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ABSTRACT

Complex-valued measurements in MRI and SAR imaging often have complex-
valued scaling ambiguity, calling for models that are invariant to complex-valued
scaling of pixels. Deep Complex Networks (DCN) extends real-valued algebra to
the complex domain in neural networks, but it does not address complex-valued
scaling. SurReal complex-valued networks adopt a manifold view of complex
numbers and derive a distance metric that is invariant to complex scaling. With
distance features, it achieves complex-scaling invariance. However, rich complex-
valued information is lost in this representation, and additionally, SurReal is also
prevented from complex-valued non-linearity, limiting its expressive power.
We simplify the manifold formulation of SurReal and propose a new layer func-
tion that achieves complex-scaling invariance within the complex domain. We
can then build hierarchical complex-valued features with complex-scaling invari-
ance. Our so-called HyperReal model results in a much leaner model with better
generalization. Benchmarked on MSTAR, HyperReal beats DCN (and matches
SurReal) with only 3% (40%) of their respective parameter counts.

1 INTRODUCTION

Complex-valued data is a fundamental aspect of signal processing. In applications such as SAR/MR
imaging and Radio Frequency communication systems, the data itself is complex-valued, but even
when the data is real-valued, it is often beneficial to use complex-valued representations such as
Fourier Transform and Scattering Transform (Kondor & Trivedi, 2018a; Mallat, 2016). These po-
tential applications have motivated research on complex-valued deep learning, leading to works like
Virtue (2018); Trabelsi et al. (2017), which have successfully adapted layer functions and optimiza-
tion strategies from real-valued networks to the complex-valued domain.

However, this line of enquiry neglects an important practical aspect of complex-valued signal
processing: Complex-valued measurements are often known only up to a complex-valued scaling
constant, i.e. two complex-valued signals Z1 and Z2 are equivalent if and only if Z1 = s.Z2 for
some scaling constant s ∈ C. This equivalence motivates neural network models that are invariant
to the complex-valued scaling. Given an complex-valued input image Z ∈ CH×W of size HxW,
and a desired output dimension C, we define a complex-scale invariant function as follows:

Definition 1. A function f : CH×W → RC is called complex-scale invariant if for all inputs
z ∈ CH×W and scaling constants s ∈ C:

f(s.z) = f(z)

Similarly, it is called complex-scale equivariant if:
f(s.z) = s.f(z)

Applying these definitions to models like Deep Complex Networks (Trabelsi et al., 2017), we find
that these models are not complex-scale invariant. Indeed, as shown in Fig 1, DCN is susceptible to
complex-valued scaling.

This motivates the need for complex-scale invariant layers, and SurReal addresses this problem. It
models complex numbers as elements of a manifold where complex-scaling corresponds to trans-
lation. In particular, its Distance Layer uses a distance metric on the manifold which is invariant
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to complex-scaling, and thus produces invariant features. As a result, SurReal achieves remarkable
model size reduction, increased robustness, and high accuracy.

However, as we show in section 3.3, distance Layer destroys important phase information, and
moreover, the previous formulation of this method cannot use complex-valued non-linear activation
functions like CReLU. At the heart of this issue is the lack of a complex-valued complex-scale
invariant layer, which is our key contribution. We recognize the algebraic structure of complex
numbers, and our proposed layer divides one point with another instead of just computing distances.
This operation preserves complex information that a Distance Layer cannot, and we demonstrate
this effect in Section 3.3.
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Figure 1: DCN is susceptible to complex-valued scaling, whereas our method is robust. We choose
a single example, and show a polar plot of the model confidence of correct class as we multiply
the image by a unit magnitude complex number; higher accuracy means larger radius. For DCN,
there are three lobes of high accuracy regions, whereas our method has constant accuracy throughout
the plot. This fluctuation in accuracy is due to CReLU breaking the complex-scale equivariance in
DCN.

Our major contributions include:

• We analyze the limitations of the Distance Layer used by SurReal, and explain why SurReal
architecture cannot use complex-valued non-linearities like Tangent ReLU.

• We introduce Division Layer, a new complex-valued layer which is invariant to complex scaling
• We present HyperReal, a model that matches SurReal’s performance while being leaner.
• We simplify the manifold formulation of complex-scaling presented by SurReal.

2 RELATED WORK

The field of complex numbers defines a Riemannian manifold with intrinsic geometric and algebraic
properties that serve as a powerful representation of information. Given the advantages of it over
other representations, complex numbers have been extensively studied in variety of fields such as
mathematics, physics, and engineering (Oppenheim, 1999; Needham, 1998; Mathews & Walker,
1970).

Traditional complex-valued data analysis involves computing higher-order statistics, as seen in Kin-
sner & Grieder (2010); Reichert (1992). Many predecessors use the complex representation of data
for modeling or embedding purposes. For instance, Cadieu & Olshausen (2012) proposes a sparse
coding layer utilizing complex basis functions. Amin & Murase (2009) encodes real-valued inputs
into the complex domain and proposes a classifier which forms proper boundaries for linear and
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Figure 2: The complex plane and the half-cylinder manifold of complex numbers. F takes a complex
number, a point in the complex plane, to a 3D point on the cylinder. F−1 turns the 3D point back to
a complex number.

non-linear problems. Reichert & Serre (2013) proposes a complex-valued model that is biologically
meaningful. Yu (2009; 2012) encodes data features in a complex vector, and learns a metric system
for this embedding.

More generally, complex-valued representations have found use in LSTMs and associative mem-
ory due to their robustness to noise, have been shown to have more representational power than
real-valued units, and even make the optimization process easier. (Trabelsi et al., 2017; Kondor &
Trivedi, 2018b; Bruna & Mallat, 2013). We refer the reader to Trabelsi et al. (2017) for a more
detailed account of the benefits of complex-valued deep learning.

Contemporary progress in neural networks has been successful for real-valued data (Krizhevsky
et al., 2012; He et al., 2016). Given this success, it is natural to extend the idea of neural networks
to complex-valued data and to analyze the properties of complex-valued neural networks. Nitta
(2002) investigates the role of critical points in the construction of a complex neural network. Hi-
rose & Yoshida (2012) demonstrates that complex networks tend to produce smaller generalization
error than real-valued network, and offers a comprehensive overview of convergence and stability
of complex-valued networks.

Despite the increasing research interest in complex-valued neural networks, the problem of effec-
tively dealing with scale-ambiguity remains open. Trabelsi et al. (2017); Zhang et al. (2017); Virtue
et al. (2017); Virtue (2018) propose an extension of real neural architectures to the complex field by
redefining basic building blocks such as complex convolution, batch normalization and non-linear
activation function. While these methods are successful at processing artificially generated complex
data (e.g. the state vector generated by as LSTM), these methods become unreliable when the input
data is subject to complex-scale ambiguity. Chakraborty et al. (2019) approached this problem by
adopting a manifold perspective of the problem, and our work is built on top of this line of research.

3 METHODS

In order to achieve complex-scale invariance, SurReal (Chakraborty et al., 2019) models the complex
number plane as a manifold where complex scaling corresponds to translation. In this section, we
provide an overview of the framework, and use this framework to motivate a new type of layer,
the Division Layer. For pedagogical clarity, we present a simplified yet equivalent version of the
formulation used by SurReal. We refer the reader to the original paper for more details.
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We start by modelling C̃ = C \ {0}, the set of non-zero complex numbers, as elements of a product
manifold R+×S1. Here, R+ represents the magnitude component, and S1 is the phase component
of complex rotation.

Formally, we define a bijective mapping F from C̃ to the manifold space R+ × S1:

z = |z| exp (i]z)
F−→←−
F−1

(|z|, cos(]z) , sin(]z)) (1)

This results in a cylindrical manifold where translations along the vertical axis represent increments
in log |z|, and thus magnitude multiplication, and the horizontal translations by θ represent multipli-
cation by eιθ. A complex-valued input image can be considered as a point cloud on this manifold,
and complex-valued scaling then becomes the translation of the entire point cloud. See figure 2.
This manifold is equipped with the distance metric:

d (z1, z2)=

√(
log |z1| − log |z2|

)2
+ arc(]z1,]z2)2. (2)

where arc(]z1,]z2)2 refers to the arc-distance of the angular parts of z1 and z2 respectively. The
structure of this distance emerges naturally from the product structure of the manifold, and the two
terms in the loss function refer to distances within the vertical and horizontal components respec-
tively. This distance function can be easily shown as invariant to complex scaling:
Proposition 1. The distance metric defined in Eq. equation 2 is invariant to complex scaling of the
inputs, i.e.: d(z1, z2) = d(s.z1, s.z2) for any s ∈ C

Proof.

d(s.z1, s.z2) =

√(
log |sz1| − log |sz2|

)2
+ arc(]sz1,]sz2)2

=

√(
log |s|+ log |z1| − log |s| − log |z2|

)2
+ arc(]s+ ]z1,]s+ ]z2)2

=

√(
log |z1| − log |z2|

)2
+ arc(]z1,]z2)2 = d(z1, z2)

This property is the key behind SurReal’s success. Unlike DCN, the invariant features extracted
by SurReal allow it to be completely invariant to complex scaling, and generalize better to unseen
complex-valued data with complex-scale ambiguity.

3.1 WEIGHTED-FRÉCHET MEAN CONVOLUTION

Since addition is not defined for arbitrary points on a manifold, we must use an alternative weighted-
average operation which is compatible with manifolds: Fréchet mean. It is a generalization of
weighted-averages used extensively in geometry processing literature (Panozzo et al., 2013) for
smoothing curved surfaces, and is a natural substitute for Real-valued convolutions on such surfaces.
wFM of a set of points (e.g. pixels) is defined as a minimizer of weighted distances. Formally:

Given {zi}Ki=1 ⊂ C are the input points and {wi}Ki=1 ⊂ (0, 1] with
∑
i wi = 1 are the weights, (the)

weighted Fréchet mean (FM) is defined as:

wFM ({zi} , {wi}) = arg min
m∈C

K∑
i=1

wid
2 (zi,m) . (3)

Here, d is the distance defined in Eq. 2.

A special case is when d is the Euclidean distance: wFM reduces to the weighted average of the input
points

∑K
i=1 wizi. In general, however, wFM requires solving a non-convex optimization problem

to locate. For the special case of the cylinder manifold, the magnitude and phase components of the
wFM are decoupled, and it can be approximated easily (See Appendix A.1).

The most important property of wFM Convolution is that it equivariant both to image translations
and complex-valued scaling. (See Fig 3) This allows it to be used like a regular Convolutional layer
while preserving the complex-scaling properties of the model.
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Figure 3: The convolution is equivariant to complex multiplication. a) Four colored points zi are
rotated and scaled in the complex plane. b) The wFM of the 4 points with equal weights is located
at the phase midpoint and the log magnitude midpoint. It is equivariant to rotation and scaling.

Figure 4: Here, we replicate the visualization of Tangent ReLU from Chakraborty et al. (2019).
Tangent ReLU extends Euclidean ReLU to the complex plane. It divides the complex plane by the
unit circle and the horizontal line: Outside the unit circle,it lets through every point in the upper half
(green) and compresses the lower half to a half positive line (red). Inside the unit circle, it maps the
upper half disk to the upper circle (cyan) and the lower-half disk to a single point (1,0) (brown).

3.2 TANGENT RELU

Non-linear activation functions are necessary to construct deep hierarchical representations, and
ReLU is the most commonly used activation function for visual classification tasks. However, neural
networks are only well-defined for vector spaces, so we adapt ReLU to this framework by applying
it in the tangent space of a learned reference point. This layer is called the Tangent ReLU (TReLU),
and it thresholds both phase and magnitude (See figure 4). This learned reference point is equivalent
to the bias in a ReLU Network. By default, this reference point is chosen to be 1, but we learn
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Figure 5: Our division function is invariant to complex-valued scaling. Consider 4 numbers in the
complex plane, the 4 colored points on a large magenta trapezoid. Their equally weighted wFM
(black dot) sits inside the trapezoid at the geometric mean of their magnitudes and the mean of their
phases. When the 4 complex numbers are scaled by 2

3 exp(i
100π
180 ), the points move to the smaller

trapezoid. While the manifold distances from the black dot to the colored dots are identical and
invariant to scaling, the black dot divided by each of the 4 color dots results in 4 different numbers
(the same colored dots with a black center around 0◦) which are also invariant to complex-valued
scaling. We use this more expressive complex-valued division function instead of SurReal’s real-
valued distance transform to build up hierarchical complex-valued features.

it for each feature channel by multiplying each channel of the feature map by a learned complex-
valued constant. This learned point is referred as the G-Transport layer in Chakraborty et al.
(2019). Please note that while SurReal introduces Tangent ReLU as a possible non-linear activation
function, their model does not use it, and as we see in Table 2, using Tangent ReLU with SurReal
causes significant performance degradation. We explore the reason and solution for this failure in
the next section.

3.3 DISTANCE LAYER AND ITS LIMITATIONS

SurReal uses distances on the manifold as features. As shown in Proposition 1, the distance metric
is invariant to complex-scaling, and thus the Distance Layer is the key to SurReal’s complex-scale
invariance. However, distance features suffer from two problems:

• Distance throws away rich information about the relative positions of different input points, and
• It makes the network incompatible with complex-valued activation functions

Firstly, Distance Layer throws away useful information by discarding all the relative phase and
direction information, and only retaining the distance between the points themselves. As shown in
Fig 5, it is possible to construct cases where the information is irrecoverable.

Additionally, Distance Layer produces Real-valued outputs, and thus any downstream processing
is purely Real-valued. However, since complex-valued activation functions like CReLUand Tan-
gent ReLU break the complex-scale equivariance, they can only be applied after an invariant layer.
This contradiction prevents Surreal from using Tangent ReLU, and thus limits its complex-valued
computation to be a simple linear function. Adding Tangent ReLU before the Distance layer breaks
equivariance, and results in catastrophic failure of the model as shown in 2.

To fix this problem, we introduce Division Layer. Unlike the Distance layer which only captures
distances, this layer also captures the relative positions of points. Specifically, given two complex-
valued features z1, z2 ∈ C, we compute:
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Table 1: HyperReal CNN Layer Specification
Layer Type Input Shape Kernel Stride Output Shape
wFM CONV [3, 1, 128, 128] 3× 3 2 [3, 5, 63, 63]

Division Layer [3, 5, 63, 63] 3× 3 1 [3, 5, 61, 61]

G-transport [3, 5, 61, 61] - - [3, 5, 61, 61]

Tangent ReLU [3, 5, 61, 61] - - [3, 5, 61, 61]

wFM CONV [3, 5, 61, 61] 3× 3 2 [3, 5, 30, 30]

Division Layer [3, 5, 30, 30] 3× 3 1 [3, 5, 28, 28]

G-transport [3, 5, 28, 28] - - [3, 5, 28, 28]

Tangent ReLU [3, 5, 28, 28] - - [3, 5, 28, 28]

Reshape [3, 5, 28, 28] - - [15, 28, 28]

CONV (Groups=5) [15, 28, 28] 5× 5 1 [30, 24, 24]

BN+ReLU [30, 24, 24] - - [30, 24, 24]

ResBlock [30, 24, 24] 2× 2 2 [40, 24, 24]

MaxPool [40, 24, 24] 2× 2 2 [40, 12, 12]

CONV (Groups=5) [40, 12, 12] 5× 5 3 [50, 3, 3]

BN+ReLU [50, 3, 3] - - [50, 3, 3]

ResBlock [50, 3, 3] - - [60, 3, 3]

CONV (Groups=5) [60, 3, 3] 2× 2 1 [70, 2, 2]

BN+ReLU [70, 2, 2] - - [70, 2, 2]

Average Pooling [70, 2, 2] - - [70, 1, 1]

FC [70] - - [30]

FC [30] - - [10]

Method Parameters 20% Train 40% Train 60% Train 80% Train 100% Train
Surreal (Reproduction) 67,325 75.57± 2.56 88.072± 2.79 87.47± 9.31 94.65± 1.92 96.07± 0.56
Surreal + TReLU (Reproduction) 67,325 48.67± 4.49 51.29± 0.18 41.61± 21.23 41.27± 17.45 48.52± 3.51
HyperNet (ours) 28,695 66.05± 12.08 85.74± 1.79 89.47± 7.35 93.26± 2.99 93.24± 2.85
DCN 863,587 50.00± 2.95 57.36± 8.71 83.69± 2.29 86.53± 4.38 89.09± 1.33
3-Channel Real CNN 28,335 39.81± 4.02 67.17± 2.80 70.85± 2.15 78.96± 0.79 77.51± 4.36

Table 2: Our method achieves similar accuracy to SurReal on most of the training data splits. The
table shows overall test accuracy on the MSTAR dataset while training on different portions of the
training set. The columns referring to ”X% Train” describe the mean test accuracy and standard de-
viation computed over 5 different runs. SurReal+TReLU suffers catastrophic failure, but HyperNet,
which combines these elements with the Division Layer, is able to converge to a good solution.

Div(z1, z2) =
z1
z2
⇒
( |z1|
|z2|

, cos(]z1 − ]z2), sin(]z1 − ]z2)
)

As shown in Fig 5, it allows us to capture more information than Distance Layer. Additionally, since
the output is Complex-valued and invariant, it is possible to use complex activation functions in this
architecture. This allows us to finally build deep hierarchical representations, which helps us create
leaner models. In Table 2, we show that adding Tangent ReLU to SurReal leads to failure, but using
a Division layer prevents this problem.
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4 EXPERIMENTS

Replicating SurReal: We replicated the architecture described in Table 1. Since the paper does not
mention the learning rate used to train the model, we use the same learning rate and batch size as
ours, and optimize it for 200,000 iterations. We validate every 10,000 iterations, and pick the model
with best validation accuracy.

Replicating DCN: We used the code publicly provided by the authors 1. We used their image
classification model with the non-linearity CReLU because it showed the best performance in their
image classification experiments. By default, this model only accepts 32x32 images, so appended
two layers of ComplexConv and ComplexBatchNorm with stride 2 to downsample the input from
128x128 to 32x32. The model was trained for 200 epochs using the schedule provided in Trabelsi
et al. (2017), and the model with best validation accuracy was picked.

HyperReal: Our architecture is roughly based on the SurReal architecture from Chakraborty et al.
(2019): We use a few complex-valued layers followed by a real-valued post-processor. Specifically,
we use the architecture described in Table 1. The main contrast between our architecture and SurReal
is the use of Division layer and Tangent ReLU. Our complex-valued processing consists of two
blocks, each containing a wFM convolution, Division Layer, G-Transport, and Tangent ReLU.

Training: We optimize both SurReal and HyperReal models using Adam with learning rate 10−3

and batch size 64 for 2× 105 iterations. For each setting, this process is repeated 5 times, each with
a different random seed, for every configuration. We collect test accuracy statistics and report them
in 2.

MSTAR: It has a total of 15,716 complex-valued X-band SAR images divided into 11 classes. We
discard the last ”clutter” class containing only background, and focus only on target class recogni-
tion. See Table 2 for information about class distributions.

Preprocessing: We take the 128× 128 center crop before applying method-specific pre-processing.
For our models and SurReal, we normalize the magnitude and convert the data into a 3-channel (Log
Magnitude, cos(phase), sin(phase)) representation. For DCN, we use the public implementation
provided by the authors. This pipeline removes the pixel mean for each pixel before feeding it into
the network.

Training sets: We follow the procedure of Wang et al. (2019), training on the depression angle 17
and testing on the depression angle 15. In order to test the generalization capabilities of the models,
we train on several differently-sized subsets of the original training set: We train models on 20%,
40%, 60%, 80%, and full 100% of the training data respectively. Table 2 shows the results.

Results: We find that Division Layer is an effective method of combining a non-linear activation
function like Tangent ReLU with the SurReal architecture. In particular, it seems to achieve excellent
performance while using less than half the parameters as those used by SurReal for most training
data splits. Another interesting observation is that DCN should in principle have access to a larger
set of algebraic tools and a significantly higher number of parameters. However, even with this
advantage, it fails on this real-world SAR data. A final noteworthy observation is that note that
the entire Complex-Valued processing part of HyperReal has a total of 360 parameters compared
to ≥ 28, 000 parameters in the Real-valued post-processing pipeline, but the correct inductive prior
makes a big difference in generalization performance regardless of the number of parameters.

Conclusion: These experiments shed light on a previously neglected problem of complex-scale
invariance, and show that it naturally comes up when working with real-world signals. We contextu-
alize this problem by explaining it from the manifold point-of-view, and we describe how different
types of approaches fail at this problem. Finally, we introduced a complex-valued invariant layer to
get the best of both world. This layer shows promise in building deep hierarchical complex-valued
networks, and opens up interesting possibility of a general framework to impose invariance and
equivariance to other kinds of common transformations.

1https://github.com/ChihebTrabelsi/deep complex networks
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A APPENDIX

A.1 WFM COMPUTATION

In this section, we discuss the problem of computing the weighted-Frechet Mean for complex-valued
neural networks. The goal is to solve a non-convex optimization problem to find the minimum of a
weighted sum of distances. In specific cases (like Euclidean distance metric), closed form solutions
exist, but there are no closed form solutions for the general case.

Given {zi}Ki=1 ⊂ C and {wi}Ki=1 ⊂ (0, 1] with
∑
i wi = 1 and b ∈ R, we aspire to compute:

arg min
m∈C

K∑
i=1

wid
2 (zi,m) . (4)

Plugging in the distance metric defined in 2, the expression reduces to:

arg min
m∈C

K∑
i=1

wi
(
(log |zi| − log |m|)2 + arc2(zi,m)

)
. (5)

Note that the objective is a sum of two terms: (log |zi| − log |m|)2 and arc2(zi,m), where the first
objective depends only on the magnitude of m, and the second objective depends only on the phase
of m. Thus, the magnitude and phase can be solved independently of each other. The first term has
a simple closed form solution, since it can be reduced to a least squares solution through a dummy
variable.

r∗ = argmin
r∈R

K∑
i=1

wi(log |zi| − r)2

=⇒ r∗ =

K∑
i=1

wi. log |zi|

=⇒ log |m∗| =
K∑
i=1

wi. log |zi|

The second term, however, is more involved. Minimizing the sum of squared arc-distances is actu-
ally a non-convex optimization problem with unit circle as its domain. Although this problem can
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Figure 6: Different distance metrics as a function of the angle between two points. We see that
the two metrics are indistinguishable for points with small angular differences, and at large angular
distances, Euclidean distance is under-estimates Arc distance. Thus, for small neighborhoods with
small angular variation, euclidean distance metric acts as an approximation of arc distance metric.

be solved through non-convex optimization techniques, we use a simple approximation to compute
this at practical speeds: Instead of using the arc distance metric, we use the euclidean distance met-
ric. These two metrics are closely related, but wFM on euclidean distance can be performed by
simply taking a weighted average and then projecting the result onto the desired surface (Panozzo
et al., 2013). This provides an efficient approximation in the form of computing a weighted average
vector, and projecting it to the unit circle.

This approximation relies on euclidean distance being a faithful approximation of arc distance. In-
deed, we observe that if the input points are clustered together (which is often the case for image
patches), this approximation yields significantly more accurate results than for a wide support dis-
tribution. In Figure 6, we show how the two metrics vary as a function of angle between the target
points.
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