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Abstract

Molecular dynamics (MD) simulations describe the mechanical behaviors of
molecular systems through empirical approximations of interatomic potentials.
Machine learning-based approaches can improve such potentials with better trans-
ferability and generalization. Among them, graph neural networks have prevailed
as they incorporate the graph structure prior while learning the interatomic inter-
actions. Nevertheless, the simple design choices and heuristics in devising graph
neural networks make them lack an explicitly interpretable component to identify
the true physical interactions within the underlying system. On the other extreme,
physical models can give a rather comprehensive description of a system but are
hard to specify. Causal modeling lies in between these two extremes, and can
provide us with more modeling flexibility. In this paper, we propose a structural
causal molecular dynamics model (SCMD), the first causality-based framework to
model interatomic and dynamical interactions in molecular systems by inferring
causal relationships among atoms from observational data. By concerning the
underlying data generation process, one can enjoy a robust and flexible MD sim-
ulation model to explicitly capture the long-range and time-dependent movement
dynamics. We demonstrate the efficacy of SCMD through empirical validations
on the complex molecular system (i.e., single-chain coarse-grained polymers in
implicit solvent) for long-duration simulation and dynamical property prediction.

1 Introduction

Molecular dynamics (MD) simulations aim to analyze the physical movements of atoms and
molecules. It has become an indispensable computational tool for studying molecular system be-
haviors in a variety of fields, from material science and catalysis to biological processes [Boero
et al., 1998, Massobrio et al., 2015, Karplus and McCammon, 2002, Holdijk et al., 2022]. How-
ever, molecular dynamics simulation often suffers from a trade-off between accuracy and efficiency.
Highly accurate simulations require resource- and time-intensive ab initio quantum-mechanical cal-
culations, while empirical force fields model interatomic potentials by simple approximations and
thus cannot guarantee accuracy and transferability [Zhang et al., 2018].

In recent years, machine learning-based approaches have been introduced to model the molecular
system interactions and serve as neural potential functions for MD simulation [Unke et al., 2021].
Among them, graph neural networks (GNNs) are commonly used to learn the interactions between
atoms in the system [Chmiela et al., 2017, Unke and Meuwly, 2019, Schütt et al., 2017, Gasteiger
et al., 2019, 2021, Batzner et al., 2022]. Although these approaches have achieved remarkable
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performance for energy and force predictions, the heuristics for considering atomic interactions in
the system are rather simple, which often only include bonded interactions or set a distance threshold
for atomic interactions. In contrast, none of these challenges exists in the physics-based approaches,
since the approximations of parameters are given to simulate the dynamics according to different
types of interaction, atoms and bonds. However, the efficiency and transferability may be limited
compared to ML-based methods.

In view of the advantages and challenges of physical and ML-based approaches, we aim to strike a
better trade-off between simulation accuracy and computational efficiency for molecular dynamics
through the lens of causal discovery and learning. As argued in [Schölkopf et al., 2021, Peters et al.,
2017] and summarized in Table 1, causal discovery and learning aim to arrive at physical models in
a data-driven manner, without manually designed parameters by the physical models, which lie in
between those two extremes. Therefore, instead of heavily relying on physical functions or purely
applying black-box prediction models, this work explores the identification of the causal relation-
ship among atoms in molecular systems by only using observational data. The causal connections
between two atoms exist when there is a mechanistic function between them in the physical model
so that we can uncover the physical interactions solely from the observed dynamics trajectories,
enabling interpretability and efficiency of the modeling simultaneously.

Specifically, we proposed SCMD, which uses the structural causal model (SCM) [Pearl, 2009,
Schölkopf et al., 2021] to model the dynamical behavior of molecular dynamics. SCM can describe
the data generation process of the observed molecular dynamics trajectories, and the corresponding
causal relationships can be represented via the dynamic Bayesian networks (DBNs) [Pearl, 2011].
In DBNs, each node denotes an atom in the system, and the associated edges represent the causal
dependencies between atoms. We can learn the DBN from data by parameterizing the connections
using GNNs with recurrent designs to model the spatial and temporal dynamics. Since the molecules
have different causal graphs but share the same underlying physical dynamic laws, we use an auto-
encoder to learn the generic dynamics laws among all molecules, enabling the zero-shot generalized
capability on unseen molecules. We can infer the causal graphs via encoders and predict the future
forces or positions of all atoms using the decoder. In short, SCMD can learn physics-related insights,
which are equipped with the capability to generalize to unseen systems.

Table 1 compares the model attributes of our approach with ML-based and physical models. In
summary, our main contributions are four-fold: (i). Providing a systematic framework for leveraging
causal discovery to better model the physical and causal dependencies among atoms in the MD
system; (ii). Developing an efficient method to learn the components of the DBNs that describes
the causal model of the MD system based on the neural relation inference; (iii). Presenting a more
accurate and robust simulation performance on MD simulation with different simulated duration.
Especially, our model can predict long-duration trajectory (350 steps) with only observable states
on the initial step; and (iv). Providing findings on how to leverage causality to better understand the
physical and chemical systems.

2 Problem definitions and preliminaries

2.1 Problem definition

Notations The design target for the MD simulation is to model the evolution of the system
of the atoms in an accurate and cost-effective manner. We use xi =

(
x1
i ,x

2
i , . . . ,x

T
i

)
and

i ∈ {1, 2, . . . , N}, where T and N indicate the number of total time steps and atoms in the sys-
tem.

Learning target Our target is to predict future k-step movements for each atom x̂t+1:t+k =(
x̂t+1, x̂t+2, . . . , x̂t+k

)
given the current states of the atoms xt2. The objective function is to min-

imize the distance between the simulated trajectories and the corresponding ground truth generated
by physical simulation estimator, D(x̂t+1:t+k,xt+1:t+k).

2We drop the atom index in some equations for better readability. For the time index, we use the discrete-
time series representation here and define the sampling rates in the experimental sections.
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Table 1: Attributes of different methods. † indicates our approach.

Methods Statistical relation
analysis

Physical-related
Insights

Robustness &
Generalization

Efficiency &
Scalability

ML-based methods ✓ ✗ ✗ ++
Physics-based models ✓ ✓ ✓ -
SCMD† ✓ ✓ ✓ +

2.2 Structure causal molecular dynamics (SCMD)

2.2.1 Causality and structural causal model

Causal inference and discovery tools are designed to identify the underlying causal relations among
variables with the interventional or observed data [Pearl, 2009]. The structural causal model
(SCM) [Pearl, 2009] and potential outcome model (POM) [Rubin, 2005] are two common causal
inference frameworks. In this paper, we choose to leverage SCM to model the data generation pro-
cess of the molecular dynamic system. An SCM consists of sets of endogenous (X) and exogenous
(U) variables connected by certain functions (F) that determine the values of the variables in X
based on the values of the variables in U [Pearl, 2009]. The structure can be represented by a di-
rected acyclic graph (DAG) G := (V, E), encoding the direct causal dependencies (edges E) among
variables (node set V).

For an MD simulation, we assume that the nodes denote atoms and edges denote interactions among
atoms. Unlike ordinary SCM modeling, which excludes time evolution, in this work, we think of
the SCMs as the state abstractions of the underlying temporal process [Peters et al., 2017]. We give
the SCM and data generation process of MD system below.

Data generation process of MD In the MD system, the movement of each atom will be affected
by a group of atoms through physical links (e.g., chemical bounds). Therefore, at time step t,
the observed trajectory Xt = (xt

1,x
t
2, . . . ,x

t
N ) is generated by the following dynamical process,

modeled by an SCM:
xt+1
i = fi

(
PA

(
xt
i

))
+ ut

i (1)

where PA (xt
i) =

{
xt−1
j |∀xj = PA (xi) in G

}
, where G is the skeleton graph of the SCM. The

nodes are denoted by a set of atom indexes {x1, x2, . . . , xN} the corresponding adjacent matrix
A can be estimated by the observed data. We assume that the movement of the atoms at t + 1 is
only affected by those at time step t, similarly to those works on causal dynamic systems [Lippe
et al., 2022, Wang et al., 2022, Löwe et al., 2022]. In other words, there are no instantaneous
temporal effects in the SCM. Fig. 1(a) indicates the data generation process, including the observed
trajectories and the underlying SCM. Notably, we assume that there exists a self-loop for all atoms.
This is because the movements of each atom are affected by their historical movement variables (e.g.,
locations). Hence, the SCM (Fig. 1(a)) may contain self-loops and cycles in the graph. However,
this will not affect the intervention and identifiability theory of causal discovery since the time-
dependent process (i.e., full-time graph) does not have cycles (Fig. 1(b)) [Peters et al., 2017]. To
conclude, the SCM can extract causal relations among different atoms, expressing the underlying
data generation process that takes place over time.

2.2.2 Dynamic Bayesian networks

A Bayesian network (BN) [Dean and Kanazawa, 1989] over the set X is defined as B = (GX , P ),
where GX is the graph structure of the network, giving the dependency connectivity among the
variables, and the distribution P gives the conditional probabilities of the variables in X :

P (X ) =
∏

Xi∈X
Pi (Xi | PA (Xi)) (2)

DBNs [Murphy, 2002] are one of the extended versions of BN, modeling the time-dependent process
of variables and their conditional dependence. The unfolded DBNs can be represented as BNs.
The variables in DBNs are in discrete time steps and depend on variables only from the same and
previous time slices. The network structure and conditional dependence are the same as in other time
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(a) Data generation process (b) Dynamic Bayesian network

Observed trajectories Underlying SCM t t+ 1

Figure 1: Conceptual illustrations of the observed trajectories, the corresponding SCM, and the
DBN, where the solid lines and dashed lines indicate the different causal edge types: physically
bounded and non-bounded, respectively. For brevity, we ignore the edge directions in the underlying
SCM. Best viewed in color.

steps, which assume the stationary property of the system. We can infer the SCM by approximating
the distribution over the DBN in Equation 2. In other words, we use DBN to model the SCM in a
probabilistic way.

To model the probabilistic SCM with temporal effects, each conditional dependence in the
DBN should represent the causal relationship. We assume B is the DBN model over{
x1
1, x

1
2, . . . , x

t
N−1, x

t
N

}
. Thus, the DBN is the unfolded causal graph with connections beyond

time steps, modeling the temporal effects among atom pairs. Fig. 1(b) displays the visualized DBN
with two-time slices. In the present paper, we learn the DBN using the auto-encoder model, similar
to [Löwe et al., 2022], where the causal dependence structure is inferred via the latent dimensions,
and the temporal dynamics are estimated by the decoder.

2.2.3 Neural relation inference

We use the neural relation inference (NRI) framework [Kipf et al., 2018, Löwe et al., 2022] to
learn the DBN. In NRI, the interactions among entities are learned via the variational auto-encoder
(VAE) model, where the interactions are modeled as the latent codes inferred by the encoder, and
the decoder reconstructs the original trajectories. The evidence lower bound (ELBO) of the VAE is
given by:

L(ϕ, θ) = Eqϕ(z|X) [log pθ(X | z)]−KL [qϕ(z | X)∥p(z)] , (3)

where, the latent vector z denotes the inferred interaction among entities X = {x1,x2, . . . ,xN}
and we have observed trajectories xi =

(
x1
i , . . . ,x

T
i

)
of all entities. N and T are the number of

entities and time steps, respectively. p (z) is the prior distribution of the latent space. ϕ and θ denote
the encoder and decoder, respectively.

The amortized causal discovery [Löwe et al., 2022] further proposes to leverage the latent space to
learn causal relations between entities. Specifically, the work extends the NRI with an additional
edge type defining the non-causal relations in the latent space.

In our work, we follow the designed structure of the amortized causal discovery, where we learn
the DBN using the VAE model and estimate the temporal dynamics by the decoder. In the original
amortized causal discovery, the applied scenarios are relatively simple and the datasets are all with
low dimensions (e.g., 1-D time-series, particles, and simulated fMRI data). We explore how to
leverage the framework to model the complex MD system with possible noisy and high-dimensional
data. In particular, Zhu et al. [2022] also utilize the NRI framework to infer the latent interactions of
protein allosteric communications. Different from [Zhu et al., 2022], we aim to propose a generic
framework for discovering the causal links in a molecular dynamics system.

3 Structural Causal Molecular Dynamics

We utilize a generative model, named sequential causal VAE (SC-VAE), to learn the graph structure
and temporal causal dependencies of DBN in an end-to-end fashion. The overall pipeline is illus-
trated in Fig. 2. In SC-VAE, the atom representation is learned via several GNN layers and serves
as the input of the network. The encoder infers the distribution of causal graphs given the atom
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representation. Specifically, we model the adjacent matrix of the causal graph as the latent factors.
Hence, the produced causal graphs are atom-specific, making the framework generic and flexible.
The decoder generates future movements by modeling the temporal interactions among atoms with
the sampled causal graph instance from the latent space and the learned atom representation. The
supervision signals include the sequential prediction error and the KL-divergence between the pos-
terior and prior distribution of the causal graph. We discuss each component below in our proposed
framework.

3.1 Learning the generative process of SCMD

Node to edge Edge to node Causal non-bonded information passing Causal bonded information passing : System representationg(X) : Causal graphA

Edge-wise message passing
Atom-wise message passing

t t

t

t
T − τ

TT − τ

T

Information

gathering

Trajectories
T + τ, …

[Optional] property

 (e.g. radius of gyration)

t t t t

Encoder qϕ

A

g(X)

Decoder pθ

Figure 2: Overview of learning framework SC-VAE. The square below the atom in the encoder part
indicates atom representation. And the concatenation of two squares indicates edge representation.

Learning the edge representation H Following NRI, we use the neural message passing to ob-
tain the edge embeddings as the input to estimate the causal dependencies. The edges embeddings
H are computed based on the message passing on a fully-connected graph, where each atom will
propagate the message to all the remaining in the molecular system. Thus, the edge embedding
is H = {∀i, j ∈ {1, . . . , N} and i ̸= j|h(xi,xj)}, where h(xi,xj) is the embedding of edge con-
nected with xi and xj . Specifically, to calculate h(xi,xj), we follow the steps below:
Step 1: Atom-wise message passing

h0 (xi,xj) = fe1 (femb(xi), femb(xj)) ,

where femb is composed of several stacking MLP layers, deriving the initial embedding represen-
tation of atoms. fe1 is to compute the message passing between atom pairs, implemented by MLP
layers. The output of step 1 is the initial edge embedding h0.
Step 2: Edge-wise message passing

fj = fv

∑
i ̸=j

h0(xi,xj)

 ,

where fv is the edge message passing function, implemented by the stacking MLP layers. fj is the
updated atom representation with the messages passed from all the edges.
Step 3: Final Edge embedding

h (xi,xj) = fe2 (fi, fj) ,

where fe2 is another module to compute the message passing between atoms, similar to fe1 but with
different parameters. The final edge embedding between xi and xj is then derived as h (xi,xj).

The edge embeddings in H, are then used to estimate the distribution of the causal graph and the
temporal dynamics.

Learning the causal graph structure A Following the causal discovery with NRI frame-
work [Kipf et al., 2018, Löwe et al., 2022], we utilize an encoder to learn the sample-agnostic
causal graph. This is particularly appropriate because most molecule samples with the same chem-
ical space share the same underlying physical dynamics given some sound conditions (e.g., same
media), while the causal graphs for describing the atom movements are sample-specific due to the
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different molecular structures. The encoder qϕ, hence, to learn the structure of the causal graphs
among all samples. Given a trajectory data sample xt at time step t, the encoder output the distri-
bution of the adjacent matrix of the sample qϕ (A|g (xt)), where A is the adjacent matrix and qϕ is
parameterized via several dense layers empirically.

We have three edge types, indicating different causal dependencies below:
Type I: Non-causal edges a0;
Type II: Causal edges with bounded links a1;
Type III: Causal edges without bounded links a2.

Hence, qϕ (A|g (xt)) will generate the probability distribution of each type edge based on the em-
bedding and sparse constraints.

qϕ (aij | g (xi,xj)) = softmax (fc(h (xi,xj))) ,

where fc is a dense layer to classify the edge type. aij ∈ R3, indicating the likelihoods of
which types of casual links the edge belong to. We have the prior beliefs that the edge types
are uniformly distributed. Hence, the prior distribution of p(A) is a uniform distribution and
LKL = KL(qϕ(A|x)∥p(A)). In the meantime, we also have the regularization terms based on
the sparse causal mechanism [Schölkopf et al., 2021] of A:

Lreg = ∥p(a1) + p(a2)∥1
p(a1) and p(a2) correspond to the total output likelihoods of causal edges of all atoms.

Learning the temporal dynamic model pθ With the learned causal structure A, we have the
skeleton of the DBN and the only thing to do is estimating the edge strength of each path in DBN.
Formally, the path strength links to the dynamics model pθ (xt+1|g (xt) ,A). We use g to represent
all functions involved to compute the edge embeddings H. We utilize two GNNs to parameterize
pθ. Specifically, one GNN fdyn1 is trained to model the interaction between those atoms with edge
Type III, and another fdyn2 is to model those atoms linked with edge Type II. The loss for the
temporal dynamic prediction is Ldyn = MSE (xt+1, pθ (xt+1|g (xt) ,A)), where MSE denotes the
mean square error.

Total loss In general, the total loss is given below: Ltotal = α1Ldyn + α2LKL + α3Lreg, where
{α1, α2, α3} are tunable hyper-parameters.

4 Experiments

 

k = 30 k ∈ [10,350]

A B

]
R2 R3 R4R1

n]

Ground truth Predicted value

Figure 3: (A) The illustrative MD trajectory prediction. The left side is the prediction method
from MLCGMD, which uses previous 30 historical movement information for next-timestep output.
The right side is our prediction method, which uses only 1 previous movement information for a
sequence of k-timesteps outputs. k ∈ [10, 350]. (B) Polymer structures for training and testing,
where each polymer is composed of 4 types of CUs (best viewed in color).

4.1 Setup

We validate the effectiveness of our method on long-range and long-duration MD simulations.
Specifically, we aim to simulate x2:T by only observing the x1 of the molecular system.

Training To achieve this, during the training phase, we have the collected MD trajectories Dtr,
each trajectory corresponds to a specific molecule with the number of time steps T . We train the SC-
VAE using Dtr and fix the trained parameters qϕ and pθ. We observe the initial states (i.e., locations
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and velocities) x1 of all atoms and predict the future steps with the inferred causal relations and
temporal dynamics. At t = 2, we use the initial value x1 of the system as input. To predict the states
of atoms at time step t (t > 2), we use the estimated states x̂t−1 at time step t− 1.

Simulation During the simulation phase, we use the trained model to predict the whole trajectories
by observing the initial states (see the illustration at the r.h.s. of Fig. 3(A)).

Dataset We validate the performance of SC-VAE over a single-chain coarse-grained polymer
dataset simulated with LAMMPS [Thompson et al., 2022]. The simulation setup, such as force
field parameters, is described in [Webb et al., 2020] and the dataset is simulated by [Fu et al., 2022].
As shown in Fig. 3(B), each polymer is composed of 4 types of constitutional units (CUs) with dif-
ferent numbers (n) of the such repeated pattern. And the dynamics of each polymer corresponds to
the trajectory of 50k τ timesteps with a recording frequency of 5τ , where τ is the unit time. We have
a total of 100 polymers, 90 of which are used as the training set, and the remaining 10 polymers are
used for simulation.

Baseline We compare our method with MLCGMD [Fu et al., 2022], the first work exploring the
coarse-graining simulation of MD using ML tools. MLCGMD utilizes a score-based GNN to model
atomic interactions, which embeds and coarse-grains an MD system to a coarse-level graph via
clustering. At time step t, the historical states xt−k:t−1 are treated as the input and the framework
generates the simulated state at time t (see the l.h.s. of Fig. 3(A)).

4.1.1 Implementation

Training and simulation Our model generates the simulated trajectory with a duration of T steps.
That is, we split the whole trajectory into ⌊10, 000/T ⌋ disjoint sequences and predict the atom
movements in each sequence by observing the first state. To test the robustness of our method in
terms of the sequence length, we vary T ∈ {10, 50, 100, 150, 200, 250, 300, 350}. Different from
ours, MLCGMD utilizes the input with 30 history states, and generates the next step each time.

Experimental details The hyper-parameters we used are summarized in Appendix Table B and
C. All methods are implemented using PyTorch [Paszke et al., 2019] toolbox with an Intel Core i9
CPU and 4 Nvidia RTX 3090 GPUs.

4.2 Results

4.2.1 Evaluation metrics

Following [Fu et al., 2022], we use the estimated surrogate property of the radius of gyration (R2
g)

to evaluate the precision of the simulation models. We use two metrics in terms of R2
g:

Earth mover’s distance Earth mover’s distance (EMD) is a measure of the distance between two
probability distributions over a specific region. Here, we use EMD to measure the distance between
simulated trajectories and the ground truth. Hence, a small EMD leads to a more accurate simulation.

Mean absolute error Mean absolute error (MAE) is also adopted to measure the distance between
the simulated movements and the ground truth for each time step.

4.2.2 Results and analysis

Fig. 4 gives the comparison between our method (with T = 350 and 10) and MLCGMD, where the
plots indicate the simulated R2

g for all time steps. From the plots, we can find our model leads to
a more accurate dynamic simulation. We give a detailed analysis in terms of the robustness of the
simulation duration and sample efficiency below.

Robustness against different simulation duration T . We vary the simulation duration T ∈
{10, 50, 100, 150, 200, 250, 300, 350}. The full results are given in Appendix Fig. A. Though the
accuracy is higher when the duration is smaller, our model can still result in a better simulation than
the baseline when the duration is extremely long (e.g., T = 30). The results verify that our model
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Figure 4: R2
g prediction performance for our method and MLCGMD. (A) The simulated duration is

10τ ; (B) The simulated duration is 350τ .

can predict a very long sequence with only one truth observation of the initial step. However, the
baseline model requires 30 steps of historical values to predict a future step. This makes our model
robust and potentially be applied to many down-streaming MD applications (e.g., protein modeling).

Better simulation with fewer samples. Table A gives the results of accuracies versus the required
samples. We follow the original settings in MLCGMD to use only 30 samples at the beginning of
the trajectories to train the model. We find that our model can learn a better simulation model (lower
MAE and EMD) with fewer samples (28 versus 30) compared with MLCGMD.

28 33 40 50 66 100 200 1000
# Required samples
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EMD-Ours

Figure 5: Results on MAE and MED of radius of gyration versus the number of samples required
for simulation. Quantitative results are given in Appendix Table A.

5 Conclusions

We propose the Structural Causal Molecular Dynamics (SCMD), exploring the potential to take ad-
vantage of causality to learn a more accurate and robust molecular dynamic simulation. We formal-
ize the MD system as a structural causal model and utilize a dynamic Bayesian network to estimate
the causal model. The causal model does not model the specific functions of MD, but instead in-
cludes the interaction relations and strength analogously to the true physical dynamics. To learn
the model, we apply and extend the neural relation inference framework to the MD system to learn
the DBN in an end-to-end fashion. The empirical results verify the effectiveness and efficiency of
our model with different prediction durations. Based on both algorithmic and empirical aspects, we
believe that our model can be applied to many downstream MD applications, e.g., drug discovery.

8



Acknowledgement

We thank Ge Zhang, Yiming Liang, Zekun Wang for helping with experiments, and Yucheng Zhang,
Chenqing Hua, Sitao Luan, Shuangjia Zheng, Jianmin Wang for helpful discussions.

References
Mauro Boero, Michele Parrinello, and Kiyoyuki Terakura. First principles molecular dynamics

study of ziegler- natta heterogeneous catalysis. Journal of the American Chemical Society, 120
(12):2746–2752, 1998.

Carlo Massobrio, Jincheng Du, Marco Bernasconi, and Philip S Salmon. Molecular dynamics sim-
ulations of disordered materials. Cham: Springer International Publishing, 2015.

Martin Karplus and J Andrew McCammon. Molecular dynamics simulations of biomolecules. Na-
ture structural biology, 9(9):646–652, 2002.

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing, and Max Welling. Path integral
stochastic optimal control for sampling transition paths. arXiv preprint arXiv:2207.02149, 2022.

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and EJPRL Weinan. Deep potential molecular
dynamics: a scalable model with the accuracy of quantum mechanics. Physical review letters,
120(14):143001, 2018.

Oliver T Unke, Stefan Chmiela, Huziel E Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T
Schutt, Alexandre Tkatchenko, and Klaus-Robert Muller. Machine learning force fields. Chemi-
cal Reviews, 121(16):10142–10186, 2021.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schutt, and
Klaus-Robert Muller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.

Oliver T Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces,
dipole moments, and partial charges. Journal of chemical theory and computation, 15(6):3678–
3693, 2019.
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Appendix for Structural Causal Models for
Molecular Dynamics Simulations

A Limitations and future works

In this work, we only use the sparse constraints to learn the causal graph from the observational
data. Though it is a normal setup in many works on causal representation learning for dynamic sys-
tems [Wang et al., 2021], it lacks some grounded causal discovery foundations. In future work, we
plan to explore more aspects of causality, including intervention and counterfactual learning [Peters
et al., 2017], to learn the causal graph and its applicability to complex MD simulation systems.

B Related work

B.1 Machine Learning for Molecular dynamics

Owing to its efficiency and transferrability, machine learning methods have been extensively studied
for molecular dynamics [Noé et al., 2020]. Specifically, there are two main ways that machine
learning methods have been used to improve the accuracy and/or efficiency of molecular dynamics
simulations. The first way is to leverage machine learning models to fit hand-crafted parameters
in molecular dynamics simulations. For example, traditional molecular dynamics rely heavily on
hand-crafted force field parameters. Machine learning methods are used to learn from ab initio
quantum-mechanical data and serve as a machine learning force field for molecular dynamics with
ab initio-level accuracy and increased efficiency [Smith et al., 2017, Zhang et al., 2018, Doerr et al.,
2021, Batzner et al., 2022]. Another line of work leverages deep generative models to learn to sample
probability distribution from the observational data. Boltzmann generator proposes a normalizing
flow that generates samples from the equilibrium distribution of the molecular system [Noé et al.,
2019]. This approach can be used to avoid incredibly long molecular dynamics simulations for
studying complex dynamical behaviors such as protein folding.

B.2 Causal Dynamical System

Dynamical systems have been widely used to describe the dynamical behaviors of systems in vari-
ous fields, including physical systems [Nelles, 2001, Sanchez-Gonzalez et al., 2018, Nelles, 2001],
neuroscience [Izhikevich, 2007, Van Bavel et al., 2015], robotics [Kober and Peters, 2009, Girard
et al., 2008]. Recently, a range of works in the causality literature aim to uncover the causal seman-
tics of the dynamic system. Bongers et al. [2018] provide the formal framework named structural
dynamical causal models (SDCMs) to model the dynamics system as the structured casual model
with differential equations. Mooij et al. [2013], Blom and Mooij [2018] describe the asymptotic
solution of the dynamic systems as a causal model and consider the interventions on ODE systems.
Peters et al. [2022] propose causal kinetic models to model the continuous time models with ODE
functions by intervening on the dynamic systems. Based on these theoretical frameworks, several
works have been proposed to learn the causal representation of dynamic systems under real-world
or simulated scenarios. Yao et al. [2022] learn latent causal dynamic systems under modular dis-
tribution shifts and provide the conditions for identifiability guarantees on causal graphs. Lippe
et al. [2022] learn the causal factors from the sequences of observations and design interventions
on dynamic systems. Weichwald et al. [2022] propose a general framework to use causality for
the control tasks in dynamic systems. Huang et al. [2021], Feng et al. [2022] learn the factored
and causal structure of the dynamic systems in RL under heterogeneous and non-stationary envi-
ronments. In this work, we first leverage the causal dynamic system to model molecular dynamics,
learning how the atoms evolve and interact temporally in the system.

C Full results and hyper-parameters

Fig. A and Table A give the full results with different simulated durations and required label samples.
Table B and C list the chosen architectures and hyper-parameters, respectively.
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Figure A: R2
g prediction performance for our method and MLCGMD. The simulation duration is

10τ (a), 50τ (b), 100τ (c), 150τ (d), 200τ (e), 250τ (f), 300τ (g), and 350τ (h), respectively.

MLCGMD [Fu et al., 2022] Ours
# Required samples 30 28 33 40 50 66 100 200 1000

T – 350 300 250 200 150 100 50 10
MAE 8.01 7.48 6.69 6.67 5.92 5.38 4.41 2.80 0.93
EMD 4.57 4.52 3.53 3.64 3.25 2.96 2.37 1.59 0.46

Table A: The results on MAE and MED of radius of gyration (R2
g) versus different number of

samples and simulation duration T .

Layer # Nodes Activation function

fenc

MLPs
(atom) 256 - 256 ELU - ELU + BatchNorm

MLP
(edge) 256 - 256 ELU - ELU + BatchNorm

MLP
(atom) 256 - 256 ELU - ELU + BatchNorm

MLP
(edge) 256 - 256 ELU - ELU + BatchNorm

fdec

MLP
(static atom) 64 ReLU+LayerNorm

MLP
(static edge) 64 ReLU+LayerNorm

MLP
(static edge) 64 ReLU+LayerNorm

MLP
(static node) 64 ReLU+LayerNorm

MLP
(static edge) 64 - 64 ReLU+LayerNorm - ReLU+LayerNorm

MLP
(static node) 64 - 64 ReLU+LayerNorm - ReLU+LayerNorm

MLP
(temporal atom) 128 ReLU+LayerNorm

MLP
(temporal edge) 128 ReLU+LayerNorm

MLP
(temporal edge) [128 - 128] ×2 [ReLU+LayerNorm - ReLU+LayerNorm] ×2

MLP
(temporal node) 128 - 128 ReLU+LayerNorm - N/A

Table B: The architecture for both the encoder and decoder.

13



Hyperparameter Value
Batch size 32
Optimizer Adam Kingma and Ba [2014]
Learning rate 1e− 4
Learning rate scheduler 0.1
Number of epochs 14
α {1, 1e− 2, 1e− 2}

Table C: An overview of the hyperparameter used.
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