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Abstract

Large language models (LLMs) have demonstrated an impressive ability to generate
code for various programming tasks. In many instances, LLMs can generate a
correct program for a task when given numerous trials. Consequently, a recent trend
is to do large scale sampling of programs using a model and then filtering/ranking
the programs based on the program execution on a small number of known unit
tests to select one candidate solution. However, these approaches assume that the
unit tests are given and assume the ability to safely execute the generated programs
(which can do arbitrary dangerous operations such as file manipulations). Both of
the above assumptions are impractical in real-world software development. In this
paper, we propose CODERANKER, a neural ranker that can predict the correctness
of a sampled program without executing it. Our CODERANKER is fault-aware i.e.,
it is trained to predict different kinds of execution information such as predicting
the exact compile/runtime error type (e.g., an IndexError or a TypeError). We show
that CODERANKER can significantly increase the pass@1 accuracy of various
code generation models (including Codex [11], GPT-Neo, GPT-J) on APPS [25],
HumanEval [11] and MBPP [3] datasets.

1 Introduction

Large transformer-based language models (LLMs) have impressive capabilities [19, 7, 16], including
the ability to generate code [11, 3, 28, 39, 33]. The task here is to take a natural language description or
previous code context as the input and generate an entire program in a general-purpose programming
language such as Python or C++. Generating entire programs is a challenging task as it involves
understanding the task, figuring out how to accomplish it, and writing code without any syntax/runtime
errors. On harder programming problems such as coding competition problems, current models
achieve very low accuracy especially if the inference-time sampling budget is low. For example, on
the APPS dataset [25], a state-of-the-art code generation model, Codex [11], achieves 4% accuracy if
it is allowed to sample only one program per task (called pass@1), but achieves 24% accuracy if it is
allowed 100 samples per task (called pass@100—at least one correct program in 100 samples) (see
Table 7). This observation leads us to an important research problem on exploring approaches to rank
the sampled programs to bridge the gap between the pass@1 and pass@100 performances.

Upon analyzing the sampled programs obtained using an LLM, we find that several of them have
syntax errors and runtime errors, and some of them execute to produce undesirable outputs. Therefore,
prior works [11, 28] focused on ranking the programs by executing them on a small set of unit tests
(which are typically assumed to be given as part of the task description). However, there are several
caveats to this approach: First, even if a program passes the given tests, it could still fail on the
unknown unit tests. Second, there is a burden on the user to provide unit tests for every inference
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Task Reference code Unit tests
Write a function name ‘nextPerfectSquare‘ that
returns the first perfect square that is
greater than its integer argument.
Example: next_perfect_square(6) == 9
def next_perfect_square(n):
Use Call−Based format

def next_perfect_square(n):
return n>=0 and
( int (n∗∗0.5)+1)∗∗2

Inputs :
6 36 0 −5

Outputs:
9 49 1 0

Figure 1: An example code generation task from the APPS dataset (train/3447).

task. Third, to execute the code, all the dependencies has to be installed properly. This is especially
problematic in scenarios where a user wants to get code suggestions in a project with multiple files and
dependencies (such as using CoPilot in a VS Code environment [1]). Even if these dependencies are
satisfied, many realistic programming scenarios involve incomplete code under active development
where execution is just infeasible. Finally, the code generated by a LLM could potentially have
security risks (such as deleting files on the disk) and hence, executing such a code needs heavy-weight
isolation mechanisms such as a sandbox environment.

To alleviate the above issues with relying on executing code, some of the recent works [18, 36]
proposed to use a neural-network based ranker1 for ranking programs sampled from a LLM. A
ranker model is essentially a classifier that takes as input a task description and a sampled program
and predicts the probability that the program is correct with respect to the task description. When
given multiple programs (obtained by sampling), a ranker re-orders them in the decreasing order of
the predicted probability of the program being correct. The ranker is essentially trying to emulate
executing a program on some unit tests without actually executing the code during inference. The
training data is obtained by executing both correct and wrong programs sampled from the code
generation model itself. Thus, we only need unit tests and the execution ability during the dataset
creation step instead of during inference as in prior approaches.

While previous approaches target math problems to make the learning problem tractable, in this
paper, we design CODERANKER for more complex general programming tasks in Python. A sampled
Python program can fail in many different ways. For example, a program when executed on a unit
test can result in a compile/runtime error and can produce a wide variety of outputs such as integers,
strings, lists and dictionaries that can produce a type mismatch. In contrast in the math domain, there
is less scope for compile/runtime errors and the output is usually just a number.

Our CODERANKER approach is based on the idea that a neural ranker trained to distinguish between
the various failure modes can have a better understanding of the program and the task, and hence can
do better at ranking programs. Thus, we design fault-aware CODERANKER and we investigate its
impact on the ranking performance. Each fault-aware ranker is a classifier trained to predict one/two
multi-class labels that are extracted from the rich information obtained by executing the programs.

We used the APPS dataset to finetune/train the code generation and the CODERANKER models. On
this dataset, we showed that CODERANKER improved the pass@1 performance of Codex (used in
a few-shot manner) from 26% to 39.6% on the validation set and from 3.8% to 4.5% on the test
set. We additionally found our rankers are transferable to a different dataset without any additional
training. On the HumanEval dataset, we improved Codex’s pass@1 from 26% to 32% and on the
MBPP dataset, we improved from 36% to 42%. We found similar performance boosts with other
code generation models such as GPT-J and GPT-Neo. Compared with a naïve binary classifier-based
ranker, our fault aware CODERANKER achieves better ranking performance. Finally, we investigated
the effect of mixing ranker datasets from multiple code generation models which gives us an extra
boost in the performance.

2 Preliminaries

2.1 Code generation

Task: A code generation task G is a prompt, represented as a sequence of tokens, that specifies the
task at hand. G is usually a combination of natural language, input-output examples, and starter

1called a verifier in the previous work
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Model # parameters mode pretrain dataset finetune dataset

Codex (Davinci) Unknown One-shot GitHub + Common
Crawl, Wiki, etc. N/A

GPT-J 6B Fine-tuned Pile dataset APPS train dataset
GPT-neo 1.3B 1.3B Fine-tuned Pile dataset APPS train dataset
GPT-neo 125M 125M Fine-tuned Pile dataset APPS train dataset

Table 1: Code-generation models, their sizes, the mode of usage (fine-tuned or few-shot), and the datasets used
for pretraining and finetuning.

code. A solution S to a code generation task is a sequence of tokens that together form a program to
solve the given task. Existing datasets additionally contain a set of input-output pairs that are used
to test the correctness of a generated program. Figure 1 gives an example code generation task, the
corresponding reference solution, and the unit tests taken from the APPS dataset [25].

Models: There are several existing pre-trained LLMs in the literature that are suitable to generating
code either in a few-shot manner or after finetuning. A code generation model F provides a way
for us to sample programs for a given task G as Si ∼ PF (S | G) where PF denotes the probability
distribution induced by the code generation model F .

In this paper, we study four different code generation models—(i) Codex, (ii) GPT-J (6B), (iii) GPT-
Neo 1.3B and (iv) GPT-Neo 125M (Table 1). Codex is the largest state-of-the-art code generation
model that is publicly available for querying through an API and has shown impressive performance
in code generation [11]. It is built on top of a GPT-3 language model architecture and is trained on
180 GB of GitHub data. GPT-Neo and GPT-J are open-sourced models with the number of parameters
ranging from 125M to 6B. These models are pre-trained on the Pile dataset (800 GB of natural
language corpus with 8% of GitHub data). Since, these models are open-sourced, it is possible to
finetune these models on a downstream dataset such as the APPS dataset. In addition to the above
models, there are other code-generation models such as AlphaCode [28] and Google’s model [3].
While our approach is applicable to any of these models, in this study, we validate the effectiveness
of CODERANKER on a set of state-of-the-art code generation models that are publicly available, for
reproducibility.

Metrics: Code generation models are evaluated based on functional correctness rather than exact/-
fuzzy match to a reference program. This is because match-based metrics are unable to account for
the large and complex space of programs functionally equivalent to a reference program. Functional
correctness is estimated by checking whether a sampled program passes a set of unit tests. Prior
approaches evaluate functional correctness using the pass@k metric; given k generated program
samples per task, a task is considered solved if any of the samples passes the unit tests. The pass@k
metric measures the total fraction of tasks solved. Additionally, we define the exec@k metric which
computes the fraction of the tasks for which there exists at least one program in the k samples that
executes without any compile/runtime errors, i.e., produces a non error value for each of the test
inputs, but may or may not match the desired output.

2.2 Code ranking

Given n sampled programs using a code generation model, S1, · · · , Sn ∼ PF (S | G), the goal
of CODERANKER is to find an ordering of the programs So1 , · · · , Son such that to compute the
ranked pass@k for k ≤ n, a problem is considered solved if any program in the set {So1 , · · · , Sok}
passes the unit tests. A CODERANKER model R takes as input a code generation task G and a
sampled program Si and outputs a score si. The ranked ordering of the sampled programs is given by
So1 , · · · , Son such that so1 > so2 > · · · > son .

3 Fault-Aware Neural Code Ranker

A CODERANKER model is a classifier that is trained to classify a pair 〈G,Si〉 as CORRECT or not,
where CORRECT means that Si satisfies the task G with respect to its unit tests. The score si is
computed as si = PR(CORRECT|G,Si) where PR is the probability according to the ranker model
R. This probability is extracted using the real values from the last layer before the SoftMax layer.
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Code generation model
used for generating the
dataset

Training data Validation data Test data
C W C W C W

I E I E I E
Codex 70K 180K 140K 16K 26K 18K 19K 280K 200K
GPT-J 20K 210K 150K 3K 32K 23K 2.4K 210K 260K

GPT-Neo 1.3B 10K 170K 200K 1.5K 28K 27K 0.7K 170K 310K
GPT-Neo 125M 10K 150K 220K 0.8K 23K 34K 0.2K 140K 340K

Table 2: Ranker dataset distribution for the datasets generated using the 4 different code generation models on
the APPS tasks. C: # CORRECT programs, W: # WRONG programs, I: # intent errors, and E: # execution errors.

Generated Program Full error message Labels

def number_property(n):
if n % 2 == 1: return True
return random.choice(n) % 1 == 0

TypeError("object of type ’int’
has no len()") at Line 2

B: wrong
T: execution error
I : −
E: TypeError
L: Line 2

def gematria( string ):
return ’ ’ . join ( sorted( string . lower (),
key=lambda item: item.lower(),
reverse=True)).lower()

Expected output is 775, but gen-
erated output is ’vole’

B: wrong
T: intent error
I : OutputTypeError
E: −
L: −1

Table 3: Examples from the fault-aware ranker dataset showcasing the generated program, the full error message
obtained by executing the program, and the fine-grained labels extracted from this error message. Each entry
contains a binary label (B) that classifies the entry as CORRECT or WRONG, a ternary label (T) that distinguishes
between CORRECT, intent error, and execution error, an intent error label (I) that specifies the type of the intent
error (or -), an execution error label (E) that specifies the type of the execution error (or -), and a line number (L)
that corresponds to the erroneous line in the code (or -1 if there is no execution error).

3.1 Code Ranker Dataset

To train a CODERANKER model, we need a dataset that has both CORRECT and WRONG (i.e., not
correct) programs. To collect these programs, we use the code-generation models to sample n = 100
programs for each task in the training dataset. We then execute the sampled programs on their
corresponding unit tests to generate the classification labels. Following the observations from [18],
one has to be careful to not over-train the base code generation models to ensure diversity in the
sampled programs. Hence, we only finetune the base code generation models for a maximum of 2
epochs and chose a checkpoint that results in the lowest validation loss (this does not apply to the
Codex model, which is used in a few-shot manner). Table 2 shows the distribution of the ranker’s
datasets obtained by using the 4 different code generation models for the tasks in the APPS dataset 2.
As one can expect, the ranker dataset is highly imbalanced with about 5X to 40X more WRONG data
points than CORRECT data points and this ratio is higher for smaller models such GPT-Neo models.

Fault-aware ranker dataset: A straightforward ranker is one that is trained to predict a binary label
CORRECT or WRONG. However, a program fails for various reasons and knowing why a program
might fail is crucial to predicting whether a program is CORRECT or not. Therefore, we designed a
fault-aware ranker dataset. When we execute a program on a set of unit tests, the compiler message is
more than just a single bit of information. In fact, when the unit test fails, we know if it failed because
of a compile/runtime error (which we call an execution error) or because the program produced a
wrong output for a particular input (which we call an intent error). Table 2 also shows the distribution
of intent errors and execution errors in the ranker datasets. An interesting observation is that the
percentage of execution errors decreases for larger code generation models.

It is possible to further break down the WRONG datapoints. Within the execution error class, the
compiler message tells us exactly the type of the execution error (such as an IndexError or a TypeError
or a TimeOutError) and the line in the program that caused this error. By parsing the error message
from the Python compiler, we derived 10 most frequent classes of execution errors as shown in
Table 4 and Figure 2. Similarly, for the intent error class, we know how the generated output differs
from the expected output (such as wrong type or wrong length of the array output). We manually

2We used a subset of 600 problems as the validation set, chosen randomly from a subset of the original
training problems for which the best model, Codex, produces at least one correct program in its 100 samples.
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Class Description
NameError Undefined variables

ValueError Operation/function received an argument of in-
appropriate value

EOFError Raised because of extra input() functions

TypeError An operation or function is applied to an object
of inappropriate type

IndexError Array index out of bounds
KeyError Key in a dictionary is not found

TimeoutException Code is inefficient or doesn’t terminate
SyntaxError Parser encountered an error

Function not found The function expected by the unit tests is not
found

Misc Other execution errors

Table 4: Different classes of execution errors. See https://docs.python.
org/3/library/exceptions.html for more details.

(a) NameError
def bird_code(arr ):

if ’hyphen’ in arr :
return [ arr [ i ][0] + ...

# name ’i’ is not defined in line 2
(b) KeyError
def league_standings(teams):
return {i+1: teams[−i−1] for
i in range(len(teams))}

# KeyError(−1) at Line 1
(c) TimeoutException
def fibonacci (n):
return n if n in [0, 1] else
fibonacci (n − 1) +
fibonacci (n − 2)

# inefficient implementation

Figure 2: Examples of execution
errors.

designed 9 most frequent classes of intent errors by looking at various expected and generated outputs
from the training examples (see Table 5 and Figure 3). These fine-grained execution-based labels
constitute our fault-aware dataset. Table 3 shows a few data entries with all the labels. Figure 6 in the
Appendix shows the distribution of the various classes of execution errors and intent errors for the
ranker dataset obtained using the Codex model.

3.2 Code Ranker Tasks

We now describe the different classification tasks derived from the above dataset. For each classifica-
tion task, the input is a pair of code generation task specification G and a generated program Si and
the output is one or multiple labels where each label belongs to pre-determined set of classes. We
describe the different labels/classes of the various tasks below. These tasks are designed to explore the
trade-offs between having abstract classes of failures versus having fine-grained classes of failures.
Binary (B): The output is a single binary label with two classes {CORRECT, WRONG}.
Ternary (T): The ternary task splits the WRONG class into intent error and execution error classes:
this forms a three-class classification task with output labels {CORRECT, intent error, execution error}
Intent Error aware (I): The intent error aware task splits the intent error class in the ternary task
into its 9 different sub-classes, thus has a total of 11 classes for the output label.
Execution Error aware (E): The execution error aware task is similar to the intent error aware task
but instead of splitting the intent error class, we now split the execution error class into its 10 different
sub-classes, thus has a total of 12 classes for the output label.
Execution Error + Error Line aware (E+L): This is a multi-class and multi-label classification
task which combines two classification tasks. The first one is the execution error aware task described
above. The second task is to predict the line of the code that corresponds to an execution error. The
labels for the error line number also includes −1 to represent there is no execution error.

3.3 Code Ranker Models

We implemented our fault aware CODERANKER models by finetuning the pretrained CodeBERT [21]
model.

CodeBERT: It is a state-of-the-art pretrained BERT-style code-understanding model trained on the
CodeSearchNet dataset [26] using a combination of masked language modeling and replaced token
detection objectives [17]. It takes as input a concatenation of two segments with a special separator
token, namely [CLS], w1, w2, ..wn, [SEP], c1, c2, ..., cm, [EOS]. Usually, one segment is a natural
language text, and another is a code. [CLS] is a special token, whose final hidden representation can
be treated as the aggregated sequence representation for classification or ranking downstream tasks.

Adding a classification head: We add a classification head on top of a base CodeBERT model by
connecting a linear layer and a softmax layer to the hidden representation of the [CLS] special token.
Let C ∈ RH be the final hidden vector corresponding to the [CLS] token and let W ∈ RK×H be the
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Class Description
NoneError Generated output is None while ex-

pected is not
EmptyError Generated output is an empty array

while expected is not
OutputTypeError Different types of outputs

LengthError Arrays/Dicts/Sets of different lengths
IntSmallError Integer outputs that are different from

the expected ones with delta ≤ 10
IntLargeError Integer outputs that are different from

the expected ones with delta > 10
StringSmallError String outputs whose length is different

from the expected ones with delta ≤ 3
StringLargeError String outputs whose length is different

from the expected ones with delta > 3
Misc Other intent error

Table 5: Intent error classes.

(a) NoneError
def consecutive_sum(num):
sum = 0
n = len( str (num))
for i in range(n−1):
if num % i == 0 and sum > 0:
return sum

# return statement never gets triggered
(b) LengthError
def diamonds_and_toads(sentence,fairy):
return dict (zip( ’Ruby␣Crystal’ ,

(0, 2, 1, 2, 0)))
# Got {’R’: 0, ’u ’: 2, ’b ’: 1, ’y ’: 2},
# expected {’ruby ’: 3, ’ crystal ’: 2}
(c) StringSmallError
def smash(words):
return ’ ’ . join (word for word in words)

# Got ’helloworld ’,
# expected ’ hello world’

Figure 3: Examples of intent errors.

Code gen. model pass@100 pass@1 ranked
pass@1 pass@5 ranked

pass@5 exec@1 ranked
exec@1

Codex 100 26 39.6 56.4 63.5 69.7 87.0
GPT-J 48.8 5.1 11.0 15.6 21.7 60.4 82.9

GPT-Neo 1.3B 34.6 2.6 8.0 9.1 15.1 52.1 85.6
GPT-Neo 125M 23.6 1.4 6.5 5.2 11.4 41.1 58.9

Table 6: Results on the APPS validation dataset about how our fault-aware rankers can improve the pass@1,
pass@5, and exec@1 performance for various code generation models. We use the best ranker model for each
code generation model for this result. Pass@100 for the Codex model on this validation set is 100% by design.

weights of the newly added classification layer where K is the number of classes in the classification
task. The logits for the classification output are computed as softmax(CW>) and we use a standard
cross-entropy loss for finetuning all the weights.

Adding a line prediction head: To predict the line corresponding to an execution error, we introduce
an error line vector S ∈ RH during fine-tuning. The probability of a newline (“\n”) token i being the
erroneous line is computed as a dot product between Ti and S followed by a softmax over all of the
newline tokens in the code, i.e., Pi =

eSTi∑
j eSTj

where Ti is the final hidden vector corresponding to

the ith newline token. We include a newline token at the beginning and the end of the input to indicate
the case where there is no erroneous line in the code (i.e., code does not result in an execution error)
and to indicate the case where the erroneous line is beyond what is encoded in the input (this occurs
if the task+code context cannot fit within the 512 token limit of CodeBERT), respectively.

4 Evaluation

We next evaluate our CODERANKER approach. We investigate (1) how fault-aware CODERANKERs
can improve various code generation models on various code datasets, (2) the impact of the different

Code gen. model pass@100 pass@1 ranked
pass@1 pass@5 ranked

pass@5 exec@1 ranked
exec@1

Codex 24.1 3.8 4.5 9.2 10.2 59.6 73.4
GPT-J 7.2 0.5 0.8 1.6 2.6 45.4 63.8

GPT-Neo 1.3B 3.0 0.14 0.3 0.53 1.1 35.2 73.7
GPT-Neo 125M 1.5 0.04 0.1 0.17 0.5 28.5 43.9

Table 7: Results on the APPS test dataset. We use the best checkpoints for the code generation models and the
ranker models based on the results on the validation set.
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ranker tasks, and (3) the effect of mixing ranker datasets generated by different code generation
models.

4.1 Experiment Setup

Code generation datasets: We consider three existing code generation datasets for our evaluation:
(1) APPS [25]: a collection of 5000 training and 5000 test tasks collected from coding competitions
and interview problems, (2) HumanEval [11]: a set of 164 test tasks, and (3) MBPP [3]: a set of 974
mostly basic python programming tasks with 474 training problems and 500 test problems.

In our experiments, we only use the APPS dataset for finetuning the code generation models and the
CODERANKER models (since it is the largest dataset). But we evaluate these models on all three sets
of test tasks. The APPS dataset does not come with a validation dataset, so we used a set of 600 tasks
from the original training dataset for validation; these are, then, excluded from the training dataset.
Since we are interested in explicitly evaluating the ability of a ranker to distinguish CORRECT code
from WRONG code, we chose our validation set to only include problems for which a Codex model 3

(in a few-shot manner) can generate at least one correct program in its 100 samples. To facilitate the
transfer of GPT-J and GPT-Neo finetuned models on the HumanEval and the MBPP datasets, we
perform a minor programmatic transformation of the task descriptions to match the APPS style.

Metrics: We use the pass@1, pass@5, exec@1, ranked pass@1, ranked pass@5, and ranked exec@1
metrics (higher values are better). See Section 2 for their definitions. We also show the pass@100
metric to illustrate the maximum possible value for the pass@k and ranked pass@k metrics. These
metrics are measured using an unbiased estimator from 100 samples as proposed by [11].

Training setup and hyper-parameters: We finetuned GPT-J and GPT-Neo code generation models
on the APPS training dataset for 2 epochs with a batch size of 256 and a learning rate of 1e-5,
and chose the checkpoint that has the lowest validation loss. For inference, we used temperature
sampling with T = 0.8 for Codex model and T = 0.9 for the GPT-J and GPT-Neo models unless
specified otherwise. We chose these temperatures to maximize diversity in the 100 samples, but
we also conduct an ablation with lower temperatures in Table 11. For each program, we sample
512 new tokens and truncate the generated program by a special stop sequence that we used in the
few-shot/finetuning prompts.

We finetuned the CODERANKER models for 30 epochs with a batch size of 512 and a learning rate of
1e-4, and chose the checkpoint that results in the best ranked pass@1 metric on the validation dataset.
We used class weights to balance the different classes while training the rankers. All experiments are
conducted on V100-32GB GPUs.

Notation: We use the notation RY
DX

to denote a CODERANKER model trained on a dataset obtained
using the code generation model X from Table 2 and on one of the five ranker tasks Y from
Section 3.2.

4.2 Main Results: CODERANKER improves code generation models

APPS validation dataset: First, we analyze the results on the APPS validation dataset of 600
tasks. Table 6 shows the performance on various metrics for the 4 different code generation models.
These results use the best CODERANKER model for each code generation model which is shown
in Table 10. From Table 6, we find that CODERANKERs improve all the metrics for all the code
generation models despite their different sizes. The pass@1 performance increases by 5.1% to
13.6% with CODERANKER and the models can solve about 30 to 80 more tasks when it has to select
only one program from the 100 samples. Another interesting observation is that a GPT Neo 125M
model when combined with CODERANKER (another 125M model) beats a GPT-J model (with 50X
more parameters). These results show the effectiveness of CODERANKER on improving the code
generation models.

APPS test dataset: Our results on the APPS test dataset of 5000 tasks is shown in Table 7. The test
problems are harder than the ones on the validation set, which we can see by the smaller pass@100

3We chose Codex for this filtering step because it is the best performing model out of the 4 models we
considered.
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Code gen. model pass@100 pass@1 ranked
pass@1 pass@5 ranked

pass@5 exec@1 ranked
exec@1

Codex 88.4 26.3 32.3 50.5 61.6 77.0 86.6
GPT-J 45.1 9.1 11.6 19.1 18.9 73.6 89.0

GPT-Neo 1.3B 19.5 3.2 6.1 7.7 8.5 66.3 87.8
GPT-Neo 125M 12.8 0.84 3.0 3.0 6.1 52.3 58.3

Table 8: Results on the HumanEval dataset showing the zero-shot transferability of the rankers trained on APPS.

Code gen. model pass@100 pass@1 ranked
pass@1 pass@5 ranked

pass@5 exec@1 ranked
exec@1

Codex 84.8 36.4 41.8 60.9 62.4 74.8 93.2
GPT-J 60.4 12.1 14.2 28.9 28.2 73.3 80.8

GPT-Neo 1.3B 40.0 3.6 5.0 11.9 16.2 58.3 75.2
GPT-Neo 125M 6.8 0.2 0.8 0.9 2.6 7.6 14.2

Table 9: Results on the MBPP dataset, showcasing another instance where our fault-aware rankers can be used
in a zero-shot manner on a different dataset.

and pass@1 numbers. Hence, the improvement from CODERANKER is smaller in scale, but it is still
a significant improvement; Codex’s pass@1 increases from 3.8% to 4.7% (35 additional problems).

HumanEval and MBPP datasets: We measure the transfer ability of CODERANKER on two
different datasets–HumanEval (results in Table 8) and MBPP (results in Table 9). We can again
see that CODERANKERs improve the performance of all code generation models on all metrics for
both datasets (one exception is pass@5 for GPT-J on MBPP). Codex model’s pass@1 performance
increases by 6% on both datasets. These results show the ability of CODERANKER to transfer out-of-
distribution and also showcases that the errors made by the code generation models on different tasks
are universal.

Exec@1 vs pass@1: In all the above results, the improvements in the exec@1 metric are higher
than the improvements in the pass@1 metric; this shows that CODERANKER is better at identifying
execution errors in code than intent errors, which is expected since executing code is shown to be an
inherently hard task for language models [3, 34].

4.3 Ablations

Effect of sampling temperature: On the HumanEval and the MBPP datasets, we additionally
experiment with different temperatures for sampling the 100 programs (see Table 11). As expected,
we noticed that pass@100 decreases with lower temperatures, but pass@1 increases. We found that
CODERANKER further increases the pass@1 performance for 3 out of the 4 setups and achieved
42.7% ranked pass@1 on the HumanEval dataset—the best known result so far on this dataset 4 [16].
On the MBPP dataset, under a low-temperature sampling setup, we found that CODERANKER slightly
decreases the pass@1 performance—this we attribute to the small difference between the pass@1 and
the pass@100 metrics, which makes it hard for a learned ranker to beat a random ranking scheme.

Analyzing different ranker tasks: Figure 4 shows 4 training curves; one for each code generation
model, X , showcasing the validation ranked pass@1 curves for the model X when combined with
the 5 different rankers R∗DX

. Results in a tabular format can be found in the Appendix. From
the curves, we can notice that for larger models such as Codex and GPT-J, the rankers trained on
the ternary classification task RT perform the best, and for smaller models such as GPT-Neo 1.3B
and GPT-Neo 125M, the ranker trained on the intent-aware classification task RI and the ranker
trained on the execution-aware + error line classification task RE+L perform the best, respectively.
We can also notice that the binary rankers RB perform significantly worse especially with smaller
models. These results suggest that when training rankers on a dataset that has more WRONG code,
harder classification tasks act as better regularizes. Figure 7 in the Appendix shows similar training
curves for the ranked exec@1 metric; here, we can see that RE and RE+L always achieves best
ranked exec@1 because they are trained to identify execution errors and RB and RI have the worst
performance.

4this excludes approaches that use execution during inference
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Code gen. Model Best Ranker
Codex RT

DCodex

GPT-J RT
DGPT-J

GPT-Neo 1.3B RE+L
DGPT Neo 1.3B

GPT-Neo 125M RI
DGPT Neo 125M

Table 10: Best CODERANKER model for
each code generation model based on best
ranked pass@1 on the validation dataset.

Setup pass@100 pass@1 ranked
pass@1

HumanEval, Temp=0.8 88.4 26.3 32.3
HumanEval, Temp=0.2 69.5 35.2 42.7

MBPP, Temp=0.8 84.8 36.4 41.8
MBPP, Temp=0.2 70.0 47.2 46.8

Table 11: Results with different sampling temperatures for the
Codex model with rankers on HumanEval and MBPP.
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Figure 4: Training curves (smoothed) measuring ranked pass@1 over
training steps for various rankers on different code generation models.

Figure 5: Results showing how the
ranked pass@1 changes with differ-
ent ranker datasets.

Analyzing different ranker datasets: In this experiment, we measure the impact of using the
rankers trained on data from one code generation model on another code generation model and the
effect of mixing these ranker datasets. We have 4 different code generation models in this experiment
and hence, 4 different ranker datasets. We analyze two different mixed datasets—(i) mixed-small
that randomly samples 25% of the above ranker datasets and combines them, and (ii) mixed-large
that combines all of the 4 ranker datasets into one; the former represents a dataset that is roughly
the same size of the individual ranker datasets for a fair comparison, while the latter makes use of
all the available data. Figure 5 shows the ranked pass@1 of all the 4x6 combinations in the form
of a heat map. Each column has been normalized such that the values for the same model is 1 (i.e.
the diagonal values are 1). From the figure, among the individual ranker datasets, we notice that the
rankers trained with the data from the same code generation model are the best and that the rankers
trained with data from code generation models with a large size difference are the worst. Finally, the
rankers trained on mixed-small dataset perform slightly worse (except for GPT-J code gen. model)
than using the same model dataset, but the rankers trained on mixed-large dataset have the overall
best performance. These results suggest that while it is usually better to use the same model for
generating the ranking dataset, we can potentially use smaller models (less expensive models) to
augment the ranker dataset to further improve the performance.

Additional qualitative/quantitative analysis of the CODERANKER approach can be found in the
Appendix.

5 Related works

Code generation tasks/models: There are several code generation models explored in the lit-
erature, ranging from decoder-only architectures [11, 3, 39, 6, 22] to encoder-decoder architec-
tures [28, 33, 2, 38] of various sizes. Similarly, there are several task datasets from multiple domains,
including math-word-problems [3, 18], Jupyter notebook cell generation [10], common programming
tasks [3, 11, 35] and competition level programming problems [28, 25]. In this paper, we evaluate
CODERANKER’s ability to improve the performance of four decoder-based code generation models

9



on three programming datasets. Our approach is agnostic to code generation model architectures
as long as they generate outputs by sampling and our approach can be easily extended to different
domains.

Code understanding tasks/models: Besides code generation tasks, there are several code under-
standing tasks including code search [4, 8, 23, 26], clone detection [37, 30], code summarization [26],
code translation [13, 27, 32] and defect detection [9, 5, 15, 40, 5]. Encoder-only code understanding
models [29, 21, 2, 38, 24] are developed for these tasks. Our CODERANKER task can be viewed as a
new code understanding task, and our ranker model is finetuned from CodeBERT [21]. The defect
detection datasets are closely related to ours; the main difference is that prior work focused on finding
vulnerability in human-written code, while we focus on detecting errors in model-generated code.

Filtering/ranking for code generation models: Previous works such as [11, 28] use execution to
prune code completions during inference. While [11] only uses unit tests provided as part of the
task, [28] additionally uses a neural model to generate inputs for the unit tests and uses execution
to filter out programs that produce the same outputs on those inputs. However, these work requires
executing potentially vulnerable code for every inference task. Our approach bypasses execution
at inference time with the neural ranker. Similar to our work, [18, 36] propose a neural-network
based ranker/verifier for code generation models; the main difference is the domain (general purpose
programming tasks in our case versus math problems in prior work) and we train our neural rankers
to learn why/how a code fails rather than just predicting a binary label. Moreover, [18, 36] use
generative models as their ranker base; in our work, we show benefits of rankers using a simple
encoder-only model with only 125M parameters ( [18] uses models with atleast 3B parameters) (see
Section A.2.3 in the Appendix to see our ablation on different ranker architectures).

Using execution/static analysis in other contexts: There has been other works on using execution
to guide code generation by conditioning the generation on a representation of the program states
[12, 20]. There are also attempts to replace the execution process with a neural model in these
cases [14, 34]. Another relevant work is [31], which improves the code generation models by using
static analysis to augment the model’s input and has shown to drastically reduce the number of
execution errors made by the generated programs. This paper takes an alternate approach by using a
neural ranker model to prune out wrong programs at inference time.

6 Conclusions and Future Directions

We presented CODERANKER that ranks programs generated by a code generation model without
explicitly executing the programs. Our rankers are fault-aware i.e., trained to predict the fine-grained
classes of failure modes and we showed the effectiveness of the fault-aware rankers in improving
pass@k and exec@k metrics for various code generation models and tasks.

One of the main limitations is that the CODERANKER approach is not sound, i.e., a ranker can
classify a correct program as wrong and vice-versa. Additionally, we incur extra inference time to get
better performance, because we now have to generate n >> k programs to filter k programs to show
to the user. Our current approach also relies on sampling full programs from the code generation
model before using CODERANKER. In the future, we want to investigate ranking/classifying partial
programs, which can in-turn reduce the inference time by pruning out wrong programs early. Another
future direction for our work is to investigate other ranker model architectures such as those that can
better levarage the code structure and exploring other ranker tasks such as generating the full error
message. Finally, it will be interesting to investigate the transferability of our CODERANKER approach
to generic programming tasks (rather than just competition programming). A main challenge. here, is
the lack of a generic programming dataset which needs to collected by scraping public sources such as
GitHub. Our preliminary experiments on such a generic programming dataset show that existing code
generation models usually produce more programs with execution errors rather than programs with
intent errors . This observation combined with our results in this paper that show CODERANKER is
usually better at identifying execution errors than intent errors, we are very optimistic that a fault
aware CODERANKER approach would also improve the code generation for generic programming
tasks.

Acknowledgements: We thank Todd Mytkowicz, Piali Choudhury, Rahee Gosh Peshwaria, Curtis
von Veh, and Xiaodong Liu for helpful discussions on this work.
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