A Computational Method for Measuring ‘“Open Codes” in Qualitative
Analysis

Anonymous ACL submission

Abstract

Qualitative analysis is critical to understanding
human datasets in many social science disci-
plines. A central method in this process is in-
ductive coding, where researchers identify and
interpret codes directly from the datasets them-
selves. Yet, this exploratory approach poses
challenges for meeting methodological expec-
tations (such as "depth" and "variation"), espe-
cially as researchers increasingly adopt Genera-
tive Al (GAI) for support. Ground-truth-based
metrics are insufficient because they contra-
dict the exploratory nature of inductive coding,
while manual evaluation can be labor-intensive.
This paper presents a theory-informed compu-
tational method for measuring inductive coding
results from humans and GAI. Our method first
merges individual codebooks using an LLM-
enriched algorithm. It measures each coder’s
contribution against the merged result using
four novel metrics: Coverage, Overlap, Nov-
elty, and Divergence. Through two experiments
on a human-coded online conversation dataset,
we 1) reveal the merging algorithm’s impact on
metrics; 2) validate the metrics’ stability and
robustness across multiple runs and different
LLMs; and 3) showcase the metrics’ ability to
diagnose coding issues, such as excessive or
irrelevant (hallucinated) codes. Our work pro-
vides a reliable pathway for ensuring method-
ological rigor in human-AI qualitative analysis.

1 Introduction

Qualitative analysis is widely adopted across many
social science disciplines. Most often, qualitative
researchers apply descriptive labels (codes) in two
ways: deductive coding, where codes are applied
according to a preconceived coding scheme, and
inductive coding ("open coding"), where codes are
concepts derived from the raw data.

While methodologies such as Grounded The-
ory (GT) (Corbin and Strauss, 2008b, 1990) and
Thematic Analysis (TA) (Braun and Clarke, 2006;

Terry et al., 2017) rely on the inductive approach to
discover emergent patterns from human data, induc-
tive coding is hampered by its subjective and time-
consuming nature (Attride-Stirling, 2001; Bowman
et al., 2023). Since "ground truth” may not exist
at this stage, truth-based evaluation methods (e.g.,
inter-coder reliability) mismatch inductive coding’s
inherent open-endedness (McDonald et al., 2019;
Corbin and Strauss, 2008b; Terry et al., 2017). As
many computational linguistics or machine learn-
ing studies (e.g., Xiao et al.) attempt to leverage
Generative Al (GAI) for inductive coding tasks, a
theory-informed and computationally operational
evaluation method is urgently needed.

This paper contributes a theory-informed compu-
tational method for systematically measuring open
coding results, using team-based evaluation met-
rics for both human and machine coders. Without
relying on ground truth assumptions, our method
provides robust and reliable metrics for Al-assisted
evaluation of inductive coding performance.

2 Related Work

2.1 The Nature and Challenges of Inductive
Qualitative Coding

During inductive coding, researchers identify con-
cepts and themes directly from raw data (Strauss
and Corbin, 1998; Rahman, 2016), aiming at dis-
covering novel insights often without an existing
theoretical framework (Corbin and Strauss, 2008b,
1990; Strauss and Corbin, 1998; Terry et al., 2017).
The process involves iterating through a corpus to
identify meaningful segments and assign descrip-
tive labels (codes) that emerge directly from the
data. Researchers then often group their coded seg-
ments into labeled "categories" that are used for
further analysis. This process resembles iterative
clustering in machine learning contexts. Induc-
tive coding is open-ended, subjective, and does not
strive for a singular "correct” result (Terry et al.,

2017). Rather, the process should capture as many
aspects, patterns, or "codable moments" as possi-
ble (Terry et al., 2017; Corbin and Strauss, 1990,
2008a).

Yet, inductive coding is inherently subjective,
time-consuming, and prone to ambiguities, making
methodological rigor difficult to achieve (Attride-
Stirling, 2001; Bowman et al., 2023; Braun and
Clarke, 2021; Bringer et al., 2004; Tuckett, 2005;
Furniss et al., 2011; Saunders et al., 2018). Since
the process aims to widely capture novel insights
rather than enforcing consistency, deductive cod-
ing metrics (such as inter-rater reliability) become
gravely inadequate due to their reliance on "ground
truth" assumptions (McDonald et al., 2019).

To address this mismatch, qualitative researchers
are shifting towards team-based approaches, where
the team constantly compares and contrasts codes
from multiple individuals (Cascio et al., 2019;
Thomas, 2006). Team-based approaches em-
brace different perspectives, resulting in more in-
sights and mitigating individual biases (Corbin and
Strauss, 1990; Thomas, 2006). It makes researchers
closer towards the elusive goals of inductive anal-
ysis, such as depth, variation, and theoretical sat-
uration (Corbin and Strauss, 2008b; Adams et al.,
2008; Furniss et al., 2011; Saunders et al., 2018).

2.2 Evaluating ML/GAI for Inductive
Qualitative Coding

ML/GALI approaches offer significant potential to
support and enhance qualitative research by as-
sisting in the coding process (Xiao et al., 2023).
Existing computational approaches have primar-
ily framed machine-assisted qualitative coding as
either a classification-based task, which mimics
human labels, or a generation-based task, which
produces codes directly from data (Liew et al.,
2014; Gebreegziabher et al., 2023; Rietz and Maed-
che, 2021; Xiao et al., 2023; Grootendorst, 2022;
Saravani et al., 2023; Sievert and Shirley, 2014;
De Paoli, 2023a; Sinha et al., 2024).

Effectively leveraging ML/GAI’s potential re-
quires robust evaluation methods that account for
the open-ended and exploratory characteristics of
inductive coding, yet existing ones are largely in-
sufficient:

1. "Ground truth'-based metrics compare an
input set of codes against an expert-labeled
dataset (Parfenova et al., 2025; Zhao et al.,
2024; Dai et al., 2023). While it provides

quantifiable metrics such as precision and re-
call, its presupposition of a single correct an-
swer directly contradicts qualitative research
theories (Corbin and Strauss, 2008b; Terry
et al., 2017). Essentially, this approach con-
strains inputs to a predefined scope, thereby
limiting the discovery of novel insights (Liew
et al., 2014; Xiao et al., 2023; Parfenova et al.,
2025).

2. Topic coherence metrics measure the consis-
tency of topic word representation, evaluating
the interpretability and meaningfulness of a
topic (Rahimi et al., 2023). It works without
a ground truth and instead examines the in-
ternal latent properties of topics. However,
as inductive coding often aims to identify at
a more nuanced and crosscutting level than
topics or themes (Corbin and Strauss, 2008b),
the method’s usefulness is limited.

3. Human-annotated evaluations ask experts
to assess the usefulness, explainability, or rel-
evance of machine-generated codes through
instruments such as survey forms (De Paoli,
2023a,b; Zambrano et al., 2023; Spinoso-
Di Piano, 2023). However, such annotations
are labor-intensive and may still fail to detect
systemic biases, such as the consistent omis-
sion of critical codes (Parfenova et al., 2025).

3 Computational Metrics

Building on the team-based approach adopted by
qualitative researchers (Thomas, 2006), our novel
method aggregates multiple coders’ coding results
(i.e., codebooks) to calculate four computational
metrics. The calculation of these metrics does not
rely on ground truth(s) or human inputs. That said,
we still recommend using expert coding results as
anchor points, especially when measuring coding
results from untested models or prompts. An open-
source reference implementation of the aggregation
method, documentation, and the calculation of our
metrics will be released to the general public (see
attached Software package, licensed under CC BY-
NC 4.0).

3.1 Aggregating Coding Results: Code Spaces
(CSP) and Aggregated Code Spaces (ACS)

The first step towards calculating our proposed met-
rics is to aggregate the codebooks produced by
multiple individual coders into a single concep-
tual space that will serve as an approximation of

ACS merged from csp, and esp
-~ é

Figure 1: A: A conceptual illustration of an ACS merged
from csp; and cspy. B: Measuring csp; using the
merged ACS as a reference.

"all possible interpretations” of the data, as is pre-
scribed by qualitative analysis methods (Fig. 1).

To do this, we first consider each coder’s re-
sults and define their Code Space (CSP), to be the
set of all codes they identified or interpreted from
the dataset (Fig. 1A). In turn, we can consider
the union of all individual CSPs as the Aggregate
Code Space (ACS) that encompasses the codes
identified or interpreted from the dataset by all
coders. However, simply considering the ACS to
be this union does not take into account that real-
world coders often use different codes to represent
identical or very similar ideas (e.g., the codes "User
Feedback" vs "Feedback from User").

To account for this, we instead propose a four-
stage algorithm that uses semantic similarity and
hierarchical clustering to iteratively consolidate an
ACS from a set of individual CSPs. In addition
to this, we also expand our definition of an ACS
to include the fact that semantically similar codes
are connected by links as Neighbors (Fig. 1B).
Noting that each code in an individual CSP has
a label (the code itself) and may have examples
(pieces of data the code was applied to), and a
de finition (a description of the concept the code
covers), the algorithm is thus defined as follows:

1. Begin with the ACS simply being the union
of all individual CSPs, only considering the
label of each code.

2. For each code in the ACS, use hierarchical
clustering to merge codes with semantically
very similar labels. For each merging pair,
the shorter label will be adopted.

3. For each code in the ACS, use LLMs to gener-
ate a new de finition based on its label and
examples. Then, repeat the merging using

both label and de finition, using LLMs to
generate the resulting label and definition
of the merged code.

4. Finally, repeat step 3 but iteratively and using
our modified clustering algorithm (see below
for more details).

In steps 2 and 3 of the above, we apply a strict
threshold for cosine distances between each code’s
text embedding. However, we found that a single
threshold was often insufficient in separating differ-
ent codes. In step 4, we therefore adapt the hierar-
chical clustering algorithm to apply two thresholds
(lower and upper) on each node of the dendro-
gram, from which the penalty coefficient is calcu-
lated.

Algorithm 1 First Penalty on the Difference Be-
tween Examples

Require: For each code in AC'S, a normalized

text embedding C' = {c1,..., ¢, }.
- e = [BanEs|
: ‘EAUEB|

2 distyp, = d(cq, cp) + penalty * e

Algorithm 2 Second Penalty on Unique Examples
of the Potential Merge

Require: dist = adjusted distance of the node

Require: count unique examples of the node
1: _ (count—countauvg)
¢ 0=1max countmaz —countayg’
. if dist < lower then
return YES
. else if dist > upper then
return NO

2
3
4
5
6: else if dist + penalty x 0> < upper then
7
8
9

return YES
. else
: return NO © Considered as "Neighbors"
10: end if

3.2 Four Computational Metrics

The four metrics that we propose measure each
coder’s CSP against the ACS in four ways: Cover-
age, Overlap, Novelty, and Divergence (Fig. 1B).

» Coverage: How much conceptual space does
a given CSP cover in the ACS? Both TA
and GT strive for "richness" of codes, cap-
turing depth and variation for further analysis
(Corbin and Strauss, 2008b; Braun and Clarke,
2013). Keeping in mind that not all codes are

equally interesting, each code is weighted by
the number of coders who identified it. To
mitigate the impact of a given coder applying
an excessive number of codes to the data, each
coder is weighted by the number of codes they
identified.

Algorithm 3 Weighting Codes and Codebooks
for x € AC'S do

1:

2 size, = max{#/(code € x), siz€median }
3 wezghtm = m

4 for code € AC'S do

5: if ¢ € x then

6 obsg. *=1

7 else .

; obsy 1= Blpciaterscatel)
9 end if
10: score. += 0bs, . x weight,
11: end for
12: end for

Algorithm 4 Calculating Coverage

1: for z € AC'S do
2: coverage; =

ccacs 0bsz,c X scorec

c€acs SCOoTrec

3: end for

* Overlap: How much does a given CSP over-
lap with others? The algorithm is almost the
same as the one proposed for coverage, except
each coder’s impact on score is removed from
the ACS (see Divergence).

* Novelty: How many "unique" codes does a
given CSP include (i.e., codes that no other
coders identified)? In considering novelty, we
measure how much novel conceptual space
was covered by a given coder.

Algorithm 5 Calculating Novelty

1. forz € ACS do
2: novelty, =

c€csp(novel=1) obsg, cxscorec

c€acs(novel=1) scorec

3. end for

* Divergence: How far is a given CSP’s code
distribution from the ACS? We calculate each
CSP’s divergence as the separation from its
probability distribution from that of other
CSPs. We used the Jensen-Shannon Diver-
gence (JSD) to tolerate potential zeros.

Algorithm 6 Calculating Divergence

1: forz € ACS do

2: B. = score. — obsy . x weight, >
Baseline - excluding the coder’s contribution

3: divergence, = \/JSD(B || obsg)

4: end for

4 Experimental Design

To empirically validate our computational metrics
and merging algorithm, we designed two experi-
ments to answer three research questions (RQ1-

RQ3):

1. How does each step of our merging algorithm
affect our metrics?

2. Given the probabilistic nature and different
capabilities of LLMs, how robust or stable are
our metrics?

3. Can our metrics identify edge cases such as
excessive codes or hallucinations?

4.1 Task and Dataset

We reused the prompt, dataset, and human coding
results from Chen et al.’s study, where researchers
conducted manual evaluation. In each experiment,
we applied our computational metrics to induc-
tive qualitative coding results from four human
coders (three PhD students, one undergraduate stu-
dent, all in a U.S. higher education institution) and
four machine coders (the same LLM with differ-
ent prompts). Both experiments work on an on-
line conversation dataset between Physics Lab (an
online learning software)’s designers and teacher
users. The conversation happened in public mes-
saging groups, and the collection of such data has
been approved by a university IRB. The dataset
is attached as part of the Software package and
has been properly anonymized. Our usage of the
dataset is consistent with the original intention and
IRB approval.

Due to human researchers’ limited capacity, we
focused on the first 127 messages. The same
question was provided to human and machine
coders: "How did Physics Lab’s online commu-
nity emerge?"

Since most qualitative data are from human sub-
jects and are subject to IRB protection, we inten-
tionally chose open-source and locally available
models for the experiments. We used Gemma3-
27B (with temperature = 0.5) to generate new sets

of machine codes. We used mxbai-embed-large to
calculate semantic distances (Lee et al., 2024; Li
and Li, 2023).

4.2 Experiment 1: Ablation and Comparison
Study

Experiment 1 addresses RQ1 and RQ2 through an
ablation study on the four stages of our merging
algorithm . We chose four machine coders from ’s
comparison study: Chunk-Level (i.e., generate per
"chunk" of messages); Chunk-Level, Structured;
Item-Level (i.e., generate per message); Item-Level,
Verb Phrases Only.

1. Condition 1 corresponds to the first "naive"

stage, where codes are merged solely by their
labels.

2. Condition 2 corresponds to the second stage,
where codes are merged with a strict threshold
(0.32) by their labels.

3. Condition 3 corresponds to the third stage,
where an LLM generates definitions based on
each code’s label and examples. Then, the
codes are merged with a strict threshold (0.32)
by labels and definitions.

4. Condition 4 corresponds to the fourth stage,
where the codes are iteratively merged with an
upper threshold (0.55) and a lower threshold
(0.32) by labels and definitions, until no more
codes can be merged.

For each condition and LLM used, we repeated
10 runs, recorded each human and machine coder’s
number of codes within the merged ACS, and cal-
culated four computational metrics. In addition to
individual coders, we also calculated metrics for
the combination "group” of Al or human coders.
Thresholds in each condition are chosen interac-
tively through our example implementation. The
strict threshold is chosen by ensuring that 10 code
pairs with a semantic distance right below it have
the same meanings. The upper threshold is chosen
by ensuring that 10 code pairs right below it have
at least similar meanings.

In Stages 3 and 4, the study doubles as a com-
parison between different LLMs used in the pro-
cess: Gemma3 27B (non-reasoning, small, open-
source) (Team, 2025a), Qwen QwQ 32B (reason-
ing, small, open-source) (Team, 2025b), GPT-4.1
(non-reasoning, large, proprietary), and Gemini-
2.5-Pro (reasoning, large, proprietary).

4.3 Experiment 2: Measuring Edge Cases

Experiment 2 addresses RQ3. Starting from the
Item-Level coder, which performed the best (to-
gether with its Verb Phrases Only Variant) in hu-
man evaluation and computational metrics, we cre-
ated three variants to simulate potential edge cases:

1. Flooding Coder is explicitly instructed to gen-
erate an excessive number of codes per item.

2. Hallucinating Coder has the same prompt
but works with an irrelevant, Al-generated
conversation.

3. Hallucinate + Flooding Coder combines the
two changes together.

For each variant, we repeated 10 runs with the
same human coders and machine coders, replacing
results from the Item-Level coder with its variant.
Since our preliminary results find little impact on
LLM choice, we only used Gemma3 27B for this
experiment. In total, both experiments cost 8§ mil-
lion LLM tokens (5 read, 3 write), around $20 for
proprietary models.

5 Empirical Study

The following sections present our hypotheses and
empirical results. We provide more details through
Appendices C and via the reproduction repository
(attached Software package).

5.1 RQI1: Measuring Each Step’s Impact on
Our Merging Algorithm

Experiment 1 first examines how each stage of our
merging algorithm impacts each coder’s number of
merged codes and the resulting metrics.

5.1.1 Hypothesis 1: Evaluation condition
significantly affects the number of
merged codes and computed metrics.

We used ordinary least squares (OLS) regression to
model the effect of algorithmic stages (Conditions
1-4) on the number of consolidated codes and each
coder’s four metrics.

Result: Mostly Confirmed. Each algorithm
stage significantly reduced the total number of
merged codes (p < 0.001). As shown in Table
1, we observed significant shifts in computational
metrics in Conditions 3 and 4, but not in 2.

Condition | Coverage | Overlap | Novelty | Divergence
Condition 2 0.09% | -0.09% | 0.05% 0.37%
Condition 3 3.60% 5.45% | 0.94% -4.31%
Condition 4 7.02% 7.86% | -1.64% -1.91%

Table 1: OLS regression coefficients for evaluation met-
rics across Conditions 2 to 4 (relative to Condition 1).
Conditions 1 and 2 are deterministic. For other values,
p <0.001.

5.1.2 Hypothesis 2: Evaluation condition has
minimal impact on the relative ranking
of coder metrics.

We conducted a ranking stability analysis across
conditions using one-way ANOVA with Tukey
HSD post-hoc comparisons.

Result: Partially Confirmed. While algorith-
mic stages shift the values of computational met-
rics, rankings remain relatively stable. For all met-
rics, rankings of top performers (#1-5) stay the
same. For other coders, rankings within the label-
only (1, 2) and LLM-enriched conditions (3, 4) are
highly similar.

5.2 RQ2: Evaluating the Robustness and
Stability of Our Proposed Metrics

Experiment 1 then evaluates whether our computa-
tional metrics remain robust across repeated runs
and different LLMs in Conditions 3 and 4.

5.2.1 Hypothesis 3: LLM used in the merging
process significantly influences metrics
and code counts.

We used OLS regression to model the effect of
LLMs on the number of consolidated codes and
each coder’s four metrics, controlling for fixed ef-
fects between Conditions 3 and 4 and between in-
dividual coders.

Result: Partially Confirmed. Across Con-
ditions 3 and 4, three models (Gemma3 27B,
Qwen QwQ 32B, and GPT 4.1) produce very sim-
ilar metrics and numbers of merged codes. The
only substantial deviation comes from Gemini-2.5-
pro, which produces fewer merged codes, higher
coverage and overlap (approximately 4% to 6%
increase), and lower divergence (4% decrease)
(Fig. 2).

Effect of Merging LLM on Key Metrics (Coefficients vs. Grand Average)

aa0%
ey

Coverage Overlap Novelty
Metrics.

Figure 2: Effect of merging LLM on four evaluation
metrics from the OLS model. Each bar represents the av-
erage coefficient difference from the grand mean across
LLMs, along with 95% confidence intervals.

5.2.2 Hypothesis 4: Metric outcomes are
well-explained by condition, model, and
coder identity.

From the same OLS model used by Hypothesis 3,
we calculated adjusted R? values to determine the
extent to which the combination of condition, merg-
ing LLM, and coder explains variation in metric
values.

Result: Confirmed. All adjusted R? values ex-
ceed 0.91.

5.2.3 Hypothesis 5: Repeated measurements
under the same condition/model yield
low coefficients of variation (CoV).

We calculated the coefficient of variation for each
metric over 10 evaluation runs per Condition per
merging LLM.

Result: Confirmed. CoV values remain below
0.1 in all cases. Divergence has the lowest variabil-
ity around 0.01. Condition 4 shows slightly higher
variance than Condition 3.

5.2.4 Hypothesis 6: LLMs used in the
merging process have little effect on the
relative ranking of coders.

We conducted one-way ANOVA with Tukey HSD
post-hoc comparisons to examine whether coder
rankings differed across LLMs.

Result: Mostly Confirmed. The top and bottom-
ranked coders remained consistent across all four
LLMs in both Conditions 3 and 4. Rankings for
mid-performing coders fluctuate, primarily when
their differences are not statistically significant.

5.3 RQ3: Testing Our Proposed Metrics’
Diagnostic Utility for Edge Cases

Experiment 2 tests whether our computational met-
rics can detect abnormal inductive qualitative codes

from machine coder variants designed to simulate
edge cases: Flooding, Hallucinating, and Com-
bined (Fig. 3).

Comparison of Coder Metrics with 95% CI

Average Overlap
9% 1 0.6%

Figure 3: Mean coder metrics across Baseline, Flood-
ing, Hallucinating, and Combined variants with 95%
confidence intervals.

5.3.1 Hypothesis 7: Excessive coding increases
coverage, overlap, and novelty with
diminishing returns, while divergence
remains stable.

Result: Confirmed. The mean metrics from the
flooding coder have higher coverage (78.7%), over-
lap (57.9%), and novelty (68.1%) than the Baseline
coder. Novelty showed diminishing returns. Di-
vergence remained stable (67.3% vs. 64.9%). A
similar effect is observed between the Hallucinat-
ing and Combined coders.

5.3.2 Hypothesis 8: Coding on irrelevant data
(i.e., hallucination) reduces coverage and
overlap, while increasing divergence.

Result: Confirmed. The mean metrics from the
Hallucinating coder have reduced coverage (35.6%)
and overlap (15.6%), while divergence increases
sharply to 75.7%. A stronger effect is observed
between the Hallucinating and Combined coders.
In particular, while the Combined coder produced
245% more codes than the baseline (1,775 vs. 514),
it has lower overlap (39.6% vs. 25.2%) and higher
divergence (76.3% vs. 64.9%).

6 Discussions

This paper introduces a theory-informed compu-
tational method for systematically evaluating the
outputs of inductive coding. At the heart of our
contribution are four metrics designed to capture
the multifaceted nature of inductive coding:

» Coverage measures the depth and variation of
a coder’s contribution against the Aggregated
Code Space (ACS), reflecting the qualitative
goal of achieving breadth and depth in analy-
sis (Corbin and Strauss, 2008b).

* Overlap quantifies a coder’s alignment with
the conceptual consensus of the group, indi-
cating how much their interpretations resonate
with others.

* Novelty identifies the unique concepts a coder
introduces, highlighting their potential value
in bringing new perspectives to the analytical
process.

* Divergence measures how much a coder’s
conceptual focus differs from others in the
group, offering insight into their unique ana-
Iytical lens.

Taken together, these metrics provide a holistic
and nuanced assessment of a coder’s performance
that does not rely on "ground truths" that may not
exist even with teams of human experts. Instead
of pursuing a single, simplistic measure of agree-
ment, our method embraces the subjectivity and
exploratory spirit of inductive qualitative analy-
sis (Corbin and Strauss, 1990; Braun and Clarke,
2012). It enables researchers to appreciate not only
consensus but also the valuable variation that dif-
ferent coders bring to the table, providing a more
complete picture of human-Al or human-human
collaboration processes.

6.1 The Necessity of the Iterative,
LLM-Enriched Merging Algorithm

RQI1 explored the impact of each stage of our merg-
ing algorithm. The findings from our ablation study
(see 5.1) show that while each stage progressively
reduces the number of codes in the Aggregated
Code Space (ACS), the most significant shift in our
metrics occurs between Stage 2 and Stage 3. This
transition, which introduces LLM-generated defini-
tions to the merging process, is far more impactful
than simply relaxing semantic distance thresholds,
as seen in the transitions between other stages.
This result confirms a central premise of our
work: capturing true conceptual similarity in in-
ductive coding requires moving beyond superficial
linguistic parallels. The "naive" merging stages
(Conditions 1 and 2), which rely solely on code la-
bels, are insufficient. Therefore, the introduction of

LLM-generated definition centrally contributes to
our proposed metrics. This step infuses the seman-
tic representation of each code with meaning de-
rived from its underlying data points ("examples"),
without forcing a direct comparison between those
data points. Such insulation is vital for the induc-
tive workflow, where different coders may legiti-
mately identify the same concept in different seg-
ments of the data (Corbin and Strauss, 1990); com-
paring data points directly would be prone to error.

Hypotheses 1 and 2 also clarify the distinct roles
of Stage 4 (iteratively merging with more relaxed
thresholds), which produces a highly consolidated
ACS but does not significantly impact the mea-
suring outcome. Since we regenerate a label and
definition for each merging pair, Stage 4 is compu-
tationally intensive. Therefore, its utility depends
on the research goal. To produce a clean concep-
tual map for further interpretation, comparison, or
synthesis (e.g., when identifying a coder’s poten-
tial bias), the computational cost of Stage 4 is well
justified. Conversely, when numerical metrics are
the primary output (such as in large-scale model
comparisons), the less computationally demanding
Stage 3 may provide sufficiently stable and reliable
outcomes for screening purposes.

6.2 The Impact of LLM on OQutcomes

While the involvement of LLMs in the merging
processes introduces intrinsic randomness, the find-
ings from RQ2 confirm our method’s reliability
and robustness across multiple LLMs and repeated
runs. As shown in Hypothesis 4, with very high
adjusted R? values, our proposed metrics are over-
whelmingly explained by coders’ intrinsic merits.
Repeated measurements under the same conditions
yield low coefficients of variation (Hypothesis 5),
showing stability across multiple LLM samplings.

Crucially, our metrics’ stability extends to the
choice of LLM. Tested on a diverse set of models,
the choice of model has little effect on the relative
ranking of coders (Hypothesis 6), where the top
and bottom-ranked performers remained consistent
across all LLMs. This implication is significant for
the practical adoption by qualitative researchers,
as they can confidently use smaller, open-source
models (e.g., Gemma3 27B) to measure outcomes
from human or machine coders. Such models can
be easily deployed locally, providing better privacy
protections and regulation compliance for handling
often sensitive human subject data.

6.3 Performance of Metrics in Edge Cases

RQ3 evaluated the robustness and diagnostic utility
of our metrics in simulated edge cases. The "Flood-
ing" coder variant, explicitly prompted to produce
an excessive number of codes, was expected to cre-
ate significant redundancy. The metrics correctly
capture that: both "Flooding" variants registered
higher Coverage and Novelty, but with diminishing
returns that mark the results’ redundancy.

Similarly, the "Hallucinating" coder variant,
which worked from irrelevant data with the correct
prompt, was expected to produce thematically sim-
ilar codes but fail to capture critical details from
the true data. The metrics capture the issue as
well: both "Hallucinating" variants produced a pre-
dictable and dramatic drop in Coverage and Over-
lap, coupled with a sharp increase in Divergence.

In all three cases, our metrics behave predictably
in response to those coding issues, suggesting that
abnormal comparative values from our metrics can
serve as a "red flag" for further evaluation. This
diagnostic capability offers a layer of quality con-
trol that is essential for ensuring rigor in human-Al
collaborative workflows.

7 Conclusion

This paper presents a reliable and robust compu-
tational method for the theory-informed, system-
atic evaluation of inductive coding. By moving
beyond a reliance on a single "ground truth," our
approach provides a practical pathway for quali-
tative researchers to leverage Al in inductive ana-
lytical processes responsibly. By measuring and
quantifying conceptual ideas like coverage, over-
lap, novelty, and divergence, we shift the evaluation
focus of inductive coding from enforcing agree-
ment to a more nuanced appreciation of the diverse
contributions that each coder brings to the collab-
orative, exploratory process. As more and more
qualitative researchers explore LLMs for inductive
coding, we offer a timely contribution to ensure
methodological rigor and facilitate more effective
and transparent human-Al collaboration.

Acknowledgments

We acknowledge the usage of Generative Al tools
within and regarding the study. With constant hu-
man supervision and quality assurance, such tools
are used to assist in:

1. Software development (e.g., copilot autocom-
pletion; refactoring; generating boilerplate

code or data cleanup code).

2. Empirical data analysis (e.g., code for visual-
ization or regression analysis based on explicit
human instructions).

3. Paper writing (e.g., proofreading, editing, La-
TeX syntax support).

Other acknowledgments are anonymized during
the review process.

References

Anne Adams, Peter Lunt, and Paul Cairns. 2008. A
Qualitative Approach to HCI Research. In Research
Methods for Human-Computer Interaction. Cam-
bridge University Press.

Jennifer Attride-Stirling. 2001. Thematic networks: an
analytic tool for qualitative research. Qualitative
Research, 1(3):385-405.

Robert Bowman, Camille Nadal, Kellie Morrissey, Anja
Thieme, and Gavin Doherty. 2023. Using Thematic
Analysis in Healthcare HCI at CHI: A Scoping Re-
view. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, pages 1—18,
Hamburg Germany. ACM.

Virginia Braun and Victoria Clarke. 2006. Using the-
matic analysis in psychology. Qualitative Research
in Psychology, 3(2):77-101.

Virginia Braun and Victoria Clarke. 2012. Thematic
analysis. American Psychological Association.

Virginia Braun and Victoria Clarke. 2013. Successful
qualitative research: A practical guide for beginners.

Virginia Braun and Victoria Clarke. 2021. One size fits
all? What counts as quality practice in (reflexive) the-
matic analysis? Qualitative Research in Psychology,
18(3):328-352.

Joy D. Bringer, Lynne H. Johnston, and Celia H. Brack-
enridge. 2004. Maximizing Transparency in a Doc-
toral Thesisl: The Complexities of Writing About
the Use of QSR*NVIVO Within a Grounded Theory
Study. Qualitative Research, 4(2):247-265.

M. Ariel Cascio, Eunlye Lee, Nicole Vaudrin, and
Darcy A. Freedman. 2019. A Team-based Approach
to Open Coding: Considerations for Creating Inter-
coder Consensus. Field Methods, 31(2):116—130.

John Chen, Alexandros Lotsos, Grace Wang, Lexie
Zhao, Bruce Sherin, Uri Wilensky, and Michael Horn.
2025. Processes matter: How ml/gai approaches
could support open qualitative coding of online dis-
course datasets. In Proceedings of the 18th Interna-
tional Conference on Computer-Supported Collab-
orative Learning-CSCL 2025, pp. 415-419. Interna-
tional Society of the Learning Sciences.

Juliet Corbin and Anselm Strauss. 2008a. Chapter 10 /
Analyzing Data for Concepts. In Basics of Qualita-
tive Research (3rd ed.): Techniques and Procedures
for Developing Grounded Theory. SAGE Publica-
tions, Inc., 2455 Teller Road, Thousand Oaks Cali-
fornia 91320 United States.

Juliet Corbin and Anselm Strauss. 2008b. Chapter
14 / Criteria for Evaluation. In Basics of Qualita-
tive Research (3rd ed.): Techniques and Procedures
for Developing Grounded Theory. SAGE Publica-
tions, Inc., 2455 Teller Road, Thousand Oaks Cali-
fornia 91320 United States.

Juliet M. Corbin and Anselm Strauss. 1990. Grounded
theory research: Procedures, canons, and evaluative
criteria. Qualitative sociology, 13(1):3-21. Pub-
lisher: Springer.

Shih-Chieh Dai, Aiping Xiong, and Lun-Wei Ku. 2023.
LLM-in-the-loop: Leveraging large language model
for thematic analysis. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
9993-10001, Singapore. Association for Computa-
tional Linguistics.

Stefano De Paoli. 2023a. Can Large Language Mod-
els emulate an inductive Thematic Analysis of semi-
structured interviews? An exploration and provo-
cation on the limits of the approach and the model.
arXiv preprint. ArXiv:2305.13014 [cs].

Stefano De Paoli. 2023b. Performing an Inductive The-
matic Analysis of Semi-Structured Interviews With a
Large Language Model: An Exploration and Provo-
cation on the Limits of the Approach. Social Science
Computer Review, 0(0):1-23.

Dominic Furniss, Ann Blandford, and Paul Curzon.
2011. Confessions from a grounded theory PhD:
experiences and lessons learnt. In Proceedings of the
SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 113-122, Vancouver BC Canada.
ACM.

Simret Araya Gebreegziabher, Zheng Zhang, Xiaohang
Tang, Yihao Meng, Elena L. Glassman, and Toby
Jia-Jun Li. 2023. PaTAT: Human-AlI Collaborative
Qualitative Coding with Explainable Interactive Rule
Synthesis. In Proceedings of the 2023 CHI Confer-
ence on Human Factors in Computing Systems, CHI
’23, pages 1-19, New York, NY, USA. Association
for Computing Machinery.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794.

Sean Lee, Aamir Shakir, Darius Koenig, and Julius
Lipp. 2024. Open source strikes bread - new fluffy
embeddings model.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. arXiv preprint arXiv:2309.12871.

https://doi.org/10.1177/146879410100100307
https://doi.org/10.1177/146879410100100307
https://doi.org/10.1177/146879410100100307
https://doi.org/10.1145/3544548.3581203
https://doi.org/10.1145/3544548.3581203
https://doi.org/10.1145/3544548.3581203
https://doi.org/10.1145/3544548.3581203
https://doi.org/10.1145/3544548.3581203
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://psycnet.apa.org/record/2011-23864-004
https://psycnet.apa.org/record/2011-23864-004
https://psycnet.apa.org/record/2011-23864-004
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1177/1468794104044434
https://doi.org/10.1177/1468794104044434
https://doi.org/10.1177/1468794104044434
https://doi.org/10.1177/1468794104044434
https://doi.org/10.1177/1468794104044434
https://doi.org/10.1177/1468794104044434
https://doi.org/10.1177/1468794104044434
https://doi.org/10.1177/1525822X19838237
https://doi.org/10.1177/1525822X19838237
https://doi.org/10.1177/1525822X19838237
https://doi.org/10.1177/1525822X19838237
https://doi.org/10.1177/1525822X19838237
https://doi.org/10.4135/9781452230153
https://doi.org/10.4135/9781452230153
https://doi.org/10.4135/9781452230153
https://doi.org/10.4135/9781452230153
https://doi.org/10.4135/9781452230153
https://doi.org/10.4135/9781452230153
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/bf00988593&casa_token=aBHJMqIs5a4AAAAA:ngulSWPiXoluZjWKFBIiPpeFVSSBQtx7ncsSpleI54sgSYiDmpFNzNPe96fXDyeVUwU1YO-miYiL3q_d
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/bf00988593&casa_token=aBHJMqIs5a4AAAAA:ngulSWPiXoluZjWKFBIiPpeFVSSBQtx7ncsSpleI54sgSYiDmpFNzNPe96fXDyeVUwU1YO-miYiL3q_d
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/bf00988593&casa_token=aBHJMqIs5a4AAAAA:ngulSWPiXoluZjWKFBIiPpeFVSSBQtx7ncsSpleI54sgSYiDmpFNzNPe96fXDyeVUwU1YO-miYiL3q_d
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/bf00988593&casa_token=aBHJMqIs5a4AAAAA:ngulSWPiXoluZjWKFBIiPpeFVSSBQtx7ncsSpleI54sgSYiDmpFNzNPe96fXDyeVUwU1YO-miYiL3q_d
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/bf00988593&casa_token=aBHJMqIs5a4AAAAA:ngulSWPiXoluZjWKFBIiPpeFVSSBQtx7ncsSpleI54sgSYiDmpFNzNPe96fXDyeVUwU1YO-miYiL3q_d
https://doi.org/10.18653/v1/2023.findings-emnlp.669
https://doi.org/10.18653/v1/2023.findings-emnlp.669
https://doi.org/10.18653/v1/2023.findings-emnlp.669
https://doi.org/10.48550/arXiv.2305.13014
https://doi.org/10.48550/arXiv.2305.13014
https://doi.org/10.48550/arXiv.2305.13014
https://doi.org/10.48550/arXiv.2305.13014
https://doi.org/10.48550/arXiv.2305.13014
https://doi.org/10.48550/arXiv.2305.13014
https://doi.org/10.48550/arXiv.2305.13014
https://doi.org/10.1177/08944393231220483
https://doi.org/10.1177/08944393231220483
https://doi.org/10.1177/08944393231220483
https://doi.org/10.1177/08944393231220483
https://doi.org/10.1177/08944393231220483
https://doi.org/10.1177/08944393231220483
https://doi.org/10.1177/08944393231220483
https://doi.org/10.1145/1978942.1978960
https://doi.org/10.1145/1978942.1978960
https://doi.org/10.1145/1978942.1978960
https://doi.org/10.1145/3544548.3581352
https://doi.org/10.1145/3544548.3581352
https://doi.org/10.1145/3544548.3581352
https://doi.org/10.1145/3544548.3581352
https://doi.org/10.1145/3544548.3581352
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://www.mixedbread.ai/blog/mxbai-embed-large-v1

Jasy Suet Yan Liew, Nancy McCracken, Shichun Zhou,
and Kevin Crowston. 2014. Optimizing Features in
Active Machine Learning for Complex Qualitative
Content Analysis. In Proceedings of the ACL 2014
Workshop on Language Technologies and Computa-
tional Social Science, pages 44-48, Baltimore, MD,
USA. Association for Computational Linguistics.

Nora McDonald, Sarita Schoenebeck, and Andrea Forte.
2019. Reliability and Inter-rater Reliability in Qual-
itative Research: Norms and Guidelines for CSCW
and HCI Practice. Proceedings of the ACM on
Human-Computer Interaction, 3(CSCW):1-23.

Angelina Parfenova, Andreas Marfurt, Jiirgen Pfeffer,
and Alexander Denzler. 2025. Text annotation via
inductive coding: Comparing human experts to llms
in qualitative data analysis. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2025,
pages 6456-6469.

Hamed Rahimi, Jacob Louis Hoover, David Mimno, Hu-
bert Naacke, Camelia Constantin, and Bernd Amann.
2023. Contextualized topic coherence metrics. arXiv
preprint arXiv:2305.14587.

Md Shidur Rahman. 2016. The Advantages and Disad-
vantages of Using Qualitative and Quantitative Ap-
proaches and Methods in Language “Testing and As-
sessment” Research: A Literature Review. Journal
of Education and Learning, 6(1):102.

Tim Rietz and Alexander Maedche. 2021. Cody: An Al-
Based System to Semi-Automate Coding for Qual-
itative Research. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Sys-
tems, CHI ’21, pages 1-14, New York, NY, USA.
Association for Computing Machinery.

Sina Mahdipour Saravani, Sadaf Ghaffari, Yanye Luther,
James Folkestad, and Marcia Moraes. 2023. Auto-
mated code extraction from discussion. In Advances
in Quantitative Ethnography: 4th International Con-
ference, ICQE 2022, Copenhagen, Denmark, Octo-
ber 15-19, 2022, Proceedings, page 227. Springer
Nature.

Benjamin Saunders, Julius Sim, Tom Kingstone,
Shula Baker, Jackie Waterfield, Bernadette Bartlam,
Heather Burroughs, and Clare Jinks. 2018. Satura-
tion in qualitative research: exploring its conceptual-
ization and operationalization. Quality & Quantity,
52(4):1893-1907.

Carson Sievert and Kenneth Shirley. 2014. Ldavis: A
method for visualizing and interpreting topics. In
Proceedings of the workshop on interactive language
learning, visualization, and interfaces, pages 63-70.

Ravi Sinha, Idris Solola, Ha Nguyen, Hillary Swan-
son, and LuEttaMae Lawrence. 2024. The Role of
Generative Al in Qualitative Research: GPT-4’s Con-
tributions to a Grounded Theory Analysis. In Pro-
ceedings of the Symposium on Learning, Design and
Technology, pages 17-25, Delft Netherlands. ACM.

10

Cesare Spinoso-Di Piano. 2023. Qualitative code sug-
gestion: A human-centric approach to qualitative
coding. McGill University (Canada).

Anselm Strauss and Juliet Corbin. 1998. Basics of quali-
tative research: Techniques and procedures for devel-
oping grounded theory, 2nd ed. Basics of qualitative
research: Techniques and procedures for develop-
ing grounded theory, 2nd ed., pages xiii, 312—xiii,
312. Place: Thousand Oaks, CA, US Publisher: Sage
Publications, Inc.

Gemma Team. 2025a. Gemma 3.

Qwen Team. 2025b. Qwq-32b: Embracing the power
of reinforcement learning.

Gareth Terry, Nikki Hayfield, Victoria Clarke, and Vir-
ginia Braun. 2017. Thematic analysis. The SAGE
handbook of qualitative research in psychology, 2(17-
37):25. Publisher: SAGE Publications Ltd.

David R. Thomas. 2006. A General Inductive Approach
for Analyzing Qualitative Evaluation Data. American
Journal of Evaluation, 27(2):237-246.

Anthony G. Tuckett. 2005. Applying thematic anal-
ysis theory to practice: A researcher’s experience.
Contemporary Nurse, 19(1-2):75-87.

Ziang Xiao, Xingdi Yuan, Q. Vera Liao, Rania Abdel-
ghani, and Pierre-Yves Oudeyer. 2023. Supporting
Qualitative Analysis with Large Language Models:
Combining Codebook with GPT-3 for Deductive
Coding. In Companion Proceedings of the 28th Inter-
national Conference on Intelligent User Interfaces,
IUI *23 Companion, pages 75-78, New York, NY,
USA. Association for Computing Machinery.

Andres Felipe Zambrano, Xiner Liu, Amanda Barany,
Ryan S. Baker, Juhan Kim, and Nidhi Nasiar. 2023.
From nCoder to ChatGPT: From Automated Coding
to Refining Human Coding. In Advances in Quantita-
tive Ethnography, Communications in Computer and
Information Science, pages 470—485, Cham. Springer
Nature Switzerland.

Fengxiang Zhao, Fan Yu, and Yi Shang. 2024. A new
method supporting qualitative data analysis through
prompt generation for inductive coding. In 2024
IEEE International Conference on Information Reuse
and Integration for Data Science (IRI), pages 164—
169. IEEE.

https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.3115/v1/W14-2513
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.5539/jel.v6n1p102
https://doi.org/10.5539/jel.v6n1p102
https://doi.org/10.5539/jel.v6n1p102
https://doi.org/10.5539/jel.v6n1p102
https://doi.org/10.5539/jel.v6n1p102
https://doi.org/10.5539/jel.v6n1p102
https://doi.org/10.5539/jel.v6n1p102
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1145/3663433.3663456
https://doi.org/10.1145/3663433.3663456
https://doi.org/10.1145/3663433.3663456
https://doi.org/10.1145/3663433.3663456
https://doi.org/10.1145/3663433.3663456
https://goo.gle/Gemma3Report
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://books.google.com/books?hl=en&lr=&id=AAniDgAAQBAJ&oi=fnd&pg=PA17&dq=Thematic+analysis+terry+&ots=dpi2nmHiMV&sig=959tII4BUp9su6Hv2JJui1KjP5Q
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1177/1098214005283748
https://doi.org/10.5172/conu.19.1-2.75
https://doi.org/10.5172/conu.19.1-2.75
https://doi.org/10.5172/conu.19.1-2.75
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1007/978-3-031-47014-1_32
https://doi.org/10.1007/978-3-031-47014-1_32
https://doi.org/10.1007/978-3-031-47014-1_32

A Limitations

While this study presents a robust computational method for evaluating inductive coding, it is important
to acknowledge its limitations. From there, future research can help establish best practices and clear
guidelines for qualitative researchers to adopt our metrics.

A.1 Limitation on the Dataset and Domain

The validation of our metrics was conducted on a single dataset consisting of online conversations from a
specific online community. While effective in this context, the method’s performance and the metrics’
utility need to be tested on more diverse forms of qualitative data, such as semi-structured interview
transcripts or open-ended survey responses. The nuances of these different data types may present unique
challenges not encountered in this study.

A.2 Limitation on the Simulated Edge Cases

The "Flooding" and "Hallucinating" coders were created through explicit instructions to simulate poor
coding practices. Although our metrics successfully identified these simulated cases, further research is
needed to validate their diagnostic capabilities in real-world scenarios. This includes testing the method
on codes generated by novice human researchers, non-expert coders, or subtly flawed Al prompts, which
may produce less extreme and harder-to-detect issues than our simulated variants.

A.3 Limited Interpretations on Deviant LLLM Behaviors

Despite 3 out of 4 models behaving similarly in our experiment (Hypothesis 3), our findings observed
deviated merging behaviors and behaviors with Gemini-2.5-Pro, which showed a tendency to merge codes
more. Even when the ranking order is relatively stable, this model choice leads to significant changes in
raw metric numbers. Further research should investigate whether and/or why the stronger reasoning model
merges differently, and whether this deep merging may prove preferable or not to human researchers.

B Potential Risks

While our computational method is designed to mitigate risks in human-Al qualitative analysis, its
improper application or the misinterpretation of its metrics can introduce other potential risks.

B.1 Misinterpretation of Metrics

Especially when coming from a non-qualitative research background, users may treat our computational
metrics as objective, definitive measures of quality, contrary to the exploratory and subjective nature of
inductive coding. For example, when substituting a baseline machine coder with its deviant variants, we
interpreted the higher Divergence metrics as an indicator of potential hallucination. However, deviating
from the consensus can also be valuable in other scenarios, such as a coder from a different intellectual
tradition or lived background. Over-reliance on metric values can prevent junior researchers from
developing the critical, interpretive skills that come from manual comparison, reflection, and building
consensus with peers. Hence, our metrics should be used as diagnostic tools to prompt deeper qualitative
inquiry, not as a substitute for it.

B.2 Dependency on the Coding Team

The Aggregated Code Space (ACS) is fundamentally a synthesis of the input codebook group. The
quality and comprehensiveness of the evaluation are therefore dependent on the diversity and rigor of
the coding team. If the entire human-Al team shares a particular bias or overlooks a critical theme,
the ACS will reflect this omission. Consequently, researchers who rely solely on metric values risk
automation bias, which diminishes critical engagement with the raw data and the coding process. We
encourage researchers to continue recruiting a diverse human team and employing multiple LLMs for
inductive coding. Moreover, they should also explore the interactive interface generated by our software
package, which provides a network-based visualization of codes and metrics. We intend to further study
the interface in an upcoming research project.

11

B.3 Privacy and Data Security

Our method involves processing data through Large Language Models and text embedding models. While
our study prioritized the use of local, open-source models to protect sensitive data, researchers applying
this method with proprietary, the usage of cloud-based APIs risk exposing confidential or personally
identifiable information from their datasets. It is hence critical for researchers to maintain adherence to
IRB protocols and relevant data privacy regulations.

C Appendices

C.1 Regression Results for Hypothesis 1

This appendix provides complete regression tables supporting Hypothesis 1 (Section 5.1.1), which tests
whether the algorithmic condition significantly affects the number of consolidated codes and the quality
of generated open codes.

We report outputs from five ordinary least squares (OLS) models. Regression 1 models the number
of consolidated codes per transcript as a function of condition. Regression 2 consists of four separate
models, each predicting one code-level metric: coverage, overlap, novelty, or divergence. Conditions
are dummy-coded, and coder identity is sum-coded. All regressions use the design matrix described in
Section 5.1.1, with coder identity sum-coded, condition dummy-coded (Condition 1 as the baseline), and
heteroscedasticity-robust (HC3) standard errors.

Table 2: Regression output for Consolidated Code Count (Hypothesis 1).

Predictor coef stderr z P>z [0.025, 0.975]
Intercept 1509.00 - - - [-]
Condition 2 -54.00 - - - [— -]
Condition3 -110.88 3.01 -36.90 0.000 [-116.77,-104.99]
Condition4 -651.53 1697 -38.40 0.000 [-684.78,-618.27]

Note: Standard errors unavailable for some parameters due to rank deficiency in constraints.

Table 3: Regression output for Coverage % (Hypothesis 1).

Predictor coef std err z P> |zI [0.025,0.975]
Intercept 28.89 0.80 34.20 0.000 [27.20, 30.50]
Condition 2 0.09 1.20 0.08 0.936 [-2.20, 2.40]
Condition 3 3.60 0.90 4.23 0.000 [1.90, 5.30]
Condition 4 7.02 0.87 8.06 0.000 [5.30, 8.70]

(Coder dummies omitted)

Table 4: Regression output for Overlap % (Hypothesis 1).

Predictor coef std err z P> |zl [0.025,0.975]
Intercept 15.81 1.10 13.93 0.000 [13.60, 18.00]
Condition 2 -0.09 1.60 -0.06 0.956 [-3.30, 3.10]
Condition 3 5.45 1.10 475 0.000 [3.20, 7.70]
Condition 4 7.86 1.20 6.69 0.000 [5.60, 10.20]

(Coder dummies omitted)

Table 5: Regression output for Novelty % (Hypothesis 1).

Predictor coef stderr z P>zl [0.025,0.975]
Intercept 23.95 0.20 97.69 0.000 [23.50, 24.40]
Condition 2 0.05 0.30 0.15 0.879 [-0.60, 0.70]
Condition 3 0.94 0.26 3.61 0.000 [0.40, 1.40]
Condition 4 -1.64 027 -6.10 0.000 [-2.20,-1.10]

(Coder dummies omitted)

12

Table 6: Regression output for Divergence % (Hypothesis 1).

Predictor coef std err z P>zl [0.025,0.975]
Intercept 72.35 0.60 125.55 0.000 [71.20, 73.50]
Condition 2 0.37 0.80 0.48 0.633 [-1.10, 1.90]
Condition 3 -4.31 0.59 -7.29 0.000 [-5.50, -3.20]
Condition 4 -1.91 0.60 -3.20 0.001 [-3.10, -0.70]

(Coder dummies omitted)

C.2 Coder Rankings for Hypothesis 2

This appendix supports Hypothesis 2 (Section 5.1.2), which examines the relative ranking of coders
across evaluation conditions. For each metric, we present the metric outcomes and rankings of 8 coders
(plus two groups) per condition. Rel denotes the strength of evidence that the listed coder performs better
than the next one in the ranking chain.

Symbols: >>> p < 0.001; >> 0.001 < p < 0.01; > 0.01 < p < 0.05; =~ p > 0.05. These
thresholds are derived from Tukey’s HSD post-hoc comparisons following a one-way ANOVA on metric
values, conducted separately for each condition. Special note for Conditions 1 and 2: those conditions
do not involve probabilistic LLM-based merging and therefore are deterministic, denoted with >>>.

Table 7: Coder rankings by condition for Coverage (Hypothesis 2).

Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel
group: ai (84.80%) >>> group: ai (84.85%) >>> group: ai (87.66%) >>> group: ai (87.29%) >>>
item-verb-ai (48.25%) >>> item-any-ai (48.46%) >>> item-any-ai (56.67%) >>> item-any-ai (60.48%) >>>
item-any-ai (47.92%) >>> item-verb-ai (48.24%) >>> item-verb-ai (52.77%) >>> item-verb-ai (57.11%) >>>
group: human (40.58%) >>> group: human (40.22%) >>> group: human (43.93%) >>> group: human (47.10%) >>>
human-c (15.15%) >>> human-c (15.16%) >>> human-c (18.36%) >>> human-c (23.83%) >>>
human-b (14.10%) >>> human-b (13.90%) >>> human-b (16.11%) >>> human-b (20.36%) >>>
human-a (10.65%) >>> human-a (10.96%) >>> chunk-structured-ai (13.68%) > chunk-structured-ai (17.32%) =~
human-d (10.18%) >>> human-d (10.34%) >>> chunk-barany-ai (12.64%) ~ chunk-barany-ai (16.60%) >
chunk-barany-ai (8.90%) >>> chunk-barany-ai (8.89%) >>> human-d (12.43%) >>> human-d (15.25%) >
chunk-structured-ai (8.38%) chunk-structured-ai (8.83%) human-a (10.71%) human-a (13.83%)

Table 8: Coder rankings by condition for Overlap (Hypothesis 2).
Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel
group: ai (51.59%) >>> group: ai (50.79%) >>> group: ai (60.09%) >>> group: ai (57.30%) >>>
item-any-ai (29.22%) >>> item-any-ai (29.28%) >>> item-any-ai (41.64%) >>> item-any-ai (44.60%) >>>
item-verb-ai (28.09%) >>> item-verb-ai (27.88%) >>> item-verb-ai (36.49%) >>> item-verb-ai (40.72%) >>>
group: human (16.96%) >>> group: human (16.62%) >>> group: human (23.33%) >>> group: human (24.71%) >>>
human-b (7.19%) >>> human-b (6.97%) >>> human-c (10.65%) R human-c (15.25%) >
human-c (6.94%) >>> human-c (6.89%) >>> human-b (9.86%) = human-b (13.14%) ~
human-a (5.91%) >>> human-a (6.06%) >>> chunk-structured-ai (8.60%) =~ chunk-structured-ai (11.12%) ~
human-d (5.34%) >>> human-d (5.42%) >>> human-d (7.73%) = chunk-barany-ai (10.83%) ~
chunk-structured-ai (3.45%) >>> chunk-structured-ai (3.73%) >>> chunk-barany-ai (7.68%) B human-d (10.03%) ~

chunk-barany-ai (3.40%)

chunk-barany-ai (3.56%)

human-a (6.57%)

human-a (8.97%)

13

Table 9: Coder rankings by condition for Novelty (Hypothesis 2).

Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel
group: ai (80.50%) >>> group: ai (80.44%) >>> group: ai (81.03%) >>> group: ai (77.74%) >>>
item-any-ai (42.43%) >>> item-any-ai (42.20%) >>> item-any-ai (45.05%) >>> item-any-ai (36.59%) =
item-verb-ai (39.34%) >>> item-verb-ai (39.69%) >>> item-verb-ai (42.12%) >>> item-verb-ai (35.80%) >>>
group: human (30.17%) >>> group: human (30.25%) >>> group: human (30.84%) >>> group: human (27.12%) >>>
human-c (11.65%) >>> human-c (11.49%) >>> human-c (12.84%) >>> human-c (11.78%) >>>
human-b (9.43%) >>> human-b (9.46%) >>> human-b (9.77%) >>> human-b (8.47%) =
chunk-structured-ai (7.44%) >>> chunk-structured-ai (7.54%) >>> chunk-structured-ai (7.79%) > chunk-structured-ai (8.00%) =~
chunk-barany-ai (7.20%) >>> chunk-barany-ai (7.21%) >>> chunk-barany-ai (7.21%) >>> chunk-barany-ai (7.36%) >>>
human-d (6.14%) >>> human-d (6.25%) >>> human-d (6.44%) > human-d (5.37%) =
human-a (5.25%) human-a (5.54%) human-a (5.82%) human-a (4.92%)

Table 10: Coder rankings by condition for Divergence (Hypothesis 2).
Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel
chunk-barany-ai (78.87%) >>> chunk-barany-ai (78.70%) >>> human-a (73.88%) > human-a (74.57%) ~
chunk-structured-ai (78.50%) >>> chunk-structured-ai (78.38%) >>> chunk-barany-ai (72.87%) ~ human-d (73.98%) ~
human-d (75.40%) >>> human-d (75.69%) >>> human-d (72.61%) > chunk-barany-ai (73.59%) ~
human-c (74.87%) >>> human-c (75.31%) >>> chunk-structured-ai (71.57%) =~ chunk-structured-ai (73.41%) >>
human-a (74.72%) >>> human-a (75.10%) >>> human-c (71.24%) ~ human-b (72.37%) ~
human-b (74.09%) >>> human-b (74.67%) >>> human-b (70.89%) >>> human-c (71.86%) >>>
group: human (69.45%) >>> group: human (69.94%) >>> group: ai (65.24%) ~ group: ai (70.05%) >>>
group: ai (68.84%) >>> group: ai (69.45%) >>> group: human (64.77%) >>> group: human (68.09%) >>>
item-verb-ai (65.08%) >>> item-verb-ai (65.56%) >>> item-verb-ai (60.17%) >>> item-verb-ai (64.07%) >>>

item-any-ai (63.72%)

item-any-ai (64.43%)

item-any-ai (57.20%)

item-any-ai (62.41%)

C.3 Regression Results for Hypotheses 3 and 4

This appendix providesOLS regression results supporting Hypotheses 3 and 4 (Section 5.2.1 and 5.2.2).
Hypothesis 3 tests whether the LLM used in the merging process significantly influences each code-level
metric and the number of consolidated codes. Hypothesis 4 evaluates how well condition, merging model,
and coder identity together explain variation in outcomes. All results are based on the model:

Y ~ C(condition) + C(model, Sum) 4+ C(coder, Sum)

where Y represents each outcome of interest. We use dummy-coding for the condition (Condition
3 as the baseline), sum-coding for the model and coder identity (Average as the baseline), and HC3
heteroscedasticity-robust standard errors. Coefficients are interpreted as deviations from the baseline.

Table 11: Regression output for Consolidated Codes (Hypotheses 3 and 4).

Predictor coef std err z P>zl [0.025, 0.975]
Intercept 295.2700 3.015 9794 0.000 [289.361,301.179]
Condition 4 -78.1800 4442 -17.60 0.000 [-86.886, -69.474]
Gemini-2.5-pro -15.0150 4.609 -3.26 0.001 [-24.048, -5.982]
Gemma3-27b 1.3700 3.642 0.38 0.707 [-5.768, 8.508]
GPT-4.1 2.5150 3.607 0.70 0.486 [-4.555, 9.585]
(Coder terms omitted)
R*=10.951 Adjusted R? = 0.950

Table 12: Regression output for Coverage % (Hypotheses 3 and 4).

Predictor coef stderr z P>z [0.025, 0.975]
Intercept 0.3250 0.001 326.50 0.000 [0.323, 0.327]
Condition 4 0.0342 0.002 22.59 0.000 [0.031, 0.037]
Gemini-2.5-pro 0.0440 0.002 24.48 0.000 [0.041, 0.048]
Gemma3-27b -0.0122 0.001 -11.28 0.000 [-0.014, -0.010]
GPT-4.1 -0.0152 0.001 -14.75 0.000 [-0.017,-0.013]

(Coder terms omitted)

R?=0.993 Adjusted R* = 0.993

14

Table 13: Regression output for Overlap % (Hypotheses 3 and 4).

Predictor coef stderr z P>zl [0.025, 0.975]
Intercept 0.2126 0.001 147.81 0.000 [0.210, 0.215]
Condition 4 0.0240 0.002 10.72 0.000 [0.020, 0.028]
Gemini-2.5-pro 0.0637 0.003 23.97 0.000 [0.058, 0.069]
Gemma3-27b -0.0189 0.002 -11.55 0.000 [-0.022,-0.016]
GPT-4.1 -0.0213 0.001 -14.74 0.000 [-0.024,-0.018]

(Coder terms omitted)

R*=0.970 Adjusted R? = 0.969

Table 14: Regression output for Novelty % (Hypotheses 3 and 4).

Predictor coef stderr z P>zl [0.025, 0.975]
Intercept 0.2489 0.001 309.04 0.000 [0.247, 0.251]
Condition 4 -0.0258 0.001 -20.21 0.000 [-0.028, -0.023]
Gemini-2.5-pro 0.0136 0.001 10.41 0.000 [0.011, 0.016]
Gemma3-27b -0.0052 0.001 -4.75 0.000 [-0.007, -0.003]
GPT-4.1 -0.0046 0.001 -4.59 0.000 [-0.007, -0.003]

(Coder terms omitted)

R*=0.994 Adjusted R? = 0.994

Table 15: Regression output for Divergence % (Hypotheses 3 and 4).

Predictor coef stderr z P>zl [0.025, 0.975]
Intercept 0.6804 0.001 803.88 0.000 [0.679, 0.682]
Condition 4 0.0240 0.001 20.54 0.000 [0.022, 0.026]
Gemini-2.5-pro -0.0420 0.001 -31.99 0.000 [-0.045, -0.039]
Gemma3-27b 0.0121 0.001 13.04 0.000 [0.010, 0.014]
GPT-4.1 0.0166 0.001 19.77 0.000 [0.015, 0.018]

(Coder terms omitted)

R?=0.920 Adjusted R? = 0.919

C.4 Regression Results for Hypothesis 5

This appendix provides regression outputs supporting Hypothesis 5 (Section 5.2.3), which evaluates the
stability of metric outputs by analyzing the coefficient of variation (CoV) across stochastic LLM runs in
Conditions 3 and 4. All models use ordinary least squares (OLS) regression to predict the CoV for each
metric, using condition, merging model, and coder identity as predictors. Condition is dummy-coded
(Condition 3 as baseline), and both model and coder identity are sum-coded (average as baseline). Robust
(HC3) standard errors are used.

Table 16: Regression output for CoV of Consolidated Code Count (Hypothesis 5).

Predictor coef std err z P>zl [0.025, 0.975]
Intercept 0.0040 0.001 5.93 0.000 [0.003, 0.005]
Condition 4 0.0236 0.002 15.23 0.000 [0.021, 0.027]
Gemini-2.5-pro 0.0047 0.001 3.88 0.000 [0.002, 0.007]
Gemma3-27b -0.0023 0.002 -1.49 0.136 [-0.005, 0.001]
GPT-4.1 0.0021 0.001 1.55 0.120 [-0.001, 0.005]

(Coder dummies omitted)
R? =0.830 Adjusted R? = 0.797

15

Table 17: Regression output for CoV of Coverage (Hypothesis 5).

Predictor coef std err z P>zl [0.025, 0.975]
Intercept 0.0272 0.003 9.36 0.000 [0.021, 0.033]
Condition 4 0.0307 0.005 6.77 0.000 [0.022, 0.040]
Gemini-2.5-pro 0.0019 0.004 0.54 0.587 [-0.005, 0.009]
Gemma3-27b -0.0071 0.004 -1.68 0.093 [-0.015,0.001]
GPT-4.1 0.0020 0.004 050 0.621 [-0.006, 0.010]
(Coder dummies omitted)

R? =0.737 Adjusted R? = 0.686

Table 18: Regression output for CoV of Overlap (Hypothesis 5).

Predictor coef stderr z P>zl [0.025, 0.975]
Intercept 0.0440 0.004 11.34 0.000 [0.036, 0.052]
Condition 4 0.0490 0.007 7.45 0.000 [0.036, 0.062]
Gemini-2.5-pro -0.0043 0.005 -0.83 0404 [-0.014, 0.006]
Gemma3-27b -0.0108 0.006 -1.74 0.082 [-0.023,0.001]
GPT-4.1 0.0051 0.006 0.88 0.377 [-0.006, 0.016]
(Coder dummies omitted)

R? =0.698 Adjusted R* = 0.639

Table 19: Regression output for CoV of Novelty (Hypothesis 5).

Predictor coef stderr z P>zl [0.025, 0.975]
Intercept 0.0359 0.004 8.09 0.000 [0.027, 0.045]
Condition 4 0.0495 0.006 7.67 0.000 [0.037, 0.062]
Gemini-2.5-pro 0.0163 0.006 2.61 0.009 [0.004, 0.029]
Gemma3-27b -0.0130 0.006 -2.18 0.029 [-0.025,-0.001]
GPT-4.1 -0.0049 0.005 -1.01 0.311 [-0.014, 0.005]
(Coder dummies omitted)

R? =0.784 Adjusted R* = 0.741

Table 20: Regression output for CoV of Divergence (Hypothesis 5).

Predictor coef stderr z P>zl [0.025, 0.975]
Intercept 0.0090 0.001 17.95 0.000 [0.008, 0.010]
Condition 4 0.0038 0.001 4.80 0.000 [0.002, 0.005]
Gemini-2.5-pro 0.0042 0.001 5.61 0.000 [0.003, 0.006]
Gemma3-27b -0.0034 0.001 -4.67 0.000 [-0.005, -0.002]
GPT-4.1 -0.0007 0.001 -1.07 0.284 [-0.002, 0.001]
(Coder dummies omitted)

R? =0.597 Adjusted R* = 0.518

C.5 Coder Rankings for Hypothesis 6

This appendix presents full coder ranking tables supporting Hypothesis 6 (Section 5.2.4), which investi-
gates whether the choice of evaluation LLM affects the relative ranking of coders. For each metric, we
compute average scores per coder and rank them separately under four evaluation models in Condition 3
and Condition 4. Rel denotes the strength of evidence that the listed coder performs better than the next
one in the ranking chain.

Symbols: >>> p < 0.001; >> 0.001 < p < 0.01; > 0.01 < p < 0.05; = p > 0.05. These
thresholds are derived from Tukey’s HSD post-hoc comparisons following a one-way ANOVA on metric
values, conducted separately for each condition.

Table 21: Coder rankings for Coverage, Condition 3 (Hypothesis 6).

Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
group: ai (87.66%) >>> group: ai (90.23%) >>> group: ai (86.50%) >>> group: ai (86.64%) >>> group: ai (87.25%) >>>
item-any-ai (56.67%) >>> item-any-ai (60.27%) > item-any-ai (56.54%) >>> item-any-ai (54.61%) >>> item-any-ai (55.27%) >>>
item-verb-ai (52.77%) >>> item-verb-ai (58.96%) >>> item-verb-ai (51.35%) >>> item-verb-ai (49.89%) >>> item-verb-ai (50.87%) >>>
group: human (43.93%) >>> group: human (48.08%) >>> group: human (42.39%) >>> group: human (42.34%) >>> group: human (42.90%) >>>
human-c (18.36%) >>> human-c (22.85%) >>> human-c (16.47%) ~ human-c (16.79%) >>> human-c (17.32%) >>>
human-b (16.11%) >>> human-b (18.11%) >>> human-b (16.14%) >>> human-b (14.80%) >>> human-b (15.37%) ~
chunk-structured-ai (13.68%) > human-d (13.64%) ~ chunk-structured-ai (14.29%) >>> chunk-structured-ai (12.71%) =~ chunk-structured-ai (14.69%) >>>
chunk-barany-ai (12.64%) ~ chunk-structured-ai (13.02%) =~ chunk-barany-ai (12.83%) >>> chunk-barany-ai (11.83%) ~ chunk-barany-ai (13.15%) ~
human-d (12.43%) >>> chunk-barany-ai (12.74%) > human-d (12.02%) >>> human-d (11.62%) >> human-d (12.44%) >>>

human-a (10.71%)

human-a (11.39%) human-a (10.40%) human-a (10.52%)

human-a (10.55%)

16

Table 22: Coder rankings for Coverage, Condition 4 (Hypothesis 6).

Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
group: ai (87.29%) >>> group: ai (91.26%) >>> group: ai (85.28%) >>> group: ai (87.15%) >>> group: ai (85.45%) >>>
item-any-ai (60.48%) >>> item-any-ai (69.10%) >>> item-any-ai (56.87%) >>> item-any-ai (59.19%) >>> item-any-ai (56.76%) >>>
item-verb-ai (57.11%) >>> item-verb-ai (65.58%) >>> item-verb-ai (54.42%) >>> item-verb-ai (54.93%) >>> item-verb-ai (53.49%) >>>
group: human (47.10%) >>> group: human (55.52%) >>> group: human (44.90%) >>> group: human (44.16%) >>> group: human (43.83%) >>>
human-c (23.83%) >>> human-c (32.22%) >>> human-c (20.99%) >> human-c (21.81%) >>> human-c (20.30%) >>>
human-b (20.36%) >>> human-b (27.30%) >>> human-b (18.91%) > human-b (18.06%) >>> human-b (17.17%) ~
chunk-structured-ai (17.32%) =~ chunk-structured-ai (21.35%) =~ chunk-structured-ai (16.97%) =~ chunk-structured-ai (15.32%) =~ chunk-structured-ai (15.66%) =~
chunk-barany-ai (16.60%) > chunk-barany-ai (21.32%) ~ chunk-barany-ai (15.87%) > chunk-barany-ai (14.95%) ~ chunk-barany-ai (14.27%) ~
human-d (15.25%) > human-d (20.43%) = human-d (13.96%) ~ human-d (14.04%) ~ human-d (12.56%) ~
human-a (13.83%) human-a (18.83%) human-a (12.67%) human-a (12.43%) human-a (11.38%)

Table 23: Coder rankings for Overlap, Condition 3 (Hypothesis 6).
Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
group: ai (60.09%) >>> group: ai (70.62%) >>> group: ai (55.60%) >>> group: ai (56.08%) >>> group: ai (58.08%) >>>
item-any-ai (41.64%) >>> item-any-ai (47.70%) >> item-any-ai (41.21%) >>> item-any-ai (38.03%) >>> item-any-ai (39.60%) >>>
item-verb-ai (36.49%) >>> item-verb-ai (45.72%) >>> item-verb-ai (34.58%) >>> item-verb-ai (31.84%) >>> item-verb-ai (33.82%) >>>
group: human (23.33%) >>> group: human (28.80%) >>> group: human (21.55%) >>> group: human (20.88%) >>> group: human (22.08%) >>>
human-c (10.65%) ~ human-c (15.43%) >>> human-b (9.76%) ~ human-c (8.78%) ~ human-c (9.57%) ~
human-b (9.86%) ~ human-b (12.21%) >>> chunk-structured-ai (9.14%) =~ human-b (8.28%) ~ chunk-structured-ai (9.48%) =~
chunk-structured-ai (8.60%) = human-d (9.20%) ~ human-c (8.82%) >> chunk-structured-ai (7.44%) =~ human-b (9.18%) ~
human-d (7.73%) ~ chunk-structured-ai (8.37%) =~ chunk-barany-ai (7.85%) ~ human-d (6.77%) ~ chunk-barany-ai (8.06%) ~
chunk-barany-ai (7.68%) ~ chunk-barany-ai (8.14%) ~ human-d (7.34%) >>> chunk-barany-ai (6.68%) ~ human-d (7.62%) >
human-a (6.57%) human-a (7.55%) human-a (6.19%) human-a (6.22%) human-a (6.30%)

Table 24: Coder rankings for Overlap, Condition 4 (Hypothesis 6).
Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
group: ai (57.30%) >>> group: ai (73.02%) >>> group: ai (50.65%) >>> group: ai (55.45%) >>> group: ai (50.09%) >>>
item-any-ai (44.60%) >>> item-any-ai (57.66%) >> item-any-ai (39.58%) >>> item-any-ai (42.19%) >>> item-any-ai (38.97%) >>>
item-verb-ai (40.72%) >>> item-verb-ai (54.01%) >>> item-verb-ai (36.58%) >>> item-verb-ai (37.39%) >>> item-verb-ai (34.92%) >>>
group: human (24.71%) >>> group: human (34.62%) >>> group: human (21.65%) >>> group: human (21.66%) >>> group: human (20.90%) >>>
human-c (15.25%) > human-c (24.31%) >>> human-c (12.09%) ~ human-c (13.18%) ~ human-c (11.40%) ~
human-b (13.14%) ~ human-b (20.23%) >>> human-b (11.52%) ~ human-b (10.89%) ~ human-b (9.92%) ~
chunk-structured-ai (11.12%) =~ chunk-barany-ai (15.39%) ~ chunk-structured-ai (10.89%) =~ chunk-barany-ai (9.10%) ~ chunk-structured-ai (9.72%) =~
chunk-barany-ai (10.83%) ~ human-d (15.11%) ~ chunk-barany-ai (10.15%) ~ chunk-structured-ai (9.01%) =~ chunk-barany-ai (8.68%) ~
human-d (10.03%) ~ chunk-structured-ai (14.88%) =~ human-d (8.65%) ~ human-d (8.98%) ~ human-d (7.37%) ~
human-a (8.97%) human-a (13.66%) human-a (7.78%) human-a (7.81%) human-a (6.62%)

Table 25: Coder rankings for Novelty, Condition 3 (Hypothesis 6).
Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
group: ai (81.03%) >>> group: ai (83.66%) >>> group: ai (79.24%) >>> group: ai (80.56%) >>> group: ai (80.67%) >>>
item-any-ai (45.05%) >>> item-any-ai (47.25%) >>> item-any-ai (44.34%) >>> item-any-ai (44.33%) >>> item-any-ai (44.26%) >>>
item-verb-ai (42.12%) >>> item-verb-ai (44.94%) >>> item-verb-ai (41.07%) >>> item-verb-ai (40.69%) >>> item-verb-ai (41.78%) >>>
group: human (30.84%) >>> group: human (31.36%) >>> group: human (30.60%) >>> group: human (30.79%) >>> group: human (30.61%) >>>
human-c (12.84%) >>> human-c (13.54%) >>> human-c (12.44%) >>> human-c (12.60%) >>> human-c (12.79%) >>>
human-b (9.77%) >>> human-b (9.93%) >> human-b (9.76%) >>> human-b (9.97%) >>> human-b (9.44%) >>
chunk-structured-ai (7.79%) > chunk-structured-ai (8.68%) ~ chunk-structured-ai (7.50%) >> chunk-structured-ai (7.65%) =~ chunk-structured-ai (7.34%) =~
chunk-barany-ai (7.21%) >>> chunk-barany-ai (7.90%) > chunk-barany-ai (6.86%) ~ chunk-barany-ai (7.08%) >>> chunk-barany-ai (6.99%) ~
human-d (6.44%) > human-d (6.77%) ~ human-d (6.44%) > human-d (6.09%) ~ human-d (6.46%) ~

human-a (5.82%)

human-a (5.79%)

human-a (5.94%)

human-a (5.76%)

human-a (5.80%)

17

Table 26: Coder rankings for Novelty, Condition 4 (Hypothesis 6).

Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
group: ai (77.74%) >>> group: ai (80.88%) >>> group: ai (75.22%) >>> group: ai (78.34%) >>> group: ai (76.50%) >>>
item-any-ai (36.59%) ~ item-any-ai (39.56%) >>> item-verb-ai (34.99%) ~ item-any-ai (36.49%) > item-verb-ai (36.74%) ~
item-verb-ai (35.80%) >>> item-verb-ai (36.31%) >>> item-any-ai (34.74%) >>> item-verb-ai (35.17%) >>> item-any-ai (35.58%) >>>
group: human (27.12%) >>> group: human (27.41%) >>> group: human (28.28%) >>> group: human (25.06%) >>> group: human (27.73%) >>>
human-c (11.78%) >>> human-c (11.97%) ~ human-c (11.84%) >>> human-c (11.14%) >>> human-c (12.16%) >>>
human-b (8.47%) ~ chunk-structured-ai (11.29%) =~ human-b (8.70%) >>> chunk-structured-ai (8.26%) =~ human-b (8.03%) >>
chunk-structured-ai (8.00%) =~ chunk-barany-ai (9.62%) ~ chunk-barany-ai (6.97%) ~ human-b (7.58%) ~ chunk-structured-ai (6.15%) =~
chunk-barany-ai (7.36%) >>> human-b (9.59%) >>> chunk-structured-ai (6.31%) =~ chunk-barany-ai (7.15%) >>> chunk-barany-ai (5.69%) ~
human-d (5.37%) ~ human-d (6.59%)] human-d (5.41%) =~ human-d (4.16%) ~ human-d (5.33%) ~
human-a (4.92%) human-a (6.24%) human-a (5.04%) human-a (4.09%) human-a (4.33%)

Table 27: Coder rankings for Divergence, Condition 3 (Hypothesis 6).
Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
human-a (73.88%) > human-a (71.91%) ~ human-a (74.56%) >>> human-a (74.62%) ~ human-a (74.44%) >>>
chunk-barany-ai (72.87%) ~ chunk-barany-ai (71.78%) ~ human-c (73.38%) ~ chunk-barany-ai (74.52%) ~ human-d (72.83%) ~
human-d (72.61%) > chunk-structured-ai (71.29%) ~ human-d (73.05%) ~ human-d (74.13%) ~ chunk-barany-ai (72.40%) ~
chunk-structured-ai (71.57%) =~ human-d (70.45%) >>> chunk-barany-ai (72.76%) >>> chunk-structured-ai (73.53%) =~ human-c (72.38%) ~
human-c (71.24%) ~ human-b (67.73%) >>> human-b (71.07%) ~ human-c (73.43%) ~ human-b (71.78%) >>>
human-b (70.89%) >>> human-c (65.79%) >>> chunk-structured-ai (71.01%) >>> human-b (72.96%) >>> chunk-structured-ai (70.44%) >>>
group: ai (65.24%) ~ group: ai (60.48%) ~ group: ai (66.89%) > group: ai (67.14%) ~ group: ai (66.46%) ~
group: human (64.77%) >>> group: human (59.93%) >>> group: human (66.34%) >>> group: human (66.88%) >>> group: human (65.93%) >>>
item-verb-ai (60.17%) >>> item-verb-ai (53.78%) >> item-verb-ai (61.38%) >>> item-verb-ai (63.30%) >>> item-verb-ai (62.21%) >>>
item-any-ai (57.20%) item-any-ai (52.27%) item-any-ai (57.83%) item-any-ai (59.91%) item-any-ai (58.81%)

Table 28: Coder rankings for Divergence, Condition 4 (Hypothesis 6).
Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel
human-a (74.57%) ~ chunk-structured-ai (70.94%) =~ human-a (75.75%) ~ human-a (75.38%) ~ human-a (76.45%) ~
human-d (73.98%) ~ human-a (70.68%) = human-d (75.28%) ~ chunk-structured-ai (75.00%) =~ human-d (75.98%) ~
chunk-barany-ai (73.59%) ~ chunk-barany-ai (70.36%) ~ human-c (74.41%) ~ chunk-barany-ai (74.76%) ~ chunk-barany-ai (75.01%) ~
chunk-structured-ai (73.41%) >> human-d (70.09%) >>> chunk-barany-ai (74.23%) ~ human-d (74.59%) ~ human-b (74.54%) ~
human-b (72.37%) ~ human-b (67.20%) > human-b (73.84%) ~ human-b (73.89%) ~ human-c (74.33%) ~
human-c (71.86%) >>> human-c (65.45%) ~ chunk-structured-ai (73.53%) >> human-c (73.23%) >>> chunk-structured-ai (74.18%) >>>
group: ai (70.05%) >>> group: ai (65.00%) >>> group: ai (72.02%) >>> group: ai (71.33%) >> group: ai (71.83%) >
group: human (68.09%) >>> group: human (61.91%) >>> group: human (70.45%) >>> group: human (69.62%) >>> group: human (70.40%) >>>
item-verb-ai (64.07%) >>> item-verb-ai (57.50%) ~ item-verb-ai (66.28%) >> item-verb-ai (65.87%) >>> item-verb-ai (66.62%) >>>

item-any-ai (62.41%)

item-any-ai (56.40%)

item-any-ai (64.94%)

item-any-ai (63.87%)

item-any-ai (64.45%)

18

	Introduction
	Related Work
	The Nature and Challenges of Inductive Qualitative Coding
	Evaluating ML/GAI for Inductive Qualitative Coding

	Computational Metrics
	Aggregating Coding Results: Code Spaces (CSP) and Aggregated Code Spaces (ACS)
	Four Computational Metrics

	Experimental Design
	Task and Dataset
	Experiment 1: Ablation and Comparison Study
	Experiment 2: Measuring Edge Cases

	Empirical Study
	RQ1: Measuring Each Step's Impact on Our Merging Algorithm
	Hypothesis 1: Evaluation condition significantly affects the number of merged codes and computed metrics.
	Hypothesis 2: Evaluation condition has minimal impact on the relative ranking of coder metrics.

	RQ2: Evaluating the Robustness and Stability of Our Proposed Metrics
	Hypothesis 3: LLM used in the merging process significantly influences metrics and code counts.
	Hypothesis 4: Metric outcomes are well-explained by condition, model, and coder identity.
	Hypothesis 5: Repeated measurements under the same condition/model yield low coefficients of variation (CoV).
	Hypothesis 6: LLMs used in the merging process have little effect on the relative ranking of coders.

	RQ3: Testing Our Proposed Metrics' Diagnostic Utility for Edge Cases
	Hypothesis 7: Excessive coding increases coverage, overlap, and novelty with diminishing returns, while divergence remains stable.
	Hypothesis 8: Coding on irrelevant data (i.e., hallucination) reduces coverage and overlap, while increasing divergence.

	Discussions
	The Necessity of the Iterative, LLM-Enriched Merging Algorithm
	The Impact of LLM on Outcomes
	Performance of Metrics in Edge Cases

	Conclusion
	Limitations
	Limitation on the Dataset and Domain
	Limitation on the Simulated Edge Cases
	Limited Interpretations on Deviant LLM Behaviors

	Potential Risks
	Misinterpretation of Metrics
	Dependency on the Coding Team
	Privacy and Data Security

	Appendices
	Regression Results for Hypothesis 1
	Coder Rankings for Hypothesis 2
	Regression Results for Hypotheses 3 and 4
	Regression Results for Hypothesis 5
	Coder Rankings for Hypothesis 6

