyTorch
and experimented on NVIDIA A40 GPUs with 48 GB memory. For all backbone models, we initial-
ize them with checkpoints provided by the HuggingFace. The details of the input template, output
label words, and hyperparameters can be found in the Appendix C.

5.2 MAIN RESULTS AND ANALYSIS

Comparison on constructed imbalanced scenarios. We report the average AUC scores on CoLA
over 3 random seeds in Table 1. The results on MRPC can be found in Appendix D.1. and our
methods exhibit higher performance compared to all baselines. And in many cases, there are sig-
nificant improvements. In particular, our methods achieve enhancements over BDPL, confirming
that minimizing the pairwise AUC loss can effectively address the class imbalance problem. On the
other hand, BBT, GAP3, and BDPL have almost no improvement compared to Manual Prompt, and
even there are substantial declines in some cases. We attribute this phenomenon to the fact that these
baselines do not have additional handling for imbalanced data. For instance, BDPL uses a cross-
entropy loss function, which in imbalanced scenarios leads to the minority class having almost no
effect on the training process (Liu et al., 2020).

Table 1: Comparison of AUC scores (mean±std.) on constructed imbalanced scenarios of CoLA.
We conduct three groups of experiments on pre-trained RoBERTa-large, GPT2-XL, and Llama3
with a prompt length of 20. The best results are highlighted in bold.

Imbalanced Ratio Method RoBERTa-large GPT2-XL Llama3

τ = 20

Manual Prompt .4586±.0947 .5224±.0180 .4917±.0821
BBT .4797±.1040 .5000±.0000 .4990±.0063

GAP3 .5042±.0171 .5094±.0162 .5089±.0181
BDPL .4880±.0316 .4963±.0253 .5193±.0171

mDP-DPG (ours) .5615±.0486 .5271±.0064 .5453±.0906

τ = 50

Manual Prompt .5288±.0481 .5300±.0017 .5289±.0501
BBT .4094±.0472 .4938±.0016 .5111±.0499

GAP3 .4944±.0035 .4989±.0019 .4983±.0017
BDPL .4871±.0105 .5394±.1131 .5139±.0580

mDP-DPG (ours) .5700±.0351 .5589±.0139 .5466±.1314

Comparison on real-world imbalanced datasets. We conduct experiments with different prompt
lengths and report the average AUC scores over 3 different seeds in Table 2. It should be noted that
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Table 2: Comparison of AUC values (mean±std.) on real-world imbalanced datasets Amazon books
and electronics based on 3 backbone models. len represents the prompt length. OOM represents
out-of-memory.

Model Method Book Elec
len = 20 len = 50 len = 20 len = 50

RoBERTa
-large

Manual Prompt .8491±.0038 .8491±.0038 .8225±.0061 .8225±.0061
BBT .8525±.0032 .8514±.0065 .8098±.0172 .8480±.0348

GAP3 .8372±.0115 .8372±.0115 .6581±.0239 .6581±.0239
BDPL .8628±.0066 .8611±.0174 .8431±.0147 .8559±.0206

mDP-DPG (ours) .8678±.0084 .8623±.0047 .8569±.0365 .8588±.0289

GPT2-XL

Manual Prompt .7377±.0068 .7377±.0068 .6696±.0544 .6696±.0544
BBT .7406±.0133 .6078±.0172 .6284±.0450 .5196±.0162

GAP3 .7785±.0661 .7785±.0661 .5459±.0270 .5459±.0270
BDPL .7884±.0475 .7276±.0040 .6941±.0256 .7343±.0295

mDP-DPG (ours) .8721±.0297 .7931±.0520 .7157±.0384 .7353±.0389

Llama3

Manual Prompt .7502±.0072 .7502±.0072 .6549±.0446 .6549±.0446
BBT .5164±.0142 .5283±.0127 .5137±.0221 .5275±.0119

GAP3 OOM OOM OOM OOM
BDPL .7858±.0363 .8009±.0179 .5216±.0162 .5422±.0427

mDP-DPG (ours) .8098±.0129 .8151±.0376 .6804±.0814 .6657±.1015

since GAP3 generates prompts from empty, under our query limit (in Appendix C.2), the lengths
of generated prompts are always less than 20. Therefore, the results are the same for maximum
prompt lengths of 20 and 50. We have observed that mDP-DPG surpasses all other baselines, which
demonstrates our methods remain effective on real-world data. It is worth noting that in some
results, mDP-DPG significantly outperforms all baselines, such as the results in the Book with the
GPT2-XL. This demonstrates the potential of our method to significantly enhance performance on
real-world imbalanced data distributions. Additionally, BBT, GAP3, and BDPL exhibit much poorer
performance than Manual Prompt in many results, confirming the deficiencies of these methods in
handling imbalanced data.

Table 3: Comparison of AUC values on 3 backbone models. “len” represents the prompt length. τ
denotes the imbalanced ratio (negative to positive samples ratio).

Model Method CoLA (len=20) Book (τ = 10)
τ = 20 τ = 50 len=20 len=50

RoBERTa
-large

BDPL-oversample .4474±.0681 .4706±.0883 .8541±.0466 .8479±.0600
BDPL-reweight .5083±.0033 .4706±.0883 .8370±.0096 .8221±.0034
mDP-DPG(ours) .5615±.0486 .5700±.0351 .8678±.0084 .8623±.0047

GPT2-XL
BDPL-oversample .5172±.0596 .5156±.0706 .8171±.0386 .7413±.0731

BDPL-reweight .5057±.0213 .5428±.0634 .8290±.0367 .7628±.0138
mDP-DPG(ours) .5271±.0064 .5589±.0139 .8721±.0297 .7931±.0520

Llama3
BDPL-oversample .4943±.0709 .5333±.0076 .7826±.0533 .7699±.0364

BDPL-reweight .5151±.0765 .5082±.0467 .7973±.0126 .7169±.0471
mDP-DPG(ours) .5453±.0906 .5466±.1314 .8098±.0129 .8151±.0376

Comparison with Simple Techniques. In handling imbalanced data, simple techniques like over-
sampling minority class samples are among the solutions. To demonstrate the superiority of our pro-
posed methods on imbalanced datasets, we have included such techniques as baselines for compar-
ison. Consequently, we enhance the BDPL approach by incorporating over-sampling and reweight-
ing. We augment the BDPL method as baseline because it formulates black-box prompt learning
as a distribution optimization problem and updates the distribution using policy gradients similar to
our methods. The results are presented in Table 3. The experimental results demonstrate that our
methods outperform simple techniques for handling imbalanced data.
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5.3 ABLATION STUDY

Ablation study about the gradient estimator. To lead to a more stable optimization process, we
introduce the variance reduction technique and an unbiased correction term into the gradient esti-
mator. As shown in Figure 2, we provide the performance comparison figure after removing both
components on CoLA (τ = 20) and Amazon books with a prompt length of 20. The VR-DPGE
gradient estimator exhibits even stronger performance on 3 backbone models. These results indi-
cate that the incorporation of both components in the gradient estimator allows for a more accurate
estimation of the gradient.
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Figure 2: Ablations of variance reduction and unbiased correction term in VR-DPGE.

Ablation study about the loss function. We incorporate a hinge loss and compare the results
with those obtained using the square loss. The results in Figure 3 indicate that the experimental
performance generally decreased with the hinge loss. We believe this is because the square loss is
statistically consistent with AUC when used as the surrogate loss, whereas the hinge loss does not
have this property (Gao & Zhou, 2012).
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Figure 3: Ablations of loss function. Hinge loss vs Square loss.

6 CONCLUSION

In this paper, we propose a momentum-based imbalanced black-box discrete prompt learning frame-
work mDP-DPG to handle imbalanced data in downstream tasks. Within this framework, we propose
VR-DPGE and introduce the STORM technique for variance reduction to achieve more stable op-
timization. We demonstrate the effectiveness mDP-DPG on constructed imbalanced scenarios and
real-world imbalanced datasets, showing performance improvements in class imbalance problems.
Although the AUC loss in our framework is specifically tailored for binary classification, we discuss
in Appendix D.2 how to overcome the limitations of binary classification and provide additional
experimental results. In addition, minimizing pairwise AUC loss in our framework suffers from the
challenge of constructing sample pairs from opposite classes. Formulating AUC maximization as
an equivalent saddle point problem has become dominant in addressing this challenge. However,
this technique cannot be directly applied to our problem, as our objective function requires taking
the expectation over prompt T, which would invalidate the existing theoretical derivations. In future
work, we will investigate how to introduce it to our framework.
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APPENDIX

A PROOFS FOR SECTION 3.2

We now prove the explicit derivation for the policy gradient estimator. The j-th component of
∇pi logP (ti) is:

∇pi,j logP (ti) = ∇pi,j log pi,ji .

When j = ji, we have

∇pi,j
logP (ti) = ∇pi,j

log pi,ji =
∇pi,j

pi,ji

pi,ji

|j=ji =
1

pi,ji

.

When j ̸= ji, we have

∇pi,j
logP (ti) = ∇pi,j

log pi,ji =
∇pi,jpi,ji

pi,ji

|j ̸=ji = 0.

B PROOFS FOR SECTION 4.1

B.1 PROOF OF LEMMA 1

Proof. First, it is easy to show that the expectation of Lavg over the sampling of the I prompts is
equal to the expected loss with expectation taken over the distribution over prompts:

ESE{T(k)}I
k=1

Lavg1|W|1
⊤
n = ESE{T(k)}I

k=1

1

I
ΣkLB(h([T

(k), ·]), S)1|W|1
⊤
n

=
1

I
ΣkESE{T(k)}I

k=1
LB(h([T

(k), ·]), S)1|W|1
⊤
n

=
1

I
ΣkESETLB(h([T, ·]), S)1|W|1

⊤
n =

I

I
ESETLB(h([T, ·]), S)1|W|1

⊤
n

= ESETLB(h([T, ·]), S)1|W|1
⊤
n (11)

Now, let us analyze the full expression for the expectation of gp:

ESE{T(k)}I
k=1

gp = ESE{T(k)}I
k=1

(
Lavg1|W|1

⊤
n +

1

I − 1
Σk∇logP (T(k))(LB(h([T

(k), ·]), S)− Lavg)

)
= ESE{T(k)}I

k=1
Lavg1|W|1

⊤
n + ESE{T(k)}I

k=1

(
1

I − 1
Σk∇logP (T(k))(LB(h([T

(k), ·]), S)− Lavg)

)
︸ ︷︷ ︸

A
(12)

We can rewrite A as follows:

A =
1

I − 1

I∑
k=1

LB(h([T
(k), ·]), S)− 1

I

I∑
j=1

LB(h([T
(j), ·]), S)

∇p logP (T(k))

=
1

I − 1

I∑
k=1

1

I

I∑
j=1

(
LB(h([T

(k), ·]), S)− LB(h([T
(j), ·]), S)

)∇p logP (T(k))

=
1

I − 1

I∑
k=1

1

I

I∑
j=1,j ̸=k

(
LB(h([T

(k), ·]), S)− LB(h([T
(j), ·]), S)

)∇p logP (T(k))

=
1

I

I∑
k=1

LB(h([T
(k), ·]), S)∇p logP (T(k))︸ ︷︷ ︸

1

− 1

I

I∑
k=1

1

I − 1

I∑
j̸=k

LB(h([T
(j), ·]), S)∇p logP (T(k)))︸ ︷︷ ︸
2
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832
833
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854
855
856
857
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861
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Now, first, we have:

ESE{T(k)}I
k=1

[
1
]
= ESE{T(k)}I

k=1

1

I

I∑
k=1

LB(h([T
(k), ·]), S)∇p logP (T(k))

= ES
1

I

I∑
k=1

E{T(k)}I
k=1

LB(h([T
(k), ·]), S)∇pP (T(k))

P (T(k))

= ES
1

I

I∑
k=1

ET(k)LB(h([T
(k), ·]), S)∇pP (T(k))

P (T(k))

= ES
1

I

I∑
k=1

∑
T(k)

P (T(k))LB(h([T
(k), ·]), S)∇pP (T(k))

P (T(k))

= ES
1

I

I∑
k=1

∑
T(k)

LB(h([T
(k), ·]), S)∇pP (T(k))

= ∇pES
1

I

I∑
k=1

∑
T(k)

P (T(k))LB(h([T
(k), ·]), S)

= ∇pES
1

I

I∑
k=1

ET(k)LB(h([T
(k), ·]), S)

= ∇pES
I

I
ETLB(h([T, ·]), S) = ∇pESETLB(h([T, ·]), S) (13)

Then, we have:

ESE{T(k)}I
k=1

[
2
]
= ESE{T(k)}I

k=1

1

I

I∑
k=1

1

I − 1

I∑
j ̸=k

LB(h([T
(j), ·]), S)∇p logP (T(k))

= ES
1

I

I∑
k=1

E{T(k)}I
k=1

1

I − 1

I∑
j ̸=k

LB(h([T
(j), ·]), S)∇p logP (T(k))

= ES
1

I

I∑
k=1

ET(k)E{T(j)}I
j=1,j̸=k

1

I − 1

I∑
j ̸=k

LB(h([T
(j), ·]), S)∇p logP (T(k))

= ES
1

I

I∑
k=1

1

I − 1
ET(k)

I∑
j ̸=k

E{T(j)}I
j=1,j̸=k

LB(h([T
(j), ·]), S)∇p logP (T(k))

= ES
1

I

I∑
k=1

1

I − 1
ET(k)

I∑
j ̸=k

ET(j)LB(h([T
(j), ·]), S)∇p logP (T(k))

= ES
1

I

I∑
k=1

1

I − 1

I∑
j ̸=k

ET(j)LB(h([T
(j), ·]), S)ET(k)∇p logP (T(k))

= ES
1

I

I∑
k=1

1

I − 1

I∑
j ̸=k

ET(j)LB(h([T
(j), ·]), S)ET(k)

∇pP (T(k))

P (T(k))

= ES
1

I

I∑
k=1

1

I − 1

I∑
j ̸=k

ET(j)LB(h([T
(j), ·]), S)

∑
T(k)

P (T(k))
∇pP (T(k))

P (T(k))

= ES
1

I

I∑
k=1

1

I − 1

I∑
j ̸=k

ET(j)LB(h([T
(j), ·]), S)

∑
T(k)

∇pP (T(k))
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864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

= ES
1

I

I∑
k=1

1

I − 1

I∑
j ̸=k

ET(j)LB(h([T
(j), ·]), S)∇p

∑
T(k)

P (T(k)) (14)

Now, for any i ∈ [n], we have:

∇pi

∑
T(k)

P (T(k))) = ∇pi

∑
t
(k)
1 ∈W

...
∑

t
(k)
i ∈W

...
∑

t
(k)
n ∈W

P (t
(k)
1 )...P (t

(k)
i )...P (t(k)n )

= ∇pi

∑
t
(k)
i ∈W

P (t
(k)
i )

 ∑
t
(k)
1 ∈W

P (t
(k)
1 )

 ∑
t
(k)
2 ∈W

P (t
(k)
2 )

...

 ∑
t
(k)
i−1∈W

P (t
(k)
i+1)

...

 ∑
t
(k)
n ∈W

P (t(k)n )







= ∇pi

∑
t
(k)
i ∈W

P (t
(k)
i ) =

∑
t
(k)
i ∈W

∇pi
P (t

(k)
i ) =

∑
t
(k)
i ∈W


0
...
1
...
0

← index j s.t. the j-th word fromW is t(k)i =


1
...
1
...
1


Now, plugging the result above into 14, we obtain:

ESE{T(k)}I
k=1

[
2
]
= ES

1

I

I∑
k=1

1

I − 1

I∑
j ̸=k

ET(j)LB(h([T
(j), ·]), S)1|W|1

⊤
n ,

Continuing from 14, since the term in the sum in 14 is a constant (as for all j, the T
(k)
j are sampled

i.i.d):

ESE{T(k)}I
k=1

[
2
]
= ES

I

I

I − 1

I − 1
ETLB(h([T, ·]), S)1|W|1

⊤
n

= ESETLB(h([T, ·]), S)1|W|1
⊤
n (15)

Therefore, plugging 11, 13 and 15 into 12, we obtain:

ESE{T(k)}I
k=1

gp = ESETLB(h([T, ·]), S)1|W|1
⊤
n +∇pESETLB(h([T, ·]), S)

− ESETLB(h([T, ·]), S)1|W|1
⊤
n

= ∇pESETLB(h([T, ·]), S)

B.2 PROOF OF LEMMA 2

Proof. Let p ∈ C. Let us denote by ET := ET∼Pp for simplicity. We can express the gradient
estimate as follows:

∇pESETLB(h([T, ·]), S) = ∇pESEj1∼Cat(p1),...,jn∼Cat(pn)LB(h([tj1 , ..., tjn , ·]), S)

= ES∇p

∑
j1∈[|W|]

...
∑

jn∈[|W|]

LB(h([tj1 , ..., tjn , ·]), S)Πn
i=1pji,i

= ES

∑
j1∈[|W|]

...
∑

jn∈[|W|]

LB(h([tj1 , ..., tjn , ·]), S)∇pΠ
n
i=1pji,i

Therefore:

∇pk,l
ESETLB(h([T, ·]), S) = ES

∑
j1∈[|W|]

...
∑

jn∈[|W|]

LB(h([tj1 , ..., tjn , ·]), S)∇pk,l
Πn

i=1pji,i
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940
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942
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945
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963
964
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969
970
971

Now, we have:

∇pk,l
Πn

i=1pji,i =

{
Πn

i=1,i̸=lpji,i if jl = k

0 otherwise

Therefore:

∇pk,l
ESETLB(h([T, ·]), S)

= ES

∑
j1∈[|W|]

...
∑

jn∈[|W|]

LB(h([tj1 , ..., tjn , ·]), S)∇pk,l
Πn

i=1pji,i

= ES

∑
j1∈[|W|]

...
∑

jl−1∈[|W|]

∑
jl+1∈[|W|]

...
∑

jn∈[|W|]

LB(h([tj1 , ..., tl−1, tk, tl+1, ..., tjn , ·]), S)Πn
i=1,i̸=lpji,i

Note that the last expression above can be expressed as an expectation, in the case where each
column of p defines a probability distribution:

∇pk,l
ESETLB(h([T, ·]), S) = ESEj1,...,jl−1,jl+1...,jnLB(h([tj1 , ..., tl−1, tk, tl+1, ..., tjn , ·]), S)

Similarly, we can compute the Hessian of such cost function:

∂2

∂pk,l∂pm,q
ESETLB(h([T, ·]), S)

= ES
∂

∂pm,q

 ∑
j1∈[|W|]

...
∑

jl−1∈[|W|]

∑
jl+1∈[|W|]

...
∑

jn∈[|W|]

LB(h([tj1 , ..., tl−1, tk, tl+1, ..., tjn , ·]), S)Πn
i=1,i̸=lpji,i


= ES

 ∑
j1∈[|W|]

...
∑

jl−1∈[|W|]

∑
jl+1∈[|W|]

...
∑

jn∈[|W|]

LB(h([tj1 , ..., tjn , ·]), S)
∂

∂pm,q
Πn

i=1,i̸=lpji,i


Now, similarly as before, we have:

∂

∂pm,q
Πn

i=1,i̸=lpji,i =

{
Πn

i=1,i̸=l,i̸=kpji,i if jq = m and q ̸= l

0 otherwise

Therefore, the last expression above can be expressed as an expectation, if each column of p defines
a probability distribution:

∂2

∂pk,l∂pm,n
ESETLB(h([T, ·]), S)

=

{
ESEj1,...,jl−1,jl+1..jq−1,jq+1...,jnLB(h([tj1 , ..., tjl−1, tk, tjl+1, ..., tjq−1, tm, tjq+1, ..., tjn , ·], S)) if q ̸= l

0 otherwise.

Therefore, using Assumption 1, we have that:

∂2

∂pk,l∂pm,n
ESETLB(h([T, ·]), S) ≤ C

which implies, with H(p) denoting the Hessian of ESETLB(h([T, ·]), S) with respect to p:
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1002
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1006
1007
1008
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1010
1011
1012
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1015
1016
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1018
1019
1020
1021
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1024
1025

||H(p)||F ≤
√
n|W|C2 =

√
n|W|C

And therefore we have :

||H(p)||2 ≤ ||H(p)||F ≤
√

n|W|C,

using (2.3.7) in Golub & Van Loan (2013). We can now use Lemma 1.2.2 in Nesterov et al. (2018)
to relate such bound on the Hessian to the smoothness constant of ESETLB(h([T, ·]), S).

B.3 PROOF OF BOUNDED VARIANCE (REMARK 2)

Proof. Consider the following constraints set: C = {p ∈ R|W|×n : ∀i ∈ [n], ∥pi∥1 =
1,∀j ∈ [|W|], ν ≤ pj,i ≤ 1}, for some ν ∈ (0, 1]. For simplicity, we denote L(T(k)) :=

LB(h([T
(k), ·]), S), and denote ei =


0
...
1
...
0

← i. For any i ∈ [n], we have:

Var (gpi
) = Var

(
Lavg1|W| +

1

I − 1
Σk∇pi

logP (t
(k)
i )(L(T(k))− Lavg)

)
= Var

(
Lavg1|W| +

1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

)
(a)

≤ E

∣∣∣∣∣
∣∣∣∣∣Lavg1|W| +

1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

= E∥Lavg1|W|∥2 + E

∣∣∣∣∣
∣∣∣∣∣ 1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

+ 2E⟨Lavg1|W|,
1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)⟩

(b)
=

I

I2
ET∥L(T)1|W|∥2 +

I(I − 1)

I2
∥ETL(T)1|W|∥2 + E

∣∣∣∣∣
∣∣∣∣∣ 1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

+ 2
1

I − 1
Σk

[
ELavg

(
L(T(k))− Lavg

P (t
(k)
i )

)
⟨1|W|, ej(k)

i
⟩

]

=
|W|
I

ET∥L(T)∥2 + |W|(I − 1)

I
∥ETL(T)∥2 + E

∣∣∣∣∣
∣∣∣∣∣ 1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

+ 2
1

I − 1
Σk

[
ELavg

(
L(T(k))− Lavg

P (t
(k)
i )

)]

=
|W|
I

ET∥L(T)∥2 + |W|(I − 1)

I
∥ETL(T)∥2 + E

∣∣∣∣∣
∣∣∣∣∣ 1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

+ 2
1

I − 1
Σk

Et
(k)
1 ,...,t

(k)
i−1,t

(k)
i+1,...,t

(k)
n

∑
t
(k)
i ∈W

P (t
(k)
i )

1

P (t
(k)
i )

Lavg

(
L(T(k))− Lavg

)
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1058
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1060
1061
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=
|W|
I

ET∥L(T)∥2 + |W|(I − 1)

I
∥ETL(T)∥2 + E

∣∣∣∣∣
∣∣∣∣∣ 1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

+ 2
1

I − 1
Σk

Et
(k)
1 ,...,t

(k)
i−1,t

(k)
i+1,...,t

(k)
n

∑
t
(k)
i ∈W

Lavg

(
L(T(k))− Lavg

)
(c)

≤ |W|
I

C2 +
|W|(I − 1)

I
C2 + E

∣∣∣∣∣
∣∣∣∣∣ 1

I − 1
Σk

e
j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

+ 2
I

I − 1
|W|2C2

=
|W|
I

C2 +
|W|(I − 1)

I
C2

+
1

(I − 1)2

∑
k

E

∣∣∣∣∣
∣∣∣∣∣ e

j
(k)
i

P (t
(k)
i )

(L(T(k))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
2

+
∑
l

∑
m,m ̸=l

E⟨
e
j
(l)
i

P (t
(l)
i )

(L(T(l))− Lavg),
e
j
(m)
i

P (t
(m)
i )

(L(T(m))− Lavg)⟩

+ 2
I

I − 1
|W|2C2

(d)

≤ |W|
I

C2 +
|W|(I − 1)

I
C2 +

1

(I − 1)2

∑
k

E

(
1

P (t
(k)
i )

(L(T(k))− Lavg)

)2

+E
∑
l

∑
m,m ̸=l

∣∣∣∣∣
∣∣∣∣∣ e

j
(l)
i

P (t
(l)
i )

(L(T(l))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ e

j
(m)
i

P (t
(m)
i )

(L(T(m))− Lavg)

∣∣∣∣∣
∣∣∣∣∣
+ 2

I

I − 1
|W|2C2

=
|W|
I

C2 +
|W|(I − 1)

I
C2 +

1

(I − 1)2

∑
k

E{t(k)
p }n

p=1\t
(k)
i

∑
t
(k)
i ∈W

P (t
(k)
i )

(
1

P (t
(k)
i )

(L(T(k))− Lavg)

)2

+
∑
l

∑
m,m̸=l

E{t(l)p }n
p=1\t

(l)
i
E{t(m)

p }n
p=1\t

(m)
i

∑
t
(l)
i ∈W

P (t
(l)
i )

∑
t
(m)
i ∈W

P (t
(m)
i )

(L(T(l))− Lavg)(L(T
(m))− Lavg)

P (t
(l)
i )P (t

(m)
i )


+ 2

I

I − 1
|W|2C2

≤ |W|
I

C2 +
|W|(I − 1)

I
C2 +

I|W|
ν(I − 1)2

4C2 +
1

(I − 1)2
(
I(I − 1)|W|24C2

)
+ 2

I

I − 1
|W|2C2

= |W|C2 +
I|W|4C2

ν(I − 1)2
+

I4|W|2C2

I − 1
+

4C2|W|I
I − 1

Where (a) and (b) follow from the fact that for some random variable X: Var(X) = E∥X −
EX∥2 = E

[
∥X∥2

]
− ∥E[X]∥2 ≤ E

[
∥X∥2

]
, (c) follows from Assumption 1 (which implies that

|L(T)| ≤ C for all T and also consequently that |Lavg| ≤ C), and (d) follows from the Cauchy-
Schwarz inequality. Therefore, for any i ∈ [n], Var (gpi) is indeed bounded, and consequently, the
final gradient estimator is also bounded.

B.4 PROOFS FOR THEOREM 1

Lemma 3. Let {p}Tt=1 be generated by mDP-DPG. Let ηt ∈ (0, 1] and γ ∈ (0, 1
2Lηt

], we have

L(pt+1) ≤ L(pt) + ηtγ∥∇L(pt)−mt∥2 −
ηt
2γ
∥p̃t+1 − pt∥2. (16)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Proof. Recall that L(p) := ESET∼PpLB(h([T, ·]), S). According to Lemma 2, L(p) is L-smooth.
Then we have

L(pt+1) ≤L(pt) + ⟨∇L(pt),pt+1 − pt⟩+
L

2
∥pt+1 − pt∥2

≤L(pt) + ηt ⟨∇L(pt), p̃t+1 − pt⟩+
Lη2t
2
∥p̃t+1 − pt∥2

≤L(pt) + ηt ⟨∇L(pt)−mt, p̃t+1 − pt⟩+ ηt ⟨mt, p̃t+1 − pt⟩+
Lη2t
2
∥p̃t+1 − pt∥2.

Since p̃t+1 = projC(pt − γmt) = argminp∈C
1
2∥p − (pt − γmt)∥2, we have ∀p ∈ C,

⟨p̃t+1 − (pt − γmt),p− p̃t+1⟩ ≥ 0. Set p = pt, we have

⟨mt, p̃t+1 − pt⟩ ≤ −
1

γ
∥p̃t+1 − pt∥2.

Thus we have

L(pt+1)

≤L(pt) + ηt ⟨∇L(pt)−mt, p̃t+1 − pt⟩+ ηt ⟨mt, p̃t+1 − pt⟩+
Lη2t
2
∥p̃t+1 − pt∥2

≤L(pt) + ηtγ∥∇L(pt)−mt∥2 +
ηt
4γ
∥p̃t+1 − pt∥2 −

ηt
γ
∥p̃t+1 − pt∥2 +

Lη2t
2
∥p̃t+1 − pt∥2

=L(pt) + ηtγ∥∇L(pt)−mt∥2 −
ηt
2γ
∥p̃t+1 − pt∥2 − (

ηt
4γ
− Lη2t

2
)∥p̃t+1 − pt∥2

≤L(pt) + ηtγ∥∇L(pt)−mt∥2 −
ηt
2γ
∥p̃t+1 − pt∥2.

Where the last inequality holds due to 0 < γ < 1
2Lηt

.

Lemma 4.

E∥∇L(pt+1)−mt+1∥2 (17)

≤(1− θt)
2E∥∇L(pt)−mt∥2 + 2(1− θt)

2L2η2t ∥p̃t+1 − pt∥2 + 2θ2t σ
2. (18)

Proof. According to the update rule of mt+1, we have

E∥∇L(pt+1)−mt+1∥2

=E∥∇L(pt+1)− gpt+1,St+1
− (1− θt+1)(mt − gpt,St+1

)∥2

=E∥(1− θt+1)(∇L(pt)−mt) + θt(∇L(pt+1)− gpt+1,St+1)

+ (1− θt+1)(∇L(pt+1)−∇L(pt)− (gpt+1,St+1
− gpt,St+1

))∥2

≤(1− θt)
2E∥∇L(pt)−mt∥2 + 2(1− θt)

2∥∇L(pt+1)−∇L(pt)− (gpt+1,St+1
− gpt,St+1

)∥2

+ 2θ2tE∥∇L(pt+1)− gpt+1,St+1∥2

≤(1− θt)
2E∥∇L(pt)−mt∥2 + 2(1− θt)

2∥gpt+1,St+1
− gpt,St+1

∥2 + 2θ2t σ
2

≤(1− θt)
2E∥∇L(pt)−mt∥2 + 2(1− θt)

2L2∥pt+1 − pt∥2 + 2θ2t σ
2

=(1− θt)
2E∥∇L(pt)−mt∥2 + 2(1− θt)

2L2η2t ∥p̃t+1 − pt∥2 + 2θ2t σ
2.
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Proof of Theorem.

1

ηt
E∥∇L(pt+1)−mt+1∥2 −

1

ηt−1
E∥∇L(pt)−mt∥2

≤( (1− θt)
2

ηt
− 1

ηt−1
)E∥∇L(pt)−mt∥2 + 2(1− θt)

2L2ηt∥p̃t+1 − pt∥2 +
2θ2t σ

2

ηt

≤(1− θt
ηt

− 1

ηt−1
)E∥∇L(pt)−mt∥2 + 2L2ηt∥p̃t+1 − pt∥2 +

2θ2t σ
2

ηt

=(
1

ηt
− 1

ηt−1
− cηt)E∥∇L(pt)−mt∥2 + 2L2ηt∥p̃t+1 − pt∥2 +

2θ2t σ
2

ηt
.

Let ηt = k
(ξ+t)1/3

, we have

1

ηt
− 1

ηt−1
=
1

k
((ξ + t)1/3 − (ξ + t− 1)1/3) ≤ 1

3k(ξ + t− 1)2/3
≤ 1

3k(ξ/2 + t)2/3

≤ 22/3

3k(ξ + t)2/3
=

22/3

3k3
η2t ≤

2

3k3
ηt,

where the first inequality is due to (x + 1)1/3 ≤ x1/3 + 1
3x2/3 and the second inequality is due to

ξ > 2. Let c ≥ 2
3k3 + 5

4 , then we have

1

ηt
E∥∇L(pt+1)−mt+1∥2 −

1

ηt−1
E∥∇L(pt)−mt∥2

≤− 5

4
ηtE∥∇L(pt)−mt∥2 + 2L2ηt∥p̃t+1 − pt∥2 +

2θ2t σ
2

ηt
.

Then we define the Lyapunov function Rt = E[L(pt) +
γ

ηt−1
∥∇L(pt)−mt∥2]. Then we have

Rt+1 −Rt =E[L(pt+1)− L(pt)] +
γ

ηt
E∥∇L(pt+1)−mt+1∥2 −

γ

ηt−1
E∥∇L(pt)−mt∥2

≤(ηtγ −
5ηtγ

4
)E∥∇L(pt)−mt∥2 −

ηt
2γ

E∥p̃t+1 − pt∥2 + 2L2ηtγ∥p̃t+1 − pt∥2 +
2θ2t σ

2γ

ηt

≤− ηtγ

4
E∥∇L(pt)−mt∥2 −

ηt
4γ

E∥p̃t+1 − pt∥2 +
2θ2t σ

2γ

ηt
,

where the last inequality is due to γ ≤ 1
2
√
2L

. Rearranging the above inequality, we have

ηtγ

4
E∥∇L(pt)−mt∥2 +

ηt
4γ

E∥p̃t+1 − pt∥2 ≤ Rt −Rt+1 +
2θ2t σ

2γ

ηt
.

Taking average over timesteps t = 1, . . . , T , we have

1

T

T∑
t=1

E
[
ηtγ

4
∥∇L(pt)−mt∥2 +

ηt
4γ
∥p̃t+1 − pt∥2

]

≤L(p1)− L∗

T
+

γ∥∇L(p1)−m1∥2

Tη0
+

T∑
t=1

2θ2t σ
2γ

Tηt
≤ L(p1)− L∗

T
+

γσ2

Tη0
+

T∑
t=1

2θ2t σ
2γ

Tηt

=
L(p1)− L∗

T
+

γξ1/3σ2

kT
+

T∑
t=1

2c2η3t σ
2γ

T
.
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Dividing both sides with γηT , we have

1

T

T∑
t=1

E
[
1

4
∥∇L(pt)−mt∥2 +

1

4γ2
∥p̃t+1 − pt∥2

]

≤L(p1)− L∗

TηT γ
+

ξ1/3σ2

kTηT
+

T∑
t=1

2c2η3t σ
2

TηT
≤ L(p1)− L∗

TηT γ
+

ξ1/3σ2

kTηT
+

2c2σ2

TηT

∫ T

1

k3

ξ + t
dt

≤L(p1)− L∗

TηT γ
+

ξ1/3σ2

kTηT
+

2c2σ2k3

TηT
log(ξ + T )

=
L(p1)− L∗

Tγk
(ξ + T )

1
3 +

ξ1/3σ2

kT
(ξ + T )

1
3 +

2c2σ2k3

T
(ξ + T )

1
3 log(ξ + T )

≤M

T
(ξ + T )

1
3 ,

where M = L(p1)−L∗

γk + ξ1/3σ2

k + 2c2σ2k3 log(ξ + T ). Using Jensen’s inequality, we have

1

T

T∑
t=1

E
[
1

2
∥∇L(pt)−mt∥+

1

2γ
∥p̃t+1 − pt∥

]

≤

(
2

T

T∑
t=1

E
[
1

4
∥∇L(pt)−mt∥2 +

1

4γ2
∥p̃t+1 − pt∥2

]) 1
2

≤
√
2M

T 1/2
(ξ + T )1/6 ≤

√
2M

T 1/2
(ξ1/6 + T 1/6),

where the first inequality is due to x + y ≤ (2x2 + 2y2)1/2 and the last inequality is due to (x +
y)1/6 ≤ x1/6 + y1/6. Then we have

1

T

T∑
t=1

E∥GC(pt, γ)∥ =
1

T

T∑
t=1

1

γ
E∥pt − projC(pt − γ∇L(pt))∥

=
1

T

T∑
t=1

1

γ
E∥pt − projC(pt − γmt) + projC(pt − γmt)− projC(pt − γ∇L(pt))∥

=
1

T

T∑
t=1

1

γ
E∥pt − p̃t+1 + projC(pt − γmt)− projC(pt − γ∇L(pt))∥

≤ 1

T

T∑
t=1

1

γ
E [∥pt − p̃t+1∥+ ∥projC(pt − γmt)− projC(pt − γ∇L(pt))∥]

≤ 1

T

T∑
t=1

E
[
∥∇L(pt)−mt∥+

1

γ
∥pt − p̃t+1∥

]

≤2
√
2M

T 1/2
ξ1/6 +

2
√
2M

T 1/3
,

where the first inequality is due to Triangle inequality, the second inequality is due to the non-
expansivity of convex projection.
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C IMPLEMENTATION DETAILS

C.1 MANUAL TEMPLATES

Table 4: Input templates, and output label words used in RoBERTa-large. ⟨S⟩ represents the sen-
tences in the dataset. [MASK] represents the mask token.

Task Dataset Input Template Output Label Words

Real-World Datasets Amazon Book ⟨S⟩ It was [MASK]. positive, negative
Amazon Electronics ⟨S⟩ It was [MASK]. positive, negative

GLUE Datasets CoLA ⟨S⟩ correct? [MASK]. no, yes
MRPC ⟨S1⟩⟨S2⟩ entailment? [MASK]. no, yes

Table 5: Input templates, and output label words used in GPT2-XL and Llama3. ⟨S⟩ represents the
sentences in the dataset.

Task Dataset Input Template Output Label Words

Real-World Datasets Amazon Book ⟨S⟩ It was positive, negative
Amazon Electronics ⟨S⟩ It was positive, negative

GLUE Datasets CoLA ⟨S⟩ correct? no, yes
MRPC ⟨S1⟩⟨S2⟩ entailment? no, yes

C.2 HYPERPARAMETERS

Table 6: Main hyperparameters used in our algorithm.

Hyperparameter RoBERTa-large GPT2-XL Llama3
query limit 32000 3200 1600

train batch size 32 32 16
prompt length {50, 20} {50, 20} {50, 20}

step size 1e-3 1e-3 1e-3

D ADDITIONAL EXPERIMENT RESULTS

D.1 EXPERIMENT RESULTS ON MRPC

We conduct experiments on MRPC using the same experiment setups as on CoLA and observe
similar phenomena as those on CoLA. The results are shown in Table 7.

Table 7: Comparison of AUC scores (mean±std.) on constructed imbalanced scenarios of MRPC.
We conduct three groups of experiments on pre-trained RoBERTa-large, GPT2-XL, and Llama3
with a prompt length of 20. The best results are highlighted in bold.

Imbalanced Ratio Method RoBERTa-large GPT2-XL Llama3

τ = 20

Manual Prompt .4764±.0855 .4556±.0834 .5264±.0531
BBT .5236±.0497 .4986±.0024 .5000±.0000

GAP3 .5000±.0000 .4972±.0024 .4708±.0331
BDPL .4639±.1660 .4917±.0072 .4972±.0048

mDP-DPG (ours) .5292±.0573 .5278±.0808 .5083±.0144

τ = 50

Manual Prompt .4700±.1386 .4433±.1444 .5206±.1275
BBT .5400±.0173 .4972±.0024 .5250±.0433

GAP3 .5000±.0000 .5517±.1721 .4717±.0407
BDPL .3050±.0976 .5667±.1241 .5000±.0000

mDP-DPG (ours) .5767±.0580 .5983±.1234 .5317±.0548
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D.2 OVERCOMING THE LIMITATION OF BINARY CLASSIFICATION

Although our current use of AUC loss is specific to binary classification, however, it could also be
generalized to the multi-class classification dataset by using the micro averaging. That is, for each
class, calculate the AUC loss for that class against all others and sum the losses and average them
over all classes. Additionally, we conduct experiments on the multi-class datasets MNLI and SNLI
and compare our methods with 3 representative baselines. The results are presented in the Table 8.
It can be observed that our methods also maintain optimal performance on multi-class datasets.

Table 8: Comparison of AUC values on 2 multi-class datasets

Model Method MNLI (len=50) SNLI (len=50)

RoBERTa-Large

Manual Prompt .4636±.0340 .5290±.0458
BBT .4589±.0271 .5845±.0470

BDPL .4670±.0462 .5697±.0189
mDP-DPG(ours) .4814±.0538 .5897±.0296

GPT2-XL

Manual Prompt .4718±.0360 .5150±.0434
BBT .4761±.0413 .5177±.0113

BDPL .4518±.0503 .5104±.0189
mDP-DPG(ours) .4823±.0382 .5243±.0197

Llama3

Manual Prompt .4036±.0106 .5478±.0122
BBT .5025±.0034 .4612±.0556

BDPL .4946±.0124 .6034±.0233
mDP-DPG(ours) .5079±.0284 .6171±.0298

D.3 BALANCED SCENARIO

Although experiments in the paper have demonstrated that our methods outperform baseline meth-
ods in imbalanced scenarios, their effectiveness in balanced settings is equally important. If our
methods were to suffer from performance collapse in balanced scenarios, their utility would be
compromised. To verify the performance of our methods in the 16-shot setting, we have conducted
additional experiments, with the results provided in Table 9. In balanced scenarios, the performance
of our methods is similar to that of various baselines in most cases, with a few instances where they
even surpass all baselines.

Table 9: Comparison of ACC on 3 datasets in the balanced scenario with prompt length of 20.

Model Method CoLA Book Elec

RoBERTa-Large

BBT .5717±.0159 .9364±.0008 .9149±.0040
GAP3 .5254±.0739 .9019±.0308 .8519±.1271
BDPL .4851±.0515 .9349±.0016 .8794±.0229

mDP-DPG(ours) .5762±.0605 .9384±.0006 .9112±.0075

GPT2-XL

BBT .3321±.0244 .6873±.0397 .5423±.0671
GAP3 .4624±.0774 .8257±.1216 .6312±.3736
BDPL .6497±.0221 .7527±.0283 .6741±.0941

mDP-DPG(ours) .6142±.0339 .8034±.0217 .7777±.0608

D.4 TRAINING EFFICIENCY

On the one hand, both mDP-DPG and BDPL use variance-reduced policy gradient estimators. On
the other hand, since mDP-DPG requires sampling pairs of examples and involves additional for-
ward passes through the black-box model. To mitigate this computational cost, we employ smaller
mini-batch size, which reduces the number of forward passes while achieving comparable experi-
mental results. Furthermore, although pairwise sampling necessitates multiple forward passes, the
computational burden is still much lower when compared backpropagation. To visually compare the
training efficiency between BDPL and our methods, we provide Figure 4 showing the progression
of the current best AUC on the development set across epochs.
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Figure 4: Current best AUC on the development set.

D.5 LEARNED PROMPT AND INTERPRETABILITY

We provide the prompts learned by our methods in Table 10 and 11, along with some correctly
predicted examples. Our prompts, like those in Diao et al. (2022), are sequences of discrete words
without explicit natural language semantics. Additionally, from the black-box optimization perspec-
tive, we prefer to consider the prompts as tunable parameters of LLM, and we can adapt the model
to downstream tasks at a lower cost by optimizing prompts.

D.6 REAL-WORLD APPLIACTION

To show performance of our method in real-world applications, we add three additional represen-
tative imbalance datasets: BB (Burfoot and Baldwin) Burfoot & Baldwin (2009), originally de-
veloped for satire news detection; Job Scams and SMS datasets Boumber et al. (2024), derived
for fraudulent job postings and spam message detection, respectively. The BB dataset consists of
4,000 true news articles and 233 satire articles. Its challenge lies in satire articles mimicking the
tone and style of true news while incorporating exaggerated or absurd content, requiring semantic
understanding and background knowledge for accurate classification. The Job Scams dataset, de-
rived from the Employment Scam Aegean Dataset, includes 14,295 cleaned job advertisements, of
which 599 are fraudulent postings, presenting a significant class imbalance. Fraudulent postings
often use fake job positions to deceive applicants, typically featuring short and structured texts. The
SMS dataset contains 6,574 messages, of which 1,274 are spam or phishing. These deceptive mes-
sages are typically brief and generic promotional content, whereas genuine messages reflect more
personalized communication. The diversity of these datasets ensures the broad applicability of the
experiments.

We compare the performance of five methods—Manual Prompt, BDPL, APE (Zhou et al., 2022),
EvoPrompt (Guo et al., 2023), and mDP-DPG—evaluated under prompt lengths of 5 and 20 using
true black-box LLM GPT-4. For APE and EvoPrompt, the final prompts are generated based on the
manual prompt pool and therefore do not have a fixed prompt length. The results are shown in Ta-
ble 12. The experimental results demonstrate that mDP-DPG outperforms other methods across all
datasets. On the BB dataset, mDP-DPG achieves an AUC of 0.5972 (length = 5), significantly sur-
passing BDPL and Manual Prompt. Despite the class imbalance challenge on the Job Scams dataset,
mDP-DPG achieves an AUC of 0.5307 (length = 20), outperforming BDPL’s 0.5024. Overall, the re-
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Table 10: Learned prompts on RoBERTa-Large and correctly classified examples

Method Dataset Prompt+Sentence Prediction Label

mDP-DPG
CoLA Sandy was trying to work out which stu-

dents would be able to solve a certain prob-
lem, but she wouldn’t tell us which one.

no yes

This never in had Tom of her It his if They
than with some not know think would That
my Sandy was trying to work out which
students would be able to solve a certain
problem, but she wouldn’t tell us which
one.

yes

Book Not impressed! This is just another gluten
free cookbook - albeit with some great
recipes. I don’t find recipes that contain
agave nectar to be ”sugar” free. What’s
the purpose - anyone can use other sweet-
eners than plain old sugar... While the
recipes might be sugar-free, they are def-
initely NOT without sweeteners. Sorry I
bought the book...perhaps there are better
books using NO sweeteners that satisfy the
sweet tooth of a gluten-free person???

positive negative

is their books at is one It through good
can really he I so will just It never so will
Not impressed! This is just another gluten
free cookbook - albeit with some great
recipes. I don’t find recipes that contain
agave nectar to be ”sugar” free. What’s
the purpose - anyone can use other sweet-
eners than plain old sugar... While the
recipes might be sugar-free, they are def-
initely NOT without sweeteners. Sorry I
bought the book...perhaps there are better
books using NO sweeteners that satisfy the
sweet tooth of a gluten-free person???

negative

Table 11: Learned prompts on GPT2-XL and correctly classified examples

Method Dataset Prompt+Sentence Prediction Label

mDP-DPG
CoLA Jerry attempted to blow up the Pentagon. no yeswhich did not by her from people What

him do eat were people will on It a more
was made Jerry attempted to blow up the
Pentagon.

yes

Book I had read the 1 year to an organized life,
by Ms Leeds, I thought this was going to be
different. It’s the exact same book!! I rec-
ommend buying the newer version: 1 year
to an organized life, don’t waste money on
this one.

positive negative

well into there most love reading into a
most characters not up she their a my book
people only most I had read the 1 year to
an organized life, by Ms Leeds, I thought
this was going to be different. It’s the ex-
act same book!! I recommend buying the
newer version: 1 year to an organized life,
don’t waste money on this one.

negative
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1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 12: Comparison of AUC values across different datasets using GPT-4.

Length Method BB (τ = 20) Job Scams (τ = 20) SMS (τ = 5)
- Manual Prompt .4333±.0191 .5098±.0546 .5252±.0131
≤20 APE .4968±.0398 .5000±.0042 .5268±.0184
≤20 EvoPrompt .5002±.0373 .4972±.0064 .5271±.0231

5 BDPL .4486±.0146 .4987±.0235 .5200±.0114
mDP-DPG (ours) .5972±.1428 .5314±.0386 .5272±.0090

20 BDPL .4403±.0244 .5024±.0306 .5135±.0064
mDP-DPG (ours) .5236±.1545 .5307±.0043 .5278±.0119

sults validate the adaptability of the mDP-DPG method, particularly in complex or class-imbalanced
tasks where it exhibited remarkable advantages.
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