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ABSTRACT

Data-driven (deep) learning approaches for image classification are prone to ad-
versarial attacks. This means that an adversarial image which is sufficiently close
(visually indistinguishable) from a true image of its representative class can often
be misclassified to be a member of a different class. A reason why deep neural ap-
proaches exhibits such vulnerability towards adversarial threats is mainly because
of the fact that the abstract representations learned in a data-driven manner often
do not correlate well with human perceived features. To mitigate this problem, we
propose the tessellated 2d convolution network, a novel divide-and-conquer based
approach, which as a first step, independently learns the abstract representations of
non-overlapping regions within an image, and then learns how to combine these
representations to infer its class. It turns out that a non-uniform tessellation of
an image which seeks to minimize the difference between the maximum and the
minimum tessellated areas is the most robust way to construct such a tessellated
2d convolution network. This criterion can be achieved, among other schemes,
by using a Mondrian tessellation of the input image. Experiments demonstrate
that our proposed method of tessellated network provides a more robust defence
mechanism against gradient-based adversarial attacks in comparison to conven-
tional deep neural models.

1 INTRODUCTION

Deep neural networks are known to be susceptible to adversarial attacks. Image representations
learned by a deep neural network differ from their visual interpretation. Attackers exploit this fact
by introducing imperceptible evasive perturbation in a set of test images such that the victim net-
work misclassifies them (Joseph et al., 2019). Defending neural networks against such adversarial
attacks is of significant theoretical and practical importance. Major approaches to defence against
such adversarial threats include adversarial training (Madry et al., 2018), network distillation (Pa-
pernot et al.,|2016)), input randomization (Xie et al., 2018)), activation pruning (Dhillon et al., 2018)),
gradient masking (Goodfellow, |2018)), input transformation (AprilPyone & Kiya,2020), and ensem-
ble methods (Tramer et al.,2017) to name a few. Architectural changes in the network topology is a
promising means of achieving adversarial robustness.

Well known evasive attacks include the gradient based input perturbation strategies such as fast
gradient sign method (FGSM) (Goodfellow et al.,|2015), and the projected gradient descent (PGD)
(Madry et al., |2018) methodologies. Universal attacks that are image-agnostic and add the same
perturbation for all input images while still modifying the class labels are also prevalent (Moosavi-
Dezfooli et al.,2017). Norm based attacks seeking to optimize the perturbation were subsequently
proposed to victimize newer defence strategies (Carlini & Wagner, 2017} |Croce & Hein, 2019).
Patch attacks, which involve perturbing image segments rather than the image pixels, have also been
attempted [Sharif et al.| (2016). More recent attacking approaches include the use of ensembling-
based strategies with a capability to adapt on the defence mechanisms employed (Tramer et al.,
2020).

Depending on the amount of information exposed to an attacker, an attack corresponds to one of
the two types, namely i) black-box attack, those with little or no knowledge about the target model,
and ii) white-box attack, where additional information about the network is available (e.g., in the
form of architecture, optimization function used, model parameters etc.). A black-box attack often
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involves substituting the victim network by a proxy network, constructed with the help of a small
number of interactions with an oracle (Papernot et al., 2016). In between the two extremes of
the black-box and white-box variants lies the gray-box attack, where the parameter values of a
trained model are not available to an attacker; however, other information about the model (e.g.,
architecture details and optimization/activation functions) are available (Vivek et al.| [2018)). It has
been reported that attacks methods can usually be effectively transferred to similar networks in a
gray-box threat scenario. Numerous other threat scenarios like transfer-based, score-based, and
decision-based black-box attacks are known in the literature (Ren et al., 2020; Dong et al., [2020).

As newer attacks are being developed, designing networks that are robust to adversarial attacks
has been an ongoing game. Among the most popular defence mechanisms are the ones that are
based on adversarial training using the samples generated by attacks such as FGSM |Goodfellow
et al.| (2015 and PGD Madry et al.| (2018)) or their ensemble (Tramer et al |2017). State-of-the-art
defences as reported in the RobustBench (Croce et al., 2020) benchmark dataset include those based
on data augmentation for adversarial training (Rebuffi et al., [2021), as well as those that are based
on transformation or randomization of model parameters (Gowal et al., 2021)).

Various randomized image transformation schemes such as cropping, padding, compression, block
segmentation, noise addition to convolution layer features demonstrate adversarial robustness (Xie
et al., 2017; [Liu et al., 2018} |AprilPyone & Kiyal [2020) . Input rectification schemes attempts
to remove adversarial perturbations by denoising, image blurring and depth reduction Xu et al.
(2017). Transformation of the features at the output of the convolution layers like activation pruning
(Goodfellow, [2018)), denoising, are often equally effective Dhillon et al.| (2018)); Liao et al.|(2018).

Regularization and dropout are recently being used for achieving adversarial robustness (Wang et al.}
2018; |B.S. & Babul 2020; Jordao & Pedrini, 2021). A study on the effect of regularization and
sparsity with respect to the adversarial robustness of a network can be found in (Schwartz et al.
2020; |Pang et al., 2020). Generating diverse structured networks as a tool for robustness has been
proposed in (Du et al., 2021} |Pang et al., 2019). An alternative convolutional network (CNN) archi-
tecture which randomly masks parts of the feature maps also demonstrates adversarial robustness
(Luo et al., 2020).

Architectural robustness provides an attractive defense mechanism that is agnostic to attack strate-
gies. As a motivation of the work in this paper, we hypothesize that modification of the network
structure leading to implicit feature transformation, cropping, masking, and distillation may result
in improved robustness against adversarial attacks in an attacking method agnostic manner. Incorpo-
ration of diversity in network topology may also act as an effective defence against ensemble attacks.
Consequently, reconfiguring the topology of a network may provide effective defence against adap-
tive adversarial attacks.

In this paper, we propose two dimensional fessellated convolutional networks (TCNN) that incorpo-
rates the effects of cropping, masking and feature transformation within a single framework. In our
approach, an input image is partitioned into blocks (tiles) according to a tessellation (tiling) pattern.
Each region of the input image makes use of a separate branch in the computation graph to propagate
its effects forward in the form of feature representations. The individual feature representations then
interact with each other for the eventual prediction of an image class (see Figure [I| for a schematic
representation).

We investigate the use of three types of rectangular tessellation patterns, namely, regular grid tiling,
tiling with non-uniform rectangles, and Mondrian partitioning (Roy et al., 2008)) with a set of addi-
tional constraints on the rectangles. Existing research has applied Mondrian kernels for generating
features |Balog et al|(2016), and has also generalized Mondrian partitions for higher than 2 dimen-
sions |LeFevre et al.| (2006).

Specifically, constraints in Mondrian tiling correspond to the following.

* The rectangular tiles are pairwise non-congruent, i.e., each rectangle must have a different
dimension (widths and height values), e.g., a 2x8 rectangle can only be used only once.
Note that this constraint does not prevent the use of another rectangle with a different
dimension but identical, e.g., a 4x4 rectangle can be used in combination with a 2x8 one.

* The difference in the area of the largest and the smallest tiles is to be minimized. This
difference is known as the score of the tiling.
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Figure 1: Architectural overview of the proposed approach of Tessellated 2D convolutional neural
networks for defence against adversarial attacks on image classification networks. The left part of
the figure depicts a standard layered 2D convolutional neural network for image classification. The
right part of the figure shows our proposed method - 2D Tessellated ConvNet (TCNN), where, first,
the input x € R%*? is partitioned into k sub-instances (non-overlapping image regions) - x; such
that U;x; = x.

While the first constraint ensures that there exist no parts in the overall computational graph with
duplicate dimensions, the second one prevents solutions that employ too large or too small image
regions. The implication of the former is that it is difficult for an adversarial attack to expose a
vulnerable sub-network more than once (thus increasing the overall vulnerability), while the im-
plication of the latter is that the individual feature representations of the tiles adequately represent
meaningful parts of the overall image.

In our experiments, we find that 2D tessellated convolutional networks (2D-TCNNs) are more robust
to well known attacks as compared to standard networks. Moreover, among the three different
tiling approaches explored, a Mondrian tiling based 2D-TCNN leads to more robust results against
adversarial attacks.

2 TESSELLATED CONVOLUTIONAL NETWORK

In this section, we describe our proposed method of Tessellated Convolutional Network (TCNN).
We specifically focus on the 2D convolutional networks.

Figure [I] presents the idea of a TCNN. An input image is first partitioned into non-overlapping
rectangular tiles using a tessellation scheme. Parallel branches of convolution and pooling layers
of the tiled CNN then process each input segment. The convolution and pooling layers in each
branch terminates in a dense layer of parameters leading to a feature representation of a part of the
overall image corresponding to that tile. The output from these dense layers, each representing an
abstract representation of a rectangular region of an image, are then concatenated in the merge layer
and processed through yet another dense layer. The output layer is a softmax that is finally used to
predict the discrete class label.

We use three tessellation schemes, namely, regular (or uniform), non-regular (or non-uniform), and
Mondrian. Details of these partitions are presented next. The main focus of our paper is investigate
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if the divide-and-conquer based approach of a tessellated network can lead to more robust defences
against adversarial threats. For simplicity, we thus restrict our investigation to simple 2D convolution
networks, instead of experimenting with more complex (in terms of depth and width) networks, e.g.
ImageNet (Szegedy et al., |2015) or networks that use more involved connections between layers,
e.g. the ResNet (He et al., [2016). However, our proposed divide-and-conquer based approach is
generic enough to be applied on more complex computation graphs such as those of ImageNet or
ResNet, which we leave as future work.

2.1 TESSELLATION METHODS

A tessellation of an d x d square image is a complete tiling of the image with non-overlapping tiles.
Although the concept of tessellation can, in general, involve (even non-convex) polygons, the tiles,
with which we cover an input image always refers to rectangles in the context of our problem.

A parameter to the tessellation process is the number of mutually disjoint rectangles used. Formally,
each input x € R4¥¢ is partitioned into k sub-instances x; such that U;x; = x.

To uniquely specify a tessellation of an input instance x € R4*9, each tile x; € R"*%i of width w;
and height h; is associated with a location, as specified by the row and column index of its top-left
location, i.e., p(x;) = (r;,¢;) such that 1 < r; < d— h; and 1 < ¢; < d — w;. Each tiling method,
that we investigate, generates a list of such rectangular tiles.

2.1.1 REGULAR TESSELLATION

The simplest tessellation that we investigate is the uniform one, where each tile is a square. The
parameter k for regular rectangular tessellation controls the number of squares used to cover x €
R4 and is a perfect square, i.e., k = m? for some m € Z.

2.1.2 APERIODIC TESSELLATION

In non-uniform tessellation, an input image of size d x d is split into rectangular blocks of arbitrary
sizes with a low likelihood that any two rectangles will be of equal area. We employ a recursive split
and merge approach to generate a non-uniform tessellation. At each step we employ either a split
or a merge operation depending on whether m (the present number of tiles) is higher than or lower
than k (the desired number of tiles).

If m < [, we randomly select a rectangle and split it into two parts. The position of the splitting
line and its direction (horizontal or vertical) is chosen randomly. The split operation always leads
to increasing the total number of tiles by 1 (see Figure [2b]for an illustrative example). Otherwise, if
m > [, we merge a rectangle with other rectangles that are adjacent to it with respect to a direction
(one of top, right, bottom or left). Figure [2c|illustrates an example of merging a tile with the ones
that are right-adjacent to it. The merge operation mostly leads to increasing the number of tiles.

We carry out a sequence of random split and merge operations on randomly selected tiles (sampled
with uniform probability) unless the desired number of tiles (the parameter k) is reached. After every
split or merge operation, we employ a post-hoc step which checks if any of the tiles is too small or
too large (specifically, area less than 52 or greater than (3/4d)?). If the split or merge operation
generates a rectangle whose area is either less than or higher than the two thresholds, then the step
is undone.

It is also possible to generate non-uniform tessellations with other policies as well, e.g., with the use
of Bayesian non-parametric space partition methods as surveyed in (Fan et al., 2021)).

2.2 MONDRIAN TESSELLATION

The Mondrian tessellation is a non-uniform tessellation which is obtained by solving a constrained
optimization problem. The objective is to minimize the difference between the area of the largest
and the area of the smallest rectangle with the constraint that the rectangles are non-congruent to
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Figure 2: (a) Regular tiling of a 9 x 9 image with 9 3 x 3 square tiles (d = 9,1 = 9); (b) Illustration of
the effect of the split operation on a tiling - the yellow colored rectangle on the left part of the figure
is transformed into two blue rectangles shown in the tiling shown along the right; (c) Illustration
of the effect of the merge operation on a tiling - the yellow colored rectangle on the left part of the
figure is merged with the rectangles right-adjacent to it; this operation for this example does not
increase or decrease the total number of tiles (as seen on the right part of the figure); (d) A Mondrian
tiling for a 14 x 14 square grid, note that the tiles are mutually non-congruent, the Mondrian score
for this tiling is optimal, the value being 6 X 6 — 3 x 10 = 6.

each other. Formally speaking, for a d x d square grid

Minimize s = maxw;h; — minw;h;, s.t. i, j: wih; = wihj A (w; —w;)(w; —hj) =0
! / (D
1<i<k 1<j<kVil<w <d Al<Hh;<d.

where w; and h; denote the width and the height of the ith rectangle, and k is the number of tiles
in the current solution. The non-congruence constraint requires that if a rectangle with dimensions
a X b has already been used in the tiling, then another rectangle of dimension a X b or b X a cannot
be used.

The constrained optimization problem is solved with the following steps - first by enumerating all
possible partitions of the number d? (the total area of the grid) by dynamic programming, second,
by generating all possible factors of each element of the partition, and third, by generating the tiling
by the Exact-Cover algorithm (Junttila & Kaskil 2010); see (Bassen, 2016) for more details.

For our problem, since images are of fixed size we did not require to find the optimal solution to
the Mondrian problem for unknown values of grid sizes. Instead, as we work with the FMNIST and
CIPHAR-10 images (of size 28x28 and 32x32, respectively), we used the known configuration of
optimal Mondrian tiling as reported in (Bassen, [2016)). In fact, we found that instead of using the
solution for 28 and 32, splitting the original images into 4 blocks of 14x14 and 16x16 and employing
four copies of optimal Mondrian tilings for 14x14 and 16x16 sizes yielded better results. Figure [2d]
shows the solution for the 14x14 block. Note that employing 4 copies of Mondrian solution for a
d/2 x d/2 grid eventually relaxes the global constraint of non-congruence of the tiles because in this
case we allow duplicate tiles across the different d/2 x d/2 blocks.

Reason why tessellated network should work well against adversarial attacks. The tessellated
2D convolution network dedicates a separate branch for each of the tiles as shown in Figure[T|which



Under review as a conference paper at ICLR 2022

are later combined in a dense layer. This offers an implicit ensemble of the features computed
be each branch. Empirically, ensemble of diverse network structures have been shown to have
robustness Du et al.| (2021)); |Pang et al.| (2019). Adopting a non-regular (and non-congruent) image
tessellation scheme leads to diversity in the computational graph of the branches of tessellated CNN.

However, generation of non-regular tessellation patterns with large variation in sizes of the tiles may
result in very large or too small sub-rectangles. Empirically we find that this harms the accuracy
of the tessellated network on non-adversarial samples. Optimal and near optimal Mondrian patterns
having low Mondrian scores (the value of s in Equation 1) avoids such skew while using diverse
shaped non-congruent sub-rectangles. This trade-off between performance on clean images and
robustness to adversarial attacks has also been noted in previous studies. Both methods of generating
non-uniform tessellations (Mondrian and those obtained with the split-merge operations) lead to
better handling of this trade-off.

3 EXPERIMENTAL SETUP

In this section we present details of our experimental setting.

3.1 DATASETS

Two benchmark image classification datasets were used in our experiments experiments. Fashion-
MNIST, variant of the standard MNIST dataset, which consists 10 classes each belonging to certain
fashion category is used. Each image of the dataset is a 28 x 28 sized grayscale image. The training
set consists of 60000 examples and a test set of 10000 examples. For a color image dataset, where
adversarial perturbations are less perceptible, the CIFAR10 dataset was used. The CIFAR-10 dataset
consists of 60000 32 x 32 colour images in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images.

3.1.1 ADVERSARIAL ATTACKS

Black-box untargeted versions of the two most standard adversarial attacks: FGSM (Fast Gradient
Signed Method (Goodfellow et al., [2015)) and PGD (Projected Gradient Descent (Madry et al.
2018)) attacks were performed on the models for the purpose of the experiment.

For consistency, all the adversarial examples were generated apriori, and the same ones were used
across every experiment. The FGSM examples were generated by applying /., perturbations of
e = 8/255 = 0.03 , on normalized test sets. For the PGD examples as well, we used ¢ = 0.03,
num_steps = 20, and step_size = 2.5 X £ / num_steps, where num_steps is the number of
iterations of the PGD algorithm. In both the attacks we assume the victim network to be a standard
2D-CNN.

3.2 EVALUATION METRICS

To gauge the robustness of aforementioned models, it was necessary to compute and compare certain
performance metrics, prior to and following the adversarial attacks.

Besides comparing classification accuracy (acc), a custom metric called weighted accuracy (accy)
was defined to represent the misprediction as well as the confidence of misprediction with a single
numeric value. It is defined as :

accy =1 — mp . confy,,,

where, mp denotes the mispredictions rate (i.e., 1 — acc), and conf,;, denotes the average prediction
confidence for misclassified examples. The confidence is measured in terms of normalized softmax
output values. A low value of difference in the metrics for clean and adversarially perturbed input
examples (Aacc, Aaccy,) denotes a better robustness.

3.3 TESSELLATION AND NETWORK PARAMETERS

In the proposed tessellated 2D convolution network, several experiments were performed over differ-
ent tiling schemes, varying number of crops, different attacks, etc, to identify the most adversarially
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resistant settings. For the fashion MNIST 28 x 28 images an optimal Mondrian tessellation for
n = 28 was used with a total of £ = 24 non-congruent sub-rectangles. The Mondrian score for this
pattern is 9. The CIFAR10 32 x 32 images were similarly split into four 16 x 16 blocks, for which
known optimal Mondrian patterns are used consisting of a total £k = 20 non-congruent rectangles.
The Mondrian score for this solution is 9. We do not use Mondrian solutions for high values of n
to avoid large Mondrian score solutions even though they are optimal. In this process we sacrifice
non-congruence in favor of lower Mondrian score. For regular tessellations we split the image into
(k = 4 x 4 = 16) equal sized square blocks for all the experiments in both datasets. For aperiodic
tessellation we split the input images into & = 22 sub-rectangles for fashion MNIST, and £ = 20
sub-rectangles for CIFAR10 using the spiral pattern generation process described in Section [2.1.2]
Note that, owing to the random initialization of the aperiodic spiral pattern generation process, mul-
tiple tessellations with identical values of k£ may be generated. We report the average value of the
evaluation parameters over all such configurations in Section [4]

The network layer structures for each of the CNN and the tessellated CNNs (Figure |1) considered
in our experiments for the fashion MNIST dataset are mentioned below:

1. Basic CNN: 28 3x3 Conv; Pool 2x2; 56 3x3 Conv; Pool 2x2; 56 3x3 Conv; Flatten &
Concat; Dense 512; Dense 128; Dense 10.

2. Regular tessellated CNN (with 4 x 4 = 16 sub-rectangles): Crop-layers (16 parallel); 28
3x3 Conv; Pool 2x2; 56 3x3 Conv; Pool 2x2; 56 3x3 Conv; Flatten & Concat; Dense 512;
Dense 128; Dense 10.

3. Aperiodic tessellated CNN (with 22 sub-rectangles): Crop-layers (all parallel custom
crops); 28 3x3 Conv; Pool 2x2/2x1/1x2/1x1; 56 3x3 Conv; Pool 2x2/2x1/1x2/1x1; 56
3x3 Conv; Flatten & Concat; Dense 512; Dense 128; Dense 10.

4. Mondrian tessellated CNN (with 24 sub-rectangles): Crop-layers (all parallel custom
crops); 28 3x3 Conv; Pool 2x2/2x1/1x2/1x1; 56 3x3 Conv; Pool 2x2/2x1/1x2/1x1; 56
3x3 Conv; Flatten & Concat; Dense 512; Dense 128; Dense 10.

For the aperiodic and Mondrian tessellations, in the custom maxpooling layers with window sizes
2x2,2x1,1x2or1 x 1 options are used, (instead of the usual 2 x 2) to avoid pooling across a
dimension of a tile, if that dimension size is too small.

The categorical cross-entropy is used as the loss function, and the Adam optimizer is used for train-
ing with a batch size of 32. All models were trained for 10 epochs.

4 RESULTS

Results from the experiments performed under different settings defence for /., perturbation of
e = 8/255 = 0.03 FGSM (Goodfellow et al.| 2015)) and PGD (Madry et al.,[2018) black-box attacks
is reported in Table [T} The goal of these experiments is to study if a partitioning method applied on
a specific network structure offers a significant improvement over the “non-partitioned” counterpart.
It was observed that the drops in classification accuracy as well as in weighted-accuracy, both in the
cases of FGSM and PGD attacks, happens to significantly reduce for the tessellated convolutional
network as compared to vanilla 2D Convolution Network. We further observed that the aperiodic
and Mondrian methods seem to have lower accuracy drop than regular tessellation in most cases.

The number of sub-rectangles k used in a tessellation is a hyperparameter of our model. We show
a plot of the variation in classification accuracy for clean and FGSM attacked test samples for the
fashion MNIST dataset in Figure|3|(a) for regular, aperiodic, and Mondrian tessellations. The drop in
accuracy is also plotted in Figure[3(b). A higher /., perturbation of ¢ = 0.04 was considered to study
the effect of hyperparameter variation. We study the effect of variation in hyperparameter k only
for the regular and aperiodic tessellations; since, the number of rectangles are fixed in Mondrian
patterns. The accuracy and drop in accuracy values for the Mondrian tessellations (kK = 24) are
shown as a baseline in the figure. It is seen that the drop of accuracy has a valley when around 22
number of sub-rectangles are used in aperiodic tiling, and 16 sub-rectangles for regular tiling. The
robust accuracy for attacked samples is less when a very low number of rectangles are used. On the
other hand the drop in accuracy increases when a very large number of sub-rectangles are used due
to increase in skewness. Similar trends were observed for other datasets and attacks.
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Table 1: Performance of Tessellated 2D convolutional neural networks against /., ¢ = 8/255
FGSM and PGD adversarial attacks. Hyperparameter values of the number of sub-rectangles in the
tessellation for the FMNIST dataset are: regular (k = 16), aperiodic (k = 22), Mondrian (k = 24).
Values for the CIFAR10 dataset are: regular (k = 16), aperiodic (¢ = 20), Mondrian (k = 20).
Bold typeset values denote the best performance across networks for each metric and each attack
type. Bold underlined values shows the best Aacc and Aacc,, metrics for the PGD attack for each
dataset.

FMNIST CIFAR-10
Network Tessellation  Attack acc Aacc aCCw Aaccy acc Aacc aCCw Aaccy
2D-CNN N/A None  0.9136 — 0.9360 — 0.7337 — 0.8281 —
2D-CNN N/A FGSM 0.7864 0.1272 0.8350 0.1010 0.3989 0.3348 0.5794 0.2487
2D-CNN N/A PGD 0.7552 0.1584 0.8057 0.1303 0.3291 0.4046 0.5241 0.3040
2D-TCNN Regular None  0.9080 R 0.9279 R 0.6527 R 0.7810 R

2D-TCNN Regular FGSM 08617 0.0463 0.8908 0.0371 0.5119 0.1408 0.6834  0.0976
2D-TCNN Regular PGD  0.8549 0.0531 0.8851 0.0428 0.5006 0.1521 0.6694 0.1116

2D-TCNN  Aperiodic None  0.9104 I 0.9320 I 0.6487 i 0.7868 —_—
2D-TCNN  Aperiodic ~FGSM  0.8585 0.0519 0.8909 0.0411 0.5166 0.1321 0.6951 0.0917
2D-TCNN  Aperiodic PGD  0.8503 0.0601 0.8841 0.0480 0.5011 0.1476 0.6788  0.1080

2D-TCNN Mondrian None  0.9029 I 0.9242 I 0.6409 I 0.7797 I
2D-TCNN Mondrian FGSM  0.8543 0.0486 0.8834 0.0408 0.5080 0.1329 0.6830 0.0917
2D-TCNN  Mondrian PGD  0.8469 0.0560 0.8768 0.0474 0.5017 0.1392 0.6789  0.1008
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Figure 3: Variation of (a) Classification accuracy (acc) on clean, and FGSM attacked (¢, € = 0.04)
test examples, and (b) drop in accuracy (Aacc), with the number of sub-rectangles (hyperparameter
k) in for the fashion MNIST dataset. The circled points in (b) correspond to smallest Aacc for
regular and aperiodic tessellations. Since, £ = 24 is fixed in Mondrian tessellation we show it as a
baseline in the plots.

We compare the performance of the proposed tessellated convolution network (T-CNN) with some
of the well known defence strategies for the gradient based black-box untargeted attacks FGSM and
PGD. We report results for the CIFAR10 dataset. The following methods were compared:

* 2D-CNN

* Regular tessellated 2D-CNN (T-2D-CNN)

* Aperiodic tessellated 2D-CNN (T-2D-CNN)

* Mondrian tessellated 2D-CNN (T-2D-CNN)

* Adbversarial trained (A-T) ResNet using FGSM samples (Goodfellow et al.,[2015)

* Adversarial trained (A-T) ResNet using PGD samples (Madry et al., 2018)
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Table 2: Accuracy (acc), and drop in accuracy (Aacc) of compared models for FGSM and PGD
adversarial attacks for CIFAR10 dataset. Bold typeset values indicate best Aacc for an attack.

Network None (acc) FGSM (acc) FGSM (Aacc) PGD (acc) PGD (Aacc)
2D-CNN 0.7337 0.3989 0.3348 0.3291 0.4046
Regular (k = 16) T-2D-CNN 0.6527 0.5119 0.1408 0.5006 0.1521
Aperiodic (k = 20) T-2D-CNN 0.6487 0.5166 0.1321 0.5011 0.1476
Mondrian (k = 20) T-2D-CNN 0.6409 0.5080 0.1329 0.5017 0.1392
A-T FGSM ResNet 0.8740 0.9090 -0.0350 0.2105 0.6635
A-T PGD ResNet 0.7940 0.5170 0.2770 0.4370 0.3570
PixelDefend ResNet 0.7900 0.3985 0.3915 0.2989 0.4911
I-T ResNet 0.7214 0.6665 0.0549 0.4030 0.3184

* PixelDefend generative model based training data augmentation for ResNet (Song et al.,
2018)), and

* Input transformed (I-T) (cropping, quilting, total variance maximization) test examples and
ResNet (Guo et al., 2018)).

The classification accuracy are shown in Table 2] Even though the clean and robust accuracy of
the ResNet based models are higher compared to CNN based ones due to their higher capacity, we
observe lesser drop in accuracy after attack (Aacc) in the proposed tessellated CNN models.

5 CONCLUSIONS AND FUTURE WORK

We present tessellated 2D convolutional network as a divide and conquer defence against adver-
sarial attacks for image classification. The network first partitions the input image into a number
of non-overlapping sub-rectangles. Each sub-rectangle is then processed by a parallel branch of the
CNN terminating in dense layers. The output of these branches are concatenated and passed through
another dense layer to obtain the final softmax classification scores. Three input image partitioning
strategies namely, regular, aperiodic, and Mondrian is considered. We achieve a good degree of
robustness in this approach as compared to non-tessellated networks. The implicit parallelization of
the computation graphs into diverse branches while maintaining balanced sized partitions produces
feature transformations that leads to high classification accuracy on clean data while providing ad-
versarial robustness.

Studies on other space partitioning techniques may help in devising more diverse classes of tes-
sellated networks. Similarly, tessellation structures for other networks like residual nets and wide
residual nets may be considered in future.
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