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ABSTRACT

Vision-Language Models (VLMs) have demonstrated remarkable success across
diverse visual tasks, yet their performance degrades in complex visual environ-
ments. While existing enhancement approaches require additional training, rely
on external segmentation tools, or operate at coarse-grained levels, they overlook
the innate ability within VLMs. To bridge this gap, we investigate VLMs’ at-
tention patterns and discover that: (1) visual complexity strongly correlates with
attention entropy, negatively impacting reasoning performance; (2) attention pro-
gressively refines from global scanning in shallow layers to focused convergence
in deeper layers, with convergence degree determined by visual complexity. (3)
Theoretically, we prove that the contrast of attention maps between general queries
and task-specific queries enables the decomposition of visual signal into seman-
tic signals and visual noise components. Building on these insights, we propose
Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-
free method that extracts task-relevant visual signals through attention contrasting
at the pixel level. Extensive experiments demonstrate that CARVE consistently
enhances performance, achieving up to 75% improvement on open-source mod-
els. Our work provides critical insights into the interplay between visual complex-
ity and attention mechanisms, offering an efficient pathway for improving visual
reasoning with contrasting attention.

1 INTRODUCTION

Vision-Language Models (VLMs) have achieved remarkable success across diverse tasks (Radford
et al., 2021; Jia et al., 2021; Alayrac et al., 2022). However, in human vision, complex visual
features frequently divert attention from task-relevant regions (Treisman & Gelade, 1980). Given
this cognitive parallel, a question arises: Similarly, do complex images interfere with VLMs’ attention
mechanisms, making it difficult for them to focus on task-relevant regions?

To answer this question, we investigate the relationship between visual complexity and attention
patterns via quantitative experiments. Specifically, we define visual complexity as texture and color
dimensions, revealing a significant positive correlation between both factors and attention entropy.
Furthermore, our analysis shows that attention entropy negatively correlates with accuracy on visual
reasoning tasks. Through this two-stage analysis, we establish that complex visual information
impairs VLMs’ reasoning performance via attention distribution (detailed in Section 3).

Based on these findings, we conduct a preliminary experiment on TextVQA (Singh et al., 2019)
by first applying progressive masking to obscure background regions, then cropping to retain only
task-relevant regions and adaptively magnifying them to the original image size. Figure 1 presents
two representative samples where cluttered visual environments initially cause incorrect predictions.
While incorrect token probability initially prevails in both samples, correct token probability sur-
passes incorrect probability at mask ratios of approximately 0.02 and 0.65 respectively. These results
provide initial validation that masking visual noise can improve correct token probability.

To automate the visual noise masking process, we leverage contrasting attention maps between
general instructions and task-specific questions to distinguish semantic signal from visual noise.
To this end, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a
contrastive method for visual extraction. By masking with contrastive attention maps, CARVE
crops and magnifies semantic regions to focus on essential semantic signal (detailed in Section 4).
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Q: What shape is seen through the cups handle? Q: How many crayons are in the box?

Figure 1: The effect of manually progressive masking on candidate tokens probabilities predicted
by QWEN2.5-VL-3B. The x-axis represents mask ratio and y-axis shows log10 probability.

2 RELATED WORK

Contrastive Learning in LLMs. Liu et al. (2023b) pioneered contrastive objectives for aligning
LLMs with human preferences, establishing the foundation for RECIPE (Chen et al., 2024b), which
trains a Knowledge Sentinel to determine when queries trigger knowledge updates. Building on
alignment challenges, Jiang et al. (2024) employ hallucinated text as hard negatives while Zhang
et al. (2024b) apply contrastive learning in hidden representations to suppress hallucinations. Zhai
et al. (2025) traces critical transmission paths across all layers, treating less important pathways as
negatives, which Pan et al. (2024) further adapted to multimodal LLMs through UniKE’s semantic-
truthfulness space disentanglement. Departing from embedding-space modifications, DeCK (Bi
et al., 2025a) shifts contrastive logic to the decoding stage by comparing token probabilities with
and without injected knowledge, while parallel applications emerged in DistiLLM-2 (Ko et al., 2025)
for knowledge distillation and Zhu et al. (2024) for factual consistency enhancement.

Attention-based LLM Optimization. Alayrac et al. (2022) established multimodal foundations
through perceiver resampler architecture, which Li et al. (2023a) refined via a lightweight Query-
ing Transformer for parameter-efficient visual extraction. Extending attention optimization to text
modality, Chen et al. (2025) exploit attention scores for dynamic prompt compression through im-
portance sampling at both token and sentence levels. Ma et al. (2024a) eliminated redundant visual
token computations while Acharya et al. (2024) introduced block-sparse mechanisms for parallel
processing, and Liu et al. (2025b) bypassed attention bottlenecks through sequential chunk process-
ing in Recurrent LLMs. Yao et al. (2025b) identified position bias in multimodal RAG where models
over-focus on boundary items. Zhang et al. (2025) discovered that models consistently know where
to look, even when they provide the wrong answer. Our method eliminates visual noise by contrast-
ing attention maps to distinguish semantic pixels from noise pixels without requiring training.

3 FAILURE TO FOCUS: PHENOMENON, MECHANISM, AND CONSEQUENCE

3.1 PHENOMENON: UNDER WHAT CONDITIONS VISUAL FOCUS FAILS

Building upon the question in Section 1, we aim to investigate the underlying causes of VLMs’
answering failures. We conduct experiments on TextVQA dataset using QWEN2.5-VL-3B-
INSTRUCT. As shown in Figure 2, we visualize attention maps during inference and find two inter-
esting phenomena. Attention progressively refines from broad global scanning in shallow layers to
regional localization in the middle layers, culminating in focused convergence in deep layers. The
degree of convergence varies based on input images.

Moreover, visual complexity critically influences attention convergence. In simple scenes with clear
targets and minimal distractors, the high-attention regions successfully narrow as layers deepen,
aligning with task-relevant regions. Conversely, in complex scenes with rich textures and colors, the
high-attention regions still attempt to narrow as layers deepen, yet the resulting attention weights re-
main more diffused compared to simple scenes. As indicated by the annotation “Confused where to
look”, this attention dispersion resembles human hesitation when confronting crowded shelves and
ultimately manifests as reasoning failures. These observations lead us to formulate a question: Does
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Shallow Layers

Focus on Object 

Confused where to look

Finding Object

Q: What brand is the bottle 
with red label?

Q: What brand of vinegar  
is in the bottles on the left?

29

jim beam

infuser

Global Scanning

Q: What is the player's 
number? 

Middle Layers Deep Layers

Figure 2: Attention maps across different layers during inference. Each row represents a visual
question-answering task: row 1 shows a simple scene with clear targets, while rows 2-3 depict
complex scenes with dense textures and multiple similar objects. From left to right, the columns
display: input images, shallow layer attention, middle layer attention, and deep layer attention.

visual complexity affect VLMs’ attention distribution, and does this attention distribution further
influence VLMs’ performance?

To answer it, we conduct two deeper experiments: First, we quantify the relationship between visual
complexity and attention entropy to establish whether complex inputs produce dispersed attention
(Section 3.2); Second, we examine the correlation between attention entropy and model performance
to determine whether dispersed attention contributes to reasoning failures (Section 3.3).

3.2 MECHANISM: THE EFFECT OF VISUAL COMPLEXITY ON ATTENTION ENTROPY

In Figure 2, images in rows 2-3 differ from row 1 by displaying numerous colorful bottles, contain-
ing significantly more textures and colors. Therefore, we decompose visual complexity into two
dimensions: texture and color, and investigate their respective impacts on attention.

We define the texture complexity and the color complexity as follows:

Texture Complexity. Let I ∈ RH×W×3 denote an input image. We define the texture complexity
Tc(I) using Canny edge detection (Canny, 1986), where E(I) ∈ {0, 1}H×W represents the resulting
binary edge map. The texture complexity is then defined as:

Tc(I) =
1

HW

H∑
i=1

W∑
j=1

E(I)ij =
∥E(I)∥1
HW

∈ [0, 1] (3.1)

Color Complexity. Let ζij = Hue(ΨRGB→HSV (Iij)) denote the hue value at pixel (i, j) after
applying the RGB to HSV transformation operator Ψ. The color complexity is then defined as:

Cc(I) = −
1

lnB

B−1∑
b=0

ρb ln ρb, where ρb =
nb

HW
, nb = |{(i, j) : ζij = b}| (3.2)

with B = 180 hue bins, yielding Cc ∈ [0, 1] where higher values indicate greater color diversity.

3
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Figure 3: Visualization of texture and color complexity analysis. Each row represents a sample
image: (a) Original image I, (b) Canny edge map E(I) for texture complexity Tc, (c) Spatial hue
distribution ζ in HSV space, and (d) Hue statistic (x-axis: hue value, y-axis: ratio).
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Figure 4: Correlation analysis between visual complexity and attention entropy. Both attention
entropy and complexity are normalized to the [0, 1], divided into intervals of 0.1, and the average
attention entropy is calculated within each interval.

Figure 3 visually validates the effectiveness of our complexity measurement approach. The first
row demonstrates high texture complexity with dense edge networks in E(I) and diverse color
distribution across the hue spectrum. In contrast, the second row exhibits minimal edge density and
concentrated hue values, indicating lower complexity scores. We therefore proceed to quantitatively
investigate the correlation between complexity metrics and attention distribution.

For measuring the distribution of attention across visual tokens, inspired by Yao et al. (2025b), we
employ Shannon entropy (Shannon, 1948) as our quantification metric. Let Nv denote the number
of visual tokens in the model’s representation. We denote the attention map as A(Q)

l,t ∈ RNv , where l
indicates the layer index, t the generation time step, and Q the input question. For entropy analysis,
we focus on the final generation step tend and define the overall attention entropyH as:

H =
1

|L|
∑
l∈L

H(A(Q)
l,tend

) =
1

|L|
∑
l∈L

(
−

Nv∑
i=1

al,tend,i ln al,tend,i

)
(3.3)

where L = [Lstart, Lend] represents the layer range under consideration, and al,t,i denotes the con-
trasted attention weight for the i-th visual token. Higher entropy indicates more dispersed attention,
while lower entropy indicates more concentrated focus.

Figure 4 presents the correlation analysis between our defined complexity metrics and computed
attention entropy. Both texture complexity (Figure 4a) and color complexity (Figure 4b) exhibit
strong positive linear relationships with attention entropy. This monotonic trend indicates that com-
plex visual features lead to dispersed attention patterns in VLMs.

3.3 CONSEQUENCE: HOW DISPERSED ATTENTION IMPAIRS PERFORMANCE

Figure 5(a) reveals a strong negative correlation between attention entropy and accuracy. As atten-
tion entropy increases from 5.1 to 6.8, performance decreases from approximately 76% to 65%, con-
firming that increased attention dispersion directly impairs visual reasoning capabilities in VLMs.
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Figure 5: Attention entropy’s correlation with accuracy and its evolution across layers. Shaded
regions indicate 95% confidence intervals computed as x̄ ± t0.975,n−1 · s/

√
n. (a) Shows accuracy

for samples grouped by overall attention entropy H. (b) Displays mean entropy across N samples
per layer as 1

N

∑N
i=1H(A

(Q,i)
l,tend

), where A
(Q,i)
l,tend

is sample i’s attention at the final generation step.

To investigate the hierarchical evolution of attention entropy, we present mean entropy and its dis-
tribution across layers in Figure 5(b). The results reveal two notable characteristics: (1) attention
entropy monotonically decreases with layer depth, consistent with Figure 2. (2) The 95% confidence
intervals progressively widen with increasing depth, indicating enhanced inter-sample variability.
For samples with clear visual targets, deep layers achieve highly concentrated attention. In contrast,
for noisy samples, the model maintains dispersed attention patterns even in deep layers.

4 CONTRASTIVE ATTENTION REFINEMENT FOR VISUAL ENHANCEMENT

4.1 THEORETICAL FOUNDATION: NOISE SUPPRESSION AND VISUAL REFINEMENT

Based on our findings in Section 3, where we demonstrated that visual complexity causes atten-
tion dispersion and performance degradation, we seek to extract pure task-related semantic signal.
Therefore, we first formally define the attention signal decomposition mechanism.

Definition 1 (Attention Decomposition): Attention distributions are influenced by inherent visual
noise (detailed in Appendix A.2) of the image and task-related semantic signal. The attention map
A

(Q)
l,t (I) decomposes as:

A
(Q)
l,t (I) = Fvis(I)⊗Fsem(Q, I) (4.1)

whereFvis(I) ∈ RNv captures image-inherent visual noise,Fsem(Q, I) ∈ RNv captures task-related
semantic signal, and ⊗ denotes the Hadamard product.

When using general instructions G, due to the absence of specific tasks to introduce semantic infor-
mation, the semantic signal function reduces to uniform distribution (Fsem(G, I) ≈ 1Nv ), making
general instruction attention predominantly capture visual noise:

A
(G)
l,t (I) ≈ Fvis(I)⊗ 1Nv

= Fvis(I) (4.2)

Definition 2 (Semantic Extraction Based on Attention Decomposition): To extract semantic sig-
nal functionFsem(Q, I) from A(Q), we define estimated semantic attention Â ∈ RNv

+ as our estimate
of Fsem(Q, I), which is the solution to the following optimization problem:

Â = arg min
Ã∈A
J (Ã;A(Q), A(G)) (4.3)

where the objective function is constructed based on Definition 1’s decomposition:

J (Ã) =

Nv∑
i=1

(
Ãi · Fvis,i(I)− [Fvis,i(I) · Fsem,i(Q, I)]

)2
︸ ︷︷ ︸

Semantic reconstruction error

+ λ

Nv∑
i=1

Ã2
i · Fvis,i(I)︸ ︷︷ ︸

Visual suppression regularization

(4.4)

5
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Figure 6: CARVE comprises three stages: Stage 1 generates general attention distribution A
(G)
i

with general instructions; Stage 2 extracts task-specific attention A
(Q)
i ; Stage 3 applies contrasted

attention Âi to generate enhanced masked images for noise suppression.

Theorem 3 (Closed-form Solution for Semantic Extraction): Substituting Definition 1’s relation-
ships A(Q)

i ≈ Fvis,i · Fsem,i and A
(G)
i ≈ Fvis,i into the optimization objective yields:

J (Ã) =

Nv∑
i=1

(
Ãi ·A(G)

i −A
(Q)
i

)2
+ λ

Nv∑
i=1

Ã2
i ·A

(G)
i (4.5)

where λ > 0 is a regularization parameter that controls the strength of visual noise suppression.

Solving the first-order optimality conditions yields the closed-form solution:

Âi =
A

(Q)
i

A
(G)
i + λ

=
Fvis,i · Fsem,i

Fvis,i + λ
≈ Fsem,i when Fvis,i ≫ λ (4.6)

Equation 4.6 demonstrates that normalization suppresses the influence of Fvis,i when it dominates
(i.e., Fvis,i ≫ λ), approximating the semantic signal Fsem,i (detailed analysis in Appendix C).

4.2 CONTRASTIVE ATTENTION-BASED VISUAL ENHANCEMENT

Having obtained the semantically refined attention maps {Â}, as shown in Algorithm 1, we now
proceed to generate attention masks that physically remove visual noise from the input image.

Attention Maps Fusion. Since different layers and time steps capture complementary informa-
tion, we fuse attention maps across the layer range L and generation time steps T = [tstart, tend]
through weighted aggregation. Later tokens encode richer contextual information by accessing com-
plete preceding sequences during inference, thus receiving higher fusion weights.

Mask Generation and Visual Extraction. Task-relevant regions are identified by applying the
top-p percentile threshold τ = Qp(S), which retains the top p ∈ (0, 1] proportion of pixels from
attention map S. Connected component analysis extracts coherent regions from the thresholded map.
We select the top-K regions ranked by cumulative attention scores and generate the enhanced image
through Irefined = Φ(I,M∗), where Φ applies masking, cropping, and resizing, and K controls the
maximum number of regions to preserve. This refinement eliminates visual noise while magnifying
task-relevant content, enabling focused attention on task-related areas.
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Model Step: T A-OKVQA POPE V∗ TextVQA

QWEN2.5-VL-3B

w/o CARVE 73.0(−) 86.9(−) 50.3(−) 72.8(−)

tstart 76.5(↑4.79) 87.1(↑0.23) 56.0(↑11.33) 76.1(↑4.53)
tend 79.2(↑8.49) 88.4(↑1.73) 57.1(↑13.52) 76.4(↑4.95)
Tfull 78.3(↑7.26) 87.9(↑1.15) 56.5(↑12.33) 76.3(↑4.81)

QWEN2.5-VL-7B

w/o CARVE 75.0(−) 87.0(−) 50.8(−) 75.0(−)

tstart 77.0(↑2.67) 87.9(↑1.03) 58.6(↑15.35) 80.7(↑7.60)
tend 78.3(↑4.40) 89.7(↑3.10) 59.7(↑17.52) 81.9(↑9.20)
Tfull 78.0(↑4.00) 88.6(↑1.84) 58.1(↑14.37) 81.7(↑8.93)

LLAVA1.5-7B

w/o CARVE 71.5(−) 83.6(−) 38.7(−) 47.8(−)

tstart 73.9(↑3.36) 86.8(↑3.83) 57.1(↑47.55) 57.9(↑21.13)
tend 78.2(↑9.37) 89.0(↑6.46) 66.5(↑71.83) 58.2(↑21.76)
Tfull 75.4(↑5.45) 89.0(↑6.46) 66.5(↑71.83) 57.9(↑21.13)

LLAVA1.5-13B

w/o CARVE 75.7(−) 84.6(−) 42.4(−) 57.1(−)

tstart 76.2(↑0.66) 90.0(↑6.38) 65.4(↑54.25) 59.2(↑3.68)
tend 76.9(↑1.59) 90.7(↑7.21) 74.3(↑75.24) 61.2(↑7.18)
Tfull 76.5(↑1.06) 90.1(↑6.50) 70.0(↑65.09) 61.2(↑7.18)

Table 1: Accuracy comparison of CARVE across VLMs on four datasets. We evaluate three tempo-
ral configurations: tstart uses attention from initial generated tokens, tend from final tokens, and Tfull
applies weighted fusion across all tokens. We use layer range L = [20, 25] for attention fusion.

Algorithm 1 CARVE: Contrastive Attention Refinement for Visual Enhancement
Notation: M: VLM model; Ξ: attention extraction; πH×W : spatial reshape;Qp: top-p threshold;
Φ: visual extraction (mask, crop, resize); G: general instruction; τ : threshold;R: connected regions;
K: max regions to keep
Require: I ∈ RH×W×3, Q,M, Θ = {L, T , p, λ,K}

1: Inference: AQ ← {A(Q)
l,t }l∈L,t∈T = Ξ(M, I, Q) ▷ Question-specific attention

2: Inference: AG ← {A(G)
l,t }l∈L,t∈T = Ξ(M, I, G) ▷ General attention

3: Contrast: Âl,t ←
A

(Q)
l,t

A
(G)
l,t +λ

for all l ∈ L, t ∈ T ▷ following Eq. 4.6

4: Fuse: S ←
∑

t∈T wt

∑
l∈L πH×W (Âl,t), wt = t− tstart + 1 ▷ Weighted attention fusion

5: Threshold: τ ← Qp(S) ▷ Compute threshold to retain top p percentile
6: Mask: M∗ =

⋃K
k=1 R

∗
k where R∗

k = argmaxR∈R
∑

(i,j)∈R S(i, j) withR from S ≥ τ

7: Extract: Irefined ← Φ(I,M∗) ▷ Visual extraction
8: Inference: returnM(Irefined, Q) ▷ Final inference

As shown in Figure 6, we propose Contrastive Attention Refinement for Visual Enhancement
(CARVE), a method that contrasts attention maps to distinguish semantic pixels from noise, pre-
serving only task-relevant regions for enhanced model focus (detailed in Appendix B).

5 METHOD ANALYSIS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on four datasets: A-OKVQA (Schwenk et al., 2022),
POPE (Li et al., 2023b), V∗ (Wu & Xie, 2023), and TextVQA (Singh et al., 2019), which cover
multiple task dimensions including visual reasoning, visual understanding, and visual knowledge
reasoning. For TextVQA, we evaluate the models’ intrinsic visual text recognition capabilities by
providing only images and questions without external OCR augmentation (detailed in Appendix E).

Models. We conduct experiments on four VLMs: QWEN2.5-VL-3B-INSTRUCT, QWEN2.5-VL-
7B-INSTRUCT (Qwen, 2025), LLAVA-1.5-7B, and LLAVA-1.5-13B (Liu et al., 2023a). The
Qwen family processes images at 448 × 448 resolution, while the LLaVA-1.5 family operates at
336× 336 resolution. All models employ greedy decoding.
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Model Layer(s): L A-OKVQA POPE V∗ TextVQA

QWEN2.5-VL-3B

w/o CARVE 73.0(−) 86.9(−) 50.3(−) 72.8(−)

Single Layer
14 74.3(↑1.78) 87.1(↑0.23) 53.9(↑7.16) 73.6(↑1.10)
20 76.5(↑4.79) 87.4(↑0.58) 56.0(↑11.33) 74.7(↑2.61)
25 76.7(↑5.07) 87.5(↑0.69) 56.0(↑11.33) 75.9(↑4.26)

Multi-Layers
[10, 15] 74.0(↑1.37) 86.9(0.00) 53.4(↑6.16) 73.0(↑0.27)
[15, 20] 76.8(↑5.21) 87.7(↑0.92) 56.0(↑11.33) 76.0(↑4.40)
[20, 25] 78.3(↑7.26) 87.9(↑1.15) 57.1(↑13.52) 76.3(↑4.81)

QWEN2.5-VL-7B

w/o CARVE 75.0(−) 87.0(−) 50.8(−) 75.0(−)

Single Layer
14 75.2(↑0.27) 87.5(↑0.57) 54.5(↑7.28) 75.2(↑0.27)
20 76.9(↑2.53) 87.9(↑1.03) 56.5(↑11.22) 77.9(↑3.87)
25 77.0(↑2.67) 88.2(↑1.38) 57.0(↑12.20) 78.4(↑4.53)

Multi-Layers
[10, 15] 75.0(0.00) 87.0(0.00) 51.3(↑0.98) 75.0(0.00)

[15, 20] 77.1(↑2.80) 88.4(↑1.61) 57.6(↑13.39) 79.5(↑6.00)
[20, 25] 78.0(↑4.00) 88.6(↑1.84) 58.1(↑14.37) 81.7(↑8.93)

LLAVA1.5-7B

w/o CARVE 71.5(−) 83.6(−) 38.7(−) 47.8(−)

Single Layer
14 71.7(↑0.28) 85.1(↑1.79) 63.4(↑63.82) 54.0(↑12.97)
20 74.0(↑3.50) 87.2(↑4.31) 65.4(↑68.99) 56.1(↑17.36)
25 74.1(↑3.64) 87.1(↑4.19) 65.4(↑68.99) 56.2(↑17.57)

Multi-Layers
[10, 15] 71.5(0.00) 84.5(↑1.08) 48.2(↑24.55) 49.2(↑2.93)
[15, 20] 74.2(↑3.78) 87.5(↑4.67) 65.4(↑68.99) 56.4(↑17.99)
[20, 25] 75.4(↑5.45) 89.0(↑6.46) 66.5(↑71.83) 58.2(↑21.76)

LLAVA1.5-13B

w/o CARVE 75.7(−) 84.6(−) 42.4(−) 57.1(−)

Single Layer
14 75.8(↑0.13) 86.1(↑1.77) 66.5(↑56.84) 58.2(↑1.93)
20 76.2(↑0.66) 88.2(↑4.26) 68.6(↑61.79) 59.1(↑3.50)
25 76.2(↑0.66) 88.1(↑4.14) 69.0(↑62.74) 59.2(↑3.68)

Multi-Layers
[10, 15] 75.7(0.00) 85.0(↑0.47) 52.9(↑24.76) 57.4(↑0.53)
[15, 20] 76.8(↑1.45) 88.6(↑4.73) 69.1(↑62.97) 59.4(↑4.03)
[20, 25] 76.9(↑1.59) 90.1(↑6.50) 70.0(↑65.09) 61.2(↑7.18)

Table 2: We investigate CARVE’s accuracy using both single-layer and multi-layer intervention
strategies at shallow, middle, and deep model depths, where single-layer interventions use attention
maps Âi from individual layers, while multi-layer interventions fuse maps across multiple layers to
guide masking decisions. We employ Tfull as the time step configuration.

5.2 RESULTS

CARVE Enhances VLMs’ Visual QA Performance. Tables 1 and 2 demonstrate CARVE’s con-
sistent performance enhancement across all evaluated models and datasets. Earlier-generation mod-
els exhibit substantially greater improvements than their more recent counterparts. For instance,
LLAVA1.5-7B achieves a 71.83% relative improvement on V∗, whereas QWEN2.5-VL-7B shows
a 17.52% gain. This pattern indicates that limited-capability models suffer more from visual com-
plexity interference and benefit more from contrastive attention-guided focusing mechanisms.

Ablation Study on the Time Step. Table 1 reveals a consistent performance hierarchy across
various time step selection strategies. Specifically, tend generally outperforms Tfull, which in turn
surpasses tstart across most experimental configurations. This pattern is exemplified by QWEN2.5-
VL-7B’s performance on TextVQA, where tend achieves 81.9% accuracy, followed by Tfull at 81.7%
and tstart at 80.7%. This phenomenon aligns with architectural principles. Later tokens encode richer
contextual information by accessing complete preceding sequences during inference. Consequently,
the final token’s attention maps accurately localize target objects, providing prerequisite conditions
for CARVE’s noise masking mechanism.

Ablation Study on the Layer Selection. To investigate layer selection effects on attention pat-
tern extraction, we conduct systematic experiments as shown in Table 2. Across all tested model
architectures, the layer-wise performance demonstrates the following general ordering from best to
worst: [20,25], [15,20], single layer 25, single layer 20, single layer 14, and [10,15]. This pattern is
exemplified by LLAVA1.5-7B’s performance on TextVQA, where the multi-layer [20,25] achieves
a 21.76% improvement, the [15,20] reaches a 17.99% improvement, while the early-layer [10,15]
attains only a 2.93% improvement. Multi-layer fusion outperforms single-layer alternatives by cap-
turing complementary information and providing robustness against individual layer randomness.
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Figure 7: Impact of mask generation hyperparameters on TextVQA accuracy for QWEN family.
Results show performance across varying top-p threshold and maximum keep regions K.

Method Original SAM YOLO CLIP ViCrop CARVE
rel-att grad-att pure-grad

Accuracy 47.80 49.42 48.84 48.55 55.17 56.06 51.67 58.2
GPU Time 0.17 3.33 0.35 1.07 1.16 0.89 2.36 1.34

Table 3: Performance comparison of CARVE against external tool-based approaches and ViCrop on
TextVQA: accuracy (%) and inference time overhead per sample (seconds).

This phenomenon aligns with our findings in Figure 5(b): early layers perform global scanning with
high entropy, while middle-to-deep layers focus on task-relevant patterns.

Sensitivity Analysis of Mask Generation. We examine a 1,000-instance subset randomly sam-
pled from TextVQA. As shown in Figure 7, when p = 1.0, corresponding to no masking interven-
tion, performance remains at original levels. However, when p is set within [0.2, 0.6] combined with
K ∈ {2, 3}, the model achieves optimal performance, as these settings maintain a balance between
preserving object representations and suppressing visual noise. In contrast, aggressive masking
strategies manifest detrimental effects: retention ratios set to 20% and single-region constraints lead
to degradation, since such aggressive configurations discard essential visual information.

Comparative Analysis with Alternative Methods. As shown in Table 3, CARVE substantially
outperforms external tool-based approaches: SAM (Kirillov et al., 2023), YOLO (Redmon et al.,
2016), CLIP (Radford et al., 2021) and recent ViCrop (Zhang et al., 2025) variants across diverse
baseline methodologies (conducted on NVIDIA RTX A6000). External tools rely on generic seg-
mentation algorithms that lack question-image context awareness. While ViCrop effectively reduces
visual noise through strategic cropping, it lacks pixel-level noise masking. Regarding computational
efficiency, CARVE requires 1.34 seconds of GPU processing time, exceeding simpler approaches
such as YOLO (0.35 seconds) but remaining within practical deployment constraints.

6 CONCLUSION

In this work, we demonstrate that visual complexity correlates with attention entropy, which in turn
negatively impacts VLMs’ performance. Theoretically, we prove that contrasting attention maps be-
tween general and specific instructions enables effective decomposition of visual signal into seman-
tic signal and visual noise components. To this end, we propose Contrastive Attention Refinement
for Visual Enhancement (CARVE), a training-free method that leverages this theoretical insight
to extract task-relevant signal through attention contrasting and pixel-level masking. Our work
provides critical insights into the interplay between visual complexity and attention mechanisms,
offering an efficient pathway for improving visual reasoning without training.
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A DEFINITION AND EXPLANATION

A.1 DEFINITION

Symbol Definition Description

I ∈ RH×W×3 Input image Image with height H and width W
H,W Image dimensions Height and width in pixels
Q Task-specific question Task-specific question
G General instruction General instruction
A

(Q)
l,t ∈ RNv Question attention map Attention map at layer l, step t

A
(G)
l,t ∈ RNv General attention map General question attention map

Nv Visual tokens Number of visual tokens
L Layer range Layer indices
T Time range Generation time step
tend Final step Final generation step
H(·) Shannon entropy Attention distribution entropy
H Overall entropy Layer-averaged attention entropy
Tc(I) Texture complexity Edge density from Canny detection
Cc(I) Color complexity Hue diversity measure
E(I)∈{0, 1}H×W Edge map Binary edge map from Canny
ΨRGB→HSV Color transform RGB to HSV transformation operator
ζij Hue value Hue value at pixel (i, j)
ρb Hue proportion Fraction of pixels in hue bin b
B Hue bins Number of hue bins
Fvis(I) ∈ RNv

+ Visual noise factor Image-inherent visual noise component
Fsem(Q, I) ∈ RNv

+ Semantic signal factor Task-related semantic signal component
1Nv

Uniform vector Vector of ones
Â ∈ RNv

+ Estimated attention Estimated semantic attention
λ > 0 Regularization Regularization parameter
p ∈ (0, 1] Top-p percentile Percentile threshold for masking
K ∈ N Max regions Maximum regions to preserve
wt Temporal weights Later token weighting with wt = t− tstart + 1
S ∈ RH×W Fused map Spatially reshaped attention map
Qp(·) Percentile function Top-p percentile operator
τ Threshold Computed threshold value
M∗ ⊆ {1..H} × {1..W} Final mask Union of top-K regions
Rk Connected region Connected component from thresholding
Φ(I,M) Visual extraction Masking, cropping and resizing
πH×W Spatial reshape Token to image projection
Ξ Attention extractor Function to extract attention maps
M VLM Vision-language model
Ltotal Total layers Number of model layers
Nq Text tokens Number of query tokens

A.2 EXPLANATION

• Time Step (t): In the autoregressive generation process of vision-language models, a time
step denotes the sequential position index in the output token sequence. The model gen-
erates responses token-by-token, where t = 1 corresponds to the first generated token and
t = tend represents the final token. At each time step, the model produces an attention
distribution A

(Q)
l,t ∈ RNv over visual tokens.

• Visual Complexity (Tc(I), Cc(I)): Visual complexity quantifies the inherent character-
istics of an image that can interfere with VLMs’ attention mechanisms, decomposed into
two orthogonal dimensions. Texture complexity Tc(I) ∈ [0, 1] measures the density of
edge information using Canny edge detection, where higher values indicate more intricate
patterns, object boundaries, and structural details. Color complexity Cc(I) ∈ [0, 1] cap-
tures the diversity of hue distribution in HSV color space through Shannon entropy, where
higher values reflect greater chromatic variation.
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• Visual Tokens (Nv): Visual tokens constitute the discrete representational units obtained
after processing an input image through a visual encoder. An image of dimensions H ×W
is partitioned and encoded into Nv visual tokens, which form the fundamental units for
visual information processing. The attention mechanism allocates weights across these Nv

tokens to determine which image regions to attend to.
• Semantic Signal Factor (Fsem(Q, I)): The semantic signal factor represents the question-

specific component in the attention decomposition framework, valued in RNv
+ . This factor

quantifies the semantic signal between each visual token and the given question Q. Under
general instructions G (e.g., ”describe this image”), this factor approximates a uniform
distribution (Fsem(G, I) ≈ 1Nv ), whereas task-specific questions yield elevated values in
semantically relevant regions.

• Visual Noise Factor (Fvis(I)): The visual noise factor captures the image-inherent,
question-independent attention component, valued in RNv

+ . This factor, determined by
texture complexity and color diversity of the image, reflects the influence of visual content
characteristics on attention distribution. Under general instructions, the attention distribu-
tion is predominantly governed by this factor: A(G)

l,t (I) ≈ Fvis(I).

B IMPLEMENTATION DETAILS

We conduct our experiments on a server with 4 × NVIDIA RTX A6000 GPUs. τ is set to 0.05. In
practical implementation, CARVE requires three inference passes; however, the first two passes (ex-
tracting general instruction and task-specific question) can be terminated early. Specifically, when
we require attention maps only from layers L = [Lstart, Lend], the first two inference processes
can halt upon completing layer Lend computation, eliminating the need for full Ltotal layer forward
propagation. The third inference must run completely to generate the final answer.

C PROOFS AND ADDITIONAL THEOREMS

C.1 MATHEMATICAL BASIS OF ATTENTION DECOMPOSITION

Theorem C.1 (Existence of Attention Decomposition): For any attention distribution A
(Q)
l,t (I) ∈

RNv
+ , there exists a unique decomposition:

A
(Q)
l,t (I) = Fvis(I)⊗Fsem(Q, I) (C.1)

Proof: Define a logarithmic space mapping ϕ : R+ → R where ϕ(x) = log(x). Under this
transformation, the decomposition becomes additive in logarithmic space:

ϕ(A
(Q)
l,t (I)) = ϕ(Fvis(I)) + ϕ(Fsem(Q, I)) (C.2)

Given the boundary condition thatFsem(G, I) = 1Nv
when Q = G (general instruction), we obtain:

ϕ(Fvis(I)) = ϕ(A
(G)
l,t (I)) (C.3)

Consequently, through substitution:

ϕ(Fsem(Q, I)) = ϕ(A
(Q)
l,t (I))− ϕ(A

(G)
l,t (I)) (C.4)

The unique solution is obtained via the inverse mapping ϕ−1(x) = exp(x). □

C.2 CONVEXITY ANALYSIS OF THE OPTIMIZATION PROBLEM

Theorem C.2 (Strict Convexity of Objective Function): The optimization objective

J (Ã) =

Nv∑
i=1

(
Ãi ·A(G)

i −A
(Q)
i

)2
+ λ

Nv∑
i=1

Ã2
i ·A

(G)
i (C.5)
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is strictly convex with respect to Ã.

Proof: Computing the Hessian matrix reveals its structure. Since the objective function is separable
across components Ãi, the Hessian is diagonal with elements:

Hii =
∂2J
∂Ã2

i

= 2(A
(G)
i )2 + 2λA

(G)
i = 2A

(G)
i (A

(G)
i + λ) (C.6)

Given that A(G)
i > 0 and λ > 0, all diagonal elements are positive, thus H ≻ 0 (positive definite).

According to convex optimization theory, a twice continuously differentiable function with positive
definite Hessian everywhere is strictly convex. □

C.3 DERIVATION AND UNIQUENESS OF CLOSED-FORM SOLUTION

Theorem C.3 (Closed-form Expression of Optimal Solution): The optimization problem admits
a unique global optimum:

Âi =
A

(Q)
i

A
(G)
i + λ

(C.7)

Proof: Applying first-order optimality conditions (KKT conditions):

∇Ãi
J = 2(Ãi ·A(G)

i −A
(Q)
i ) ·A(G)

i + 2λÃi ·A(G)
i = 0 (C.8)

Rearranging terms yields:

Ãi ·A(G)
i · (A(G)

i + λ) = A
(Q)
i ·A(G)

i (C.9)

Solving for Ãi:

Ãi =
A

(Q)
i

A
(G)
i + λ

(C.10)

By Theorem C.2’s strict convexity, this solution represents the unique global optimum. □

C.4 ERROR BOUNDS AND CONVERGENCE ANALYSIS

Theorem C.4 (Approximation Error Bound): Let Fsem(G, I) = 1Nv + ϵ where ∥ϵ∥∞ ≤ δ. Then
the estimation error satisfies:

∥Â−Fsem(Q, I)∥∞ ≤
δ · ∥Fsem(Q, I)∥∞

1− δ

Proof: Under perturbation A
(G)
i = Fvis,i · (1 + ϵi), the estimate becomes:

Âi =
Fvis,i · Fsem,i(Q, I)
Fvis,i · (1 + ϵi) + λ

≈ Fsem,i(Q, I)
1 + ϵi

when Fvis,i ≫ λ

Using the Taylor expansion Âi = Fsem,i(Q, I) ·
∑∞

k=0(−ϵi)k and truncating to first order yields:

|Âi −Fsem,i(Q, I)| ≤ Fsem,i(Q, I) · |ϵi|
1− |ϵi|

Taking the infinity norm completes the proof. □
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C.5 THEORETICAL SELECTION OF REGULARIZATION PARAMETER

Proposition C.5 (Optimal Regularization Parameter): The optimal regularization parameter λ∗

that minimizes the expected mean squared error satisfies:

λ∗ = argmin
λ

E
[
∥Â(λ)−Fsem(Q, I)∥22

]
(C.11)

Proof: From Theorem C.3, the estimator takes the form:

Âi(λ) =
A

(Q)
i

A
(G)
i + λ

=
Fvis,i · Fsem,i

Fvis,i + λ
(C.12)

The mean squared error decomposes as:

MSE(λ) = Bias2(λ) + Variance(λ) (C.13)

where Bias(λ) = E[Â(λ)]−Fsem(Q, I) and Variance(λ) = E[(Â(λ)− E[Â(λ)])2].

For the bias term, assuming E[Fvis,i] = µi:

Biasi(λ) = E
[
Fvis,i · Fsem,i

Fvis,i + λ

]
−Fsem,i ≈ −

λ · Fsem,i

µi + λ
(C.14)

Thus |Biasi(λ)| = O(λ) as λ→ 0.

For the variance term, let Fvis,i = µi + ϵi with Var(ϵi) = σ2
i . Taylor expansion yields:

Var(Âi(λ)) ≈
F2

sem,iµ
2
iσ

2
i

(µi + λ)4
(C.15)

Therefore Var(Âi(λ)) = O(1/λ2) as λ→ 0.

The component-wise MSE becomes:

MSEi(λ) =
λ2 · F2

sem,i

(µi + λ)2
+
F2

sem,iµ
2
iσ

2
i

(µi + λ)4
(C.16)

Setting dMSEi

dλ = 0 and solving yields:

λ∗
i = µi

(√
1 + 2σ2

i /µ
2
i − 1

)
≈ σ2

i

µi
(C.17)

for small noise-to-signal ratio. The global optimum requires minimizing
∑Nv

i=1 MSEi(λ). □

Corollary C.5.1 (Numerical Stability): For any λ > 0, the condition number of the regularized
problem satisfies:

κ(λ) =
maxi(A

(G)
i + λ)

mini(A
(G)
i + λ)

≤ maxi A
(G)
i + λ

λ
(C.18)

Proof: The bound follows directly from the definition of condition number and the positivity of
A

(G)
i and λ. The regularization ensures κ(λ) <∞, guaranteeing numerical stability. □

Remark: The regularization parameter λ serves dual purposes: controlling the bias-variance trade-
off and ensuring numerical stability. As λ → 0, the estimator becomes unbiased but exhibits high
variance and potential numerical instability when A

(G)
i ≈ 0. Conversely, as λ → ∞, the estimator

becomes increasingly biased toward zero but achieves maximum stability. The optimal choice λ∗ ∝
σ2/µ balances these competing objectives, where σ2 represents the noise variance and µ the signal
mean. In practice, cross-validation on a held-out set provides robust estimation of λ∗.
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C.6 HIERARCHICAL EVOLUTION OF ATTENTION ENTROPY

Theorem C.6 (Monotonicity of Entropy): For a layer sequence l1 < l2 < ... < ln, attention
entropy satisfies:

H(A(Q)
l1,t

) ≥ H(A(Q)
l2,t

) ≥ ... ≥ H(A(Q)
ln,t

) (C.19)

Proof: Applying the Data Processing Inequality, we treat each layer as an information processing
channel. Since deeper networks progressively extract high-level features and focus on task-relevant
regions, information entropy decreases monotonically. This aligns with the principle of maximum
entropy: systems tend toward maximum entropy states under constraints, where deeper layers im-
pose stronger task constraints. □

C.7 COMPUTATIONAL OPTIMIZATION POTENTIAL OF CARVE

This section analyzes the computational optimization potential of the CARVE algorithm. While
CARVE requires three inference passes, its structural properties enable significant optimization op-
portunities.

The key observation is that the first two inference passes (general instruction and task-specific ques-
tion) only require extracting attention maps from intermediate layers, without completing full for-
ward propagation or generating complete responses. This characteristic enables early termination
strategies. Furthermore, the general attention maps A(G) depend solely on the input image and are
independent of specific questions, creating opportunities for caching and reuse.

Let the forward propagation P : RNv → RNv at layer l have computational cost cl = Θ(N2
v ). The

baseline complexity without optimization is:

Cbaseline = 3Ltotal ·Θ(N2
v ) + Θ(|L| · |T | ·Nv)

Early Termination Strategy. Since only attention maps from layers L = [Lstart, Lend] are re-
quired, the first two inference passes can terminate after layer Lend:

Cearly = (2Lend + Ltotal) ·Θ(N2
v ) + Θ(|L| · |T | ·Nv)

The relative computational savings rate is:

η1 =
Cbaseline − Cearly

Cbaseline
=

2(Ltotal − Lend)

3Ltotal
=

2(1− α)

3

where α = Lend/Ltotal. For practical configurations with L = [20, 25] and Ltotal = 28, we have
α = 25/28 ≈ 0.89, yielding theoretical savings of η1 ≈ 7.3%.

Attention Caching Mechanism. The general attention maps A(G) depend only on the image I
and can be reused across multiple questions. Define a cache mappingH : I → {A(G)

l }l∈L.

For n different questions {Q1, ..., Qn} on the same image, the total computational cost is:

Ccached(n) = Lend ·Θ(N2
v ) + n · (Lend + Ltotal) ·Θ(N2

v )

compared to 3n · Ltotal ·Θ(N2
v ) for the baseline approach. The average cost per question becomes:

C̄cached =
Lend

n
·Θ(N2

v ) + (Lend + Ltotal) ·Θ(N2
v )

As n→∞, the average cost approaches (Lend +Ltotal) ·Θ(N2
v ), yielding a speedup ratio relative to

baseline:

Scache =
3Ltotal

Lend + Ltotal
=

3

1 + α

For α = 0.89, this gives Scache ≈ 1.59, representing approximately 37% computational savings.
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Combined Optimization Analysis. When processing batches containing repeated images, com-
bining both strategies yields:

Ccombined = (1− ρ)Lend ·Θ(N2
v ) + (Lend + Ltotal) ·Θ(N2

v )

where ρ ∈ [0, 1] denotes the cache hit rate. The relative speedup becomes:

Scombined =
3Ltotal

(2− ρ)Lend + Ltotal
=

3

(2− ρ)α+ 1

Under practical scenarios with α = 0.89 and ρ = 0.3, we obtain Scombined ≈ 1.24, corresponding to
approximately 19% computational savings.

The space complexity remains S(CARVE) = Θ(|L| · |T | · Nv). For typical configurations (|L| =
5, |T | = 10, Nv = 1024), this requires approximately 200KB of additional memory, which is
negligible on modern hardware.

D PROMPT DESIGN

General Instruction Accuracy (%) Std Dev (%) Relative Gain (%)
w/o CARVE 72.4 0.8 –
“Write a general description of the image.” 77.2 0.6 +6.63
“Describe this image in detail.” 75.8 0.9 +4.70
“Provide a comprehensive overview of the image.” 75.2 1.4 +3.87
“What do you see in this image?” 74.9 1.2 +3.45
“Explain what appears in the image.” 74.8 1.7 +3.31

Table 4: Comparison across general instructions.

To identify the optimal general instruction for inducing uniform attention distributions, we con-
ducted experiments on a randomly sampled subset of 1000 instances from the TextVQA dataset
using the QWEN2.5-VL-3B. Our objective was to identify prompts that encourage global image
scanning without focusing on specific semantic regions. To assess stability, we performed ten inde-
pendent trials and computed standard deviations across runs. To avoid discrepancies arising from
layer and time step variations, we conduct experiments using Tfull and L = [20, 25] as hyperparam-
eters. As shown in Table 4, “Write a general description of the image” achieves both the highest
accuracy (77.2%) and the lowest standard deviation (0.6%), indicating superior stability. Mean-
while, “What do you see in this image?” and “Explain what appears in the image.” are excluded due
to their poor stability. Beyond considering accuracy and stability, we also need to consider the num-
ber of tokens generated by the VLM. Specifically, “Describe this image in detail.” and “Provide a
comprehensive overview of the image.” are excluded because they output significantly more tokens
than “Write a general description of the image.”. Based on the above considerations, we ultimately
adopt “Write a general description of the image.” as the general instruction for CARVE.

E DATASETS

For A-OKVQA (Schwenk et al., 2022), we utilize the validation split containing 1,145 questions
across 1,122 images that require integrating visual perception with commonsense reasoning, evalu-
ated using VQA-score accuracy. For POPE (Li et al., 2023b), we employ 500 distinct images paired
with 9,000 binary questions systematically designed to detect hallucination phenomena through
polling-based object probing. For V∗ (Wu & Xie, 2023), we evaluate on 191 image-question pairs
that demand fine-grained visual reasoning capabilities. For TextVQA (Singh et al., 2019), we test
on 3,166 images with 5,000 questions focusing on text comprehension abilities.

For TextVQA evaluation, we adopt the protocol established by Zhang et al. (2025), deliberately
excluding OCR-extracted tokens from model inputs. We treat TextVQA identically to other visual
reasoning benchmarks, providing only the image and question without auxiliary text annotations.
While this configuration yields marginally reduced accuracy compared to OCR-augmented base-
lines in original implementations, it enables unbiased assessment of models’ intrinsic visual text
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recognition capabilities, eliminating confounding factors from external OCR systems. This eval-
uation strategy ensures that performance metrics genuinely reflect the visual perception and text
understanding abilities inherent to the vision-language models.

F VISUALIZATIONS

This section presents visual analysis of masked images generated by CARVE across different thresh-
old values τ from 1.0 (no masking) to 0.1 (aggressive masking). Figures 8 and 9 show two repre-
sentative TextVQA samples where visual complexity initially causes incorrect predictions.

Figure 8 shows a street scene where the model fails to detect the Bridgestone sign at τ = 1.0.
Progressive masking removes background buildings and vehicles, enabling correct recognition at
τ = 0.3. In Figure 9, multiple decorative mugs cause shape misidentification through the cup
handle. At τ = 0.2, only the relevant mug remains, yielding the correct “star” answer. Across both
samples, optimal performance occurs within τ ∈ [0.2, 0.4], where contrastive attention effectively
preserves semantic signal while eliminating visual distractors.

(a) τ = 1.0 (b) τ = 0.9 (c) τ = 0.8 (d) τ = 0.7 (e) τ = 0.6

(f) τ = 0.5 (g) τ = 0.4 (h) τ = 0.3 (i) τ = 0.2 (j) τ = 0.1

Figure 8: Images masked with CARVE. The caption of each subfigure shows the threshold value τ .

(a) τ = 1.0 (b) τ = 0.9 (c) τ = 0.8 (d) τ = 0.7 (e) τ = 0.6

(f) τ = 0.5 (g) τ = 0.4 (h) τ = 0.3 (i) τ = 0.2
(j) τ =
0.1

Figure 9: Images masked with CARVE. The caption of each subfigure shows the threshold value τ .

G LARGE LANGUAGE MODEL USAGE

We employed Claude Sonnet 4 as a grammar expert to assist with proofreading this manuscript.
Specifically, Claude Sonnet 4 was used solely to identify and correct linguistic issues including verb
tense inconsistencies, grammatical errors, punctuation mistakes, and subordinate clause structures.
The LLM’s role was strictly limited to language polishing without any contribution to the research
content, methodology, or scientific conclusions.
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