

# FOCUSING BY CONTRASTIVE ATTENTION: ENHANCING VLMS' VISUAL REASONING

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

011 Vision-Language Models (VLMs) have demonstrated remarkable success across  
 012 diverse visual tasks, yet their performance degrades in complex visual environments.  
 013 While existing enhancement approaches require additional training, rely  
 014 on external segmentation tools, or operate at coarse-grained levels, they overlook  
 015 the innate ability within VLMs. To bridge this gap, we investigate VLMs' att-  
 016 tention patterns and discover that: (1) visual complexity strongly correlates with  
 017 attention entropy, negatively impacting reasoning performance; (2) attention pro-  
 018 gressively refines from global scanning in shallow layers to focused convergence  
 019 in deeper layers, with convergence degree determined by visual complexity. (3)  
 020 Theoretically, we prove that the contrast of attention maps between general queries  
 021 and task-specific queries enables the decomposition of visual signal into seman-  
 022 tic signals and visual noise components. Building on these insights, we propose  
 023 **Contrastive Attention Refinement for Visual Enhancement (CARVE)**, a training-  
 024 free method that extracts task-relevant visual signals through attention contrasting  
 025 at the pixel level. Extensive experiments demonstrate that CARVE consistently  
 026 enhances performance, achieving up to 75% improvement on open-source mod-  
 027 els. Our work provides critical insights into the interplay between visual complex-  
 028 ity and attention mechanisms, offering an efficient pathway for improving visual  
 029 reasoning with contrasting attention.

## 1 INTRODUCTION

032 Vision-Language Models (VLMs) have achieved remarkable success across diverse tasks (Radford  
 033 et al., 2021; Jia et al., 2021; Alayrac et al., 2022). However, in human vision, complex visual  
 034 features frequently divert attention from task-relevant regions (Treisman & Gelade, 1980). Given  
 035 this cognitive parallel, a question arises: *Similarly, do complex images interfere with VLMs' attention*  
 036 *mechanisms, making it difficult for them to focus on task-relevant regions?*

037 To answer this question, we investigate the relationship between visual complexity and attention  
 038 patterns via quantitative experiments. Specifically, we define visual complexity as texture and color  
 039 dimensions, revealing a significant positive correlation between both factors and attention entropy.  
 040 Furthermore, our analysis shows that attention entropy negatively correlates with accuracy on visual  
 041 reasoning tasks. Through this two-stage analysis, we establish that **complex visual information**  
 042 **impairs VLMs' reasoning performance via attention distribution** (detailed in Section 3).

043 Based on these findings, we conduct a preliminary experiment on TextVQA (Singh et al., 2019)  
 044 by first applying progressive masking to obscure background regions, then cropping to retain only  
 045 task-relevant regions and adaptively magnifying them to the original image size. Figure 1 presents  
 046 two representative samples where cluttered visual environments initially cause incorrect predictions.  
 047 While incorrect token probability initially prevails in both samples, correct token probability sur-  
 048 passes incorrect probability at mask ratios of approximately 0.02 and 0.65 respectively. These results  
 049 provide initial validation that **masking visual noise can improve correct token probability**.

050 To automate the visual noise masking process, we leverage contrasting attention maps between  
 051 general instructions and task-specific questions to distinguish semantic signal from visual noise.  
 052 To this end, we propose **Contrastive Attention Refinement for Visual Enhancement (CARVE)**, a  
 053 contrastive method for visual extraction. By masking with contrastive attention maps, CARVE  
 crops and magnifies semantic regions to focus on essential semantic signal (detailed in Section 4).

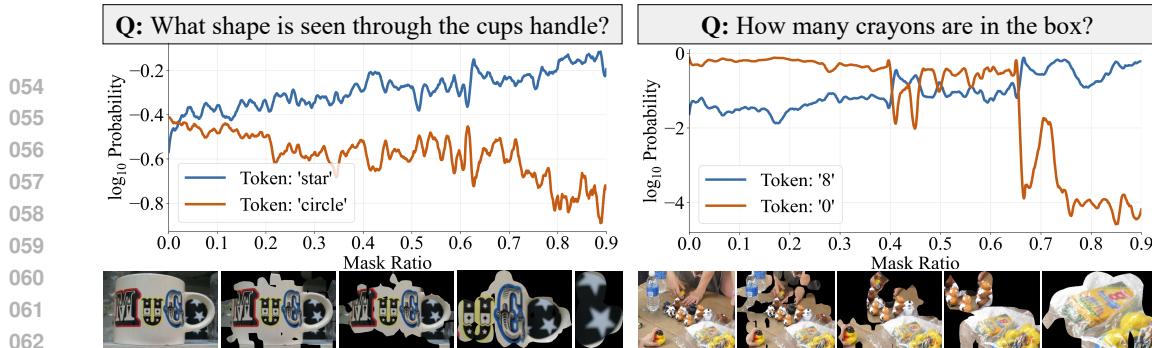


Figure 1: The effect of manually progressive masking on candidate tokens probabilities predicted by QWEN2.5-VL-3B. The x-axis represents mask ratio and y-axis shows  $\log_{10}$  probability.

## 2 RELATED WORK

**Contrastive Learning in LLMs.** Liu et al. (2023b) pioneered contrastive objectives for aligning LLMs with human preferences, establishing the foundation for RECIPE (Chen et al., 2024b), which trains a Knowledge Sentinel to determine when queries trigger knowledge updates. Building on alignment challenges, Jiang et al. (2024) employ hallucinated text as hard negatives while Zhang et al. (2024b) apply contrastive learning in hidden representations to suppress hallucinations. Zhai et al. (2025) traces critical transmission paths across all layers, treating less important pathways as negatives, which Pan et al. (2024) further adapted to multimodal LLMs through UniKE’s semantic-truthfulness space disentanglement. Departing from embedding-space modifications, DeCK (Bi et al., 2025a) shifts contrastive logic to the decoding stage by comparing token probabilities with and without injected knowledge, while parallel applications emerged in DistILM-2 (Ko et al., 2025) for knowledge distillation and Zhu et al. (2024) for factual consistency enhancement.

**Attention-based LLM Optimization.** Alayrac et al. (2022) established multimodal foundations through perceiver resampler architecture, which Li et al. (2023a) refined via a lightweight Querying Transformer for parameter-efficient visual extraction. Extending attention optimization to text modality, Chen et al. (2025) exploit attention scores for dynamic prompt compression through importance sampling at both token and sentence levels. Ma et al. (2024a) eliminated redundant visual token computations while Acharya et al. (2024) introduced block-sparse mechanisms for parallel processing, and Liu et al. (2025b) bypassed attention bottlenecks through sequential chunk processing in Recurrent LLMs. Yao et al. (2025b) identified position bias in multimodal RAG where models over-focus on boundary items. Zhang et al. (2025) discovered that models consistently know where to look, even when they provide the wrong answer. Our method eliminates visual noise by contrasting attention maps to distinguish semantic pixels from noise pixels without requiring training.

## 3 FAILURE TO FOCUS: PHENOMENON, MECHANISM, AND CONSEQUENCE

### 3.1 PHENOMENON: UNDER WHAT CONDITIONS VISUAL FOCUS FAILS

Building upon the question in Section 1, we aim to investigate the underlying causes of VLMs’ answering failures. We conduct experiments on TextVQA dataset using QWEN2.5-VL-3B-INSTRUCT. As shown in Figure 2, we visualize attention maps during inference and find two interesting phenomena. Attention progressively refines from broad global scanning in shallow layers to regional localization in the middle layers, culminating in focused convergence in deep layers. The degree of convergence varies based on input images.

Moreover, visual complexity critically influences attention convergence. In simple scenes with clear targets and minimal distractors, the high-attention regions successfully narrow as layers deepen, aligning with task-relevant regions. Conversely, in complex scenes with rich textures and colors, the high-attention regions still attempt to narrow as layers deepen, yet the resulting attention weights remain more diffused compared to simple scenes. As indicated by the annotation “Confused where to look”, this attention dispersion resembles human hesitation when confronting crowded shelves and ultimately manifests as reasoning failures. These observations lead us to formulate a question: *Does*

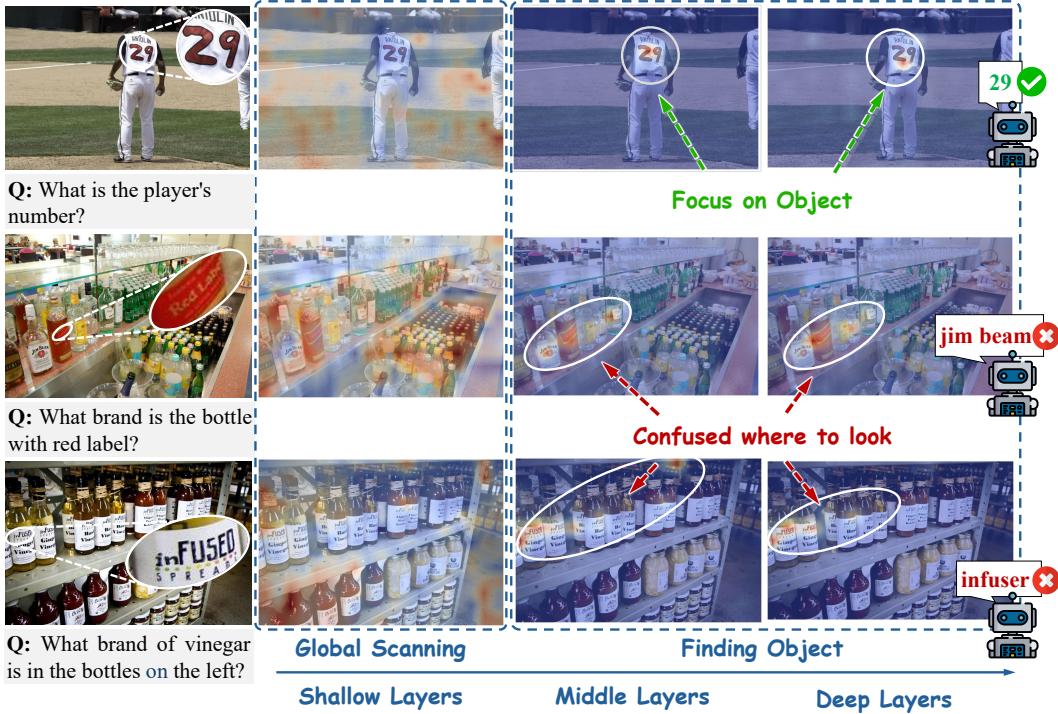


Figure 2: Attention maps across different layers during inference. Each row represents a visual question-answering task: row 1 shows a simple scene with clear targets, while rows 2-3 depict complex scenes with dense textures and multiple similar objects. From left to right, the columns display: input images, shallow layer attention, middle layer attention, and deep layer attention.

visual complexity affect VLMs' attention distribution, and does this attention distribution further influence VLMs' performance?

To answer it, we conduct two deeper experiments: First, we quantify the relationship between visual complexity and attention entropy to establish whether complex inputs produce dispersed attention (Section 3.2); Second, we examine the correlation between attention entropy and model performance to determine whether dispersed attention contributes to reasoning failures (Section 3.3).

### 3.2 MECHANISM: THE EFFECT OF VISUAL COMPLEXITY ON ATTENTION ENTROPY

In Figure 2, images in rows 2-3 differ from row 1 by displaying numerous colorful bottles, containing significantly more textures and colors. Therefore, we decompose visual complexity into two dimensions: **texture** and **color**, and investigate their respective impacts on attention.

We define the texture complexity and the color complexity as follows:

**Texture Complexity.** Let  $\mathcal{I} \in \mathbb{R}^{H \times W \times 3}$  denote an input image. We define the texture complexity  $\mathcal{T}_c(\mathcal{I})$  using Canny edge detection (Canny, 1986), where  $\mathcal{E}(\mathcal{I}) \in \{0, 1\}^{H \times W}$  represents the resulting binary edge map. The texture complexity is then defined as:

$$\mathcal{T}_c(\mathcal{I}) = \frac{1}{HW} \sum_{i=1}^H \sum_{j=1}^W \mathcal{E}(\mathcal{I})_{ij} = \frac{\|\mathcal{E}(\mathcal{I})\|_1}{HW} \in [0, 1] \quad (3.1)$$

**Color Complexity.** Let  $\zeta_{ij} = \text{Hue}(\Psi_{RGB \rightarrow HSV}(\mathcal{I}_{ij}))$  denote the hue value at pixel  $(i, j)$  after applying the RGB to HSV transformation operator  $\Psi$ . The color complexity is then defined as:

$$\mathcal{C}_c(\mathcal{I}) = -\frac{1}{\ln B} \sum_{b=0}^{B-1} \rho_b \ln \rho_b, \quad \text{where } \rho_b = \frac{n_b}{HW}, \quad n_b = |\{(i, j) : \zeta_{ij} = b\}| \quad (3.2)$$

with  $B = 180$  hue bins, yielding  $\mathcal{C}_c \in [0, 1]$  where higher values indicate greater color diversity.

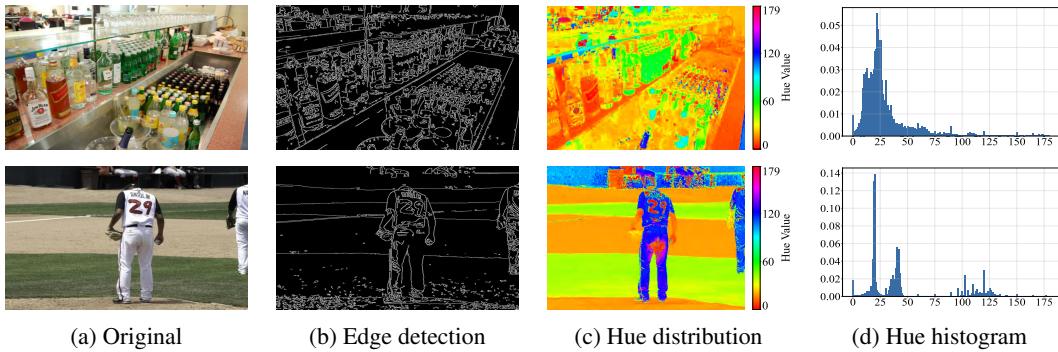


Figure 3: Visualization of texture and color complexity analysis. Each row represents a sample image: (a) Original image  $\mathcal{I}$ , (b) Canny edge map  $\mathcal{E}(\mathcal{I})$  for texture complexity  $T_c$ , (c) Spatial hue distribution  $\zeta$  in HSV space, and (d) Hue histogram (x-axis: hue value, y-axis: ratio).

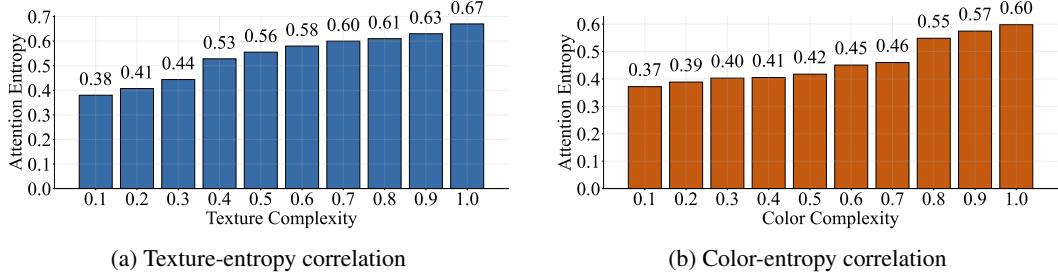


Figure 4: Correlation analysis between visual complexity and attention entropy. Both attention entropy and complexity are normalized to the  $[0, 1]$ , divided into intervals of 0.1, and the average attention entropy is calculated within each interval.

Figure 3 visually validates the effectiveness of our complexity measurement approach. The first row demonstrates high texture complexity with dense edge networks in  $\mathcal{E}(\mathcal{I})$  and diverse color distribution across the hue spectrum. In contrast, the second row exhibits minimal edge density and concentrated hue values, indicating lower complexity scores. We therefore proceed to quantitatively investigate the correlation between complexity metrics and attention distribution.

For measuring the distribution of attention across visual tokens, inspired by Yao et al. (2025b), we employ Shannon entropy (Shannon, 1948) as our quantification metric. Let  $N_v$  denote the number of visual tokens in the model’s representation. We denote the attention map as  $A_{l,t}^{(Q)} \in \mathbb{R}^{N_v}$ , where  $l$  indicates the layer index,  $t$  the generation time step, and  $Q$  the input question. For entropy analysis, we focus on the final generation step  $t_{\text{end}}$  and define the overall attention entropy  $\bar{\mathcal{H}}$  as:

$$\bar{\mathcal{H}} = \frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \mathcal{H}(A_{l,t_{\text{end}}}^{(Q)}) = \frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \left( - \sum_{i=1}^{N_v} a_{l,t_{\text{end}},i} \ln a_{l,t_{\text{end}},i} \right) \quad (3.3)$$

where  $\mathcal{L} = [L_{\text{start}}, L_{\text{end}}]$  represents the layer range under consideration, and  $a_{l,t,i}$  denotes the contrasted attention weight for the  $i$ -th visual token. Higher entropy indicates more dispersed attention, while lower entropy indicates more concentrated focus.

Figure 4 presents the correlation analysis between our defined complexity metrics and computed attention entropy. Both texture complexity (Figure 4a) and color complexity (Figure 4b) exhibit strong positive linear relationships with attention entropy. This monotonic trend indicates that **complex visual features lead to dispersed attention patterns in VLMs**.

### 3.3 CONSEQUENCE: HOW DISPERSED ATTENTION IMPAIRS PERFORMANCE

Figure 5(a) reveals a strong negative correlation between attention entropy and accuracy. As attention entropy increases from 5.1 to 6.8, performance decreases from approximately 76% to 65%, confirming that increased attention dispersion directly impairs visual reasoning capabilities in VLMs.

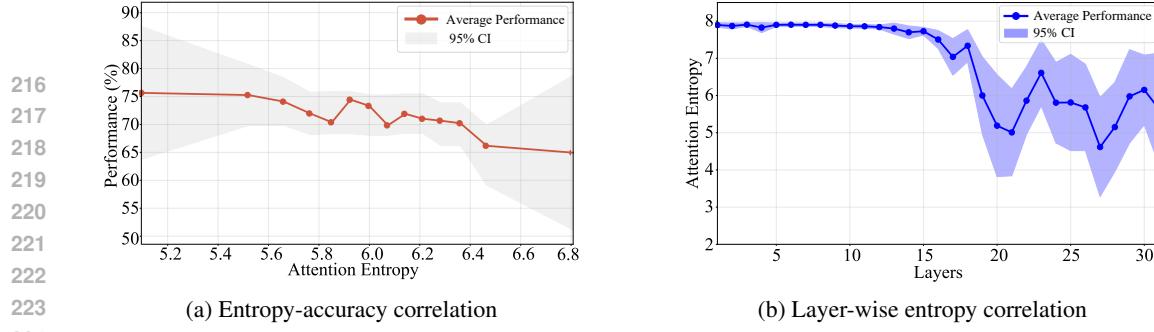


Figure 5: Attention entropy’s correlation with accuracy and its evolution across layers. Shaded regions indicate 95% confidence intervals computed as  $\bar{x} \pm t_{0.975, n-1} \cdot s / \sqrt{n}$ . (a) Shows accuracy for samples grouped by overall attention entropy  $\bar{H}$ . (b) Displays mean entropy across  $N$  samples per layer as  $\frac{1}{N} \sum_{i=1}^N \mathcal{H}(A_{l, t_{\text{end}}}^{(Q, i)})$ , where  $A_{l, t_{\text{end}}}^{(Q, i)}$  is sample  $i$ ’s attention at the final generation step.

To investigate the hierarchical evolution of attention entropy, we present mean entropy and its distribution across layers in Figure 5(b). The results reveal two notable characteristics: (1) attention entropy monotonically decreases with layer depth, consistent with Figure 2. (2) The 95% confidence intervals progressively widen with increasing depth, indicating enhanced inter-sample variability. For samples with clear visual targets, deep layers achieve highly concentrated attention. In contrast, for noisy samples, the model maintains dispersed attention patterns even in deep layers.

## 4 CONTRASTIVE ATTENTION REFINEMENT FOR VISUAL ENHANCEMENT

### 4.1 THEORETICAL FOUNDATION: NOISE SUPPRESSION AND VISUAL REFINEMENT

Based on our findings in Section 3, where we demonstrated that visual complexity causes attention dispersion and performance degradation, we seek to extract pure task-related semantic signal. Therefore, we first formally define the attention signal decomposition mechanism.

**Definition 1 (Attention Decomposition):** Attention distributions are influenced by inherent visual noise (detailed in Appendix A.2) of the image and task-related semantic signal. The attention map  $A_{l, t}^{(Q)}(\mathcal{I})$  decomposes as:

$$A_{l, t}^{(Q)}(\mathcal{I}) = \mathcal{F}_{\text{vis}}(\mathcal{I}) \otimes \mathcal{F}_{\text{sem}}(Q, \mathcal{I}) \quad (4.1)$$

where  $\mathcal{F}_{\text{vis}}(\mathcal{I}) \in \mathbb{R}^{N_v}$  captures image-inherent visual noise,  $\mathcal{F}_{\text{sem}}(Q, \mathcal{I}) \in \mathbb{R}^{N_v}$  captures task-related semantic signal, and  $\otimes$  denotes the Hadamard product.

When using general instructions  $G$ , due to the absence of specific tasks to introduce semantic information, the semantic signal function reduces to uniform distribution ( $\mathcal{F}_{\text{sem}}(G, \mathcal{I}) \approx \mathbf{1}_{N_v}$ ), making general instruction attention predominantly capture visual noise:

$$A_{l, t}^{(G)}(\mathcal{I}) \approx \mathcal{F}_{\text{vis}}(\mathcal{I}) \otimes \mathbf{1}_{N_v} = \mathcal{F}_{\text{vis}}(\mathcal{I}) \quad (4.2)$$

**Definition 2 (Semantic Extraction Based on Attention Decomposition):** To extract semantic signal function  $\mathcal{F}_{\text{sem}}(Q, \mathcal{I})$  from  $A^{(Q)}$ , we define estimated semantic attention  $\hat{A} \in \mathbb{R}_{+}^{N_v}$  as our estimate of  $\mathcal{F}_{\text{sem}}(Q, \mathcal{I})$ , which is the solution to the following optimization problem:

$$\hat{A} = \arg \min_{\tilde{A} \in \mathcal{A}} \mathcal{J}(\tilde{A}; A^{(Q)}, A^{(G)}) \quad (4.3)$$

where the objective function is constructed based on Definition 1’s decomposition:

$$\mathcal{J}(\tilde{A}) = \underbrace{\sum_{i=1}^{N_v} \left( \tilde{A}_i \cdot \mathcal{F}_{\text{vis}, i}(\mathcal{I}) - [\mathcal{F}_{\text{vis}, i}(\mathcal{I}) \cdot \mathcal{F}_{\text{sem}, i}(Q, \mathcal{I})] \right)^2}_{\text{Semantic reconstruction error}} + \underbrace{\lambda \sum_{i=1}^{N_v} \tilde{A}_i^2 \cdot \mathcal{F}_{\text{vis}, i}(\mathcal{I})}_{\text{Visual suppression regularization}} \quad (4.4)$$

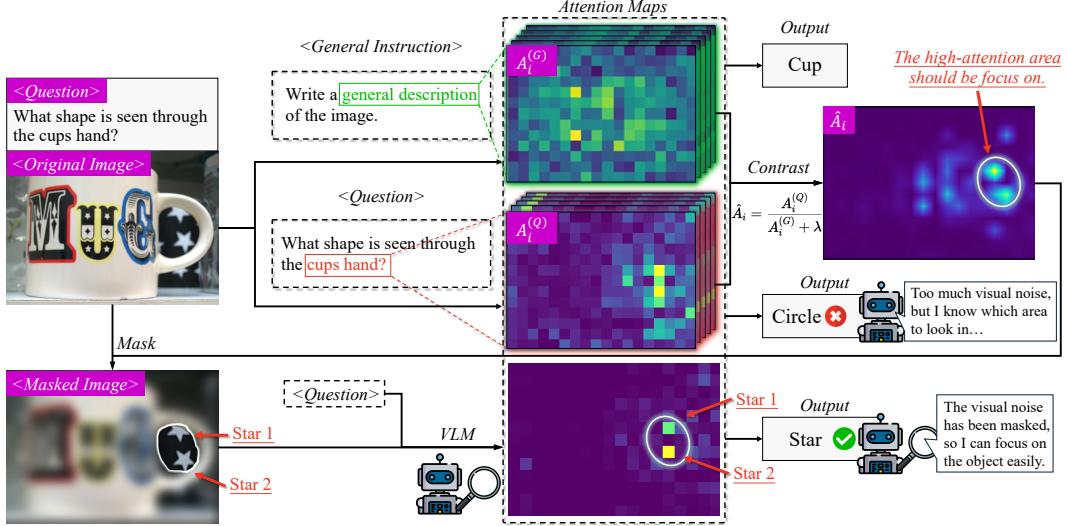


Figure 6: CARVE comprises three stages: Stage 1 generates general attention distribution  $A_i^{(G)}$  with general instructions; Stage 2 extracts task-specific attention  $A_i^{(Q)}$ ; Stage 3 applies contrasted attention  $\hat{A}_i$  to generate enhanced masked images for noise suppression.

**Theorem 3 (Closed-form Solution for Semantic Extraction):** Substituting Definition 1’s relationships  $A_i^{(Q)} \approx \mathcal{F}_{\text{vis},i} \cdot \mathcal{F}_{\text{sem},i}$  and  $A_i^{(G)} \approx \mathcal{F}_{\text{vis},i}$  into the optimization objective yields:

$$\mathcal{J}(\tilde{A}) = \sum_{i=1}^{N_v} \left( \tilde{A}_i \cdot A_i^{(G)} - A_i^{(Q)} \right)^2 + \lambda \sum_{i=1}^{N_v} \tilde{A}_i^2 \cdot A_i^{(G)} \quad (4.5)$$

where  $\lambda > 0$  is a regularization parameter that controls the strength of visual noise suppression.

Solving the first-order optimality conditions yields the closed-form solution:

$$\hat{A}_i = \frac{A_i^{(Q)}}{A_i^{(G)} + \lambda} = \frac{\mathcal{F}_{\text{vis},i} \cdot \mathcal{F}_{\text{sem},i}}{\mathcal{F}_{\text{vis},i} + \lambda} \approx \mathcal{F}_{\text{sem},i} \quad \text{when } \mathcal{F}_{\text{vis},i} \gg \lambda \quad (4.6)$$

Equation 4.6 demonstrates that normalization suppresses the influence of  $\mathcal{F}_{\text{vis},i}$  when it dominates (i.e.,  $\mathcal{F}_{\text{vis},i} \gg \lambda$ ), approximating the semantic signal  $\mathcal{F}_{\text{sem},i}$  (detailed analysis in Appendix C).

## 4.2 CONTRASTIVE ATTENTION-BASED VISUAL ENHANCEMENT

Having obtained the semantically refined attention maps  $\{\hat{A}\}$ , as shown in Algorithm 1, we now proceed to generate attention masks that physically remove visual noise from the input image.

**Attention Maps Fusion.** Since different layers and time steps capture complementary information, we fuse attention maps across the layer range  $\mathcal{L}$  and generation time steps  $\mathcal{T} = [t_{\text{start}}, t_{\text{end}}]$  through weighted aggregation. Later tokens encode richer contextual information by accessing complete preceding sequences during inference, thus receiving higher fusion weights.

**Mask Generation and Visual Extraction.** Task-relevant regions are identified by applying the top-p percentile threshold  $\tau = Q_p(S)$ , which retains the top  $p \in (0, 1]$  proportion of pixels from attention map  $S$ . Connected component analysis extracts coherent regions from the thresholded map. We select the top- $K$  regions ranked by cumulative attention scores and generate the enhanced image through  $\mathcal{I}_{\text{refined}} = \Phi(\mathcal{L}, M^*)$ , where  $\Phi$  applies masking, cropping, and resizing, and  $K$  controls the maximum number of regions to preserve. This refinement eliminates visual noise while magnifying task-relevant content, enabling focused attention on task-related areas.

| Model             | Step: $\mathcal{T}$         | A-OKVQA     | POPE        | $V^*$        | TextVQA      |
|-------------------|-----------------------------|-------------|-------------|--------------|--------------|
| 324 QWEN2.5-VL-3B | w/o CARVE                   | 73.0(−)     | 86.9(−)     | 50.3(−)      | 72.8(−)      |
|                   | $t_{\text{start}}$          | 76.5(↑4.79) | 87.1(↑0.23) | 56.0(↑11.33) | 76.1(↑4.53)  |
|                   | $t_{\text{end}}$            | 79.2(↑8.49) | 88.4(↑1.73) | 57.1(↑13.52) | 76.4(↑4.95)  |
|                   | $\mathcal{T}_{\text{full}}$ | 78.3(↑7.26) | 87.9(↑1.15) | 56.5(↑12.33) | 76.3(↑4.81)  |
| 327 QWEN2.5-VL-7B | w/o CARVE                   | 75.0(−)     | 87.0(−)     | 50.8(−)      | 75.0(−)      |
|                   | $t_{\text{start}}$          | 77.0(↑2.67) | 87.9(↑1.03) | 58.6(↑15.35) | 80.7(↑7.60)  |
|                   | $t_{\text{end}}$            | 78.3(↑4.40) | 89.7(↑3.10) | 59.7(↑17.52) | 81.9(↑9.20)  |
|                   | $\mathcal{T}_{\text{full}}$ | 78.0(↑4.00) | 88.6(↑1.84) | 58.1(↑14.37) | 81.7(↑8.93)  |
| 330 LLaVA1.5-7B   | w/o CARVE                   | 71.5(−)     | 83.6(−)     | 38.7(−)      | 47.8(−)      |
|                   | $t_{\text{start}}$          | 73.9(↑3.36) | 86.8(↑3.83) | 57.1(↑47.55) | 57.9(↑21.13) |
|                   | $t_{\text{end}}$            | 78.2(↑9.37) | 89.0(↑6.46) | 66.5(↑71.83) | 58.2(↑21.76) |
|                   | $\mathcal{T}_{\text{full}}$ | 75.4(↑5.45) | 89.0(↑6.46) | 66.5(↑71.83) | 57.9(↑21.13) |
| 334 LLaVA1.5-13B  | w/o CARVE                   | 75.7(−)     | 84.6(−)     | 42.4(−)      | 57.1(−)      |
|                   | $t_{\text{start}}$          | 76.2(↑0.66) | 90.0(↑6.38) | 65.4(↑54.25) | 59.2(↑3.68)  |
|                   | $t_{\text{end}}$            | 76.9(↑1.59) | 90.7(↑7.21) | 74.3(↑75.24) | 61.2(↑7.18)  |
|                   | $\mathcal{T}_{\text{full}}$ | 76.5(↑1.06) | 90.1(↑6.50) | 70.0(↑65.09) | 61.2(↑7.18)  |

Table 1: Accuracy comparison of CARVE across VLMs on four datasets. We evaluate three temporal configurations:  $t_{\text{start}}$  uses attention from initial generated tokens,  $t_{\text{end}}$  from final tokens, and  $\mathcal{T}_{\text{full}}$  applies weighted fusion across all tokens. We use layer range  $\mathcal{L} = [20, 25]$  for attention fusion.

---

**Algorithm 1** CARVE: Contrastive Attention Refinement for Visual Enhancement
 

---

**Notation:**  $\mathcal{M}$ : VLM model;  $\Xi$ : attention extraction;  $\pi_{H \times W}$ : spatial reshape;  $\mathcal{Q}_p$ : top- $p$  threshold;  $\Phi$ : visual extraction (mask, crop, resize);  $G$ : general instruction;  $\tau$ : threshold;  $\mathcal{R}$ : connected regions;  $K$ : max regions to keep

**Require:**  $\mathcal{I} \in \mathbb{R}^{H \times W \times 3}$ ,  $Q$ ,  $\mathcal{M}$ ,  $\Theta = \{\mathcal{L}, \mathcal{T}, p, \lambda, K\}$

- 1: **Inference:**  $\mathcal{A}^Q \leftarrow \{A_{l,t}^{(Q)}\}_{l \in \mathcal{L}, t \in \mathcal{T}} = \Xi(\mathcal{M}, \mathcal{I}, Q)$  ▷ Question-specific attention
- 2: **Inference:**  $\mathcal{A}^G \leftarrow \{A_{l,t}^{(G)}\}_{l \in \mathcal{L}, t \in \mathcal{T}} = \Xi(\mathcal{M}, \mathcal{I}, G)$  ▷ General attention
- 3: **Contrast:**  $\hat{A}_{l,t} \leftarrow \frac{A_{l,t}^{(Q)}}{A_{l,t}^{(G)} + \lambda}$  for all  $l \in \mathcal{L}, t \in \mathcal{T}$  ▷ following Eq. 4.6
- 4: **Fuse:**  $S \leftarrow \sum_{t \in \mathcal{T}} w_t \sum_{l \in \mathcal{L}} \pi_{H \times W}(\hat{A}_{l,t})$ ,  $w_t = t - t_{\text{start}} + 1$  ▷ Weighted attention fusion
- 5: **Threshold:**  $\tau \leftarrow \mathcal{Q}_p(S)$  ▷ Compute threshold to retain top  $p$  percentile
- 6: **Mask:**  $M^* = \bigcup_{k=1}^K R_k^*$  where  $R_k^* = \arg \max_{R \in \mathcal{R}} \sum_{(i,j) \in R} S(i,j)$  with  $\mathcal{R}$  from  $S \geq \tau$  ▷ Visual extraction
- 7: **Extract:**  $\mathcal{I}_{\text{refined}} \leftarrow \Phi(\mathcal{I}, M^*)$  ▷ Final inference
- 8: **Inference:** **return**  $\mathcal{M}(\mathcal{I}_{\text{refined}}, Q)$

---

As shown in Figure 6, we propose **Contrastive Attention Refinement for Visual Enhancement (CARVE)**, a method that contrasts attention maps to distinguish semantic pixels from noise, preserving only task-relevant regions for enhanced model focus (detailed in Appendix B).

## 5 METHOD ANALYSIS

### 5.1 EXPERIMENTAL SETUP

**Datasets.** We conduct our experiments on four datasets: A-OKVQA (Schwenk et al., 2022), POPE (Li et al., 2023b),  $V^*$  (Wu & Xie, 2023), and TextVQA (Singh et al., 2019), which cover multiple task dimensions including visual reasoning, visual understanding, and visual knowledge reasoning. For TextVQA, we evaluate the models’ intrinsic visual text recognition capabilities by providing only images and questions without external OCR augmentation (detailed in Appendix E).

**Models.** We conduct experiments on four VLMs: QWEN2.5-VL-3B-INSTRUCT, QWEN2.5-VL-7B-INSTRUCT (Qwen, 2025), LLaVA-1.5-7B, and LLaVA-1.5-13B (Liu et al., 2023a). The Qwen family processes images at  $448 \times 448$  resolution, while the LLaVA-1.5 family operates at  $336 \times 336$  resolution. All models employ greedy decoding.

| Model                                                                                                                                                                                                                                                                                                                                                                                  | Layer(s): $\mathcal{L}$                                                                       | A-OKVQA                                                                 | POPE                                                                                        | $\mathbf{V}^*$                                                                         | TextVQA                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|
| 378<br>379<br>380<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>409<br>410<br>411<br>412<br>413<br>414<br>415<br>416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431 | QWEN2.5-VL-3B<br>Single Layer<br>20<br>25<br>Multi-Layers<br>[10, 15]<br>[15, 20]<br>[20, 25] | w/o CARVE<br>14<br>73.0(−)<br>74.3(↑1.78)<br>76.5(↑4.79)<br>76.7(↑5.07) | 86.9(−)<br>87.1(↑0.23)<br>87.4(↑0.58)<br>87.5(↑0.69)                                        | 50.3(−)<br>53.9(↑7.16)<br>56.0(↑11.33)<br>56.0(↑11.33)                                 | 72.8(−)<br>73.6(↑1.10)<br>74.7(↑2.61)<br>75.9(↑4.26)    |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                      | 74.0(↑1.37)<br>76.8(↑5.21)<br>78.3(↑7.26)                                                   | 86.9(0.00)<br>87.7(↑0.92)<br>87.9(↑1.15)                                               | 53.4(↑6.16)<br>56.0(↑11.33)<br>57.1(↑13.52)             |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | w/o CARVE<br>14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]         | 75.0(−)<br>75.2(↑0.27)<br>76.9(↑2.53)<br>77.0(↑2.67)                                        | 87.0(−)<br>87.5(↑0.57)<br>87.9(↑1.03)<br>88.2(↑1.38)                                   | 50.8(−)<br>54.5(↑7.28)<br>56.5(↑11.22)<br>57.0(↑12.20)  |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                      | 75.0(0.00)<br>77.1(↑2.80)<br>78.0(↑4.00)                                                    | 87.0(0.00)<br>88.4(↑1.61)<br>88.6(↑1.84)                                               | 51.3(↑0.98)<br>57.6(↑13.39)<br>58.1(↑14.37)             |
|                                                                                                                                                                                                                                                                                                                                                                                        | QWEN2.5-VL-7B<br>Single Layer<br>20<br>25<br>Multi-Layers<br>[10, 15]<br>[15, 20]<br>[20, 25] | w/o CARVE<br>14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]         | 71.5(−)<br>71.7(↑0.28)<br>74.0(↑3.50)<br>74.1(↑3.64)                                        | 83.6(−)<br>85.1(↑1.79)<br>87.2(↑4.31)<br>87.1(↑4.19)                                   | 38.7(−)<br>63.4(↑63.82)<br>65.4(↑68.99)<br>65.4(↑68.99) |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                      | 71.5(0.00)<br>74.2(↑3.78)<br>75.4(↑5.45)                                                    | 84.5(↑1.08)<br>87.5(↑4.67)<br>89.0(↑6.46)                                              | 48.2(↑24.55)<br>65.4(↑68.99)<br>66.5(↑71.83)            |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | w/o CARVE<br>14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]         | 75.7(−)<br>75.8(↑0.13)<br>76.2(↑0.66)<br>76.2(↑0.66)                                        | 84.6(−)<br>86.1(↑1.77)<br>88.2(↑4.26)<br>88.1(↑4.14)                                   | 42.4(−)<br>66.5(↑56.84)<br>68.6(↑61.79)<br>69.0(↑62.74) |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                      | 75.7(0.00)<br>76.8(↑1.45)<br>76.9(↑1.59)                                                    | 85.0(↑0.47)<br>88.6(↑4.73)<br>90.1(↑6.50)                                              | 52.9(↑24.76)<br>69.1(↑62.97)<br>70.0(↑65.09)            |
| LLAVA1.5-7B<br>Single Layer<br>20<br>25<br>Multi-Layers<br>[10, 15]<br>[15, 20]<br>[20, 25]                                                                                                                                                                                                                                                                                            | w/o CARVE<br>14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                               | 71.83%<br>71.83%<br>71.83%<br>71.83%<br>71.83%<br>71.83%<br>71.83%      | 54.0(↑12.97)<br>56.1(↑17.36)<br>56.2(↑17.57)<br>49.2(↑2.93)<br>56.4(↑17.99)<br>58.2(↑21.76) |                                                                                        |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                        | LLAVA1.5-13B<br>Single Layer<br>20<br>25<br>Multi-Layers<br>[10, 15]<br>[15, 20]<br>[20, 25]  | w/o CARVE<br>14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]         | 55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%                          | 58.2(↑1.93)<br>59.1(↑3.50)<br>59.2(↑3.68)<br>57.4(↑0.53)<br>59.4(↑4.03)<br>61.2(↑7.18) |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                      | 55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%                          | 58.2(↑1.93)<br>59.1(↑3.50)<br>59.2(↑3.68)<br>57.4(↑0.53)<br>59.4(↑4.03)<br>61.2(↑7.18) |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                      | 55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%                          | 58.2(↑1.93)<br>59.1(↑3.50)<br>59.2(↑3.68)<br>57.4(↑0.53)<br>59.4(↑4.03)<br>61.2(↑7.18) |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | 14<br>20<br>25<br>[10, 15]<br>[15, 20]<br>[20, 25]                      | 55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%<br>55.84%                          | 58.2(↑1.93)<br>59.1(↑3.50)<br>59.2(↑3.68)<br>57.4(↑0.53)<br>59.4(↑4.03)<br>61.2(↑7.18) |                                                         |

Table 2: We investigate CARVE’s accuracy using both single-layer and multi-layer intervention strategies at shallow, middle, and deep model depths, where single-layer interventions use attention maps  $\hat{A}_i$  from individual layers, while multi-layer interventions fuse maps across multiple layers to guide masking decisions. We employ  $\mathcal{T}_{\text{full}}$  as the time step configuration.

## 5.2 RESULTS

**CARVE Enhances VLMs’ Visual QA Performance.** Tables 1 and 2 demonstrate CARVE’s consistent performance enhancement across all evaluated models and datasets. Earlier-generation models exhibit substantially greater improvements than their more recent counterparts. For instance, LLAVA1.5-7B achieves a 71.83% relative improvement on  $\mathbf{V}^*$ , whereas QWEN2.5-VL-7B shows a 17.52% gain. This pattern indicates that limited-capability models suffer more from visual complexity interference and benefit more from contrastive attention-guided focusing mechanisms.

**Ablation Study on the Time Step.** Table 1 reveals a consistent performance hierarchy across various time step selection strategies. Specifically,  $t_{\text{end}}$  generally outperforms  $\mathcal{T}_{\text{full}}$ , which in turn surpasses  $t_{\text{start}}$  across most experimental configurations. This pattern is exemplified by QWEN2.5-VL-7B’s performance on TextVQA, where  $t_{\text{end}}$  achieves 81.9% accuracy, followed by  $\mathcal{T}_{\text{full}}$  at 81.7% and  $t_{\text{start}}$  at 80.7%. This phenomenon aligns with architectural principles. Later tokens encode richer contextual information by accessing complete preceding sequences during inference. Consequently, the final token’s attention maps accurately localize target objects, providing prerequisite conditions for CARVE’s noise masking mechanism.

**Ablation Study on the Layer Selection.** To investigate layer selection effects on attention pattern extraction, we conduct systematic experiments as shown in Table 2. Across all tested model architectures, the layer-wise performance demonstrates the following general ordering from best to worst: [20,25], [15,20], single layer 25, single layer 20, single layer 14, and [10,15]. This pattern is exemplified by LLAVA1.5-7B’s performance on TextVQA, where the multi-layer [20,25] achieves a 21.76% improvement, the [15,20] reaches a 17.99% improvement, while the early-layer [10,15] attains only a 2.93% improvement. Multi-layer fusion outperforms single-layer alternatives by capturing complementary information and providing robustness against individual layer randomness.

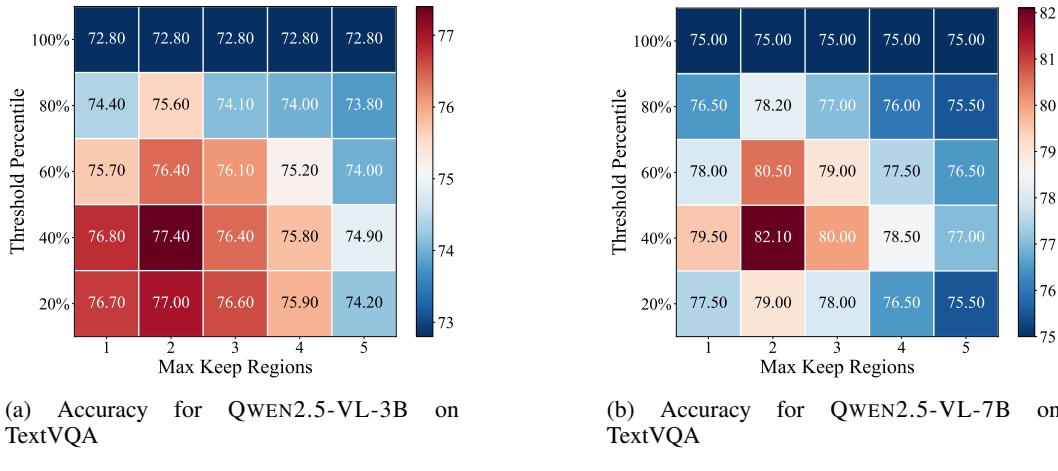


Figure 7: Impact of mask generation hyperparameters on TextVQA accuracy for QWEN family. Results show performance across varying top- $p$  threshold and maximum keep regions  $K$ .

| Method   | Original | SAM   | YOLO  | CLIP  | ViCrop  |          |           | CARVE       |
|----------|----------|-------|-------|-------|---------|----------|-----------|-------------|
|          |          |       |       |       | rel-att | grad-att | pure-grad |             |
| Accuracy | 47.80    | 49.42 | 48.84 | 48.55 | 55.17   | 56.06    | 51.67     | <b>58.2</b> |
| GPU Time | 0.17     | 3.33  | 0.35  | 1.07  | 1.16    | 0.89     | 2.36      | 1.34        |

Table 3: Performance comparison of CARVE against external tool-based approaches and ViCrop on TextVQA: accuracy (%) and inference time overhead per sample (seconds).

This phenomenon aligns with our findings in Figure 5(b): early layers perform global scanning with high entropy, while middle-to-deep layers focus on task-relevant patterns.

**Sensitivity Analysis of Mask Generation.** We examine a 1,000-instance subset randomly sampled from TextVQA. As shown in Figure 7, when  $p = 1.0$ , corresponding to no masking intervention, performance remains at original levels. However, when  $p$  is set within  $[0.2, 0.6]$  combined with  $K \in \{2, 3\}$ , the model achieves optimal performance, as these settings maintain a balance between preserving object representations and suppressing visual noise. In contrast, aggressive masking strategies manifest detrimental effects: retention ratios set to 20% and single-region constraints lead to degradation, since such aggressive configurations discard essential visual information.

**Comparative Analysis with Alternative Methods.** As shown in Table 3, CARVE substantially outperforms external tool-based approaches: SAM (Kirillov et al., 2023), YOLO (Redmon et al., 2016), CLIP (Radford et al., 2021) and recent ViCrop (Zhang et al., 2025) variants across diverse baseline methodologies (conducted on NVIDIA RTX A6000). External tools rely on generic segmentation algorithms that lack question-image context awareness. While ViCrop effectively reduces visual noise through strategic cropping, it lacks pixel-level noise masking. Regarding computational efficiency, CARVE requires 1.34 seconds of GPU processing time, exceeding simpler approaches such as YOLO (0.35 seconds) but remaining within practical deployment constraints.

## 6 CONCLUSION

In this work, we demonstrate that visual complexity correlates with attention entropy, which in turn negatively impacts VLMs’ performance. Theoretically, we prove that contrasting attention maps between general and specific instructions enables effective decomposition of visual signal into semantic signal and visual noise components. To this end, we propose **Contrastive Attention Refinement for Visual Enhancement (CARVE)**, a training-free method that leverages this theoretical insight to extract task-relevant signal through attention contrasting and pixel-level masking. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning without training.

486 ETHICS STATEMENT  
487488 In conducting our research, we prioritize ethical standards to ensure integrity and contribute posi-  
489 tively to the scientific community. We exclusively utilize open-source datasets, ensuring our work  
490 builds upon accessible and transparent resources. Our methods employ widely recognized models  
491 with established reliability within the academic community. We have designed our methodology to  
492 prevent generating harmful or misleading information, safeguarding our findings' integrity.  
493494 REPRODUCIBILITY STATEMENT  
495496 To ensure reproducibility, we utilize publicly available datasets with detailed processing procedures  
497 documented in the appendices. Our methodology is fully specified through pseudocode, mathe-  
498 matical formulations, and comprehensive descriptions. All configurations, hyperparameters, and  
499 evaluation protocols are explicitly documented. Theoretical contributions include complete proofs  
500 with assumptions clearly stated. Code and implementation details will be released upon acceptance.  
501502 REFERENCES  
503504  
505 Shantanu Acharya, Fei Jia, and Boris Ginsburg. Star attention: Efficient l1m inference over long  
506 sequences. *arXiv preprint arXiv:2411.17116*, 2024.507 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel  
508 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language  
509 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–  
510 23736, 2022.511 Baolong Bi, Shaohan Huang, Yiwei Wang, Tianchi Yang, Zihan Zhang, Haizhen Huang, Lingrui  
512 Mei, Junfeng Fang, Zehao Li, Furu Wei, et al. Context-dpo: Aligning language models for  
513 context-faithfulness. *arXiv preprint arXiv:2412.15280*, 2024.514  
515 Baolong Bi, Shenghua Liu, Lingrui Mei, Yiwei Wang, Junfeng Fang, Pengliang Ji, and Xueqi  
516 Cheng. Decoding by contrasting knowledge: Enhancing large language model confidence on  
517 edited facts. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pile-  
518 hvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Lin-  
519 guistics (Volume 1: Long Papers)*, pp. 17198–17208, Vienna, Austria, July 2025a. Association  
520 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.841.  
521 URL <https://aclanthology.org/2025.acl-long.841/>.522 Baolong Bi, Shenghua Liu, Xingzhang Ren, Dayiheng Liu, Junyang Lin, Yiwei Wang, Lingrui Mei,  
523 Junfeng Fang, Jiafeng Guo, and Xueqi Cheng. Refinex: Learning to refine pre-training data at  
524 scale from expert-guided programs. *arXiv preprint arXiv:2507.03253*, 2025b.525 John Canny. A computational approach to edge detection. *IEEE Transactions on pattern analysis  
526 and machine intelligence*, 8(6):679–698, 1986.527 Lizhe Chen, Yan Hu, Yu Zhang, Yuyao Ge, Haoyu Zhang, and Xingquan Cai. Frequency-importance  
528 gaussian splatting for real-time lightweight radiance field rendering. *Multimedia Tools and Ap-  
529 plications*, 83(35):83377–83401, 2024a.530  
531 Lizhe Chen, Binjia Zhou, Yuyao Ge, Jiayi Chen, and Shiguang Ni. Pis: Linking impor-  
532 tance sampling and attention mechanisms for efficient prompt compression. *arXiv preprint  
533 arXiv:2504.16574*, 2025.534 Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li, Chengyu Wang, Longtao Huang, and Hui  
535 Xue'. Lifelong knowledge editing for LLMs with retrieval-augmented continuous prompt learn-  
536 ing. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024  
537 Conference on Empirical Methods in Natural Language Processing*, pp. 13565–13580, Miami,  
538 Florida, USA, November 2024b. Association for Computational Linguistics. doi: 10.18653/  
539 v1/2024.emnlp-main.751. URL [https://aclanthology.org/2024.emnlp-main.  
751/](https://aclanthology.org/2024.emnlp-main.751/).

540 Zenghao Duan, Wenbin Duan, Zhiyi Yin, Yinghan Shen, Shaoling Jing, Jie Zhang, Huawei Shen,  
 541 and Xueqi Cheng. Related knowledge perturbation matters: Rethinking multiple pieces of knowl-  
 542 edge editing in same-subject. *arXiv preprint arXiv:2502.06868*, 2025.

543

544 Honghao Fu, Yufei Wang, Wenhan Yang, Alex C Kot, and Bihan Wen. Dp-iqa: Utilizing diffusion  
 545 prior for blind image quality assessment in the wild. *arXiv preprint arXiv:2405.19996*, 2024.

546

547 Honghao Fu, Junlong Ren, Qi Chai, Deheng Ye, Yujun Cai, and Hao Wang. Vistawise: Build-  
 548 ing cost-effective agent with cross-modal knowledge graph for minecraft. *arXiv preprint  
 549 arXiv:2508.18722*, 2025.

550

551 Haonan Ge, Yiwei Wang, Ming-Hsuan Yang, and Yujun Cai. Mrfd: Multi-region fusion decoding  
 552 with self-consistency for mitigating hallucinations in lmlms, 2025a. URL <https://arxiv.org/abs/2508.10264>.

553

554 Yuyao Ge, Zhongguo Yang, Lizhe Chen, Yiming Wang, and Chengyang Li. Attack based on data:  
 555 a novel perspective to attack sensitive points directly. *Cybersecurity*, 6(1):43, 2023.

556

557 Yuyao Ge, Shenghua Liu, Baolong Bi, Yiwei Wang, Lingrui Mei, Wenjie Feng, Lizhe Chen, and  
 558 Xueqi Cheng. Can graph descriptive order affect solving graph problems with llms? *ACL 2025*,  
 559 pp. 6404–6420, 2025b.

560

561 Yuyao Ge, Shenghua Liu, Yiwei Wang, Lingrui Mei, Lizhe Chen, Baolong Bi, and Xueqi Cheng.  
 562 Innate reasoning is not enough: In-context learning enhances reasoning large language models  
 563 with less overthinking. *arXiv preprint arXiv:2503.19602*, 2025c.

564

565 Yan Hu, Lizhe Chen, Hanna Xie, Yuyao Ge, Shun Zhou, and Xingquan Cai. Real-time non-  
 566 photorealistic rendering method for black and white comic style in games and animation. *Journal  
 567 of System Simulation*, 36(7):1699–1712, 2024.

568

569 Chao Jia, Yinfai Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan  
 570 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning  
 571 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.  
 572 PMLR, 2021.

573

574 Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing Chen, Wei Ye, Ming Yan, Qinghao Ye, Ji Zhang,  
 575 Fei Huang, and Shikun Zhang. Hallucination augmented contrastive learning for multimodal large  
 576 language model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 577 Recognition*, pp. 27036–27046, 2024.

578

579 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete  
 580 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-  
 581 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

582

583 Jongwoo Ko, Tianyi Chen, Sungnyun Kim, Tianyu Ding, Luming Liang, Ilya Zharkov, and Se-  
 584 Young Yun. Distillm-2: A contrastive approach boosts the distillation of llms. *arXiv preprint  
 585 arXiv:2503.07067*, 2025.

586

587 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image  
 588 pre-training with frozen image encoders and large language models. In *International conference  
 589 on machine learning*, pp. 19730–19742. PMLR, 2023a.

590

591 Tianhao Li, Jingyu Lu, Chuangxin Chu, Tianyu Zeng, Yujia Zheng, Mei Li, Haotian Huang, Bin  
 592 Wu, Zuoxian Liu, Kai Ma, et al. Scisafeeval: a comprehensive benchmark for safety alignment  
 593 of large language models in scientific tasks. *AAAI 2025 AI for Cybersecurity*, 2024.

594

595 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating  
 596 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

597

598 Zhecheng Li, Guoxian Song, Yujun Cai, Zhen Xiong, Junsong Yuan, and Yiwei Wang. Texture  
 599 or semantics? vision-language models get lost in font recognition. In *Conference on Language  
 600 Modeling COLM*, 2025., 2025.

594 Chang Liu, Hongkai Chen, Yujun Cai, Hang Wu, Qingwen Ye, Ming-Hsuan Yang, and Yiwei  
 595 Wang. Structured attention matters to multimodal llms in document understanding. *arXiv preprint*  
 596 *arXiv:2506.21600*, 2025a.

597 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *arXiv*  
 598 *preprint arXiv:2304.08485*, 2023a.

600 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction  
 601 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*  
 602 (*CVPR*), pp. 26296–26306, June 2024.

603 Kai Liu, Zhan Su, Peijie Dong, Fengran Mo, Jianfei Gao, ShaoTing Zhang, and Kai Chen. Smooth  
 604 reading: Bridging the gap of recurrent llm to self-attention llm on long-context tasks. *arXiv*  
 605 *preprint arXiv:2507.19353*, 2025b.

606 Yixin Liu, Kejian Shi, Katherine S He, Longtian Ye, Alexander R Fabbri, Pengfei Liu, Dragomir  
 607 Radev, and Arman Cohan. On learning to summarize with large language models as references.  
 608 *arXiv preprint arXiv:2305.14239*, 2023b.

609 Feipeng Ma, Yizhou Zhou, Zheyu Zhang, Shilin Yan, Hebei Li, Zilong He, Siying Wu, Fengyun  
 610 Rao, Yueyi Zhang, and Xiaoyan Sun. Ee-mllm: A data-efficient and compute-efficient multimodal  
 611 large language model. *arXiv preprint arXiv:2408.11795*, 2024a.

612 Weizhi Ma, Yujia Zheng, Tianhao Li, Zhengping Li, Ying Li, and Lijun Wang. A comprehensive  
 613 review of deep learning in eeg-based emotion recognition: classifications, trends, and practical  
 614 implications. *PeerJ Computer Science*, 10:e2065, 2024b.

615 Weizhi Ma, Ying Li, Tianhao Li, Haowei Yang, Zhengping Li, Lijun Wang, and Junyu Xuan. Sfsmts:  
 616 A spatial-frequency shifted windows and time self-attention network for eeg emotion recognition.  
 617 *Neurocomputing*, pp. 130309, 2025.

618 Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, and Xueqi Cheng. Slang: New concept  
 619 comprehension of large language models. *arXiv preprint arXiv:2401.12585*, 2024a.

620 Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, Jiayi Mao, and Xueqi Cheng. ”not aligned”  
 621 is not” malicious”: Being careful about hallucinations of large language models’ jailbreak. *arXiv*  
 622 *preprint arXiv:2406.11668*, 2024b.

623 Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, Ruibin Yuan, and Xueqi Cheng. Hid-  
 624 denguard: Fine-grained safe generation with specialized representation router, 2024c. URL  
 625 <https://arxiv.org/abs/2410.02684>.

626 Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, Yuyao Ge, Jun Wan, Yurong Wu, and Xueqi  
 627 Cheng. a1: Steep test-time scaling law via environment augmented generation. *arXiv preprint*  
 628 *arXiv:2504.14597*, 2025a.

629 Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Baolong Bi, Yujun Cai, Jiazhi Liu, Mingyu Li,  
 630 Zhong-Zhi Li, Duzhen Zhang, et al. A survey of context engineering for large language models.  
 631 *arXiv preprint arXiv:2507.13334*, 2025b.

632 Shiyu Ni, Keping Bi, Jiafeng Guo, and Xueqi Cheng. When do llms need retrieval augmentation?  
 633 mitigating llms’ overconfidence helps retrieval augmentation. *arXiv preprint arXiv:2402.11457*,  
 634 2024a.

635 Shiyu Ni, Keping Bi, Lulu Yu, and Jiafeng Guo. Are large language models more honest in their  
 636 probabilistic or verbalized confidence? In *China Conference on Information Retrieval*, pp. 124–  
 637 135. Springer, 2024b.

638 Kaihang Pan, Zhaoyu Fan, Juncheng Li, Qifan Yu, Hao Fei, Siliang Tang, Richang Hong, Han-  
 639 wang Zhang, and Qianru Sun. Towards unified multimodal editing with enhanced knowledge  
 640 collaboration. *Advances in Neural Information Processing Systems*, 37:110290–110314, 2024.

641 Qwen. Qwen2.5-vl: A powerful vision-language model for seamless computer interaction. *arXiv*  
 642 *preprint arXiv:2409.12191*, 2025.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 649 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 650 models from natural language supervision. In *International conference on machine learning*, pp.  
 651 8748–8763. PMLR, 2021.

652 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,  
 653 real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern*  
 654 *recognition*, pp. 779–788, 2016.

655 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.  
 656 A-okvqa: A benchmark for visual question answering using world knowledge. In *Computer*  
 657 *Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VIII*, pp. 146–162. Springer, 2022.

658 Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*,  
 659 27(3):379–423, 1948.

660 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,  
 661 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF*  
 662 *conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

663 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale  
 664 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,  
 665 Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,  
 666 Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali  
 667 Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,  
 668 Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,  
 669 Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei  
 670 Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,  
 671 Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan  
 672 An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,  
 673 Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,  
 674 Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie  
 675 Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable  
 676 reinforcement learning, 2025. URL <https://arxiv.org/abs/2507.01006>.

677 Anne M Treisman and Garry Gelade. A feature-integration theory of attention. *Cognitive psychology*,  
 678 12(1):97–136, 1980.

679 Yuanyuan Wei, Xianxian Liu, Yao Mu, Changran Xu, Guoxun Zhang, Tianhao Li, Zida Li, Wu Yuan,  
 680 Ho-Pui Ho, and Mingkun Xu. From droplets to diagnosis: Ai-driven imaging and system inte-  
 681 gration in digital nucleic acid amplification testing. *Biosensors and Bioelectronics*, pp. 117741,  
 682 2025.

683 Penghao Wu and Saining Xie. V\*: Guided visual search as a core mechanism in multimodal llms.  
 684 *arXiv preprint arXiv:2312.14135*, 2023.

685 Qian Xiong, Yuekai Huang, Ziyou Jiang, Zhiyuan Chang, Yujia Zheng, Tianhao Li, and Mingyang  
 686 Li. Butterfly effects in toolchains: A comprehensive analysis of failed parameter filling in llm  
 687 tool-agent systems. *arXiv preprint arXiv:2507.15296*, 2025.

688 Jiayu Yao, Shenghua Liu, Yiwei Wang, Lingrui Mei, Baolong Bi, Yuyao Ge, Zhecheng Li, and  
 689 Xueqi Cheng. Who is in the spotlight: The hidden bias undermining multimodal retrieval-  
 690 augmented generation. *arXiv preprint arXiv:2506.11063*, 2025a.

691 Jiayu Yao, Shenghua Liu, Yiwei Wang, Lingrui Mei, Baolong Bi, Yuyao Ge, Zhecheng Li, and  
 692 Xueqi Cheng. Who is in the spotlight: The hidden bias undermining multimodal retrieval-  
 693 augmented generation, 2025b. URL <https://arxiv.org/abs/2506.11063>.

694 Songlin Zhai, Yuan Meng, Yuxin Zhang, and Guilin Qi. Parameter-aware contrastive knowledge  
 695 editing: Tracing and rectifying based on critical transmission paths. In Wanxiang Che, Joyce  
 696 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd*

702        *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.  
703        28189–28200, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN  
704        979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1367. URL <https://aclanthology.org/2025.acl-long.1367/>.

706        Guangzi Zhang, Lizhe Chen, Yu Zhang, Yan Liu, Yuyao Ge, and Xingquan Cai. Translating words  
707        to worlds: zero-shot synthesis of 3d terrain from textual descriptions using large language models.  
708        *Applied Sciences*, 14(8):3257, 2024a.

710        Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. Mllms know where to  
711        look: Training-free perception of small visual details with multimodal llms. *arXiv preprint*  
712        *arXiv:2502.17422*, 2025.

713        Shaolei Zhang, Tian Yu, and Yang Feng. Truthx: Alleviating hallucinations by editing large lan-  
714        guage models in truthful space. *arXiv preprint arXiv:2402.17811*, 2024b.

715        Yujia Zheng, Tianhao Li, Haotian Huang, Tianyu Zeng, Jingyu Lu, Chuangxin Chu, Yuekai Huang,  
716        Ziyou Jiang, Qian Xiong, Yuyao Ge, et al. Are all prompt components value-neutral? understand-  
717        ing the heterogeneous adversarial robustness of dissected prompt in large language models. *arXiv*  
718        *preprint arXiv:2508.01554*, 2025.

719        Rongxin Zhu, Jey Han Lau, and Jianzhong Qi. Factual dialogue summarization via learning from  
720        large language models. *arXiv preprint arXiv:2406.14709*, 2024.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A DEFINITION AND EXPLANATION**  
757758 **A.1 DEFINITION**  
759

| 760 <b>Symbol</b>                                                 | 761 <b>Definition</b>      | 762 <b>Description</b>                                          |
|-------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|
| $\mathcal{I} \in \mathbb{R}^{H \times W \times 3}$                | 763 Input image            | 764 Image with height $H$ and width $W$                         |
| $H, W$                                                            | 765 Image dimensions       | 766 Height and width in pixels                                  |
| $Q$                                                               | 767 Task-specific question | 768 Task-specific question                                      |
| $G$                                                               | 769 General instruction    | 770 General instruction                                         |
| $A_{l,t}^{(Q)} \in \mathbb{R}^{N_v}$                              | 771 Question attention map | 772 Attention map at layer $l$ , step $t$                       |
| $A_{l,t}^{(G)} \in \mathbb{R}^{N_v}$                              | 773 General attention map  | 774 General question attention map                              |
| $N_v$                                                             | 775 Visual tokens          | 776 Number of visual tokens                                     |
| $\mathcal{L}$                                                     | 777 Layer range            | 778 Layer indices                                               |
| $\mathcal{T}$                                                     | 779 Time range             | 780 Generation time step                                        |
| $t_{\text{end}}$                                                  | 781 Final step             | 782 Final generation step                                       |
| $\mathcal{H}(\cdot)$                                              | 783 Shannon entropy        | 784 Attention distribution entropy                              |
| $\mathcal{H}$                                                     | 785 Overall entropy        | 786 Layer-averaged attention entropy                            |
| $\mathcal{T}_c(\mathcal{I})$                                      | 787 Texture complexity     | 788 Edge density from Canny detection                           |
| $\mathcal{C}_c(\mathcal{I})$                                      | 789 Color complexity       | 790 Hue diversity measure                                       |
| $\mathcal{E}(\mathcal{I}) \in \{0, 1\}^{H \times W}$              | 791 Edge map               | 792 Binary edge map from Canny                                  |
| $\Psi_{RGB \rightarrow HSV}$                                      | 793 Color transform        | 794 RGB to HSV transformation operator                          |
| $\zeta_{ij}$                                                      | 795 Hue value              | 796 Hue value at pixel $(i, j)$                                 |
| $\rho_b$                                                          | 797 Hue proportion         | 798 Fraction of pixels in hue bin $b$                           |
| $B$                                                               | 799 Hue bins               | 800 Number of hue bins                                          |
| $\mathcal{F}_{\text{vis}}(\mathcal{I}) \in \mathbb{R}_+^{N_v}$    | 801 Visual noise factor    | 802 Image-inherent visual noise component                       |
| $\mathcal{F}_{\text{sem}}(Q, \mathcal{I}) \in \mathbb{R}_+^{N_v}$ | 803 Semantic signal factor | 804 Task-related semantic signal component                      |
| $\mathbf{1}_{N_v}$                                                | 805 Uniform vector         | 806 Vector of ones                                              |
| $\hat{A} \in \mathbb{R}_+^{N_v}$                                  | 807 Estimated attention    | 808 Estimated semantic attention                                |
| $\lambda > 0$                                                     | 809 Regularization         | 810 Regularization parameter                                    |
| $p \in (0, 1]$                                                    | 811 Top-p percentile       | 812 Percentile threshold for masking                            |
| $K \in \mathbb{N}$                                                | 813 Max regions            | 814 Maximum regions to preserve                                 |
| $w_t$                                                             | 815 Temporal weights       | 816 Later token weighting with $w_t = t - t_{\text{start}} + 1$ |
| $S \in \mathbb{R}^{H \times W}$                                   | 817 Fused map              | 818 Spatially reshaped attention map                            |
| $\mathcal{Q}_p(\cdot)$                                            | 819 Percentile function    | 820 Top- $p$ percentile operator                                |
| $\tau$                                                            | 821 Threshold              | 822 Computed threshold value                                    |
| $M^* \subseteq \{1..H\} \times \{1..W\}$                          | 823 Final mask             | 824 Union of top- $K$ regions                                   |
| $R_k$                                                             | 825 Connected region       | 826 Connected component from thresholding                       |
| $\Phi(\mathcal{I}, M)$                                            | 827 Visual extraction      | 828 Masking, cropping and resizing                              |
| $\pi_{H \times W}$                                                | 829 Spatial reshape        | 830 Token to image projection                                   |
| $\Xi$                                                             | 831 Attention extractor    | 832 Function to extract attention maps                          |
| $\mathcal{M}$                                                     | 833 VLM                    | 834 Vision-language model                                       |
| $L_{\text{total}}$                                                | 835 Total layers           | 836 Number of model layers                                      |
| $N_q$                                                             | 837 Text tokens            | 838 Number of query tokens                                      |

797 **A.2 EXPLANATION**  
798

799 **• Time Step ( $t$ ):** In the autoregressive generation process of vision-language models, a time  
800 step denotes the sequential position index in the output token sequence. The model generates  
801 responses token-by-token, where  $t = 1$  corresponds to the first generated token and  
802  $t = t_{\text{end}}$  represents the final token. At each time step, the model produces an attention  
803 distribution  $A_{l,t}^{(Q)} \in \mathbb{R}^{N_v}$  over visual tokens.

804 **• Visual Complexity ( $\mathcal{T}_c(\mathcal{I})$ ,  $\mathcal{C}_c(\mathcal{I})$ ):** Visual complexity quantifies the inherent character-  
805 istics of an image that can interfere with VLMs' attention mechanisms, decomposed into  
806 two orthogonal dimensions. Texture complexity  $\mathcal{T}_c(\mathcal{I}) \in [0, 1]$  measures the density of  
807 edge information using Canny edge detection, where higher values indicate more intricate  
808 patterns, object boundaries, and structural details. Color complexity  $\mathcal{C}_c(\mathcal{I}) \in [0, 1]$  cap-  
809 tures the diversity of hue distribution in HSV color space through Shannon entropy, where  
higher values reflect greater chromatic variation.

- **Visual Tokens ( $N_v$ ):** Visual tokens constitute the discrete representational units obtained after processing an input image through a visual encoder. An image of dimensions  $H \times W$  is partitioned and encoded into  $N_v$  visual tokens, which form the fundamental units for visual information processing. The attention mechanism allocates weights across these  $N_v$  tokens to determine which image regions to attend to.
- **Semantic Signal Factor ( $\mathcal{F}_{\text{sem}}(Q, \mathcal{I})$ ):** The semantic signal factor represents the question-specific component in the attention decomposition framework, valued in  $\mathbb{R}_+^{N_v}$ . This factor quantifies the semantic signal between each visual token and the given question  $Q$ . Under general instructions  $G$  (e.g., "describe this image"), this factor approximates a uniform distribution ( $\mathcal{F}_{\text{sem}}(G, \mathcal{I}) \approx \mathbf{1}_{N_v}$ ), whereas task-specific questions yield elevated values in semantically relevant regions.
- **Visual Noise Factor ( $\mathcal{F}_{\text{vis}}(\mathcal{I})$ ):** The visual noise factor captures the image-inherent, question-independent attention component, valued in  $\mathbb{R}_+^{N_v}$ . This factor, determined by texture complexity and color diversity of the image, reflects the influence of visual content characteristics on attention distribution. Under general instructions, the attention distribution is predominantly governed by this factor:  $A_{l,t}^{(G)}(\mathcal{I}) \approx \mathcal{F}_{\text{vis}}(\mathcal{I})$ .

## B IMPLEMENTATION DETAILS

We conduct our experiments on a server with  $4 \times$  NVIDIA RTX A6000 GPUs.  $\tau$  is set to 0.05. In practical implementation, CARVE requires three inference passes; however, the first two passes (extracting general instruction and task-specific question) can be terminated early. Specifically, when we require attention maps only from layers  $\mathcal{L} = [L_{\text{start}}, L_{\text{end}}]$ , the first two inference processes can halt upon completing layer  $L_{\text{end}}$  computation, eliminating the need for full  $L_{\text{total}}$  layer forward propagation. The third inference must run completely to generate the final answer.

## C PROOFS AND ADDITIONAL THEOREMS

### C.1 MATHEMATICAL BASIS OF ATTENTION DECOMPOSITION

**Theorem C.1 (Existence of Attention Decomposition):** For any attention distribution  $A_{l,t}^{(Q)}(\mathcal{I}) \in \mathbb{R}_+^{N_v}$ , there exists a unique decomposition:

$$A_{l,t}^{(Q)}(\mathcal{I}) = \mathcal{F}_{\text{vis}}(\mathcal{I}) \otimes \mathcal{F}_{\text{sem}}(Q, \mathcal{I}) \quad (\text{C.1})$$

*Proof:* Define a logarithmic space mapping  $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}$  where  $\phi(x) = \log(x)$ . Under this transformation, the decomposition becomes additive in logarithmic space:

$$\phi(A_{l,t}^{(Q)}(\mathcal{I})) = \phi(\mathcal{F}_{\text{vis}}(\mathcal{I})) + \phi(\mathcal{F}_{\text{sem}}(Q, \mathcal{I})) \quad (\text{C.2})$$

Given the boundary condition that  $\mathcal{F}_{\text{sem}}(G, \mathcal{I}) = \mathbf{1}_{N_v}$  when  $Q = G$  (general instruction), we obtain:

$$\phi(\mathcal{F}_{\text{vis}}(\mathcal{I})) = \phi(A_{l,t}^{(G)}(\mathcal{I})) \quad (\text{C.3})$$

Consequently, through substitution:

$$\phi(\mathcal{F}_{\text{sem}}(Q, \mathcal{I})) = \phi(A_{l,t}^{(Q)}(\mathcal{I})) - \phi(A_{l,t}^{(G)}(\mathcal{I})) \quad (\text{C.4})$$

The unique solution is obtained via the inverse mapping  $\phi^{-1}(x) = \exp(x)$ .  $\square$

### C.2 CONVEXITY ANALYSIS OF THE OPTIMIZATION PROBLEM

**Theorem C.2 (Strict Convexity of Objective Function):** The optimization objective

$$\mathcal{J}(\tilde{A}) = \sum_{i=1}^{N_v} \left( \tilde{A}_i \cdot A_i^{(G)} - A_i^{(Q)} \right)^2 + \lambda \sum_{i=1}^{N_v} \tilde{A}_i^2 \cdot A_i^{(G)} \quad (\text{C.5})$$

864 is strictly convex with respect to  $\tilde{A}$ .  
 865

866 *Proof:* Computing the Hessian matrix reveals its structure. Since the objective function is separable  
 867 across components  $\tilde{A}_i$ , the Hessian is diagonal with elements:  
 868

$$869 \quad H_{ii} = \frac{\partial^2 \mathcal{J}}{\partial \tilde{A}_i^2} = 2(A_i^{(G)})^2 + 2\lambda A_i^{(G)} = 2A_i^{(G)}(A_i^{(G)} + \lambda) \quad (C.6)$$

872 Given that  $A_i^{(G)} > 0$  and  $\lambda > 0$ , all diagonal elements are positive, thus  $H \succ 0$  (positive definite).  
 873 According to convex optimization theory, a twice continuously differentiable function with positive  
 874 definite Hessian everywhere is strictly convex.  $\square$   
 875

### 876 C.3 DERIVATION AND UNIQUENESS OF CLOSED-FORM SOLUTION

878 **Theorem C.3 (Closed-form Expression of Optimal Solution):** The optimization problem admits  
 879 a unique global optimum:  
 880

$$881 \quad \hat{A}_i = \frac{A_i^{(Q)}}{A_i^{(G)} + \lambda} \quad (C.7)$$

884 *Proof:* Applying first-order optimality conditions (KKT conditions):  
 885

$$886 \quad \nabla_{\tilde{A}_i} \mathcal{J} = 2(\tilde{A}_i \cdot A_i^{(G)} - A_i^{(Q)}) \cdot A_i^{(G)} + 2\lambda \tilde{A}_i \cdot A_i^{(G)} = 0 \quad (C.8)$$

888 Rearranging terms yields:  
 889

$$890 \quad \tilde{A}_i \cdot A_i^{(G)} \cdot (A_i^{(G)} + \lambda) = A_i^{(Q)} \cdot A_i^{(G)} \quad (C.9)$$

892 Solving for  $\tilde{A}_i$ :  
 893

$$894 \quad \tilde{A}_i = \frac{A_i^{(Q)}}{A_i^{(G)} + \lambda} \quad (C.10)$$

897 By Theorem C.2's strict convexity, this solution represents the unique global optimum.  $\square$   
 898

### 900 C.4 ERROR BOUNDS AND CONVERGENCE ANALYSIS

901 **Theorem C.4 (Approximation Error Bound):** Let  $\mathcal{F}_{\text{sem}}(G, \mathcal{I}) = \mathbf{1}_{N_v} + \epsilon$  where  $\|\epsilon\|_\infty \leq \delta$ . Then  
 902 the estimation error satisfies:  
 903

$$904 \quad \|\hat{A} - \mathcal{F}_{\text{sem}}(Q, \mathcal{I})\|_\infty \leq \frac{\delta \cdot \|\mathcal{F}_{\text{sem}}(Q, \mathcal{I})\|_\infty}{1 - \delta}$$

907 *Proof:* Under perturbation  $A_i^{(G)} = \mathcal{F}_{\text{vis},i} \cdot (1 + \epsilon_i)$ , the estimate becomes:  
 908

$$909 \quad \hat{A}_i = \frac{\mathcal{F}_{\text{vis},i} \cdot \mathcal{F}_{\text{sem},i}(Q, \mathcal{I})}{\mathcal{F}_{\text{vis},i} \cdot (1 + \epsilon_i) + \lambda} \approx \frac{\mathcal{F}_{\text{sem},i}(Q, \mathcal{I})}{1 + \epsilon_i} \quad \text{when } \mathcal{F}_{\text{vis},i} \gg \lambda$$

912 Using the Taylor expansion  $\hat{A}_i = \mathcal{F}_{\text{sem},i}(Q, \mathcal{I}) \cdot \sum_{k=0}^{\infty} (-\epsilon_i)^k$  and truncating to first order yields:  
 913

$$914 \quad |\hat{A}_i - \mathcal{F}_{\text{sem},i}(Q, \mathcal{I})| \leq \mathcal{F}_{\text{sem},i}(Q, \mathcal{I}) \cdot \frac{|\epsilon_i|}{1 - |\epsilon_i|}$$

917 Taking the infinity norm completes the proof.  $\square$

918 C.5 THEORETICAL SELECTION OF REGULARIZATION PARAMETER  
919920 **Proposition C.5 (Optimal Regularization Parameter):** The optimal regularization parameter  $\lambda^*$   
921 that minimizes the expected mean squared error satisfies:  
922

923 
$$\lambda^* = \arg \min_{\lambda} \mathbb{E} \left[ \|\hat{A}(\lambda) - \mathcal{F}_{\text{sem}}(Q, \mathcal{I})\|_2^2 \right] \quad (\text{C.11})$$
  
924

925 *Proof:* From Theorem C.3, the estimator takes the form:  
926

927 
$$\hat{A}_i(\lambda) = \frac{A_i^{(Q)}}{A_i^{(G)} + \lambda} = \frac{\mathcal{F}_{\text{vis},i} \cdot \mathcal{F}_{\text{sem},i}}{\mathcal{F}_{\text{vis},i} + \lambda} \quad (\text{C.12})$$
  
928  
929

930 The mean squared error decomposes as:  
931

932 
$$\text{MSE}(\lambda) = \text{Bias}^2(\lambda) + \text{Variance}(\lambda) \quad (\text{C.13})$$
  
933

934 where  $\text{Bias}(\lambda) = \mathbb{E}[\hat{A}(\lambda)] - \mathcal{F}_{\text{sem}}(Q, \mathcal{I})$  and  $\text{Variance}(\lambda) = \mathbb{E}[(\hat{A}(\lambda) - \mathbb{E}[\hat{A}(\lambda)])^2]$ .  
935936 For the bias term, assuming  $\mathbb{E}[\mathcal{F}_{\text{vis},i}] = \mu_i$ :

937 
$$\text{Bias}_i(\lambda) = \mathbb{E} \left[ \frac{\mathcal{F}_{\text{vis},i} \cdot \mathcal{F}_{\text{sem},i}}{\mathcal{F}_{\text{vis},i} + \lambda} \right] - \mathcal{F}_{\text{sem},i} \approx -\frac{\lambda \cdot \mathcal{F}_{\text{sem},i}}{\mu_i + \lambda} \quad (\text{C.14})$$
  
938  
939

940 Thus  $|\text{Bias}_i(\lambda)| = O(\lambda)$  as  $\lambda \rightarrow 0$ .  
941942 For the variance term, let  $\mathcal{F}_{\text{vis},i} = \mu_i + \epsilon_i$  with  $\text{Var}(\epsilon_i) = \sigma_i^2$ . Taylor expansion yields:  
943

944 
$$\text{Var}(\hat{A}_i(\lambda)) \approx \frac{\mathcal{F}_{\text{sem},i}^2 \mu_i^2 \sigma_i^2}{(\mu_i + \lambda)^4} \quad (\text{C.15})$$
  
945

946 Therefore  $\text{Var}(\hat{A}_i(\lambda)) = O(1/\lambda^2)$  as  $\lambda \rightarrow 0$ .  
947948 The component-wise MSE becomes:  
949

950 
$$\text{MSE}_i(\lambda) = \frac{\lambda^2 \cdot \mathcal{F}_{\text{sem},i}^2}{(\mu_i + \lambda)^2} + \frac{\mathcal{F}_{\text{sem},i}^2 \mu_i^2 \sigma_i^2}{(\mu_i + \lambda)^4} \quad (\text{C.16})$$
  
951

952 Setting  $\frac{d\text{MSE}_i}{d\lambda} = 0$  and solving yields:  
953

954 
$$\lambda_i^* = \mu_i \left( \sqrt{1 + 2\sigma_i^2/\mu_i^2} - 1 \right) \approx \frac{\sigma_i^2}{\mu_i} \quad (\text{C.17})$$
  
955  
956

957 for small noise-to-signal ratio. The global optimum requires minimizing  $\sum_{i=1}^{N_v} \text{MSE}_i(\lambda)$ .  $\square$   
958959 **Corollary C.5.1 (Numerical Stability):** For any  $\lambda > 0$ , the condition number of the regularized  
960 problem satisfies:  
961

962 
$$\kappa(\lambda) = \frac{\max_i(A_i^{(G)} + \lambda)}{\min_i(A_i^{(G)} + \lambda)} \leq \frac{\max_i A_i^{(G)} + \lambda}{\lambda} \quad (\text{C.18})$$
  
963

964 *Proof:* The bound follows directly from the definition of condition number and the positivity of  
965  $A_i^{(G)}$  and  $\lambda$ . The regularization ensures  $\kappa(\lambda) < \infty$ , guaranteeing numerical stability.  $\square$   
966967 **Remark:** The regularization parameter  $\lambda$  serves dual purposes: controlling the bias-variance trade-  
968 off and ensuring numerical stability. As  $\lambda \rightarrow 0$ , the estimator becomes unbiased but exhibits high  
969 variance and potential numerical instability when  $A_i^{(G)} \approx 0$ . Conversely, as  $\lambda \rightarrow \infty$ , the estimator  
970 becomes increasingly biased toward zero but achieves maximum stability. The optimal choice  $\lambda^* \propto$   
971  $\sigma^2/\mu$  balances these competing objectives, where  $\sigma^2$  represents the noise variance and  $\mu$  the signal  
972 mean. In practice, cross-validation on a held-out set provides robust estimation of  $\lambda^*$ .  
973

972 C.6 HIERARCHICAL EVOLUTION OF ATTENTION ENTROPY  
973974 **Theorem C.6 (Monotonicity of Entropy):** For a layer sequence  $l_1 < l_2 < \dots < l_n$ , attention  
975 entropy satisfies:

976 
$$\mathcal{H}(A_{l_1,t}^{(Q)}) \geq \mathcal{H}(A_{l_2,t}^{(Q)}) \geq \dots \geq \mathcal{H}(A_{l_n,t}^{(Q)}) \quad (C.19)$$
  
977

978 *Proof:* Applying the Data Processing Inequality, we treat each layer as an information processing  
979 channel. Since deeper networks progressively extract high-level features and focus on task-relevant  
980 regions, information entropy decreases monotonically. This aligns with the principle of maximum  
981 entropy: systems tend toward maximum entropy states under constraints, where deeper layers im-  
982 pose stronger task constraints.  $\square$ 983 C.7 COMPUTATIONAL OPTIMIZATION POTENTIAL OF CARVE  
984985 This section analyzes the computational optimization potential of the CARVE algorithm. While  
986 CARVE requires three inference passes, its structural properties enable significant optimization op-  
987 portunities.988 The key observation is that the first two inference passes (general instruction and task-specific ques-  
989 tion) only require extracting attention maps from intermediate layers, without completing full for-  
990 ward propagation or generating complete responses. This characteristic enables early termination  
991 strategies. Furthermore, the general attention maps  $A^{(G)}$  depend solely on the input image and are  
992 independent of specific questions, creating opportunities for caching and reuse.993 Let the forward propagation  $\mathcal{P} : \mathbb{R}^{N_v} \rightarrow \mathbb{R}^{N_v}$  at layer  $l$  have computational cost  $c_l = \Theta(N_v^2)$ . The  
994 baseline complexity without optimization is:

995 
$$\mathcal{C}_{\text{baseline}} = 3L_{\text{total}} \cdot \Theta(N_v^2) + \Theta(|\mathcal{L}| \cdot |\mathcal{T}| \cdot N_v)$$
  
996

997 **Early Termination Strategy.** Since only attention maps from layers  $\mathcal{L} = [L_{\text{start}}, L_{\text{end}}]$  are re-  
998 quired, the first two inference passes can terminate after layer  $L_{\text{end}}$ :

999 
$$\mathcal{C}_{\text{early}} = (2L_{\text{end}} + L_{\text{total}}) \cdot \Theta(N_v^2) + \Theta(|\mathcal{L}| \cdot |\mathcal{T}| \cdot N_v)$$
  
1000

1001 The relative computational savings rate is:

1002 
$$\eta_1 = \frac{\mathcal{C}_{\text{baseline}} - \mathcal{C}_{\text{early}}}{\mathcal{C}_{\text{baseline}}} = \frac{2(L_{\text{total}} - L_{\text{end}})}{3L_{\text{total}}} = \frac{2(1 - \alpha)}{3}$$
  
1003

1004 where  $\alpha = L_{\text{end}}/L_{\text{total}}$ . For practical configurations with  $\mathcal{L} = [20, 25]$  and  $L_{\text{total}} = 28$ , we have  
1005  $\alpha = 25/28 \approx 0.89$ , yielding theoretical savings of  $\eta_1 \approx 7.3\%$ .  
10061007 **Attention Caching Mechanism.** The general attention maps  $A^{(G)}$  depend only on the image  $\mathcal{I}$   
1008 and can be reused across multiple questions. Define a cache mapping  $\mathcal{H} : \mathcal{I} \rightarrow \{A_l^{(G)}\}_{l \in \mathcal{L}}$ .  
10091010 For  $n$  different questions  $\{Q_1, \dots, Q_n\}$  on the same image, the total computational cost is:  
1011

1012 
$$\mathcal{C}_{\text{cached}}(n) = L_{\text{end}} \cdot \Theta(N_v^2) + n \cdot (L_{\text{end}} + L_{\text{total}}) \cdot \Theta(N_v^2)$$
  
1013

1014 compared to  $3n \cdot L_{\text{total}} \cdot \Theta(N_v^2)$  for the baseline approach. The average cost per question becomes:  
1015

1016 
$$\bar{\mathcal{C}}_{\text{cached}} = \frac{L_{\text{end}}}{n} \cdot \Theta(N_v^2) + (L_{\text{end}} + L_{\text{total}}) \cdot \Theta(N_v^2)$$
  
1017

1018 As  $n \rightarrow \infty$ , the average cost approaches  $(L_{\text{end}} + L_{\text{total}}) \cdot \Theta(N_v^2)$ , yielding a speedup ratio relative to  
1019 baseline:  
1020

1021 
$$S_{\text{cache}} = \frac{3L_{\text{total}}}{L_{\text{end}} + L_{\text{total}}} = \frac{3}{1 + \alpha}$$
  
1022

1023 For  $\alpha = 0.89$ , this gives  $S_{\text{cache}} \approx 1.59$ , representing approximately 37% computational savings.  
1024

1026 **Combined Optimization Analysis.** When processing batches containing repeated images, combining both strategies yields:  
 1027

$$1028 \quad \mathcal{C}_{\text{combined}} = (1 - \rho)L_{\text{end}} \cdot \Theta(N_v^2) + (L_{\text{end}} + L_{\text{total}}) \cdot \Theta(N_v^2)$$

1030 where  $\rho \in [0, 1]$  denotes the cache hit rate. The relative speedup becomes:  
 1031

$$1032 \quad S_{\text{combined}} = \frac{3L_{\text{total}}}{(2 - \rho)L_{\text{end}} + L_{\text{total}}} = \frac{3}{(2 - \rho)\alpha + 1}$$

1034 Under practical scenarios with  $\alpha = 0.89$  and  $\rho = 0.3$ , we obtain  $S_{\text{combined}} \approx 1.24$ , corresponding to  
 1035 approximately 19% computational savings.  
 1036

1037 The space complexity remains  $\mathcal{S}(\text{CARVE}) = \Theta(|\mathcal{L}| \cdot |\mathcal{T}| \cdot N_v)$ . For typical configurations ( $|\mathcal{L}| =$   
 1038  $5$ ,  $|\mathcal{T}| = 10$ ,  $N_v = 1024$ ), this requires approximately 200KB of additional memory, which is  
 1039 negligible on modern hardware.

## 1040 D PROMPT DESIGN

| 1043 <b>General Instruction</b>                       | 1044 <b>Accuracy (%)</b> | 1045 <b>Std Dev (%)</b> | 1046 <b>Relative Gain (%)</b> |
|-------------------------------------------------------|--------------------------|-------------------------|-------------------------------|
| 1047 w/o CARVE                                        | 1048 72.4                | 1049 0.8                | 1050 $-$                      |
| 1051 “Write a general description of the image.”      | 1052 <b>77.2</b>         | 1053 <b>0.6</b>         | 1054 <b>+6.63</b>             |
| 1055 “Describe this image in detail.”                 | 1056 75.8                | 1057 0.9                | 1058 <b>+4.70</b>             |
| 1059 “Provide a comprehensive overview of the image.” | 1060 75.2                | 1061 1.4                | 1062 <b>+3.87</b>             |
| 1063 “What do you see in this image?”                 | 1064 74.9                | 1065 1.2                | 1066 <b>+3.45</b>             |
| 1067 “Explain what appears in the image.”             | 1068 74.8                | 1069 1.7                | 1070 <b>+3.31</b>             |

1050 Table 4: Comparison across general instructions.  
 1051

1052 To identify the optimal general instruction for inducing uniform attention distributions, we conducted experiments on a randomly sampled subset of 1000 instances from the TextVQA dataset using the QWEN2.5-VL-3B. Our objective was to identify prompts that encourage global image scanning without focusing on specific semantic regions. To assess stability, we performed ten independent trials and computed standard deviations across runs. To avoid discrepancies arising from layer and time step variations, we conduct experiments using  $\mathcal{T}_{\text{full}}$  and  $\mathcal{L} = [20, 25]$  as hyperparameters. As shown in Table 4, “Write a general description of the image” achieves both the highest accuracy (77.2%) and the lowest standard deviation (0.6%), indicating superior stability. Meanwhile, “What do you see in this image?” and “Explain what appears in the image.” are excluded due to their poor stability. Beyond considering accuracy and stability, we also need to consider the number of tokens generated by the VLM. Specifically, “Describe this image in detail.” and “Provide a comprehensive overview of the image.” are excluded because they output significantly more tokens than “Write a general description of the image.”. Based on the above considerations, we ultimately adopt “Write a general description of the image.” as the general instruction for CARVE.

## 1066 E DATASETS

1067 For A-OKVQA (Schwenk et al., 2022), we utilize the validation split containing 1,145 questions  
 1068 across 1,122 images that require integrating visual perception with commonsense reasoning, evaluated  
 1069 using VQA-score accuracy. For POPE (Li et al., 2023b), we employ 500 distinct images paired  
 1070 with 9,000 binary questions systematically designed to detect hallucination phenomena through  
 1071 polling-based object probing. For V\* (Wu & Xie, 2023), we evaluate on 191 image-question pairs  
 1072 that demand fine-grained visual reasoning capabilities. For TextVQA (Singh et al., 2019), we test  
 1073 on 3,166 images with 5,000 questions focusing on text comprehension abilities.  
 1074

1075 For TextVQA evaluation, we adopt the protocol established by Zhang et al. (2025), deliberately  
 1076 excluding OCR-extracted tokens from model inputs. We treat TextVQA identically to other visual  
 1077 reasoning benchmarks, providing only the image and question without auxiliary text annotations.  
 1078 While this configuration yields marginally reduced accuracy compared to OCR-augmented base-  
 1079 lines in original implementations, it enables unbiased assessment of models’ intrinsic visual text

1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
recognition capabilities, eliminating confounding factors from external OCR systems. This evaluation strategy ensures that performance metrics genuinely reflect the visual perception and text understanding abilities inherent to the vision-language models.

## F VISUALIZATIONS

This section presents visual analysis of masked images generated by CARVE across different threshold values  $\tau$  from 1.0 (no masking) to 0.1 (aggressive masking). Figures 8 and 9 show two representative TextVQA samples where visual complexity initially causes incorrect predictions.

Figure 8 shows a street scene where the model fails to detect the Bridgestone sign at  $\tau = 1.0$ . Progressive masking removes background buildings and vehicles, enabling correct recognition at  $\tau = 0.3$ . In Figure 9, multiple decorative mugs cause shape misidentification through the cup handle. At  $\tau = 0.2$ , only the relevant mug remains, yielding the correct “star” answer. Across both samples, optimal performance occurs within  $\tau \in [0.2, 0.4]$ , where contrastive attention effectively preserves semantic signal while eliminating visual distractors.

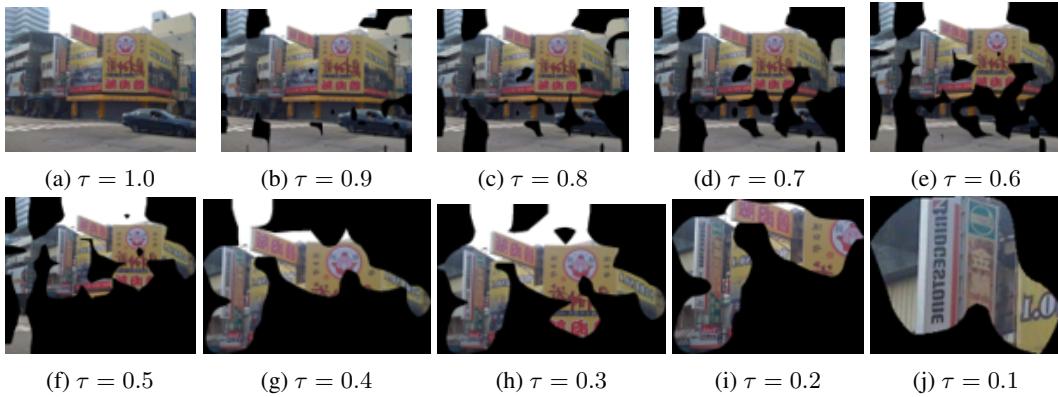


Figure 8: Images masked with CARVE. The caption of each subfigure shows the threshold value  $\tau$ .

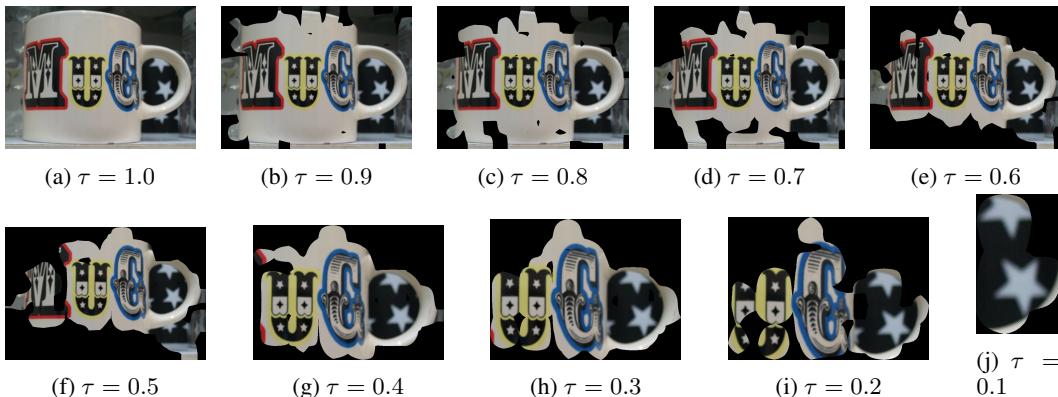


Figure 9: Images masked with CARVE. The caption of each subfigure shows the threshold value  $\tau$ .

## G LARGE LANGUAGE MODEL USAGE

We employed Claude Sonnet 4 as a grammar expert to assist with proofreading this manuscript. Specifically, Claude Sonnet 4 was used solely to identify and correct linguistic issues including verb tense inconsistencies, grammatical errors, punctuation mistakes, and subordinate clause structures. The LLM’s role was strictly limited to language polishing without any contribution to the research content, methodology, or scientific conclusions.