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Abstract001

Qualitative analysis is critical to understanding002
human datasets in many social science disci-003
plines. A central method in this process is in-004
ductive coding, where researchers identify and005
interpret codes directly from the datasets them-006
selves. Yet, this exploratory approach poses007
challenges for meeting methodological expec-008
tations (such as "depth" and "variation"), espe-009
cially as researchers increasingly adopt Genera-010
tive AI (GAI) for support. Ground-truth-based011
metrics are insufficient because they contra-012
dict the exploratory nature of inductive coding,013
while manual evaluation can be labor-intensive.014
This paper presents a theory-informed compu-015
tational method for measuring inductive coding016
results from humans and GAI. Our method first017
merges individual codebooks using an LLM-018
enriched algorithm. It measures each coder’s019
contribution against the merged result using020
four novel metrics: Coverage, Overlap, Nov-021
elty, and Divergence. Through two experiments022
on a human-coded online conversation dataset,023
we 1) reveal the merging algorithm’s impact on024
metrics; 2) validate the metrics’ stability and025
robustness across multiple runs and different026
LLMs; and 3) showcase the metrics’ ability to027
diagnose coding issues, such as excessive or028
irrelevant (hallucinated) codes. Our work pro-029
vides a reliable pathway for ensuring method-030
ological rigor in human-AI qualitative analysis.031

1 Introduction032

Qualitative analysis is widely adopted across many033

social science disciplines. Most often, qualitative034

researchers apply descriptive labels (codes) in two035

ways: deductive coding, where codes are applied036

according to a preconceived coding scheme, and037

inductive coding ("open coding"), where codes are038

concepts derived from the raw data.039

While methodologies such as Grounded The-040

ory (GT) (Corbin and Strauss, 2008b, 1990) and041

Thematic Analysis (TA) (Braun and Clarke, 2006;042

Terry et al., 2017) rely on the inductive approach to 043

discover emergent patterns from human data, induc- 044

tive coding is hampered by its subjective and time- 045

consuming nature (Attride-Stirling, 2001; Bowman 046

et al., 2023). Since "ground truth" may not exist 047

at this stage, truth-based evaluation methods (e.g., 048

inter-coder reliability) mismatch inductive coding’s 049

inherent open-endedness (McDonald et al., 2019; 050

Corbin and Strauss, 2008b; Terry et al., 2017). As 051

many computational linguistics or machine learn- 052

ing studies (e.g., Xiao et al.) attempt to leverage 053

Generative AI (GAI) for inductive coding tasks, a 054

theory-informed and computationally operational 055

evaluation method is urgently needed. 056

This paper contributes a theory-informed compu- 057

tational method for systematically measuring open 058

coding results, using team-based evaluation met- 059

rics for both human and machine coders. Without 060

relying on ground truth assumptions, our method 061

provides robust and reliable metrics for AI-assisted 062

evaluation of inductive coding performance. 063

2 Related Work 064

2.1 The Nature and Challenges of Inductive 065

Qualitative Coding 066

During inductive coding, researchers identify con- 067

cepts and themes directly from raw data (Strauss 068

and Corbin, 1998; Rahman, 2016), aiming at dis- 069

covering novel insights often without an existing 070

theoretical framework (Corbin and Strauss, 2008b, 071

1990; Strauss and Corbin, 1998; Terry et al., 2017). 072

The process involves iterating through a corpus to 073

identify meaningful segments and assign descrip- 074

tive labels (codes) that emerge directly from the 075

data. Researchers then often group their coded seg- 076

ments into labeled "categories" that are used for 077

further analysis. This process resembles iterative 078

clustering in machine learning contexts. Induc- 079

tive coding is open-ended, subjective, and does not 080

strive for a singular "correct" result (Terry et al., 081
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2017). Rather, the process should capture as many082

aspects, patterns, or "codable moments" as possi-083

ble (Terry et al., 2017; Corbin and Strauss, 1990,084

2008a).085

Yet, inductive coding is inherently subjective,086

time-consuming, and prone to ambiguities, making087

methodological rigor difficult to achieve (Attride-088

Stirling, 2001; Bowman et al., 2023; Braun and089

Clarke, 2021; Bringer et al., 2004; Tuckett, 2005;090

Furniss et al., 2011; Saunders et al., 2018). Since091

the process aims to widely capture novel insights092

rather than enforcing consistency, deductive cod-093

ing metrics (such as inter-rater reliability) become094

gravely inadequate due to their reliance on "ground095

truth" assumptions (McDonald et al., 2019).096

To address this mismatch, qualitative researchers097

are shifting towards team-based approaches, where098

the team constantly compares and contrasts codes099

from multiple individuals (Cascio et al., 2019;100

Thomas, 2006). Team-based approaches em-101

brace different perspectives, resulting in more in-102

sights and mitigating individual biases (Corbin and103

Strauss, 1990; Thomas, 2006). It makes researchers104

closer towards the elusive goals of inductive anal-105

ysis, such as depth, variation, and theoretical sat-106

uration (Corbin and Strauss, 2008b; Adams et al.,107

2008; Furniss et al., 2011; Saunders et al., 2018).108

2.2 Evaluating ML/GAI for Inductive109

Qualitative Coding110

ML/GAI approaches offer significant potential to111

support and enhance qualitative research by as-112

sisting in the coding process (Xiao et al., 2023).113

Existing computational approaches have primar-114

ily framed machine-assisted qualitative coding as115

either a classification-based task, which mimics116

human labels, or a generation-based task, which117

produces codes directly from data (Liew et al.,118

2014; Gebreegziabher et al., 2023; Rietz and Maed-119

che, 2021; Xiao et al., 2023; Grootendorst, 2022;120

Saravani et al., 2023; Sievert and Shirley, 2014;121

De Paoli, 2023a; Sinha et al., 2024).122

Effectively leveraging ML/GAI’s potential re-123

quires robust evaluation methods that account for124

the open-ended and exploratory characteristics of125

inductive coding, yet existing ones are largely in-126

sufficient:127

1. "Ground truth"-based metrics compare an128

input set of codes against an expert-labeled129

dataset (Parfenova et al., 2025; Zhao et al.,130

2024; Dai et al., 2023). While it provides131

quantifiable metrics such as precision and re- 132

call, its presupposition of a single correct an- 133

swer directly contradicts qualitative research 134

theories (Corbin and Strauss, 2008b; Terry 135

et al., 2017). Essentially, this approach con- 136

strains inputs to a predefined scope, thereby 137

limiting the discovery of novel insights (Liew 138

et al., 2014; Xiao et al., 2023; Parfenova et al., 139

2025). 140

2. Topic coherence metrics measure the consis- 141

tency of topic word representation, evaluating 142

the interpretability and meaningfulness of a 143

topic (Rahimi et al., 2023). It works without 144

a ground truth and instead examines the in- 145

ternal latent properties of topics. However, 146

as inductive coding often aims to identify at 147

a more nuanced and crosscutting level than 148

topics or themes (Corbin and Strauss, 2008b), 149

the method’s usefulness is limited. 150

3. Human-annotated evaluations ask experts 151

to assess the usefulness, explainability, or rel- 152

evance of machine-generated codes through 153

instruments such as survey forms (De Paoli, 154

2023a,b; Zambrano et al., 2023; Spinoso- 155

Di Piano, 2023). However, such annotations 156

are labor-intensive and may still fail to detect 157

systemic biases, such as the consistent omis- 158

sion of critical codes (Parfenova et al., 2025). 159

3 Computational Metrics 160

Building on the team-based approach adopted by 161

qualitative researchers (Thomas, 2006), our novel 162

method aggregates multiple coders’ coding results 163

(i.e., codebooks) to calculate four computational 164

metrics. The calculation of these metrics does not 165

rely on ground truth(s) or human inputs. That said, 166

we still recommend using expert coding results as 167

anchor points, especially when measuring coding 168

results from untested models or prompts. An open- 169

source reference implementation of the aggregation 170

method, documentation, and the calculation of our 171

metrics will be released to the general public (see 172

attached Software package, licensed under CC BY- 173

NC 4.0). 174

3.1 Aggregating Coding Results: Code Spaces 175

(CSP) and Aggregated Code Spaces (ACS) 176

The first step towards calculating our proposed met- 177

rics is to aggregate the codebooks produced by 178

multiple individual coders into a single concep- 179

tual space that will serve as an approximation of 180
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Figure 1: A: A conceptual illustration of an ACS merged
from csp1 and csp2. B: Measuring csp1 using the
merged ACS as a reference.

"all possible interpretations" of the data, as is pre-181

scribed by qualitative analysis methods (Fig. 1).182

To do this, we first consider each coder’s re-183

sults and define their Code Space (CSP), to be the184

set of all codes they identified or interpreted from185

the dataset (Fig. 1A). In turn, we can consider186

the union of all individual CSPs as the Aggregate187

Code Space (ACS) that encompasses the codes188

identified or interpreted from the dataset by all189

coders. However, simply considering the ACS to190

be this union does not take into account that real-191

world coders often use different codes to represent192

identical or very similar ideas (e.g., the codes "User193

Feedback" vs "Feedback from User").194

To account for this, we instead propose a four-195

stage algorithm that uses semantic similarity and196

hierarchical clustering to iteratively consolidate an197

ACS from a set of individual CSPs. In addition198

to this, we also expand our definition of an ACS199

to include the fact that semantically similar codes200

are connected by links as Neighbors (Fig. 1B).201

Noting that each code in an individual CSP has202

a label (the code itself) and may have examples203

(pieces of data the code was applied to), and a204

definition (a description of the concept the code205

covers), the algorithm is thus defined as follows:206

1. Begin with the ACS simply being the union207

of all individual CSPs, only considering the208

label of each code.209

2. For each code in the ACS, use hierarchical210

clustering to merge codes with semantically211

very similar labels. For each merging pair,212

the shorter label will be adopted.213

3. For each code in the ACS, use LLMs to gener-214

ate a new definition based on its label and215

examples. Then, repeat the merging using216

both label and definition, using LLMs to 217

generate the resulting label and definition 218

of the merged code. 219

4. Finally, repeat step 3 but iteratively and using 220

our modified clustering algorithm (see below 221

for more details). 222

In steps 2 and 3 of the above, we apply a strict 223

threshold for cosine distances between each code’s 224

text embedding. However, we found that a single 225

threshold was often insufficient in separating differ- 226

ent codes. In step 4, we therefore adapt the hierar- 227

chical clustering algorithm to apply two thresholds 228

(lower and upper) on each node of the dendro- 229

gram, from which the penalty coefficient is calcu- 230

lated. 231

Algorithm 1 First Penalty on the Difference Be-
tween Examples

Require: For each code in ACS, a normalized
text embedding C = {c1, . . . , cn}.

1: e = |EA∩EB |
|EA∪EB |

2: dista,b = d(ca, cb) + penalty ∗ e2

Algorithm 2 Second Penalty on Unique Examples
of the Potential Merge

Require: dist = adjusted distance of the node
Require: count unique examples of the node

1: o = max(
count−countavg

countmax−countavg
, 0)

2: if dist ≤ lower then
3: return YES
4: else if dist > upper then
5: return NO
6: else if dist+ penalty ∗ o2 < upper then
7: return YES
8: else
9: return NO ▷ Considered as "Neighbors"

10: end if

3.2 Four Computational Metrics 232

The four metrics that we propose measure each 233

coder’s CSP against the ACS in four ways: Cover- 234

age, Overlap, Novelty, and Divergence (Fig. 1B). 235

• Coverage: How much conceptual space does 236

a given CSP cover in the ACS? Both TA 237

and GT strive for "richness" of codes, cap- 238

turing depth and variation for further analysis 239

(Corbin and Strauss, 2008b; Braun and Clarke, 240

2013). Keeping in mind that not all codes are 241
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equally interesting, each code is weighted by242

the number of coders who identified it. To243

mitigate the impact of a given coder applying244

an excessive number of codes to the data, each245

coder is weighted by the number of codes they246

identified.247

Algorithm 3 Weighting Codes and Codebooks

1: for x ∈ ACS do
2: sizex = max{#(code ∈ x), sizemedian}
3: weightx = 1

ln (sizex)
4: for code ∈ ACS do
5: if c ∈ x then
6: obsx,c *= 1
7: else
8: obsx,c *= ln (|neighbors∈x|+1)

ln (|neighbors|+1))
9: end if

10: scorec += obsx,c ∗ weightx
11: end for
12: end for

Algorithm 4 Calculating Coverage

1: for x ∈ ACS do
2: coveragex =

∑
c∈acs obsx,c×scorec∑

c∈acs scorec

3: end for

• Overlap: How much does a given CSP over-248

lap with others? The algorithm is almost the249

same as the one proposed for coverage, except250

each coder’s impact on score is removed from251

the ACS (see Divergence).252

• Novelty: How many "unique" codes does a253

given CSP include (i.e., codes that no other254

coders identified)? In considering novelty, we255

measure how much novel conceptual space256

was covered by a given coder.257

Algorithm 5 Calculating Novelty

1: for x ∈ ACS do
2: noveltyx =

∑
c∈csp(novel=1) obsx,c∗scorec∑

c∈acs(novel=1) scorec

3: end for

• Divergence: How far is a given CSP’s code258

distribution from the ACS? We calculate each259

CSP’s divergence as the separation from its260

probability distribution from that of other261

CSPs. We used the Jensen-Shannon Diver-262

gence (JSD) to tolerate potential zeros.263

Algorithm 6 Calculating Divergence

1: for x ∈ ACS do
2: Bc = scorec − obsx,c ∗ weightx ▷

Baseline - excluding the coder’s contribution
3: divergencex =

√
JSD(B ∥ obsx,c)

4: end for

4 Experimental Design 264

To empirically validate our computational metrics 265

and merging algorithm, we designed two experi- 266

ments to answer three research questions (RQ1- 267

RQ3): 268

1. How does each step of our merging algorithm 269

affect our metrics? 270

2. Given the probabilistic nature and different 271

capabilities of LLMs, how robust or stable are 272

our metrics? 273

3. Can our metrics identify edge cases such as 274

excessive codes or hallucinations? 275

4.1 Task and Dataset 276

We reused the prompt, dataset, and human coding 277

results from Chen et al.’s study, where researchers 278

conducted manual evaluation. In each experiment, 279

we applied our computational metrics to induc- 280

tive qualitative coding results from four human 281

coders (three PhD students, one undergraduate stu- 282

dent, all in a U.S. higher education institution) and 283

four machine coders (the same LLM with differ- 284

ent prompts). Both experiments work on an on- 285

line conversation dataset between Physics Lab (an 286

online learning software)’s designers and teacher 287

users. The conversation happened in public mes- 288

saging groups, and the collection of such data has 289

been approved by a university IRB. The dataset 290

is attached as part of the Software package and 291

has been properly anonymized. Our usage of the 292

dataset is consistent with the original intention and 293

IRB approval. 294

Due to human researchers’ limited capacity, we 295

focused on the first 127 messages. The same 296

question was provided to human and machine 297

coders: "How did Physics Lab’s online commu- 298

nity emerge?" 299

Since most qualitative data are from human sub- 300

jects and are subject to IRB protection, we inten- 301

tionally chose open-source and locally available 302

models for the experiments. We used Gemma3- 303

27B (with temperature = 0.5) to generate new sets 304
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of machine codes. We used mxbai-embed-large to305

calculate semantic distances (Lee et al., 2024; Li306

and Li, 2023).307

4.2 Experiment 1: Ablation and Comparison308

Study309

Experiment 1 addresses RQ1 and RQ2 through an310

ablation study on the four stages of our merging311

algorithm . We chose four machine coders from ’s312

comparison study: Chunk-Level (i.e., generate per313

"chunk" of messages); Chunk-Level, Structured;314

Item-Level (i.e., generate per message); Item-Level,315

Verb Phrases Only.316

1. Condition 1 corresponds to the first "naive"317

stage, where codes are merged solely by their318

labels.319

2. Condition 2 corresponds to the second stage,320

where codes are merged with a strict threshold321

(0.32) by their labels.322

3. Condition 3 corresponds to the third stage,323

where an LLM generates definitions based on324

each code’s label and examples. Then, the325

codes are merged with a strict threshold (0.32)326

by labels and definitions.327

4. Condition 4 corresponds to the fourth stage,328

where the codes are iteratively merged with an329

upper threshold (0.55) and a lower threshold330

(0.32) by labels and definitions, until no more331

codes can be merged.332

For each condition and LLM used, we repeated333

10 runs, recorded each human and machine coder’s334

number of codes within the merged ACS, and cal-335

culated four computational metrics. In addition to336

individual coders, we also calculated metrics for337

the combination "group" of AI or human coders.338

Thresholds in each condition are chosen interac-339

tively through our example implementation. The340

strict threshold is chosen by ensuring that 10 code341

pairs with a semantic distance right below it have342

the same meanings. The upper threshold is chosen343

by ensuring that 10 code pairs right below it have344

at least similar meanings.345

In Stages 3 and 4, the study doubles as a com-346

parison between different LLMs used in the pro-347

cess: Gemma3 27B (non-reasoning, small, open-348

source) (Team, 2025a), Qwen QwQ 32B (reason-349

ing, small, open-source) (Team, 2025b), GPT-4.1350

(non-reasoning, large, proprietary), and Gemini-351

2.5-Pro (reasoning, large, proprietary).352

4.3 Experiment 2: Measuring Edge Cases 353

Experiment 2 addresses RQ3. Starting from the 354

Item-Level coder, which performed the best (to- 355

gether with its Verb Phrases Only Variant) in hu- 356

man evaluation and computational metrics, we cre- 357

ated three variants to simulate potential edge cases: 358

1. Flooding Coder is explicitly instructed to gen- 359

erate an excessive number of codes per item. 360

2. Hallucinating Coder has the same prompt 361

but works with an irrelevant, AI-generated 362

conversation. 363

3. Hallucinate + Flooding Coder combines the 364

two changes together. 365

For each variant, we repeated 10 runs with the 366

same human coders and machine coders, replacing 367

results from the Item-Level coder with its variant. 368

Since our preliminary results find little impact on 369

LLM choice, we only used Gemma3 27B for this 370

experiment. In total, both experiments cost 8̃ mil- 371

lion LLM tokens (5 read, 3 write), around $20 for 372

proprietary models. 373

5 Empirical Study 374

The following sections present our hypotheses and 375

empirical results. We provide more details through 376

Appendices C and via the reproduction repository 377

(attached Software package). 378

5.1 RQ1: Measuring Each Step’s Impact on 379

Our Merging Algorithm 380

Experiment 1 first examines how each stage of our 381

merging algorithm impacts each coder’s number of 382

merged codes and the resulting metrics. 383

5.1.1 Hypothesis 1: Evaluation condition 384

significantly affects the number of 385

merged codes and computed metrics. 386

We used ordinary least squares (OLS) regression to 387

model the effect of algorithmic stages (Conditions 388

1-4) on the number of consolidated codes and each 389

coder’s four metrics. 390

Result: Mostly Confirmed. Each algorithm 391

stage significantly reduced the total number of 392

merged codes (p < 0.001). As shown in Table 393

1, we observed significant shifts in computational 394

metrics in Conditions 3 and 4, but not in 2. 395
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Condition Coverage Overlap Novelty Divergence
Condition 2 0.09% -0.09% 0.05% 0.37%
Condition 3 3.60% 5.45% 0.94% -4.31%
Condition 4 7.02% 7.86% -1.64% -1.91%

Table 1: OLS regression coefficients for evaluation met-
rics across Conditions 2 to 4 (relative to Condition 1).
Conditions 1 and 2 are deterministic. For other values,
p < 0.001.

5.1.2 Hypothesis 2: Evaluation condition has396

minimal impact on the relative ranking397

of coder metrics.398

We conducted a ranking stability analysis across399

conditions using one-way ANOVA with Tukey400

HSD post-hoc comparisons.401

Result: Partially Confirmed. While algorith-402

mic stages shift the values of computational met-403

rics, rankings remain relatively stable. For all met-404

rics, rankings of top performers (#1-5) stay the405

same. For other coders, rankings within the label-406

only (1, 2) and LLM-enriched conditions (3, 4) are407

highly similar.408

5.2 RQ2: Evaluating the Robustness and409

Stability of Our Proposed Metrics410

Experiment 1 then evaluates whether our computa-411

tional metrics remain robust across repeated runs412

and different LLMs in Conditions 3 and 4.413

5.2.1 Hypothesis 3: LLM used in the merging414

process significantly influences metrics415

and code counts.416

We used OLS regression to model the effect of417

LLMs on the number of consolidated codes and418

each coder’s four metrics, controlling for fixed ef-419

fects between Conditions 3 and 4 and between in-420

dividual coders.421

Result: Partially Confirmed. Across Con-422

ditions 3 and 4, three models (Gemma3 27B,423

Qwen QwQ 32B, and GPT 4.1) produce very sim-424

ilar metrics and numbers of merged codes. The425

only substantial deviation comes from Gemini-2.5-426

pro, which produces fewer merged codes, higher427

coverage and overlap (approximately 4% to 6%428

increase), and lower divergence (4% decrease)429

(Fig. 2).430

Figure 2: Effect of merging LLM on four evaluation
metrics from the OLS model. Each bar represents the av-
erage coefficient difference from the grand mean across
LLMs, along with 95% confidence intervals.

5.2.2 Hypothesis 4: Metric outcomes are 431

well-explained by condition, model, and 432

coder identity. 433

From the same OLS model used by Hypothesis 3, 434

we calculated adjusted R2 values to determine the 435

extent to which the combination of condition, merg- 436

ing LLM, and coder explains variation in metric 437

values. 438

Result: Confirmed. All adjusted R2 values ex- 439

ceed 0.91. 440

5.2.3 Hypothesis 5: Repeated measurements 441

under the same condition/model yield 442

low coefficients of variation (CoV). 443

We calculated the coefficient of variation for each 444

metric over 10 evaluation runs per Condition per 445

merging LLM. 446

Result: Confirmed. CoV values remain below 447

0.1 in all cases. Divergence has the lowest variabil- 448

ity around 0.01. Condition 4 shows slightly higher 449

variance than Condition 3. 450

5.2.4 Hypothesis 6: LLMs used in the 451

merging process have little effect on the 452

relative ranking of coders. 453

We conducted one-way ANOVA with Tukey HSD 454

post-hoc comparisons to examine whether coder 455

rankings differed across LLMs. 456

Result: Mostly Confirmed. The top and bottom- 457

ranked coders remained consistent across all four 458

LLMs in both Conditions 3 and 4. Rankings for 459

mid-performing coders fluctuate, primarily when 460

their differences are not statistically significant. 461

5.3 RQ3: Testing Our Proposed Metrics’ 462

Diagnostic Utility for Edge Cases 463

Experiment 2 tests whether our computational met- 464

rics can detect abnormal inductive qualitative codes 465
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from machine coder variants designed to simulate466

edge cases: Flooding, Hallucinating, and Com-467

bined (Fig. 3).468

Figure 3: Mean coder metrics across Baseline, Flood-
ing, Hallucinating, and Combined variants with 95%
confidence intervals.

5.3.1 Hypothesis 7: Excessive coding increases469

coverage, overlap, and novelty with470

diminishing returns, while divergence471

remains stable.472

Result: Confirmed. The mean metrics from the473

flooding coder have higher coverage (78.7%), over-474

lap (57.9%), and novelty (68.1%) than the Baseline475

coder. Novelty showed diminishing returns. Di-476

vergence remained stable (67.3% vs. 64.9%). A477

similar effect is observed between the Hallucinat-478

ing and Combined coders.479

5.3.2 Hypothesis 8: Coding on irrelevant data480

(i.e., hallucination) reduces coverage and481

overlap, while increasing divergence.482

Result: Confirmed. The mean metrics from the483

Hallucinating coder have reduced coverage (35.6%)484

and overlap (15.6%), while divergence increases485

sharply to 75.7%. A stronger effect is observed486

between the Hallucinating and Combined coders.487

In particular, while the Combined coder produced488

245% more codes than the baseline (1,775 vs. 514),489

it has lower overlap (39.6% vs. 25.2%) and higher490

divergence (76.3% vs. 64.9%).491

6 Discussions492

This paper introduces a theory-informed compu-493

tational method for systematically evaluating the494

outputs of inductive coding. At the heart of our495

contribution are four metrics designed to capture496

the multifaceted nature of inductive coding:497

• Coverage measures the depth and variation of 498

a coder’s contribution against the Aggregated 499

Code Space (ACS), reflecting the qualitative 500

goal of achieving breadth and depth in analy- 501

sis (Corbin and Strauss, 2008b). 502

• Overlap quantifies a coder’s alignment with 503

the conceptual consensus of the group, indi- 504

cating how much their interpretations resonate 505

with others. 506

• Novelty identifies the unique concepts a coder 507

introduces, highlighting their potential value 508

in bringing new perspectives to the analytical 509

process. 510

• Divergence measures how much a coder’s 511

conceptual focus differs from others in the 512

group, offering insight into their unique ana- 513

lytical lens. 514

Taken together, these metrics provide a holistic 515

and nuanced assessment of a coder’s performance 516

that does not rely on "ground truths" that may not 517

exist even with teams of human experts. Instead 518

of pursuing a single, simplistic measure of agree- 519

ment, our method embraces the subjectivity and 520

exploratory spirit of inductive qualitative analy- 521

sis (Corbin and Strauss, 1990; Braun and Clarke, 522

2012). It enables researchers to appreciate not only 523

consensus but also the valuable variation that dif- 524

ferent coders bring to the table, providing a more 525

complete picture of human-AI or human-human 526

collaboration processes. 527

6.1 The Necessity of the Iterative, 528

LLM-Enriched Merging Algorithm 529

RQ1 explored the impact of each stage of our merg- 530

ing algorithm. The findings from our ablation study 531

(see 5.1) show that while each stage progressively 532

reduces the number of codes in the Aggregated 533

Code Space (ACS), the most significant shift in our 534

metrics occurs between Stage 2 and Stage 3. This 535

transition, which introduces LLM-generated defini- 536

tions to the merging process, is far more impactful 537

than simply relaxing semantic distance thresholds, 538

as seen in the transitions between other stages. 539

This result confirms a central premise of our 540

work: capturing true conceptual similarity in in- 541

ductive coding requires moving beyond superficial 542

linguistic parallels. The "naive" merging stages 543

(Conditions 1 and 2), which rely solely on code la- 544

bels, are insufficient. Therefore, the introduction of 545
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LLM-generated definition centrally contributes to546

our proposed metrics. This step infuses the seman-547

tic representation of each code with meaning de-548

rived from its underlying data points ("examples"),549

without forcing a direct comparison between those550

data points. Such insulation is vital for the induc-551

tive workflow, where different coders may legiti-552

mately identify the same concept in different seg-553

ments of the data (Corbin and Strauss, 1990); com-554

paring data points directly would be prone to error.555

Hypotheses 1 and 2 also clarify the distinct roles556

of Stage 4 (iteratively merging with more relaxed557

thresholds), which produces a highly consolidated558

ACS but does not significantly impact the mea-559

suring outcome. Since we regenerate a label and560

definition for each merging pair, Stage 4 is compu-561

tationally intensive. Therefore, its utility depends562

on the research goal. To produce a clean concep-563

tual map for further interpretation, comparison, or564

synthesis (e.g., when identifying a coder’s poten-565

tial bias), the computational cost of Stage 4 is well566

justified. Conversely, when numerical metrics are567

the primary output (such as in large-scale model568

comparisons), the less computationally demanding569

Stage 3 may provide sufficiently stable and reliable570

outcomes for screening purposes.571

6.2 The Impact of LLM on Outcomes572

While the involvement of LLMs in the merging573

processes introduces intrinsic randomness, the find-574

ings from RQ2 confirm our method’s reliability575

and robustness across multiple LLMs and repeated576

runs. As shown in Hypothesis 4, with very high577

adjusted R2 values, our proposed metrics are over-578

whelmingly explained by coders’ intrinsic merits.579

Repeated measurements under the same conditions580

yield low coefficients of variation (Hypothesis 5),581

showing stability across multiple LLM samplings.582

Crucially, our metrics’ stability extends to the583

choice of LLM. Tested on a diverse set of models,584

the choice of model has little effect on the relative585

ranking of coders (Hypothesis 6), where the top586

and bottom-ranked performers remained consistent587

across all LLMs. This implication is significant for588

the practical adoption by qualitative researchers,589

as they can confidently use smaller, open-source590

models (e.g., Gemma3 27B) to measure outcomes591

from human or machine coders. Such models can592

be easily deployed locally, providing better privacy593

protections and regulation compliance for handling594

often sensitive human subject data.595

6.3 Performance of Metrics in Edge Cases 596

RQ3 evaluated the robustness and diagnostic utility 597

of our metrics in simulated edge cases. The "Flood- 598

ing" coder variant, explicitly prompted to produce 599

an excessive number of codes, was expected to cre- 600

ate significant redundancy. The metrics correctly 601

capture that: both "Flooding" variants registered 602

higher Coverage and Novelty, but with diminishing 603

returns that mark the results’ redundancy. 604

Similarly, the "Hallucinating" coder variant, 605

which worked from irrelevant data with the correct 606

prompt, was expected to produce thematically sim- 607

ilar codes but fail to capture critical details from 608

the true data. The metrics capture the issue as 609

well: both "Hallucinating" variants produced a pre- 610

dictable and dramatic drop in Coverage and Over- 611

lap, coupled with a sharp increase in Divergence. 612

In all three cases, our metrics behave predictably 613

in response to those coding issues, suggesting that 614

abnormal comparative values from our metrics can 615

serve as a "red flag" for further evaluation. This 616

diagnostic capability offers a layer of quality con- 617

trol that is essential for ensuring rigor in human-AI 618

collaborative workflows. 619

7 Conclusion 620

This paper presents a reliable and robust compu- 621

tational method for the theory-informed, system- 622

atic evaluation of inductive coding. By moving 623

beyond a reliance on a single "ground truth," our 624

approach provides a practical pathway for quali- 625

tative researchers to leverage AI in inductive ana- 626

lytical processes responsibly. By measuring and 627

quantifying conceptual ideas like coverage, over- 628

lap, novelty, and divergence, we shift the evaluation 629

focus of inductive coding from enforcing agree- 630

ment to a more nuanced appreciation of the diverse 631

contributions that each coder brings to the collab- 632

orative, exploratory process. As more and more 633

qualitative researchers explore LLMs for inductive 634

coding, we offer a timely contribution to ensure 635

methodological rigor and facilitate more effective 636

and transparent human-AI collaboration. 637
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A Limitations 849

While this study presents a robust computational method for evaluating inductive coding, it is important 850

to acknowledge its limitations. From there, future research can help establish best practices and clear 851

guidelines for qualitative researchers to adopt our metrics. 852

A.1 Limitation on the Dataset and Domain 853

The validation of our metrics was conducted on a single dataset consisting of online conversations from a 854

specific online community. While effective in this context, the method’s performance and the metrics’ 855

utility need to be tested on more diverse forms of qualitative data, such as semi-structured interview 856

transcripts or open-ended survey responses. The nuances of these different data types may present unique 857

challenges not encountered in this study. 858

A.2 Limitation on the Simulated Edge Cases 859

The "Flooding" and "Hallucinating" coders were created through explicit instructions to simulate poor 860

coding practices. Although our metrics successfully identified these simulated cases, further research is 861

needed to validate their diagnostic capabilities in real-world scenarios. This includes testing the method 862

on codes generated by novice human researchers, non-expert coders, or subtly flawed AI prompts, which 863

may produce less extreme and harder-to-detect issues than our simulated variants. 864

A.3 Limited Interpretations on Deviant LLM Behaviors 865

Despite 3 out of 4 models behaving similarly in our experiment (Hypothesis 3), our findings observed 866

deviated merging behaviors and behaviors with Gemini-2.5-Pro, which showed a tendency to merge codes 867

more. Even when the ranking order is relatively stable, this model choice leads to significant changes in 868

raw metric numbers. Further research should investigate whether and/or why the stronger reasoning model 869

merges differently, and whether this deep merging may prove preferable or not to human researchers. 870

B Potential Risks 871

While our computational method is designed to mitigate risks in human-AI qualitative analysis, its 872

improper application or the misinterpretation of its metrics can introduce other potential risks. 873

B.1 Misinterpretation of Metrics 874

Especially when coming from a non-qualitative research background, users may treat our computational 875

metrics as objective, definitive measures of quality, contrary to the exploratory and subjective nature of 876

inductive coding. For example, when substituting a baseline machine coder with its deviant variants, we 877

interpreted the higher Divergence metrics as an indicator of potential hallucination. However, deviating 878

from the consensus can also be valuable in other scenarios, such as a coder from a different intellectual 879

tradition or lived background. Over-reliance on metric values can prevent junior researchers from 880

developing the critical, interpretive skills that come from manual comparison, reflection, and building 881

consensus with peers. Hence, our metrics should be used as diagnostic tools to prompt deeper qualitative 882

inquiry, not as a substitute for it. 883

B.2 Dependency on the Coding Team 884

The Aggregated Code Space (ACS) is fundamentally a synthesis of the input codebook group. The 885

quality and comprehensiveness of the evaluation are therefore dependent on the diversity and rigor of 886

the coding team. If the entire human-AI team shares a particular bias or overlooks a critical theme, 887

the ACS will reflect this omission. Consequently, researchers who rely solely on metric values risk 888

automation bias, which diminishes critical engagement with the raw data and the coding process. We 889

encourage researchers to continue recruiting a diverse human team and employing multiple LLMs for 890

inductive coding. Moreover, they should also explore the interactive interface generated by our software 891

package, which provides a network-based visualization of codes and metrics. We intend to further study 892

the interface in an upcoming research project. 893
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B.3 Privacy and Data Security894

Our method involves processing data through Large Language Models and text embedding models. While895

our study prioritized the use of local, open-source models to protect sensitive data, researchers applying896

this method with proprietary, the usage of cloud-based APIs risk exposing confidential or personally897

identifiable information from their datasets. It is hence critical for researchers to maintain adherence to898

IRB protocols and relevant data privacy regulations.899

C Appendices900

C.1 Regression Results for Hypothesis 1901

This appendix provides complete regression tables supporting Hypothesis 1 (Section 5.1.1), which tests902

whether the algorithmic condition significantly affects the number of consolidated codes and the quality903

of generated open codes.904

We report outputs from five ordinary least squares (OLS) models. Regression 1 models the number905

of consolidated codes per transcript as a function of condition. Regression 2 consists of four separate906

models, each predicting one code-level metric: coverage, overlap, novelty, or divergence. Conditions907

are dummy-coded, and coder identity is sum-coded. All regressions use the design matrix described in908

Section 5.1.1, with coder identity sum-coded, condition dummy-coded (Condition 1 as the baseline), and909

heteroscedasticity-robust (HC3) standard errors.910

Table 2: Regression output for Consolidated Code Count (Hypothesis 1).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 1509.00 – – – [–, –]
Condition 2 -54.00 – – – [–, –]
Condition 3 -110.88 3.01 -36.90 0.000 [-116.77, -104.99]
Condition 4 -651.53 16.97 -38.40 0.000 [-684.78, -618.27]

Note: Standard errors unavailable for some parameters due to rank deficiency in constraints.911

Table 3: Regression output for Coverage % (Hypothesis 1).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 28.89 0.80 34.20 0.000 [27.20, 30.50]
Condition 2 0.09 1.20 0.08 0.936 [-2.20, 2.40]
Condition 3 3.60 0.90 4.23 0.000 [1.90, 5.30]
Condition 4 7.02 0.87 8.06 0.000 [5.30, 8.70]
(Coder dummies omitted)

Table 4: Regression output for Overlap % (Hypothesis 1).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 15.81 1.10 13.93 0.000 [13.60, 18.00]
Condition 2 -0.09 1.60 -0.06 0.956 [-3.30, 3.10]
Condition 3 5.45 1.10 4.75 0.000 [3.20, 7.70]
Condition 4 7.86 1.20 6.69 0.000 [5.60, 10.20]
(Coder dummies omitted)

Table 5: Regression output for Novelty % (Hypothesis 1).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 23.95 0.20 97.69 0.000 [23.50, 24.40]
Condition 2 0.05 0.30 0.15 0.879 [-0.60, 0.70]
Condition 3 0.94 0.26 3.61 0.000 [0.40, 1.40]
Condition 4 -1.64 0.27 -6.10 0.000 [-2.20, -1.10]
(Coder dummies omitted)
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Table 6: Regression output for Divergence % (Hypothesis 1).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 72.35 0.60 125.55 0.000 [71.20, 73.50]
Condition 2 0.37 0.80 0.48 0.633 [-1.10, 1.90]
Condition 3 -4.31 0.59 -7.29 0.000 [-5.50, -3.20]
Condition 4 -1.91 0.60 -3.20 0.001 [-3.10, -0.70]
(Coder dummies omitted)

C.2 Coder Rankings for Hypothesis 2 912

This appendix supports Hypothesis 2 (Section 5.1.2), which examines the relative ranking of coders 913

across evaluation conditions. For each metric, we present the metric outcomes and rankings of 8 coders 914

(plus two groups) per condition. Rel denotes the strength of evidence that the listed coder performs better 915

than the next one in the ranking chain. 916

Symbols: >>> p ≤ 0.001; >> 0.001 < p ≤ 0.01; > 0.01 < p ≤ 0.05; ≈ p > 0.05. These 917

thresholds are derived from Tukey’s HSD post-hoc comparisons following a one-way ANOVA on metric 918

values, conducted separately for each condition. Special note for Conditions 1 and 2: those conditions 919

do not involve probabilistic LLM-based merging and therefore are deterministic, denoted with >>>. 920

Table 7: Coder rankings by condition for Coverage (Hypothesis 2).

Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel

group: ai (84.80%) >>> group: ai (84.85%) >>> group: ai (87.66%) >>> group: ai (87.29%) >>>
item-verb-ai (48.25%) >>> item-any-ai (48.46%) >>> item-any-ai (56.67%) >>> item-any-ai (60.48%) >>>
item-any-ai (47.92%) >>> item-verb-ai (48.24%) >>> item-verb-ai (52.77%) >>> item-verb-ai (57.11%) >>>
group: human (40.58%) >>> group: human (40.22%) >>> group: human (43.93%) >>> group: human (47.10%) >>>
human-c (15.15%) >>> human-c (15.16%) >>> human-c (18.36%) >>> human-c (23.83%) >>>
human-b (14.10%) >>> human-b (13.90%) >>> human-b (16.11%) >>> human-b (20.36%) >>>
human-a (10.65%) >>> human-a (10.96%) >>> chunk-structured-ai (13.68%) > chunk-structured-ai (17.32%) ≈
human-d (10.18%) >>> human-d (10.34%) >>> chunk-barany-ai (12.64%) ≈ chunk-barany-ai (16.60%) >
chunk-barany-ai (8.90%) >>> chunk-barany-ai (8.89%) >>> human-d (12.43%) >>> human-d (15.25%) >
chunk-structured-ai (8.38%) chunk-structured-ai (8.83%) human-a (10.71%) human-a (13.83%)

Table 8: Coder rankings by condition for Overlap (Hypothesis 2).

Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel

group: ai (51.59%) >>> group: ai (50.79%) >>> group: ai (60.09%) >>> group: ai (57.30%) >>>
item-any-ai (29.22%) >>> item-any-ai (29.28%) >>> item-any-ai (41.64%) >>> item-any-ai (44.60%) >>>
item-verb-ai (28.09%) >>> item-verb-ai (27.88%) >>> item-verb-ai (36.49%) >>> item-verb-ai (40.72%) >>>
group: human (16.96%) >>> group: human (16.62%) >>> group: human (23.33%) >>> group: human (24.71%) >>>
human-b (7.19%) >>> human-b (6.97%) >>> human-c (10.65%) ≈ human-c (15.25%) >
human-c (6.94%) >>> human-c (6.89%) >>> human-b (9.86%) ≈ human-b (13.14%) ≈
human-a (5.91%) >>> human-a (6.06%) >>> chunk-structured-ai (8.60%) ≈ chunk-structured-ai (11.12%) ≈
human-d (5.34%) >>> human-d (5.42%) >>> human-d (7.73%) ≈ chunk-barany-ai (10.83%) ≈
chunk-structured-ai (3.45%) >>> chunk-structured-ai (3.73%) >>> chunk-barany-ai (7.68%) ≈ human-d (10.03%) ≈
chunk-barany-ai (3.40%) chunk-barany-ai (3.56%) human-a (6.57%) human-a (8.97%)
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Table 9: Coder rankings by condition for Novelty (Hypothesis 2).

Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel

group: ai (80.50%) >>> group: ai (80.44%) >>> group: ai (81.03%) >>> group: ai (77.74%) >>>
item-any-ai (42.43%) >>> item-any-ai (42.20%) >>> item-any-ai (45.05%) >>> item-any-ai (36.59%) ≈
item-verb-ai (39.34%) >>> item-verb-ai (39.69%) >>> item-verb-ai (42.12%) >>> item-verb-ai (35.80%) >>>
group: human (30.17%) >>> group: human (30.25%) >>> group: human (30.84%) >>> group: human (27.12%) >>>
human-c (11.65%) >>> human-c (11.49%) >>> human-c (12.84%) >>> human-c (11.78%) >>>
human-b (9.43%) >>> human-b (9.46%) >>> human-b (9.77%) >>> human-b (8.47%) ≈
chunk-structured-ai (7.44%) >>> chunk-structured-ai (7.54%) >>> chunk-structured-ai (7.79%) > chunk-structured-ai (8.00%) ≈
chunk-barany-ai (7.20%) >>> chunk-barany-ai (7.21%) >>> chunk-barany-ai (7.21%) >>> chunk-barany-ai (7.36%) >>>
human-d (6.14%) >>> human-d (6.25%) >>> human-d (6.44%) > human-d (5.37%) ≈
human-a (5.25%) human-a (5.54%) human-a (5.82%) human-a (4.92%)

Table 10: Coder rankings by condition for Divergence (Hypothesis 2).

Condition 1 Rel Condition 2 Rel Condition 3 Rel Condition 4 Rel

chunk-barany-ai (78.87%) >>> chunk-barany-ai (78.70%) >>> human-a (73.88%) > human-a (74.57%) ≈
chunk-structured-ai (78.50%) >>> chunk-structured-ai (78.38%) >>> chunk-barany-ai (72.87%) ≈ human-d (73.98%) ≈
human-d (75.40%) >>> human-d (75.69%) >>> human-d (72.61%) > chunk-barany-ai (73.59%) ≈
human-c (74.87%) >>> human-c (75.31%) >>> chunk-structured-ai (71.57%) ≈ chunk-structured-ai (73.41%) >>
human-a (74.72%) >>> human-a (75.10%) >>> human-c (71.24%) ≈ human-b (72.37%) ≈
human-b (74.09%) >>> human-b (74.67%) >>> human-b (70.89%) >>> human-c (71.86%) >>>
group: human (69.45%) >>> group: human (69.94%) >>> group: ai (65.24%) ≈ group: ai (70.05%) >>>
group: ai (68.84%) >>> group: ai (69.45%) >>> group: human (64.77%) >>> group: human (68.09%) >>>
item-verb-ai (65.08%) >>> item-verb-ai (65.56%) >>> item-verb-ai (60.17%) >>> item-verb-ai (64.07%) >>>
item-any-ai (63.72%) item-any-ai (64.43%) item-any-ai (57.20%) item-any-ai (62.41%)

C.3 Regression Results for Hypotheses 3 and 4921

This appendix providesOLS regression results supporting Hypotheses 3 and 4 (Section 5.2.1 and 5.2.2).922

Hypothesis 3 tests whether the LLM used in the merging process significantly influences each code-level923

metric and the number of consolidated codes. Hypothesis 4 evaluates how well condition, merging model,924

and coder identity together explain variation in outcomes. All results are based on the model:925

Y ∼ C(condition) + C(model, Sum) + C(coder, Sum)926

where Y represents each outcome of interest. We use dummy-coding for the condition (Condition927

3 as the baseline), sum-coding for the model and coder identity (Average as the baseline), and HC3928

heteroscedasticity-robust standard errors. Coefficients are interpreted as deviations from the baseline.929

Table 11: Regression output for Consolidated Codes (Hypotheses 3 and 4).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 295.2700 3.015 97.94 0.000 [289.361, 301.179]
Condition 4 -78.1800 4.442 -17.60 0.000 [-86.886, -69.474]
Gemini-2.5-pro -15.0150 4.609 -3.26 0.001 [-24.048, -5.982]
Gemma3-27b 1.3700 3.642 0.38 0.707 [-5.768, 8.508]
GPT-4.1 2.5150 3.607 0.70 0.486 [-4.555, 9.585]
(Coder terms omitted)

R2 = 0.951 Adjusted R2 = 0.950

Table 12: Regression output for Coverage % (Hypotheses 3 and 4).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.3250 0.001 326.50 0.000 [0.323, 0.327]
Condition 4 0.0342 0.002 22.59 0.000 [0.031, 0.037]
Gemini-2.5-pro 0.0440 0.002 24.48 0.000 [0.041, 0.048]
Gemma3-27b -0.0122 0.001 -11.28 0.000 [-0.014, -0.010]
GPT-4.1 -0.0152 0.001 -14.75 0.000 [-0.017, -0.013]
(Coder terms omitted)

R2 = 0.993 Adjusted R2 = 0.993
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Table 13: Regression output for Overlap % (Hypotheses 3 and 4).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.2126 0.001 147.81 0.000 [0.210, 0.215]
Condition 4 0.0240 0.002 10.72 0.000 [0.020, 0.028]
Gemini-2.5-pro 0.0637 0.003 23.97 0.000 [0.058, 0.069]
Gemma3-27b -0.0189 0.002 -11.55 0.000 [-0.022, -0.016]
GPT-4.1 -0.0213 0.001 -14.74 0.000 [-0.024, -0.018]
(Coder terms omitted)

R2 = 0.970 Adjusted R2 = 0.969

Table 14: Regression output for Novelty % (Hypotheses 3 and 4).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.2489 0.001 309.04 0.000 [0.247, 0.251]
Condition 4 -0.0258 0.001 -20.21 0.000 [-0.028, -0.023]
Gemini-2.5-pro 0.0136 0.001 10.41 0.000 [0.011, 0.016]
Gemma3-27b -0.0052 0.001 -4.75 0.000 [-0.007, -0.003]
GPT-4.1 -0.0046 0.001 -4.59 0.000 [-0.007, -0.003]
(Coder terms omitted)

R2 = 0.994 Adjusted R2 = 0.994

Table 15: Regression output for Divergence % (Hypotheses 3 and 4).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.6804 0.001 803.88 0.000 [0.679, 0.682]
Condition 4 0.0240 0.001 20.54 0.000 [0.022, 0.026]
Gemini-2.5-pro -0.0420 0.001 -31.99 0.000 [-0.045, -0.039]
Gemma3-27b 0.0121 0.001 13.04 0.000 [0.010, 0.014]
GPT-4.1 0.0166 0.001 19.77 0.000 [0.015, 0.018]
(Coder terms omitted)

R2 = 0.920 Adjusted R2 = 0.919

C.4 Regression Results for Hypothesis 5 930

This appendix provides regression outputs supporting Hypothesis 5 (Section 5.2.3), which evaluates the 931

stability of metric outputs by analyzing the coefficient of variation (CoV) across stochastic LLM runs in 932

Conditions 3 and 4. All models use ordinary least squares (OLS) regression to predict the CoV for each 933

metric, using condition, merging model, and coder identity as predictors. Condition is dummy-coded 934

(Condition 3 as baseline), and both model and coder identity are sum-coded (average as baseline). Robust 935

(HC3) standard errors are used. 936

Table 16: Regression output for CoV of Consolidated Code Count (Hypothesis 5).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.0040 0.001 5.93 0.000 [0.003, 0.005]
Condition 4 0.0236 0.002 15.23 0.000 [0.021, 0.027]
Gemini-2.5-pro 0.0047 0.001 3.88 0.000 [0.002, 0.007]
Gemma3-27b -0.0023 0.002 -1.49 0.136 [-0.005, 0.001]
GPT-4.1 0.0021 0.001 1.55 0.120 [-0.001, 0.005]
(Coder dummies omitted)
R2 = 0.830 Adjusted R2 = 0.797
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Table 17: Regression output for CoV of Coverage (Hypothesis 5).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.0272 0.003 9.36 0.000 [0.021, 0.033]
Condition 4 0.0307 0.005 6.77 0.000 [0.022, 0.040]
Gemini-2.5-pro 0.0019 0.004 0.54 0.587 [-0.005, 0.009]
Gemma3-27b -0.0071 0.004 -1.68 0.093 [-0.015, 0.001]
GPT-4.1 0.0020 0.004 0.50 0.621 [-0.006, 0.010]
(Coder dummies omitted)
R2 = 0.737 Adjusted R2 = 0.686

Table 18: Regression output for CoV of Overlap (Hypothesis 5).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.0440 0.004 11.34 0.000 [0.036, 0.052]
Condition 4 0.0490 0.007 7.45 0.000 [0.036, 0.062]
Gemini-2.5-pro -0.0043 0.005 -0.83 0.404 [-0.014, 0.006]
Gemma3-27b -0.0108 0.006 -1.74 0.082 [-0.023, 0.001]
GPT-4.1 0.0051 0.006 0.88 0.377 [-0.006, 0.016]
(Coder dummies omitted)
R2 = 0.698 Adjusted R2 = 0.639

Table 19: Regression output for CoV of Novelty (Hypothesis 5).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.0359 0.004 8.09 0.000 [0.027, 0.045]
Condition 4 0.0495 0.006 7.67 0.000 [0.037, 0.062]
Gemini-2.5-pro 0.0163 0.006 2.61 0.009 [0.004, 0.029]
Gemma3-27b -0.0130 0.006 -2.18 0.029 [-0.025, -0.001]
GPT-4.1 -0.0049 0.005 -1.01 0.311 [-0.014, 0.005]
(Coder dummies omitted)
R2 = 0.784 Adjusted R2 = 0.741

Table 20: Regression output for CoV of Divergence (Hypothesis 5).

Predictor coef std err z P> |z| [0.025, 0.975]
Intercept 0.0090 0.001 17.95 0.000 [0.008, 0.010]
Condition 4 0.0038 0.001 4.80 0.000 [0.002, 0.005]
Gemini-2.5-pro 0.0042 0.001 5.61 0.000 [0.003, 0.006]
Gemma3-27b -0.0034 0.001 -4.67 0.000 [-0.005, -0.002]
GPT-4.1 -0.0007 0.001 -1.07 0.284 [-0.002, 0.001]
(Coder dummies omitted)
R2 = 0.597 Adjusted R2 = 0.518

C.5 Coder Rankings for Hypothesis 6937

This appendix presents full coder ranking tables supporting Hypothesis 6 (Section 5.2.4), which investi-938

gates whether the choice of evaluation LLM affects the relative ranking of coders. For each metric, we939

compute average scores per coder and rank them separately under four evaluation models in Condition 3940

and Condition 4. Rel denotes the strength of evidence that the listed coder performs better than the next941

one in the ranking chain.942

Symbols: >>> p ≤ 0.001; >> 0.001 < p ≤ 0.01; > 0.01 < p ≤ 0.05; ≈ p > 0.05. These943

thresholds are derived from Tukey’s HSD post-hoc comparisons following a one-way ANOVA on metric944

values, conducted separately for each condition.945

Table 21: Coder rankings for Coverage, Condition 3 (Hypothesis 6).

Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

group: ai (87.66%) >>> group: ai (90.23%) >>> group: ai (86.50%) >>> group: ai (86.64%) >>> group: ai (87.25%) >>>
item-any-ai (56.67%) >>> item-any-ai (60.27%) > item-any-ai (56.54%) >>> item-any-ai (54.61%) >>> item-any-ai (55.27%) >>>
item-verb-ai (52.77%) >>> item-verb-ai (58.96%) >>> item-verb-ai (51.35%) >>> item-verb-ai (49.89%) >>> item-verb-ai (50.87%) >>>
group: human (43.93%) >>> group: human (48.08%) >>> group: human (42.39%) >>> group: human (42.34%) >>> group: human (42.90%) >>>
human-c (18.36%) >>> human-c (22.85%) >>> human-c (16.47%) ≈ human-c (16.79%) >>> human-c (17.32%) >>>
human-b (16.11%) >>> human-b (18.11%) >>> human-b (16.14%) >>> human-b (14.80%) >>> human-b (15.37%) ≈
chunk-structured-ai (13.68%) > human-d (13.64%) ≈ chunk-structured-ai (14.29%) >>> chunk-structured-ai (12.71%) ≈ chunk-structured-ai (14.69%) >>>
chunk-barany-ai (12.64%) ≈ chunk-structured-ai (13.02%) ≈ chunk-barany-ai (12.83%) >>> chunk-barany-ai (11.83%) ≈ chunk-barany-ai (13.15%) ≈
human-d (12.43%) >>> chunk-barany-ai (12.74%) > human-d (12.02%) >>> human-d (11.62%) >> human-d (12.44%) >>>
human-a (10.71%) human-a (11.39%) human-a (10.40%) human-a (10.52%) human-a (10.55%)
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Table 22: Coder rankings for Coverage, Condition 4 (Hypothesis 6).

Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

group: ai (87.29%) >>> group: ai (91.26%) >>> group: ai (85.28%) >>> group: ai (87.15%) >>> group: ai (85.45%) >>>
item-any-ai (60.48%) >>> item-any-ai (69.10%) >>> item-any-ai (56.87%) >>> item-any-ai (59.19%) >>> item-any-ai (56.76%) >>>
item-verb-ai (57.11%) >>> item-verb-ai (65.58%) >>> item-verb-ai (54.42%) >>> item-verb-ai (54.93%) >>> item-verb-ai (53.49%) >>>
group: human (47.10%) >>> group: human (55.52%) >>> group: human (44.90%) >>> group: human (44.16%) >>> group: human (43.83%) >>>
human-c (23.83%) >>> human-c (32.22%) >>> human-c (20.99%) >> human-c (21.81%) >>> human-c (20.30%) >>>
human-b (20.36%) >>> human-b (27.30%) >>> human-b (18.91%) > human-b (18.06%) >>> human-b (17.17%) ≈
chunk-structured-ai (17.32%) ≈ chunk-structured-ai (21.35%) ≈ chunk-structured-ai (16.97%) ≈ chunk-structured-ai (15.32%) ≈ chunk-structured-ai (15.66%) ≈
chunk-barany-ai (16.60%) > chunk-barany-ai (21.32%) ≈ chunk-barany-ai (15.87%) > chunk-barany-ai (14.95%) ≈ chunk-barany-ai (14.27%) ≈
human-d (15.25%) > human-d (20.43%) ≈ human-d (13.96%) ≈ human-d (14.04%) ≈ human-d (12.56%) ≈
human-a (13.83%) human-a (18.83%) human-a (12.67%) human-a (12.43%) human-a (11.38%)

Table 23: Coder rankings for Overlap, Condition 3 (Hypothesis 6).

Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

group: ai (60.09%) >>> group: ai (70.62%) >>> group: ai (55.60%) >>> group: ai (56.08%) >>> group: ai (58.08%) >>>
item-any-ai (41.64%) >>> item-any-ai (47.70%) >> item-any-ai (41.21%) >>> item-any-ai (38.03%) >>> item-any-ai (39.60%) >>>
item-verb-ai (36.49%) >>> item-verb-ai (45.72%) >>> item-verb-ai (34.58%) >>> item-verb-ai (31.84%) >>> item-verb-ai (33.82%) >>>
group: human (23.33%) >>> group: human (28.80%) >>> group: human (21.55%) >>> group: human (20.88%) >>> group: human (22.08%) >>>
human-c (10.65%) ≈ human-c (15.43%) >>> human-b (9.76%) ≈ human-c (8.78%) ≈ human-c (9.57%) ≈
human-b (9.86%) ≈ human-b (12.21%) >>> chunk-structured-ai (9.14%) ≈ human-b (8.28%) ≈ chunk-structured-ai (9.48%) ≈
chunk-structured-ai (8.60%) ≈ human-d (9.20%) ≈ human-c (8.82%) >> chunk-structured-ai (7.44%) ≈ human-b (9.18%) ≈
human-d (7.73%) ≈ chunk-structured-ai (8.37%) ≈ chunk-barany-ai (7.85%) ≈ human-d (6.77%) ≈ chunk-barany-ai (8.06%) ≈
chunk-barany-ai (7.68%) ≈ chunk-barany-ai (8.14%) ≈ human-d (7.34%) >>> chunk-barany-ai (6.68%) ≈ human-d (7.62%) >
human-a (6.57%) human-a (7.55%) human-a (6.19%) human-a (6.22%) human-a (6.30%)

Table 24: Coder rankings for Overlap, Condition 4 (Hypothesis 6).

Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

group: ai (57.30%) >>> group: ai (73.02%) >>> group: ai (50.65%) >>> group: ai (55.45%) >>> group: ai (50.09%) >>>
item-any-ai (44.60%) >>> item-any-ai (57.66%) >> item-any-ai (39.58%) >>> item-any-ai (42.19%) >>> item-any-ai (38.97%) >>>
item-verb-ai (40.72%) >>> item-verb-ai (54.01%) >>> item-verb-ai (36.58%) >>> item-verb-ai (37.39%) >>> item-verb-ai (34.92%) >>>
group: human (24.71%) >>> group: human (34.62%) >>> group: human (21.65%) >>> group: human (21.66%) >>> group: human (20.90%) >>>
human-c (15.25%) > human-c (24.31%) >>> human-c (12.09%) ≈ human-c (13.18%) ≈ human-c (11.40%) ≈
human-b (13.14%) ≈ human-b (20.23%) >>> human-b (11.52%) ≈ human-b (10.89%) ≈ human-b (9.92%) ≈
chunk-structured-ai (11.12%) ≈ chunk-barany-ai (15.39%) ≈ chunk-structured-ai (10.89%) ≈ chunk-barany-ai (9.10%) ≈ chunk-structured-ai (9.72%) ≈
chunk-barany-ai (10.83%) ≈ human-d (15.11%) ≈ chunk-barany-ai (10.15%) ≈ chunk-structured-ai (9.01%) ≈ chunk-barany-ai (8.68%) ≈
human-d (10.03%) ≈ chunk-structured-ai (14.88%) ≈ human-d (8.65%) ≈ human-d (8.98%) ≈ human-d (7.37%) ≈
human-a (8.97%) human-a (13.66%) human-a (7.78%) human-a (7.81%) human-a (6.62%)

Table 25: Coder rankings for Novelty, Condition 3 (Hypothesis 6).

Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

group: ai (81.03%) >>> group: ai (83.66%) >>> group: ai (79.24%) >>> group: ai (80.56%) >>> group: ai (80.67%) >>>
item-any-ai (45.05%) >>> item-any-ai (47.25%) >>> item-any-ai (44.34%) >>> item-any-ai (44.33%) >>> item-any-ai (44.26%) >>>
item-verb-ai (42.12%) >>> item-verb-ai (44.94%) >>> item-verb-ai (41.07%) >>> item-verb-ai (40.69%) >>> item-verb-ai (41.78%) >>>
group: human (30.84%) >>> group: human (31.36%) >>> group: human (30.60%) >>> group: human (30.79%) >>> group: human (30.61%) >>>
human-c (12.84%) >>> human-c (13.54%) >>> human-c (12.44%) >>> human-c (12.60%) >>> human-c (12.79%) >>>
human-b (9.77%) >>> human-b (9.93%) >> human-b (9.76%) >>> human-b (9.97%) >>> human-b (9.44%) >>
chunk-structured-ai (7.79%) > chunk-structured-ai (8.68%) ≈ chunk-structured-ai (7.50%) >> chunk-structured-ai (7.65%) ≈ chunk-structured-ai (7.34%) ≈
chunk-barany-ai (7.21%) >>> chunk-barany-ai (7.90%) > chunk-barany-ai (6.86%) ≈ chunk-barany-ai (7.08%) >>> chunk-barany-ai (6.99%) ≈
human-d (6.44%) > human-d (6.77%) ≈ human-d (6.44%) > human-d (6.09%) ≈ human-d (6.46%) ≈
human-a (5.82%) human-a (5.79%) human-a (5.94%) human-a (5.76%) human-a (5.80%)
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Table 26: Coder rankings for Novelty, Condition 4 (Hypothesis 6).

Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

group: ai (77.74%) >>> group: ai (80.88%) >>> group: ai (75.22%) >>> group: ai (78.34%) >>> group: ai (76.50%) >>>
item-any-ai (36.59%) ≈ item-any-ai (39.56%) >>> item-verb-ai (34.99%) ≈ item-any-ai (36.49%) > item-verb-ai (36.74%) ≈
item-verb-ai (35.80%) >>> item-verb-ai (36.31%) >>> item-any-ai (34.74%) >>> item-verb-ai (35.17%) >>> item-any-ai (35.58%) >>>
group: human (27.12%) >>> group: human (27.41%) >>> group: human (28.28%) >>> group: human (25.06%) >>> group: human (27.73%) >>>
human-c (11.78%) >>> human-c (11.97%) ≈ human-c (11.84%) >>> human-c (11.14%) >>> human-c (12.16%) >>>
human-b (8.47%) ≈ chunk-structured-ai (11.29%) ≈ human-b (8.70%) >>> chunk-structured-ai (8.26%) ≈ human-b (8.03%) >>
chunk-structured-ai (8.00%) ≈ chunk-barany-ai (9.62%) ≈ chunk-barany-ai (6.97%) ≈ human-b (7.58%) ≈ chunk-structured-ai (6.15%) ≈
chunk-barany-ai (7.36%) >>> human-b (9.59%) >>> chunk-structured-ai (6.31%) ≈ chunk-barany-ai (7.15%) >>> chunk-barany-ai (5.69%) ≈
human-d (5.37%) ≈ human-d (6.59%) ≈ human-d (5.41%) ≈ human-d (4.16%) ≈ human-d (5.33%) ≈
human-a (4.92%) human-a (6.24%) human-a (5.04%) human-a (4.09%) human-a (4.33%)

Table 27: Coder rankings for Divergence, Condition 3 (Hypothesis 6).

Condition 3 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

human-a (73.88%) > human-a (71.91%) ≈ human-a (74.56%) >>> human-a (74.62%) ≈ human-a (74.44%) >>>
chunk-barany-ai (72.87%) ≈ chunk-barany-ai (71.78%) ≈ human-c (73.38%) ≈ chunk-barany-ai (74.52%) ≈ human-d (72.83%) ≈
human-d (72.61%) > chunk-structured-ai (71.29%) ≈ human-d (73.05%) ≈ human-d (74.13%) ≈ chunk-barany-ai (72.40%) ≈
chunk-structured-ai (71.57%) ≈ human-d (70.45%) >>> chunk-barany-ai (72.76%) >>> chunk-structured-ai (73.53%) ≈ human-c (72.38%) ≈
human-c (71.24%) ≈ human-b (67.73%) >>> human-b (71.07%) ≈ human-c (73.43%) ≈ human-b (71.78%) >>>
human-b (70.89%) >>> human-c (65.79%) >>> chunk-structured-ai (71.01%) >>> human-b (72.96%) >>> chunk-structured-ai (70.44%) >>>
group: ai (65.24%) ≈ group: ai (60.48%) ≈ group: ai (66.89%) > group: ai (67.14%) ≈ group: ai (66.46%) ≈
group: human (64.77%) >>> group: human (59.93%) >>> group: human (66.34%) >>> group: human (66.88%) >>> group: human (65.93%) >>>
item-verb-ai (60.17%) >>> item-verb-ai (53.78%) >> item-verb-ai (61.38%) >>> item-verb-ai (63.30%) >>> item-verb-ai (62.21%) >>>
item-any-ai (57.20%) item-any-ai (52.27%) item-any-ai (57.83%) item-any-ai (59.91%) item-any-ai (58.81%)

Table 28: Coder rankings for Divergence, Condition 4 (Hypothesis 6).

Condition 4 Rel Gemini-2.5-pro Rel Gemma3-27B Rel GPT-4.1 Rel Qwen-QwQ-32B Rel

human-a (74.57%) ≈ chunk-structured-ai (70.94%) ≈ human-a (75.75%) ≈ human-a (75.38%) ≈ human-a (76.45%) ≈
human-d (73.98%) ≈ human-a (70.68%) ≈ human-d (75.28%) ≈ chunk-structured-ai (75.00%) ≈ human-d (75.98%) ≈
chunk-barany-ai (73.59%) ≈ chunk-barany-ai (70.36%) ≈ human-c (74.41%) ≈ chunk-barany-ai (74.76%) ≈ chunk-barany-ai (75.01%) ≈
chunk-structured-ai (73.41%) >> human-d (70.09%) >>> chunk-barany-ai (74.23%) ≈ human-d (74.59%) ≈ human-b (74.54%) ≈
human-b (72.37%) ≈ human-b (67.20%) > human-b (73.84%) ≈ human-b (73.89%) ≈ human-c (74.33%) ≈
human-c (71.86%) >>> human-c (65.45%) ≈ chunk-structured-ai (73.53%) >> human-c (73.23%) >>> chunk-structured-ai (74.18%) >>>
group: ai (70.05%) >>> group: ai (65.00%) >>> group: ai (72.02%) >>> group: ai (71.33%) >> group: ai (71.83%) >
group: human (68.09%) >>> group: human (61.91%) >>> group: human (70.45%) >>> group: human (69.62%) >>> group: human (70.40%) >>>
item-verb-ai (64.07%) >>> item-verb-ai (57.50%) ≈ item-verb-ai (66.28%) >> item-verb-ai (65.87%) >>> item-verb-ai (66.62%) >>>
item-any-ai (62.41%) item-any-ai (56.40%) item-any-ai (64.94%) item-any-ai (63.87%) item-any-ai (64.45%)
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