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Abstract

We present PiMForce, a novel framework that enhances hand pressure estimation
by leveraging 3D hand posture information to augment forearm surface electromyo-
graphy (sEMG) signals. Our approach utilizes detailed spatial information from
3D hand poses in conjunction with dynamic muscle activity from sEMG to enable
accurate and robust whole-hand pressure measurements under diverse hand-object
interactions. We also developed a multimodal data collection system that combines
a pressure glove, an sEMG armband, and a markerless finger-tracking module. We
created a comprehensive dataset from 21 participants, capturing synchronized data
of hand posture, sEMG signals, and exerted hand pressure across various hand
postures and hand-object interaction scenarios using our collection system. Our
framework enables precise hand pressure estimation in complex and natural inter-
action scenarios. Our approach substantially mitigates the limitations of traditional
sEMG-based or vision-based methods by integrating 3D hand posture information
with sEMG signals. Video demos, data, and code are available online.1

1 Introduction

Hands are a central tool for humans to interact with the surrounding environment. With the ad-
vancement in hand tracking technology, hand inputs, including position, orientation, gesture, and
motion, are increasingly used as a primary means of control, especially for emerging interfaces (e.g.,
augmented/virtual reality and wearables). Using hands as the main interaction medium offers a high
level of versatility and flexibility to achieve natural and intuitive interactions.

Recent studies have started to utilize hand pressure information to support hand-based interactions
such as touching [1], grasping [2, 3], and pressing [4]. Researchers also utilized hand pressure to
provide effective haptic feedback [5] for a more immersive user experience. Furthermore, precise
hand pressure measurement becomes essential for real-world applications, including ergonomic
evaluation [6], hand rehabilitation [7], and prosthetic hand control [8]. To this end, previous works
focus on obtaining real-time and accurate hand pressure information with direct measurement
approaches utilizing gloves [9–11] or load cells [12]. However, these approaches require users to be
in physical contact by either wearing or holding the device, which hinders natural hand movements
or reduces user comfort. Thus, the necessity of direct contact limits the users from performing
hand-based interactions in a natural and unrestricted manner.

To this end, non-invasive sensing techniques to estimate exerted hand pressure without embedding
sensors on the user’s hand have been highlighted. These methods include profiling wrist topography
with capacitive sensing [13], multiple pressure sensing from the wrist [14], and electromyography
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Figure 1: Our sensing framework (PiMForce) leverages 3D hand posture information along with
sEMG data to enable a whole-hand pressure estimation during various hand-object interactions. We
support real-time pressure estimation on the fingertips and palm regions based on RGB image and
sEMG inputs. The intensity of each node’s color indicates the pressure level.

from the forearm [2]. Recent works utilized only a single RGB-D [15] or RGB camera [16, 17] with
computer vision techniques to estimate pressure exerted by the hand. However, previous methods
had limitations, where they could only estimate hand pressure when interacting with plane surfaces
or required a line-of-sight view of the hand. With these limitations, it is hard to support natural
interaction contexts like working with diverse hand grasps.

In this work, we introduce PiMForce, a novel multimodal sensing framework that enhances real-time
hand pressure estimation by leveraging 3D joint information of the hand and forearm sEMG signals,
covering the fingertip to the entire palm. As illustrated in Figure 1, our framework addresses previous
challenges by integrating detailed spatial information from 3D hand poses with dynamic muscle
activity from sEMG measurements. This multimodal sensing integration allows us to estimate subtle
and comprehensive hand pressure even under diverse grasps. To validate the proposed model, we
built a multimodal hand data collection system and created a dataset from 21 participants. We believe
our dataset is the first of its kind containing multimodal sensor signals during hand interactions under
various grasps. We demonstrated our work on an off-the-shelf system with a single camera to confirm
the accuracy and feasibility of the proposed framework. Our contributions are listed as follows:

• We propose PiMForce, a novel hand pressure estimation framework that enhances sEMG
signals by incorporating hand posture information.

• We develop a multimodal hand data collection system with a data collection protocol and
create a unique dataset containing simultaneous hand pressure, hand posture, and surface
electromyography signals.

• Evaluation and analysis of experiments demonstrate the improved performance of our
approach, showing its consistent superiority over existing sEMG-based and vision-based
methods.

2 Related Works

2.1 Vision-based Hand Pressure Estimation

Previous works explored the interaction between the hand and objects by observing the movement
and rotation of the object over time to estimate the pressure exerted by hands. By determining the
pressure required to produce these observed changes, the model estimated the aggregate pressure
applied by the hand [18–20]. These approaches enabled the pressure estimation to act upon concealed
or non-visible areas where direct visibility of the hand in contact with an object is absent. Still,
previous approaches had limitations where interacting with immovable objects would not work due
to the absence of dynamic interaction indicators.

Researchers also looked into different visual indicators like color changes in fingertips, which
represent fluctuation of blood circulation within the fingertips [21, 22] or compression of skin
tissues [23, 24]. These physiological behaviors served as indicators of the exerted hand pressure.
Moreover, examining shadows cast during hand-object interaction provided further insight into the
spatial relationship and dynamics of force between them [25–27].

Recent works further advanced the existing visual indicator approach where they use a hand image
captured by a single camera at a distance to estimate the hand pressure [16, 28, 17, 29]. They
employed a deep learning model that facilitates the understanding of visual cues to estimate accurate
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Table 1: Comparison with the previous datasets for hand contact and pressure estimation. We
modified and updated the table from [17]. NA refers to ’not available’.

Dataset Input
Modality

Frames Participants Contact /
Pressure Source

Pressure Pose Whole
Hand

Natural
Objects

OakInk [47] RGBD 230k 12 Inferred from pose × ✓ ✓ ✓
DexYCB [44] RGBD 582k 10 Inferred from pose × ✓ ✓ ✓
HO-3D [45] RGBD 78k 10 Inferred from pose × ✓ ✓ ✓
GRAB [46] Pose 1.6M 10 Inferred from pose × ✓ ✓ ×

ContactPose [50] RGBD 3.0M 50 Thermal imprint × ✓ ✓ ×
PressureVisionDB [28] RGB 3.0M 36 Pressure Pad ✓ × ✓ ×
ContactLabelDB [17] RGB 2.9M 51 Pressure Pad ✓ × × ✓

Force-Aware Interface [4] sEMG 17.8M 9 Pressure Pad ✓ × × ×
HDsEMG [48] sEMG 67.6M 20 Custom-made Device ✓ × × ×

ActionSense [49] NA 9.42M 10 Pressure Glove ✓ ✓ △ ✓

Ours Pose+sEMG 83.2M 21 Pressure Glove ✓ ✓ ✓ ✓

hand pressure in an end-to-end fashion. However, previous works require a high-quality whole-hand
image without occlusion since they rely on visual indicators for the estimation. In our work, we
utilize multimodal inputs, including vision-driven 3D hand posture information and wearable-based
muscle activation signals, to enhance the estimation of robust hand pressure under various hand-object
interaction contexts.

2.2 Wearable-based Hand Pressure Estimation

Researchers have used forearm/wrist surface electromyography (sEMG) sensors to acquire finger
muscle activation information. Here, the sensor captured a train of neuron impulses propagated
through the arms from the forearm or wrist [30, 31]. Previously, researchers used sEMG sensors to
estimate various types of hand-related force/pressure, including force/pressure from gripping [32–36]
and fingertip [4, 37–41]. Recent works also enabled the estimation of hand pressure along with hand
gesture recognition using sEMG signals [8, 42]. However, previous works only dealt with a limited
set of discrete hand poses [43]. Moreover, an issue existed with using sEMG signals for complex
hand interactions where similar muscle activation signal behaviors were observed across different
hand poses. This could easily confuse the model and lead to false behavior. In this work, we train the
model with 3D hand posture to encode distinctive hand pose information alongside sEMG signals.
This integration forms a robust and accurate hand pressure estimation framework for similar muscle
activation behaviors but different hand poses. It is worth emphasizing that this study is the first
to incorporate hand posture information for hand pressure estimation using forearm-worn sEMG.
Previous studies primarily focused on estimating pressure at the fingertip or on a single gripping
force, but our approach expands this to encompass the whole hand.

2.3 Datasets for Hand Pressure Estimation

In the computer vision and machine learning community, researchers have formed various types of
hand-object interaction datasets for hand pressure estimation. These vision-based datasets collected
rich visual and pose information for hand-object interactions, capturing everything from object
affordances to whole-body grasps [44, 28, 17, 45–47]. On the other hand, sEMG-based datasets
have also been proposed and used to estimate hand pressure for AR/VR or prosthetic robotic arm
control applications [48, 4]. A highly relevant work is the ActionSense dataset [49], which focuses
on capturing multimodal data of human activities in a kitchen environment using wearable sensors.
However, while ActionSense provides a valuable resource for understanding general kitchen activities,
our work focuses on the utilization of 3D hand posture in muscular force learning for understanding
hand pressure estimation. Furthermore, the temporal resolution of EMG data and the spatial resolution
of hand pressure in ActionSense are substantially lower compared to ours, making it challenging
to utilize rich sensor input and output effectively. Still, the dataset containing both rich visual and
physiological information is missing.

In this work, we attempt to set up a new multimodal dataset that contains 3D hand pose information,
sEMG signals, and ground truth measurement of hand pressure as shown in Table 1. Our work
provides a holistic view of whole-hand dynamics during various hand-object interactions. This inte-
gration enables continuous and comprehensive pressure estimation across the whole palm, addressing
the limitations of previous datasets that either infer pressure from visual cues or measure it in isolation.
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Our dataset not only captures the subtle interplay between visual and tactile information, but also
increases the potential candidates for input features for accurate and robust hand pressure estimation.

3 Building Multimodal Dataset: Posture, Electromyography, and Pressure

To capture multimodal data with various hand-object interactions, we integrated and customized
existing hardware, including a pressure glove, an armband with 8-channel sEMG sensors, and a
markerless finger tracking module. Figure 7 in supplementary material showcases our data collection
setup to capture real-time and synchronous multimodal data, including 3D hand posture, sEMG
signals, and exerted hand pressure. More detailed information about the hardware, defined hand
postures, data collection protocol, and data processing can be found in Section B.

3.1 Data Collection Setup

Pressure Glove. To capture pressure exerted from the hand, we developed a customized pressure
glove using a single 65-node pressure sensing glove (TactileGlove, Pressure Profile Systems) attached
with a pressure sensor (RA18DIY, Marveldex) at each fingertip. We added flexible sensors to the
fingertips to address missed readings when the pressures were exerted on the edge of the fingertip.
Our pressure glove supports pressure readings up to 55 N/cm2 with a sampling rate of 40 Hz.

3D Hand Pose. Recent common approaches to obtaining ground truth 3D hand pose [51] involve
using multiple RGB cameras to derive 2D hand poses from each camera, followed by triangulation [52,
53] or hand template fitting [44, 45, 54]. However, these methods are infeasible when a pressure
data glove is worn, as the glove obscures the hand, hindering accurate hand pose estimation from
RGB images. To acquire accurate 3D hand pose information under this constraint, we employed a
magnetic sensing-based markerless finger tracking module (Quantum Mocap Metaglove, Manus).
The module provides each finger’s 3D position and 3-axis joint angles with a sample rate of 120 Hz
and less than 5-millisecond latency. We attached the finger-tracking module to the pressure glove to
capture exerted hand pressure and 3D hand pose data simultaneously.

8-Channel sEMG Armband. We used 8 sEMG sensors (Trigno Avanti, Delsys) and installed sensors
into a customized armband made with semi-flexible material (TPU 95A) to ensure electrode contact
for various sizes of forearms. Our system captures muscle action potentials with a sampling rate of
2,000 Hz.

Multimodal Data Synchronization. Before training the multimodal dataset, we employed a linear
interpolation approach to synchronize high frame rate readings (sEMG) with low frame rate data
(3D hand pose). We first joined the data from matched time points based on the collection time of
the sEMG data and interpolated missing values of the hand pose data linearly. We applied the same
approach to the pressure glove, where we synchronized high frame rate sensors (pressure sensors)
with the low frame rate sensing glove (TactileGlove). Then, we adopted a nearest-neighbor-based
interpolation to synchronize 3D hand pose and sEMG data with hand pressure [4].

3.2 Data Collection Procedure

With IRB approval, a total of 21 right-handed participants took part in this study. Of these, 17 were
male (81%) and 4 were female (19%). The participants’ ages ranged from 20 to 32 years, with a mean
age of 24.3 years (SD = 3.9). To ensure good quality hand pressure data using our glove, we chose
participants with hand sizes greater than 180 mm. Prior to participation, all participants were provided
with a detailed information sheet outlining the purpose, procedures, and potential risks of the study.
We obtained written informed consent from each participant, ensuring they understood the nature
of the data being collected, their right to withdraw at any time, and the measures taken to ensure
data privacy. We equipped participants with our multimodal glove and an 8-channel sEMG armband.
Following initial calibration to compensate for each user’s hand size, participants performed 22
distinctive hand-object interactions for the data collection task (Figure 8 in supplementary material).

Our hand-object interactions consist of 7 hand-plane interactions, 5 pinch interactions, and 10
distinctive hand grasps. We included the same hand-plane and pinch interactions from recent hand
pressure estimation work [4] while adding palm-pressing motion. In terms of hand grasps selection,
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Figure 2: Our multimodal hand pressure estimation architecture enhances sEMG data by embedding
3D hand pose information. We train the model using a classification-regression joint loss to improve
hand pressure estimation.

we selected 10 grasps from representative 33 grasp types [55] based on the clustering of palm pressure
distribution similarity among grasp taxonomies [56]. We collected 1,980 seconds of synchronized
multimodal data per participant (30 seconds × 22 hand-object interactions × 3 sessions). Here, we
used data from 2 sessions for training while the remaining session was reserved for evaluation. We
provided sufficient rest periods between each trial to prevent muscle fatigue, ensuring the quality of
collected data. All collected data was anonymized, complying with relevant data privacy regulations.

4 Method

4.1 Overview

The rationale behind using sEMG to estimate the pressure exerted by the hand lies in the direct
relationship between muscle electrical activity and the pressure generated during hand interactions [57–
59]. When muscles contract for movement, they generate bioelectric signals that can be captured
by EMG sensors [60]. This indicates that sEMG signals have the potential to estimate the pressure
exerted by the hand. The ability to decode sEMG signals from forearm muscles generated by finger-
level movements will set a robust foundation for understanding complex hand interactions. However,
the pressure exerted by the hand cannot be solely represented with muscle activation information.
The main reason is that the distribution of hand pressure varies according to different hand postures.
For example, similar sEMG patterns may be generated by different hand pressures depending on the
related hand postures or grasps [43, 61]. This highlights the importance of considering hand posture
information along with sEMG signals to estimate the exerted hand pressure precisely. Section C.1 in
supplementary material addresses the specific empirical observation for this motivation.

To address these issues, we enhance sEMG signals by leveraging 3D hand posture information. By
integrating inputs from forearm-worn sEMG sensors with 3D hand pose information derived from an
RGB image, we observe improvements in the accuracy of hand pressure estimation. Our multimodal
approach (Figure 2) leverages the strengths of both hand posture and muscle activations, offering
a comprehensive understanding of hand dynamics for whole-hand pressure estimation. Refer to
Section C for more detailed information about the model architecture, training, and inference.

4.2 3D Hand Pose and sEMG Feature Extractions

To verify the validity of our framework, we devise a deep neural network model to effectively utilize
the obtained multi-modalities. We represent the model as f , where the 3D hand pose is denoted by
H and the sEMG signal by E. The classification and regression targets for pressure are represented
as C and P , respectively. If the model outputs for pressure classification and regression are indicated,
they are denoted by Ĉ and P̂ . The feature extractor for sEMG data is fEMG, and for hand pose, it
is fhand. The overall model f comprises fEMG, fhand, and a pressure predictor fpred that takes the
features extracted from hand pose and sEMG to perform pressure classification and regression.

Feature Extraction from sEMG signals. The sEMG data generally encounters measurement noises,
including powerline noise and electromagnetic artifacts. To mitigate these issues, we utilize the short-
time Fourier transform (STFT) to convert sEMG time-domain signals into spectrograms, represented
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as E ∈ R8×32×64, isolating high-frequency noise and facilitating the application of convolutional
neural network (CNN) models for feature extraction. We employed a 2D encoder-decoder model to
extract features from the 2D sEMG signals. The encoder-decoder model processes the data and then
flattens the output, which is subsequently transformed through a fully connected (FC) layer into a
512-dimensional feature vector.

Feature Extraction from 3D Hand Pose. The hand model in our study is represented as a kinematic
tree with 15 joint angles θ ∈ R15×3, similar to the pose parameters in MANO and its variants [62–
65]. To handle this skeleton-based representation simply like PoseConv3D [66], we adopt a 3D
ResNet [67] to process 3D heatmap volumes of hand joints, transforming θ into 21 3D hand joints
J ∈ R21×3 through the hand skeleton model’s forward kinematics. These 3D hand joints are then
converted into 3D heatmap volumes H ∈ [0, 1]21×H×W×D, with H , W , and D all set to 48, for
processing by the 3D ResNet. Unlike the sequential representation of 2D heatmaps in PoseConv3D,
our approach uses a single timestep 3D joint representation. After processing through the 3D ResNet,
the hand pose feature is flattened and transformed into a 512-dimensional vector using an FC layer,
with the 3D ResNet34 model being the model of choice for this operation.

Feature Fusion and Estimation. The extracted sEMG feature fEMG(E) and hand pose feature
fhand(H) are concatenated to form a 1024-dimensional joint feature vector. This vector is then passed
through two FC layers, mapping to 256-dimensional features, followed by a 1-D batch normalization
and ReLU non-linearity. Finally, the last FC layer with Sigmoid activation function maps this to
I-dimensional output, producing Ĉ = f(E,H) = fpred(fEMG(E), fhand(H)) ∈ [0, 1]. The predicted
pressure P̂ is defined as P̂ = 2Pmax · ReLU(Ĉ − 0.5) ∈ [0, Pmax], thus completing the feature fusion
and pressure prediction.

4.3 Joint Training of Classification and Regression

The objective function comprises two key components: a classification loss Lc and a regression loss
Lr. The classification loss is designed to accurately identify whether any pressure is exerted by a
particular region of the hand (i.e., fingertips or palm areas shown in Figure 5 of Section B.1.1), using
a cross-entropy loss to distinguish between pressure and no-pressure instances for each hand region i:

Lc =
1

I

I∑
i=1

Ci · log Ĉi + (1− Ci) · log(1− Ĉi), (1)

where Ci is the ground-truth label for region i, and Ĉi is the predicted probability of pressure
application. Here, Ci = 1 indicates the presence of pressure in the ith region, while Ci = 0 indicates
its absence. In contrast, the regression loss, targets the accurate quantification of pressure levels using
an L2 loss to minimize the difference between the predicted and actual pressure values:

Lr =
1

I

I∑
i=1

∥P̂i − Pi∥2, (2)

where P̂i represents the model’s predicted pressure for region i and Pi is the corresponding actual
pressure. Our dataset contains pressures from 0∼20 N. Therefore, our model predicts pressure values
in [0, 20], organized by P̂max, the maximum of the pressure. To integrate these two aspects into a
unified training objective, we introduce a balancing hyper-parameter λ, resulting in a combined loss
function: L = Lc + λ · Lr. This composite loss enables our model to not only discern the presence
of pressure but also quantify its magnitude accurately.

4.4 Estimation without the Glove

For the training phase, we employed data acquired from our data collection system to ensure the
accurate capture of exerted hand pressure and 3D hand pose data. However, during the inference
phase, our framework exploits off-the-shelf hand pose detectors [68–70], which extract 3D hand pose
from RGB or RGB+D inputs. These detectors can been chosen for their high accuracy and robustness
in various conditions, ensuring reliable performance during inference. Thus, users can interact
with external objects using their bare hands, without the need for additional hand-worn equipment.
This approach ensures our model’s practical applicability in real-world scenarios, prioritizing user
convenience and natural interaction. By leveraging readily available technology, we make it easier
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Table 2: Performance among comparative models on evaluation metrics.
Method R2 NRMSE Accuracy

sEMG Only [4] 83.49 ± 16.40% 8.07 ± 2.62% 77.83 ± 11.56%
3D Hand Posture Only 66.32 ± 37.01% 11.57 ± 3.95 70.08 ± 13.09%
sEMG + Hand Angles 84.22 ± 17.11% 7.89 ± 2.61% 78.22 ± 10.57%

PiMForce (Ours) 88.86 ± 11.92% 6.65 ± 2.11% 83.17 ± 9.38%

for users to adopt our system in everyday applications. Refer to Section B.4 for details on how we
canonicalized 3D hand pose information extracted from RGB images for our model input.

5 Experiments

In Sections 5.2.1 and 5.2.2, where ground truth hand pressure is necessary, data was collected while
participants wore the pressure glove, and hand postures were obtained from the data glove. We
also conducted qualitative evaluations (Section 5.2.3 and the demo video) without ground truth,
where data was collected without any gloves, and hand postures were inferred solely from RGB
images using an off-the-shelf hand pose detector. For this purpose, we employed the pre-trained
Attention Collaboration-based Regressor [69], which has demonstrated superior performance with a
mean per joint position error (MPJPE) of approximately 8mm for reconstructing hand poses from
a single RGB camera. The high accuracy ensures the reliability of our hand posture inferences in
qualitative assessments. To assess our model’s performance, we utilize three metrics: Coefficient of
Determination (R2), Normalized Root Mean Squared Error (NRMSE), and classification accuracy.
The exact definitions and explanations of evaluation metrics can be found in Section D.2. Refer to
Section D.3 and D.4 for additional quantitative and qualitative restuls, respectively.

5.1 Comparative Methods

This study compares the proposed model against several baseline and state-of-the-art methods to
validate its effectiveness in whole-hand pressure estimation. To ensure a fair comparison, we selected
methods that quantitatively measure the pressure applied by the hand, rather than solely identifying
hand contact. Detailed information about the implementation of comparative methods can be found
in Section D.1. The methods included in the comparison are:

sEMG Only Model [4]. An sEMG-based approach decodes finger-wise forces in real-time, demon-
strating the potential of muscle activation patterns in informing hand activities. This method em-
phasizes using electromyography sensors for understanding complex hand dynamics but does not
incorporate hand posture information.

3D Hand Posture Only Model. A variation of our proposed framework that solely utilizes 3D hand
posture for pressure estimation, omitting the sEMG signal input. This model tests the efficacy of
hand posture information in isolation.

sEMG + Hand Angles Model. This model represents a variation of our proposed framework, where
instead of utilizing the 3D representation H for hand pose, it employs the angular representation θ of
hand joints as the input to the hand pose feature extractor fhand. By substituting the 3D hand pose
with direct angle measurements of hand joints, this baseline aims to highlight the benefits of using a
3D representation for hand pose in multimodal sensing.

PressureVision++ [17]. This vision-based deep learning model estimates hand pressure from a single
RGB image by identifying visual cues related to hand pressure application, showcasing the use of
visual information for pressure estimation without physical FSR sensors.

PiMForce (Ours). The comprehensive model enhances sEMG signals by leveraging 3D hand
posture information for continuous and detailed pressure estimation across the whole hand. This
approach aims to mitigate the limitations of sEMG-based methods by integrating the strengths of
both modalities for enhanced pressure prediction accuracy.
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Table 3: Cross-user performance on evaluation metrics under whole interaction and posture.
Method R2 NRMSE MAE Accuracy

sEMG only [4] 47.90 ± 9.97% 14.14 ± 2.41% 12.24 ± 2.75% 57.40 ± 5.81%
PiMForce (Ours) 70.06 ± 4.02% 10.70 ± 1.43% 8.54 ± 1.56% 72.01 ± 2.86%

5.2 Results

We analyze the performance of our proposed framework in comparison to these methodologies,
both quantitatively and qualitatively. Additionally, we investigate the capabilities of our model to
accurately estimate hand pressure across a variety of hand postures and parts, providing a thorough
assessment of its performance. Our framework enhances sEMG signals by leveraging 3D hand posture
information for detailed palm pressure data collection, contrasting with PressureVision++, which
relies on visual cues for force estimation. This approach is designed to underscore the distinctive
benefits of our multimodal sensing framework in capturing a broad range of hand interactions.

5.2.1 Do hand pose and sEMG signals together improve pressure estimation?

Table 2 outlines the performance metrics of various comparative models, including the sEMG Only
Model, the 3D Hand Posture Only Model, the sEMG + Hand Angles model, and our model. PiMForce
remarkably outperforms the comparative methods, achieving an accuracy of 83.17%, NRMSE of
6.65%, and an R2 value of 88.86%. This demonstrates the comprehensive capability of our model to
accurately classify and quantify the pressures exerted by the hand.

The integration of 3D hand posture and sEMG information in our framework shows a clear advantage
over approaches relying on a single data modality, as expected. The sEMG Only Model and the
3D Hand Posture Only Model show limited pressure estimation performance when compared to
our integrated approach. Interestingly, the improvement in performance with the sEMG + Hand
Angles model over the sEMG Only Model is marginal (less than 0.5%p improvements in all metrics).
This highlights the importance of incorporating a comprehensive 3D hand posture representation.
By embedding comprehensive hand posture knowledge to be used with sEMG data, we develop an
effective multimodal approach to capture nuanced variations in hand pressure exerted across different
hand regions and postures.

Cross-user performance assesses how well the model performs on data from individuals not included
in the training set, which is crucial for real-world applications. As shown in Table 3, our proposed
method combining sEMG signals with 3D hand posture data significantly outperforms the sEMG-
only baseline across all evaluation metrics in cross-user scenarios. This demonstrates the enhanced
generalizability and effectiveness of our approach in estimating hand pressure among different
users. To further demonstrate the performance of our model over time, we present Figure 23 in
supplementary material, which illustrates the temporal evolution of both ground truth and predicted
pressure values for all nine hand regions during consecutive TM-Press and Medium Wrap actions.

5.2.2 How does accuracy vary by hand region and posture type?

We delve into the performance of our model across various hand regions and posture types, utiliz-
ing data represented in both Table 4 and Figure 3. This analysis highlights the noticeable impact
of incorporating 3D hand pose data, particularly noting a greater improvement in hand palm re-
gions (+1.95%p) over fingertips (+1.05%p) compared to the sEMG Only Model. This distinction
emphasizes the crucial role of 3D hand pose for accurate pressure estimation in diverse hand postures.

Our findings reveal that the model achieves superior pressure estimation in Press and Pinch inter-
actions, with classification accuracies surpassing 90% and NRMSE values maintained below 6%.
However, it encounters challenges with specific postures such as Palm-Press, which, despite a lower
classification accuracy of 68.42%, still shows a high regression accuracy of 3.12%. When examining
Grasp postures, our model shows a slight dip in performance relative to Press and Pinch, with
NRMSE values ranging between 5∼8%. This suggests a moderate pressure estimation capability for
these more complex interactions, yet the model consistently maintains a high R2 range of 0.8 to 0.9
across all posture types. This consistent correlation between predicted values and actual pressure
measurements highlights the model’s ability to maintain high accuracy and reliability across a diverse
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Table 4: Performance comparison of hand regions in terms of NRMSE.
Finger Tip Hand Palm

Method Thumb Index Middle Ring Pinky Mean Upper
Right

Upper
Left

Lower
Right

Lower
Left Mean Overall

Mean

sEMG Only [4] 9.78 ±
3.45%

9.26 ±
3.51%

8.15 ±
3.17%

6.65 ±
2.51%

4.69 ±
1.32%

7.71 ±
2.79%

8.79 ±
3.88%

8.43 ±
3.76%

8.66 ±
3.78%

7.79 ±
3.98%

8.42 ±
3.85%

8.07 ±
3.26%

3D Hand Posture Only 13.85 ±
5.39%

13.64 ±
5.39%

12.18 ±
5.31%

9.85 ±
4.49%

6.16 ±
1.73%

11.13 ±
4.55%

12.26 ±
6.09%

10.41 ±
6.30%

11.47 ±
6.02%

9.71 ±
6.30%

10.96 ±
6.18%

11.05 ±
5.27%

sEMG + Hand Angles 9.54 ±
3.48%

9.04 ±
3.56%

7.95 ±
3.21%

6.48 ±
2.48%

4.57 ±
1.37%

7.52 ±
2.82%

8.56 ±
3.90%

7.23 ±
4.14%

7.67 ±
4.22%

6.67 ±
4.21%

7.53 ±
4.12%

7.52 ±
3.40%

PiMForce (Ours) 8.04 ±
2.76%

7.73 ±
2.79%

6.99 ±
2.61%

6.01 ±
2.39%

4.06 ±
0.90%

6.66 ±
2.29%

7.23 ±
3.12%

6.17 ±
3.32%

6.76 ±
3.13%

5.73 ±
3.38%

6.47 ±
3.24%

6.52 ±
2.71%

Figure 3: Quantitative evaluation of the user-independent model, showing the posture-wise perfor-
mance on the estimation of hand pressure. The error bars indicate standard error.

range of hand parts and postures. Specific actions such as I-Press, M-Press, and R-Press exhibit high
accuracy and low NRMSE, showing the model’s superior performance in simpler press interactions.
On the contrary, more complex grasps like Power Sphere, Fixed Hook, and Parallel Extension, showed
lower accuracy and higher NRMSE, implying that there remains room for improvement.

5.2.3 Can inference succeed with an off-the-shelf hand pose detector?

For practical inference applications without a data glove, solely relying on EMG data and incorporat-
ing 3D hand pose information obtained through an off-the-shelf hand pose detector, we demonstrate
the adaptability of our model in Figure 4a. This comparison with the vision-based method, Pressure-
Vision++, showcases our PiMForce’s capability to estimate hand pressures robustly during diverse
interactions. During hand-plane interactions, specifically those involving the tip Press type posture,
both approaches appear to perform well. However, our analysis reveals vulnerabilities in handling
more complex Grasp and Pinch motions when using PressureVision++. Furthermore, PressureVi-
sion++ requires complete visibility of all fingers within the camera’s view due to the high reliance
on visual cues for pressure inference. In contrast, our framework effectively utilizes the estimated
hand pose as long as the hand pose information is sufficiently accurate for inference. This capability
underscores the practicality of our method, facilitating more natural user interactions with external
objects without the constraints of direct visibility or glove use. Figure 4b shows demo video footage
illustrating our PiMForce’s capability to accurately estimate hand pressure while continuously chang-
ing hand posture, pressure levels, and the objects being grasped. This demonstrates the flexibility and
reliability of our approach in real-world scenarios.

To further substantiate our model’s effectiveness using an off-the-shelf hand pose detector, we
conducted a quantitative comparison with PressureVision++, as presented in Table 5. PiMForce
demonstrates largely better performance across all fingertips during both plane and pinch interactions,
indicating superior performance in estimating hand pressures compared to PressureVision++. This
quantitative evaluation confirms that our framework outperforms existing vision-based methods in
terms of accuracy and robustness during diverse interactions.
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(a) (b)

Figure 4: (a) Qualitative results in the absence of a pressure glove. The 3D Hand Pose Estimation [69]
represents 3D hand posture, including hand occlusion, using the 3D hand detector. The Pressure-
Vision++ [28] column shows the pressure estimation of fingertips. The red rectangles indicate the
instances of pressure estimation failure due to hand occlusion. The proposed multimodal framework
shows robust whole-hand pressure estimation for diverse hand-object interactions. (b) Illustration
of the demo video footage showing robust hand pressure estimation with varying hand postures,
pressure levels, and interacting objects.

Table 5: Cross-user performance on evaluation metrics under plane interaction and pinch posture.
Method R2 NRMSE Accuracy

PressureVision++ [17] 40.30 ± 5.14% 32.95 ± 2.02% 67.90 ± 3.01%
sEMG only [4] 42.13 ± 6.88% 12.57 ± 2.09% 66.00 ± 5.84%

PiMForce (Ours) 66.71 ± 4.68% 9.27 ± 1.40% 82.20 ± 2.42%

6 Conclusion

In this paper, we introduce PiMForce, a pioneering framework for hand pressure estimation by
integrating 3D hand posture information with muscle activation signals from forearm-worn sEMG.
By embedding 3D hand posture information into a deep neural network, we enable the model to
process this data alongside sEMG signals, enhancing its capability to learn complex relationships
between muscle activations and hand pressure distributions. This novel approach is the first to
combine these modalities, providing a comprehensive analysis of hand dynamics across various
interactions. We developed a unique multimodal hand data collection system and protocol, capturing
a dataset that includes hand pressure, posture, and electromyography signals. Our method notably
improves upon previous techniques, enabling accurate whole-hand pressure estimation through
detailed hand posture information. Extensive quantitative and qualitative comparisons demonstrated
the consistent superiority of our framework over existing sEMG-based and vision-based methods.
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A Overall Structure of Supplementary Material

This supplementary material provides added details to complement the main manuscript. Section B
elaborates on the specifics of the multimodal dataset creation. Section C offers an extended description
of the methodological framework employed in our study. Section D describes implementation details
of comparative methods and showcases additional results to further support the findings reported in
the main text. Lastly, we note limitations and future works in Section E.

B Detailed Description for the Multimodal Dataset

B.1 Data Collection Hardware

B.1.1 Pressure Sensor Glove Customization

To effectively capture comprehensive data on hand pressure and posture, we modified a tactile glove
equipped with 65 pressure sensors by integrating additional fingertip pressure sensors along with a
position tracking module, as shown in Figure 5. We customized the design of the glove to focus on the
hand pressure measurements across 5 fingertips and 4 palm regions consisting of 16 pressure sensor
nodes.To determine the pressure in each region, we use the maximum value among the sensors within
that region rather than summing or averaging their readings. This approach accounts for variations in
hand size, ensuring that the pressure measurement is not artificially lowered due to inactive sensors
that may not be engaged by all participants.

B.1.2 Pressure Sensor Characteristics

For fingertip pressure measurements, we utilized a Force-Sensing Resistor (FSR) type pressure
sensor (RA18DIY, Marveldex), characterized by a force range of 0 ∼ 40 N/cm2 and a thin profile
of 0.7 mm with an 8 mm diameter sensing area. Figure 6 presents the typical response behavior
of the FSR, highlighting the force-resistance relationship. In our work, we derived a precise fitting
model for the sensor’s output through repetitive calibrations using a push-pull gauge. The calibration
process involved conducting 30 load-unload cycles (ranging from 0 ∼ 30 N, incremented by 1 N)
and meticulously recording the resistance values to ensure accuracy.

B.2 Defined Hand Postures

For the grasp postures, we carefully selected 10 representative movements from a comprehensive
grasp taxonomy presented in recent literature [55]. This taxonomy classifies grasps based on several
factors, including opposition type, virtual fingers, grip type, and thumb position, culminating in

Figure 5: We added position tracking sensors at the knuckles and 5 fingertip pressure sensors. Our
glove records occlusion-free hand-tracking data with exerted hand pressures at 9 regions (5 fingertips
and 4 palm regions).
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Table 6: The detailed data collection protocol for our study, categorizing hand postures into Plane,
Pinch, and Grasp postures. It lists each posture’s name and abbreviation.

Type Posture Name Abbreviation

Plane Index Press I-Press
Plane Middle Press M-Press
Plane Ring Press R-Press
Plane Pinky Press P-Press
Plane Thumb & Index Press TI-Press
Plane Index & Middle Press IM-Press
Plane Palm Press Palm-Press

Pinch Thumb & Index Pinch TI-Pinch
Pinch Thumb & Middle Pinch TM-Pinch
Pinch Thumb & Index & Middle Pinch TIM-Pinch
Pinch Thumb & Index & Middle & Ring Pinch TIMR-Pinch
Pinch Thumb & Index & Middle & Ring & Pinky Pinch TIMRP-Pinch

Grasp Palmar Pinch −
Grasp Lateral −
Grasp Sphere 3 Finger −
Grasp Power Sphere −
Grasp Ring −
Grasp Medium Wrap −
Grasp Fixed Hook −
Grasp Quadpod −
Grasp Parallel Extension −
Grasp Adducted Thumb −

33 distinct grasp types. Given the constraints of wearing an EMG armband and the necessity to
minimize experimenter fatigue through sufficient rest, it was crucial to narrow down the posture set.
Following the clustering of grasp types based on pressure distribution in [56], we opted for ten hand
movements that epitomize the diverse range of grasps, as shown in Figure 9. This selection process
ensured a manageable yet comprehensive dataset that accurately reflects a wide array of hand-object
interactions.

B.3 Data Collection Protocol

As illustrated in Figure 10, we developed software tools to facilitate user convenience and high-
quality data acquisition. These tools provide posture-specific guide images to make it easier for
users to follow along, as well as visual feedback that allows monitoring of EMG, pressure, and hand
movements in real time. Additionally, they offer information on data collection and rest times for
each posture, enabling systematic data gathering with time synchronization.

Figure 6: FSR sensor calibration and response curves. (a) We calibrated each FSR pressure sensor
with the calibration setup using the precise push-pull gauge. (b) & (c) The FSR’s resistance and
conductance characteristics as a function of applied force, respectively, illustrating the sensor’s
calibration curve derived from multiple trials for data collection.

17



Figure 7: (a) Data collection setup to capture time-synchronized hand pressure, 3D hand pose,
and sEMG data. We asked participants to interact with 22 action sets while wearing customized
pressure gloves integrated with a finger tracking module and an 8-channel EMG armband. (b) We
captured 9-nodes hand pressure values, 8-channel sEMG signals, 20 joint angles, and 21 joint
coordinates (computed from joint angles).

Figure 8: 22 actions executed by the hand while collecting multimodal sensing data. It includes 7
hand-plane interactions, 5 pinch actions, and 10 hand-object interactions selected from hand grasp
taxonomy. Capital letters before the hyphen, namely T, I, M, R, and P, stand for thumb, index finger,
middle finger, ring finger, and pinky finger, respectively.

Using these data collection tools, we gathered data from each participant for the 22 postures listed in
Table 6, repeating each posture a total of three times. Each posture was collected for a duration of
30 seconds, with participants instructed to repeat the given posture 12 to 15 times. For Plane-type
postures, participants were instructed to apply and then release force against a flat surface. For Pinch
and Grasp postures, they were directed to fix an object with their left hand and then apply and release
force with their right hand. To prevent the accumulation of fatigue in the muscles due to EMG,
we incorporated a 10-second rest period after each posture, and after completing all 22 postures,
participants were given a 10-minute break to ensure adequate rest.

Muscle fatigue, characterized by a decline in a muscle’s ability to generate force, occurs when a
muscle is repeatedly contracted or held in a sustained contraction over an extended period. As muscles
fatigue, their electrical activity changes, manifesting as increased signal amplitude (root mean square)
and shifted frequency content [71]. These alterations can negatively impact the quality of sEMG data
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Figure 9: Representative grasp postures selected for data collection. This illustrates the ten grasp pos-
tures chosen for the study, reflecting a wide range of hand interactions. The postures are categorized
by opposition type, virtual finger usage, grip type, and thumb position. The color-coded diagrams
above the images indicate the pressure points for each grasp, corresponding to the regions of the hand
engaged during the posture.

used for hand pressure estimation, making it more challenging for the model to accurately distinguish
between different hand postures and pressure levels. Fatigue leads to less consistent muscle activation
patterns, complicating the model’s ability to learn reliable relationships between sEMG signals and
exerted pressure [43]. While muscle fatigue is an important consideration in EMG-based control,
addressing it falls outside the scope of this study. To minimize its effects on our results, we ensured
sufficient rest periods between data collection trials during both training and testing phases.
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Figure 10: Data collection interface displaying real-time feedback for hand posture, pressure, and
EMG signals, along with a timer for data acquisition sessions.

B.4 Data Processing

B.4.1 sEMG Signal and Pressure Data

With a frame length of 1,248 samples, corresponding to 0.624 seconds, we utilized a Short Time
Fourier Transform (STFT) for sEMG signal. This method, leveraging a window length of 256 and a
hop length of 32 samples, employed a Hamming window function to minimize spectral leakage. To
preprocess the sEMG signal, we applied the STFT and considered only the signals below 64Hz to
eliminate high-frequency noise, optimizing the signal’s relevance for muscle activity analysis [4]. For
the pressure data, considering the conventional force that a human can comfortably apply with their
hand, we propose a maximum inferable force of 20 N, and forces exceeding 20 N were clipped to be
treated as 20 N. Additionally, to exclude noise data caused by subtle sensor presses, values below 0.2
N were processed to be treated as 0.

B.4.2 3D Hand Pose

Figure 11: Hand skeleton model.

For the 3D hand pose data, we use data obtained from the Quan-
tum Mocap Metaglove for the training dataset. The hand skele-
ton model adopted in this study is as shown in Figure 11. The
joints of the fingers from the middle to the ring finger are omit-
ted because they are defined identically to those of the index
finger. The raw data obtained through the data glove represents
the hand as 20-dimensional angular data, denoting each finger
with one abduction angle and three flexion angles [72]. For the
thumb, it includes the CMC (carpometacarpal joint)’s abduction
and flexion angles, along with the MCP (metacarpophalangeal
joint) and IP (interphalangeal joint) flexion angles. For the other
fingers, it encompasses the MCP’s abduction and flexion angles,
as well as the PIP (proximal interphalangeal joint) and DIP (dis-
tal interphalangeal joint) flexion angles. This 20-dimensional
angular data is transformed into a three-dimensional angular
representation θ for each of the three joints determining the state of each finger, considering the
kinematic tree of the hand skeleton in the MANO hand model [73]. Subsequently, through forward
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Table 7: Relative bone length measurements for different finger sections.
Hand Bone Thumb Index Middle Ring Pinky

Root-to-MCP (Root-to-CMC for thumb) 0.5134 1.0475 1.0000 0.9871 0.9585
MCP-to-PIP (CMC-to-MCP for thumb) 0.4225 0.4509 0.5375 0.5095 0.3392

PIP-to-DIP (MCP-to-IP for thumb) 0.3772 0.3014 0.3427 0.3039 0.2551
DIP-to-Tip (IP-to-Tip for thumb) 0.3324 0.2765 0.3061 0.2822 0.2540

kinematics [74], this is converted into a hand joint representation J that includes the fingertips and
the hand root. The relative bone lengths of each hand skeleton used during forward kinematics are
shown in Table 7. When converting hand joint representation J into 3D heatmap volumes H , J is
first min-max linearly scaled to take values in the range [12, 36], considering the maximum and
minimum values for each spatial dimension in the training dataset. Thereafter, J is transformed into
21 3D heatmaps H by converting it into a 3D Gaussian heatmap with a standard deviation of σ = 1
for each dimension.

When using a 3D hand pose inferred from vision data, it can be transformed into the same representa-
tion as the 3D joint representation J . However, considering the global rotation of the wrist in the
photo, it is necessary to align the direction of the global rotation of the hand with the kinematic tree
of the hand used in training, and the scale of the hand also needs to match that used during training.
Accordingly, the 3D hand pose J inferred from vision data was rescaled so that the distance from the
root joint to the MCP of the middle finger is identical, rotated so that the plane formed by the three
joints (root joint, MCP of the middle finger, MCP of the index finger) is consistent, and translated so
that the root joint is in the same position. Afterward, the 3D hand pose inferred from vision data is
transformed into 21 3D heatmaps H through the process described above.

C Detailed Description for Method

C.1 Empirical Motivation of Our Framework

To empirically motivate our approach, we observed that sEMG signals alone might not be sufficient
for fine-grained pressure localization on the hand. We conducted an empirical analysis demonstrating
the limitations of using sEMG signals alone for this purpose. Figure 12 presents detailed sEMG
signal patterns for two pairs of hand postures: (1) I-Press (index finger press) versus M-Press (middle
finger press), and (2) TI-Pinch (thumb-index pinch) versus TM-Pinch (thumb-middle pinch). In each
case, participants were instructed to apply pressure using different fingers, targeting specific regions
of the hand. The 8-channel sEMG signals were recorded over a 5-second interval, with each channel
representing muscle activity from different forearm muscles. However, as shown in Figure 12, the
sEMG patterns are remarkably similar within each pair of actions, despite the differences in the
fingers exerting pressure.

This similarity arises because the muscle activations required for pressing or pinching with adjacent
fingers can produce overlapping sEMG signals due to the anatomical proximity and shared muscle
groups involved. Consequently, relying solely on sEMG signals makes it challenging to distinguish
between pressures applied by the index or middle finger. While sEMG signals provide valuable
information about the force exerted, they lack the spatial specificity needed for precise pressure
localization. These findings highlight the necessity of incorporating 3D hand posture information
to disambiguate the source of pressure. By fusing sEMG signals with precise hand pose data, our
framework can leverage both the force-related information from sEMG and the spatial context
provided by hand posture, leading to more accurate and fine-grained pressure estimation.

C.2 Details of Deep Neural Network Architecture

sEMG Feature Extractor fEMG The sEMG feature extractor employs a conventional encoder-
decoder architecture [4], with the encoder composed of three encoder blocks and the decoder
comprising three decoder blocks. Each encoder block includes a 2D convolutional layer that filters the
input, extracting pertinent features by convolving the input with a kernel of size (3, 3) and preserving
the input size with padding set to same. 2D batch normalization and a ReLU activation function follow
this. A max-pooling layer then downsamples the output by selecting the maximum value within
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Figure 12: Visualization of patterns with similar EMG footprint on different postures.

each pooling window, as defined by the downsampling parameter, effectively diminishing the spatial
dimensions. This block structure is iterated with increasing channel sizes and downsample rates. The
initial encoder block processes the raw sEMG signals with 32 filters, followed by subsequent blocks
that increase the filter count to 128 and 256.

In parallel to the encoder, each decoder block is designed to upscale the condensed features to a
higher resolution. It utilizes a 2D convolutional layer with an identical (3, 3) kernel size and same
padding, followed by batch normalization and ReLU activation, mirroring the encoder block. An
upsampling step follows, augmenting the spatial dimensions to correspond to those in the encoder’s
earlier stages. The decoder restores the feature map from its condensed state, as generated by the
encoder, to a higher resolution, employing decoder blocks in reverse sequence. Subsequently, the
2D feature map, having been processed through both the encoder and decoder, is flattened into a 1D
feature vector. Finally, the 1D feature vector is projected to a 512-dimensional space through a single
fully connected layer.

Hand Pose Feature Extractor fhand The Hand Pose Feature Extractor adopts a modified version
of the ResNet34 architecture [75], incorporating 3D convolutions to adeptly handle spatial structure
inherent in hand pose data [67, 76]. This adaptation is crucial for capturing the 3D pose of hand
postures, offering a richer representation than traditional 2D models. Central to this architecture is
the 3D ResNet block, termed the residual block. Each residual block starts with a 3D convolutional
layer, employing a kernel size of (3, 3, 3) and stride of 1, maintaining spatial dimensions through
padding. This convolution is followed by 3D batch normalization and a ReLU activation, ensuring
non-linearity and normalization of activations. A second 3D convolution with the same kernel size
and padding repeats this process. The block is designed to accommodate optional downsampled
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input, aligning input and output dimensions via a downsample path if necessary, employing either
average pooling or a (1, 1, 1) convolution for dimension matching, followed by batch normalization.
Residual connections in each block allow inputs to bypass layers, helping to prevent the vanishing
gradient problem by directly adding inputs to outputs.

The architecture initiates with a 3D convolution layer that processes the input using a kernel size of
(7, 7, 7), stride (2, 2, 2), and padding to keep spatial dimensions consistent. It continues with four
sequential layers comprising multiple residual blocks. These layers progressively increase channel
depth from 64 to 512, adhering to the sequence [64, 128, 256, 512]. The layer structure is [3, 4, 6, 3],
indicating the number of residual blocks per layer. Downsampling occurs in the transition between
these layers to reduce spatial dimensions and increase the receptive field. After progressing through
the convolutional blocks, an adaptive average pooling layer condenses the 3D feature map to a size of
1× 1× 1, effectively distilling the spatial-temporal features into a singular, compact feature vector.
This vector is then connected to a fully connected layer, which outputs the 512-dimensional final
feature representation.

Our Full Model f After concatenating the 512-dimensional feature vectors from sEMG and 3D
hand pose data, the model processes the resulting 1024-dimensional vector through a linear layer to
reduce it to 256 dimensions. This reduction is immediately followed by a batch normalization step
and a ReLU activation to standardize and introduce non-linearity into the features, enhancing their
representation for the task at hand. This sequence—comprising a 256-dimensional linear layer, batch
normalization, and ReLU activation—is executed twice to further refine the features. The refined
features then advance through a Sigmoid-activated linear layer, tailored to the specific classification
task with dimensions set by the numbers of interest regions (I = 9), finalizing the model’s output
preparation.

C.3 Model Training and Inference

For the training of our model, we configured our setup as follows: We trained the model for 50
epochs to ensure adequate training steps. We set the batch size to 64 to balance computational
efficiency and training stability. The model was optimized using the Adam optimizer [77] with a
learning rate of 0.0001 and (β1, β2) of (0.9, 0.999), along with a weight decay of 0.0001. The model
training was conducted on a computing environment equipped with an AMD EPYC 7763 64-Core
Processor, 1.0TB RAM, and an NVIDIA RTX 6000A 48Gi. Our model’s entire training process took
approximately 12 hours.

In our inference setup, we used a computer equipped with a 12th Generation Intel Core i9-12900K
processor, 32GB of RAM, and an NVIDIA GeForce RTX 4080 with 16GB of GPU memory. The
total number of parameters in our model amounts to approximately 66.17 M, with the sEMG feature
extractor contributing 1.26 M parameters and the hand pose feature extractor contributing 64.11 M
parameters. Our analysis on inference time indicated that our model requires only 4 milliseconds
to process a single batch, demonstrating its capability to handle 256 streaming inputs in a batch
inference setup without any delay or memory overflow issues on our test environment. Thus, we
conclude that our model is sufficiently lightweight and efficient for real-time processing, making it
practical for applications that require immediate feedback.

D Results

D.1 Implementation Details of Comparative Methods

The model architecture and data processing details of the sEMG Only Model largely align with the
official implementation2 disclosed in [4]. One exception to this conformity is our modification of the
final linear layer, where we expanded the number of prediction dimensions from 5 to 9. This alteration
was made to estimate the force exerted at the tips of each finger, aligning the output dimensions with
those of our study. Thus, this implementation serves as a counterpart solely utilizing EMG data,
excluding hand pose information. For PressureVision++, we directly utilized the implementation and
pre-trained weights officially released by the authors3. It is noteworthy that we initially considered

2https://github.com/NYU-ICL/xr-emg-force-interface
3https://github.com/pgrady3/pressurevision2
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using PressureVision, which infers the entire hand’s pressure from photos. However, after testing its
official implementation4, we found it entirely non-functional in our environment due to its lack of
generalization ability. Consequently, we adopted PressureVision++, which is limited to estimating
pressure at the fingertips but has a much higher ability for generalization.

The 3D Hand Posture Only Model corresponds to our full model with the sEMG feature extractor fEMG
removed. Consequently, the linear layer that previously mapped a 1024-dimensional concatenated
feature to 256 dimensions has been adjusted to map from 512 dimensions to 256 dimensions.
This modification reflects the absence of sEMG features, focusing solely on the utilization of 3D
hand pose data. The sEMG + Hand Angles Model modifies our full model by replacing fhand
with a 3-layer fully connected network, setting all layers to map features to a 256-vector. Each
layer incorporates 1D batch normalization and ReLU activation, aiming for a consistent feature
representation. Additionally, θ underwent dimension-wise min-max normalization to adjust values
to the [0, 1] range, facilitating standardized input for model processing. For aspects not specifically
mentioned, such as data processing, model architecture, and the choice of stochastic optimizer, we
adhered to the configurations described for our full model. This approach ensures that our comparative
analysis remains grounded in a consistent methodological framework, allowing for a fair evaluation
of the different models’ performance.

D.2 Evaluation Metrics

We employ a set of evaluation metrics that allow for a comprehensive assessment of both classification
and regression capabilities. These metrics are designed to quantify the accuracy, precision, and
generalizability of our model in predicting pressure exertions across the hand. The metrics include:

Coefficient of Determination (R2). The R2 value measures the proportion of variance in the
dependent variable that is predictable from the independent variables. It is defined as:

R2 = 1−
∑T

t=1

∑I
i=1(Pi,t − P̂i,t)

2∑T
t=1

∑I
i=1(Pi,t − P̄i,t)2

, (3)

where T is the number of time frames, I is the number of hand regions, Pi,t is the actual pressure,
P̂i,t is the predicted pressure for region i at time t, and P̄i,t represents a mean pressure for region i.
This metric quantifies how well the model’s predictions fit the actual pressure data, with values closer
to 1 indicating a stronger correlation between predicted and actual pressures.

Normalized Root Mean Squared Error (NRMSE). NRMSE provides a normalized measure of the
deviation of the predicted pressure values from the actual pressures applied, offering insight into the
model’s precision in estimating the magnitude of forces. It is computed as follows:

NRMSE =
1

Pmax

√√√√ 1

T · I

T∑
t=1

I∑
i=1

(Pi,t − P̂i,t)2, (4)

where Pmax is the maximum observed pressure in the dataset.

Classification Accuracy. This metric assesses the model’s capability to accurately classify whether
pressure is being exerted by any region of the hand. Specifically, a prediction is considered correct
only if the pressure exertion status of all hand regions (fingertips and palm areas) is accurately
classified for a given time frame. This metric is crucial for understanding the model’s ability to
distinguish between active and inactive pressure application scenarios.

4https://github.com/facebookresearch/PressureVision
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D.3 Additional Quantitative Results

D.3.1 Mean Average Error

Table 8: Performance comparison of models in terms of MAE. Note that this table reports the
performance of Table 2 in terms of the MAE metric.

Method MAE

sEMG Only [4] 6.03 ± 2.24
3D Hand Posture Only 9.03 ± 4.18
sEMG + Hand Angles 5.75 ± 2.37

PiMForce (Ours) 4.99 ± 2.02

Table 9: Performance comparison of hand regions in terms of MAE. Note that this table reports the
performance of Table 4 in terms of the MAE metric.

Finger Tip Hand Palm

Method Thumb Index Middle Ring Pinky Mean Upper
Right

Upper
Left

Lower
Right

Lower
Left Mean Overall

Mean

sEMG Only [4] 9.05 ±
4.19

8.40 ±
4.22

6.98 ±
3.62

5.10 ±
2.54

3.06 ±
1.08

6.52 ±
3.12

8.04 ±
4.46

7.40 ±
4.23

7.75 ±
4.30

6.73 ±
4.42

7.48 ±
4.35

6.95 ±
3.67

3D Hand Posture Only 13.62 ±
7.00

13.30 ±
7.51

11.31 ±
6.65

8.07 ±
4.81

4.17 ±
1.55

10.09 ±
5.50

11.92 ±
7.44

9.88 ±
7.44

11.00 ±
7.29

9.03 ±
7.43

10.46 ±
7.40

10.26 ±
6.35

sEMG + Hand Angles 8.62 ±
4.08

8.04 ±
4.19

6.71 ±
3.63

4.87 ±
2.35

2.97 ±
1.01

6.24 ±
3.05

7.66 ±
4.33

6.34 ±
4.44

6.77 ±
4.56

5.75 ±
4.50

6.63 ±
4.46

6.42 ±
3.68

PiMForce (Ours) 7.38 ±
3.43

6.95 ±
3.44

5.91 ±
2.97

4.55 ±
2.36

2.61 ±
0.77

5.48 ±
2.59

6.56 ±
3.64

5.48 ±
3.72

6.07 ±
3.59

4.99 ±
3.76

5.77 ±
3.68

5.61 ±
3.08

D.3.2 Cross-User Evaluation and Comparison with PressureVision++

To assess the generalizability of our hand pressure estimation framework across different individuals,
we conducted cross-user evaluations. Additionally, we performed a quantitative comparison with
the vision-based method PressureVision++ to benchmark our model’s performance against existing
state-of-the-art approaches.

Cross-User Evaluation Given the known variability of sEMG signals due to anatomical differences
and sensor placement among users, it is crucial to evaluate how our model performs when encoun-
tering data from participants not seen during training. We partitioned our dataset of 21 participants
into a training set and a test set. Specifically, data from 17 participants were used to train the model,
while data from the remaining 4 participants were reserved for testing. This ensures that the model is
entirely blind to the test participants during both training and evaluation phases.

Based on the cross-user evaluation results presented in Table 3, our PiMForce combining sEMG
signals with 3D hand posture data significantly outperforms the sEMG-only baseline across all
evaluation metrics. Specifically, our method achieves an R2 score of 70.06%, compared to 47.90% for
the sEMG-only model, indicating a substantial improvement in the proportion of variance explained
by the model. The NRMSE is reduced from 14.14% to 10.70%, and the MAE decreases from 12.24%
to 8.54%, demonstrating enhanced precision in pressure estimation. Additionally, the classification
accuracy increases from 57.40% to 72.01%, reflecting a superior ability to correctly identify the
presence or absence of pressure across hand regions. Table 10 shows the detailed performance in
terms of hand regions.

These improvements highlight the effectiveness of integrating 3D hand posture information with
sEMG signals to capture both muscle activation patterns and spatial context, thereby enhancing the
model’s generalizability to unseen users. The reduced variability in performance metrics, as indicated
by the lower standard deviations, also suggests that our method is more consistent across different
individuals.

Table 10: Cross-user performance comparison of whole hand regions in terms of NRMSE.
Finger Tip Hand Palm

Method Thumb Index Middle Ring Pinky Mean Upper
Right

Upper
Left

Lower
Right

Lower
Left Mean Overall

Mean

sEMG Only [4] 14.26 ±
5.33%

13.95 ±
5.83%

12.22 ±
5.44%

9.25 ±
3.49%

6.51 ±
2.03%

11.24 ±
4.42%

12.75 ±
5.95%

10.96 ±
6.16%

12.07 ±
5.78%

10.20 ±
6.21%

11.50 ±
6.03%

11.35 ±
5.14%

PiMForce (Ours) 10.88 ±
3.90%

10.84 ±
4.24%

10.10 ±
4.41%

8.28 ±
3.47%

5.81 ±
1.72%

9.18 ±
3.55%

9.74 ±
4.40%

8.24 ±
4.68%

9.05 ±
4.43%

7.60 ±
4.77%

8.66 ±
4.57%

8.95 ±
4.00%

25



Figure 13: Visualization of ground truth pressure and predicted pressure for the same posture using the
existing PressureVision++ hand pressure prediction framework. (a) Original image from camera. (b)
Input image for the PressureVision++ model. (c) Overlaied predicted pressure by PressureVision++.
(d) Original predicted pressure. (e) Overlaied predicted pressure by PressureVision++, projected onto
Sensel pressure array. (f) Ground truth pressure, projected onto Sensel pressure array.
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Figure 14: Collecting fingertip pressure data from
a Sensel pad and hand data from an RGB camera to
quantitatively evaluate PressureVision++ and our
model.

Comparison with PressureVision++ To
benchmark our PiMForce against existing
vision-based pressure estimation methods,
we conducted a quantitative evaluation of
PressureVision++. Using the same equipment
as the original PressureVision++ study — a
Logitech Brio 4K webcam and a Sensel Morph
pressure sensing array — we collected data
from 5 participants. As PressureVision++
estimates pressure only on fingertips and
requires full visibility of the hand within the
camera view, we focused our evaluation on
plane and pinch interaction sets, specifically:
I-Press, M-Press, R-Press, P-Press, IM-Press,
MR-Press, TI-Pinch, TM-Pinch, TIM-Pinch, TIMR-Pinch, and TIMRP-Pinch.

Each participant was instructed to repeat each action for 30 seconds, following our data collection
protocol. To ensure optimal visibility for PressureVision++, we carefully adjusted the camera angle
to capture both the fingers and palm (see Figure 14). Note that the Sensel Morph could not measure
thumb force during pinch actions, so this data was excluded from the analysis. Figure 13 illustrates
ground truth pressure and predicted pressure under the setting of PressureVision++.

Table 5 presents the performance comparison between PressureVision++, our proposed method,
and the sEMG-only model in the cross-user setting. It is important to note that our evaluation of
PressureVision++ is inherently a cross-user performance report, as the model was trained on a separate
dataset. As shown in the table, our method significantly outperforms both PressureVision++ and
the sEMG-only model in all three metrics. Specifically, PiMForce achieves an accuracy of 82.20%,
compared to 66.00% for PressureVision++ and 67.90% for the sEMG-only model. For a detailed
breakdown of fingertip performance during plane and pinch interactions, we present the finger-specific
performances in Tables 11. These results indicate that our proposed method consistently outperforms
PressureVision++ in estimating fingertip pressures across all fingers during both plane and pinch
interactions.

Discussion The cross-user evaluation confirms that our framework is robust and generalizes well to
unseen participants. While there is a general decrease in performance when moving from within-user
to cross-user evaluation (e.g., classification accuracy decreases from 83.17% to 72.01% for our
method), our model still maintains superior performance compared to existing methods. PressureVi-
sion++ shows limitations in cross-user scenarios due to its reliance on visual features that can vary
widely among individuals, such as skin texture, color, and hand shape. Additionally, it requires full
visibility of the hand, limiting its applicability in scenarios where the hand is partially occluded or
when interactions involve grasping objects.

Our PiMForce’s superior performance can be attributed to the complementary nature of sEMG signals
and 3D hand pose data. While sEMG provides insights into muscle activation patterns, 3D hand
pose offers spatial context that helps disambiguate similar sEMG signals arising from different hand
configurations. By integrating these modalities, our framework achieves more accurate and reliable
hand pressure estimation across diverse users and interaction types, demonstrating its potential for
practical applications in human-computer interaction and virtual reality systems.

Table 11: Cross-user performance comparison of finger tips in terms of NRMSE.
Plane Pinch

Method Index Middle Ring Pinky Mean Index Middle Ring Pinky Mean Overall
Mean

PressureVision++ [17] 33.23 ±
1.55%

29.14 ±
2.08%

27.25 ±
1.67%

15.48 ±
2.27%

27.12 ±
1.37%

43.18 ±
1.57 %

42.46 ±
2.55 %

31.72 ±
2.42 %

27.77 ±
2.39 %

36.93 ±
1.51 %

32.79 ±
1.05%

sEMG only [4] 13.90 ±
7.31%

13.34 ±
8.18%

8.72 ±
4.48%

5.64 ±
1.93%

10.40 ±
5.47%

13.45 ±
7.15%

11.12 ±
5.93%

8.68 ±
4.81%

5.15 ±
1.51%

8.56 ±
5.92%

10.34 ±
4.57%

PiMForce (Ours) 10.13 ±
5.17%

10.08 ±
5.40%

8.49 ±
4.54%

5.43 ±
2.42%

8.54 ±
4.38%

9.56 ±
4.79%

8.48 ±
4.65%

6.08 ±
2.81%

4.58 ±
2.13%

7.17 ±
3.59%

8.34 ±
3.46%
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D.4 Additional Qualitative Results

The video included in the supplementary material is designed to qualitatively demonstrate our
model’s inference performance in a time-continuous context.5 The extended results of Section 5.2.2
and Figure 4a in the main text are displayed. Figures 15-18 serve as extended figures to Section 5.2.2
in the main text. Figures 19-22 act as extended figures to Figure 4a in the main text.

Figure 15: Qualitative visual analysis among comparative models.

5https://hci-tech-lab.github.io/PiMForce/
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Figure 16: Qualitative visual analysis among comparative models.
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Figure 17: Qualitative visual analysis among comparative models.
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Figure 18: Qualitative visual analysis among comparative models.
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Figure 19: Pressure estimation results for the vision-aided hand in the test set.
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Figure 20: Pressure estimation results for the vision-aided hand in the test set.
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Figure 21: Pressure estimation results for the vision-aided hand in the test set.

34



Figure 22: Pressure estimation results for the vision-aided hand in the test set.
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Figure 23: Comparison of fingertip and palm forces predicted by our model with ground truth data
over time. To evaluate our model, we use the IM-Press posture, which uses only fingertip pressure,
and the Medium Wrap posture, which uses whole-hand pressure, during Subject 5’s test session.

D.5 Comparison between Predicted Pressures and Ground Truth over Time

To provide a more detailed analysis of our model’s temporal performance, we include additional
figures that showcase the ground truth and predicted pressure values over time for various hand
actions. Figure 23 displays the pressure trajectories for all nine hand regions during the execution of
the TM-Press and Medium Wrap actions by a participant. In this 20-second interval, the participant
performs the TM-Press action for the first 10 seconds, followed by the Medium Wrap action for the
next 10 seconds.

In these plots, each subplot corresponds to a specific hand region, with time on the horizontal axis and
pressure magnitude on the vertical axis. The solid lines denote the ground truth pressures measured
by the tactile glove, while the dashed lines represent the pressures predicted by our model. The
alignment between the ground truth and predicted pressures across different hand regions and actions
demonstrates the model’s capability to accurately track pressure dynamics over time. Notably, the
pressure shifts from regions associated with the TM-Press action to those corresponding to the
Medium Wrap action, reflecting the participant’s change in hand posture and interaction.
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E Limitations and Future Works

Our framework and model, while innovative, is not without its limitations. One of the primary
constraints is its reliance on the accuracy of off-the-shelf hand pose detectors during inference. If the
hand pose is inaccurately estimated, it can lead to erroneous pressure estimations. Furthermore, our
analysis, as evidenced by Figure 6 of the main text, reveals that performance is not uniformly high
across all hand postures. This inconsistency indicates areas that could benefit from further refinement.
Due to the time constraints of participants, our dataset does not cover the full range of hand postures
described in existing literature on hand posture taxonomy [55, 56]. Additionally, the absence of mesh
information for both hand and object means we lack precise data on the surface contact locations.
Our study also faces limitations due to the demographic homogeneity of the participants. The lack of
diverse demographic representation among participants may limit the generalizability of our current
model across different populations.

Overcoming these limitations opens up several directions for future work. Exploring additional
modalities such as depth sensor, constructing an end-to-end model that integrates vision sensors
with sEMG signals, adopting high-density electromyography (HD-EMG) equipment [78, 48] to
surpass the limitations of standard sEMG devices, and expanding our dataset through more extensive
participant sampling and long-term data collection are promising paths forward. Incorporating hand
mesh and object mesh estimation [79–81] with our muscular force learning framework could provide
more accurate information regarding contact points and the corresponding pressure on hand mesh.
Demographic limitations can be addressed by conducting studies with a larger and more diverse
participant pool. Expanding the participant demographics will enhance the generalizability of our
results and ensure the framework’s applicability across a broader range of users. These steps will help
refine our model, making it more robust and widely applicable across different hand interactions.

Additionally, our current framework primarily leverages global features from both sEMG signals
and 3D hand pose data, without fully exploring alternative multimodal fusion methods. We did not
incorporate fine-grained spatial information or prior structural knowledge of hand poses into the
model architecture. Future work could investigate different fusion techniques, such as integrating
spatial hierarchies or attention mechanisms, to capture the intricate relationships between hand
pose and muscle activity. This exploration could further enhance pressure estimation accuracy and
robustness.

F Potential Social and Broader Impacts

The proposed framework has several promising applications across various fields. In healthcare and
rehabilitation, this technology could enhance therapeutic devices by providing detailed feedback on
hand movements and pressure, improving the effectiveness of rehabilitation exercises and assistive
devices for individuals with motor impairments. In human-computer interaction, integrating hand
pressure data could lead to more intuitive and responsive interfaces, particularly in virtual reality (VR)
and augmented reality (AR) environments. In occupational safety and ergonomics, our framework
could help design ergonomic tools and workspaces, reducing the risk of repetitive strain injuries and
enhancing worker productivity and safety.

Despite its potential usefulness, the use of forearm-worn sEMG to estimate hand movements, poses,
and pressure could introduce biases in the model’s performance due to medical and physiological
variations. For instance, some individuals have less muscles than others; for example, the palmaris
longus muscle, which flexes the wrist joint, is absent in about 15% of the population [82]. To mitigate
these risks, it is essential to consider a broader clinical demographic when recruiting participants and
designing research for future studies.

While our study did not present any direct clinical risks to the participants, we recognize the
importance of ethical data handling, particularly regarding sEMG signals which may contain personal
information. Prior to participation, all participants were provided with a detailed information sheet
outlining the purpose, procedures, and potential risks of the study. We obtained written informed
consent from each participant, ensuring they understood the nature of the data being collected and
their right to withdraw at any time. All collected data was anonymized, complying with relevant data
privacy regulations
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1 includes the main claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section E includes the limitations of the work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low, or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 and C.3 include all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Section 3 includes URL for open access to the data and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4, 3.2 and C.3 include all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Table 2, which is the main quantitative result, includes error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section C.3 includes information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed NeurIPS Code Of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section F includes societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not include data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We checked the licenses of assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The assets include documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Section 3.2 and B include the full text of instructions given to participants and
screenshots.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Section 3.2 includes the text on IRB approvals. Human study in this work does
not give rise to clinical risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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