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Abstract
Large Reasoning Models (LRMs) have gained
increasing attention over the past few months. De-
spite being effective, LRMs are criticized for the
excessively lengthy Chain-of-Thought (CoT) to
derive the final answer, suffering from high first-
token and overall latency. Typically, the CoT
of LRMs mixes multiple thinking units, some of
which are split by markers like “aha”, “wait”, or
“alternatively”; each unit attempts to produce a
candidate answer to the original query. Hence,
a natural idea to improve efficiency is to reduce
the unit number. Yet, the fact that the thinking
units in vanilla CoT cannot be explicitly managed
renders doing so challenging. This paper intro-
duces Multi-Turn Decomposition (MinD) to de-
code conventional CoT into a sequence of explicit,
structured, and turn-wise interactions to bridge the
gap. In MinD, the model provides a multi-turn
response to the query, where each turn embraces
a thinking unit and yields a corresponding answer.
The subsequent turns can reflect, verify, revise, or
explore alternative approaches to both the think-
ing and answer parts of earlier ones. This not
only makes the answer delivered more swiftly,
but also enables explicit controls over the iterative
reasoning process (i.e., users may halt or continue
at any turn). We follow a supervised fine-tuning
(SFT) then reinforcement learning (RL) paradigm
to realize MinD. We first rephrase the outputs of
an LRM into multi-turn formats by prompting
another LLM, and then tune the LRM with such
data. Observing that the tuned model tends to
consume even more tokens than the original one
(probably due to that the multi-turn formats in-
troduce additional answer tokens), we advocate
leveraging RL algorithms like GRPO to prioritize
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correct outputs with fewer turns. Trained on the
MATH dataset using R1-Distill models, MinD
can achieve up to ∼ 70% reduction in both output
token usage and time to first token (TTFT), while
maintaining competitive performance on reason-
ing benchmarks such as MATH-500, AIME24,
AMC23, and GPQA-Diamond.

1. Introduction
Large Reasoning Models (LRMs) have recently attracted sig-
nificant attention due to their advancing reasoning capabili-
ties, including OpenAI-o1 (Jaech et al., 2024), DeepSeek-
R1 (Guo et al., 2025), and Kimi-1.5 (Team et al., 2025).
These models have achieved remarkable performance on
complex tasks, e.g., mathematical competitions, thanks to
their ability to engage in a “think-then-answer” paradigm,
where intermediate reasoning chains are generated to induce
the final answer. The resultant Chain-of-Thought (CoT)
activates contextually accurate responses through iterative
exploration and verification of potential solutions.

Despite these advantages, LRMs often suffer from ineffi-
ciency issues as the CoT can become excessively lengthy,
exhibiting substantially increased computational costs and
latency compared to non-reasoning Large Language Models
(LLMs). To mitigate these, several strategies have been
proposed in recent works. For example, some approaches
encourage models to generate answers more directly through
strategically designed prompts (Jie et al., 2024), truncate the
chain of thought to avoid unnecessary token generation (Fu
et al., 2025; Team, 2025), or leverage speculative reason-
ing via model collaboration (Pan et al., 2025; She et al.,
2025). Other approaches focus on reducing token redun-
dancy by refining model reasoning paths through supervised
fine-tuning (SFT) (Yang et al., 2025b), or by enhancing
decision efficiency with improvements to Group Relative
Policy Optimization (GRPO) algorithms (Yu et al., 2025;
Liu et al., 2025).

The CoT reasoning process in LRMs is typically composed
of multiple thinking units—discrete cognitive steps like ini-
tial attempts, follow-up validations, reflections, and strategic
shifts. Each unit can contribute to generating a candidate
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DeepSeep-R1-Distill-Qwen-7B

<think>
Okay, so I need to find the value of g(f(5) - 1) [...] g(f(5) - 1) is 7. 
Wait, is there another way to approach this problem? [...] Both
approaches lead to the same answer, 7. So, maybe I was
overcomplicating it by thinking of composing functions, but it still
gives the same result. Hmm, interesting.
Wait, let me verify again [...] So, yes, the answer is 7.
Alternatively, if I compute g(f(5) - 1) as follows: [...] Yep, same
answer. [...]
</think>
[...] Thus, the answer is .

Question:           Let  and . What is the value of ?           

MinD-7B

<think> First [...] Therefore, g(f(5) - 1) is 7. </think>
[...] **Final Answer:** 
<think> Wait, let me make sure I did that right [...] Yeah, that
seems correct. </think>
[...] **Final Answer:** 
<think> Let me think if there's another way to approach
this [...] So, that method also gives me the same answer, which is
7. </think>
[...] **Final Answer:** 

Figure 1. An illustration of responses from DeepSeek-R1-Distill-Qwen-7B and the transformed MinD-7B model on the same math
problem. The original LRM follows a think-then-answer format, where the reasoning process consists of multiple thinking units (the start
of each new unit is marked with an orange highlight). In contrast, MinD-7B adopts a multi-turn reasoning paradigm, where each turn
contains a thinking unit followed by an answer. Also note that MinD-7B tends to use fewer thinking units due to the GRPO training (see
Section 3.3).

answer, while current LRMs tend to employ redundant units
to ensure the final answer is close to ‘perfect’ (see an empir-
ical analysis of such redundancy in Figure 2 (right)). While
reducing the number of thinking units could improve reason-
ing efficiency, the inability to explicitly manage these units
in standard CoT makes this challenging. It highlights the
need for more fine-grained approaches to improve reasoning
efficiency.

Building on this insight, we introduce Multi-Turn Decom-
position (MinD) to decode the “think-then-answer” CoT
reasoning into a sequence of multi-turn interactions to en-
able the explicit control of the number of thinking units,
where each turn contains a single thinking unit and an an-
swer generated based on both the current and all preceding
units. Refer to Figure 1 for an illustration of the paradigm
shift. To implement MinD, we adopt a pipeline combining
SFT and GRPO. We first convert conventional CoT traces
into structured, multi-turn formats using GPT-4o (OpenAI
et al., 2024) and then fine-tune the target model on such data.
To further enhance efficiency, we apply GRPO to encourage
the model to generate accurate responses within fewer rea-
soning turns, thereby reducing latency and computational
costs.

To evaluate the effectiveness of MinD, we conduct exten-
sive experiments across a range of reasoning benchmarks.
On DeepSeek-R1-Distill-Qwen-1.5B, MinD reduces token
usage by up to ∼ 70% and accelerates time to first token
(TTFT) by 4.2× on MATH-500, while maintaining over
95% accuracy. Furthermore, MinD demonstrates strong out-
of-distribution generalization on this model, with token re-
ductions of 69% on AIME24 and 53% on GPQA-Diamond.
These results highlight the efficiency and broad applicability
of MinD in diverse reasoning scenarios.

2. Related Work
Efficient Reasoning Paradigms The evolution of rea-
soning frameworks for LLMs has progressed significantly
since the introduction of CoT prompting (Wei et al., 2022).
CoT has proven effective in enhancing LLMs’ reasoning
abilities by explicitly guiding models through intermediate
reasoning steps (Guo et al., 2025), but this approach often
leads to excessively lengthy outputs, resulting in high to-
ken consumption and increased latency (Chiang & yi Lee,
2024). These inefficiencies have motivated researchers to
explore efficient reasoning paradigms to reduce intermedi-
ate tokens without compromising reasoning quality. For
example, methods like token skipping (Xia et al., 2024)
and length-harmonizing pruning (Luo et al., 2025) have
demonstrated significant reductions in token counts while
maintaining strong task performance (Fu et al., 2025). An-
other approach seeks to decouple the reasoning process from
explicit token generation by leveraging continuous latent
spaces. For instance, Token-Assorted Mixing (Su et al.,
2025) and Hidden Thinking frameworks (Shen et al., 2025)
aim to perform internal computations without generating
extensive token sequences, achieving 3-5× faster processing
speeds compared to conventional CoT (Hao et al., 2025).
Additionally, several studies have explored integrating rea-
soning and non-reasoning models to enhance efficiency. For
example, the C3OT system (Kang et al., 2025) employs a
multi-stage verification pipeline to reduce token redundancy,
while speculative reasoning approaches (Pan et al., 2025)
dynamically adjust the reasoning depth based on task com-
plexity, further reducing token usage. Hybrid architectures
like Hawkeye (She et al., 2025) also leverage speculative
decoding (Zhang et al., 2024) to balance accuracy and com-
putational efficiency.

2



Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition




�

�



	���

���	

�"�����
��� ������

��� ���"��
���!�����#��� �����


���
��

�	


	

�	

�	

�
��

�
��

A Thinking Process from DeepSeek-R1

Naturally Contains Multiple Thinking Units

Okay, so I need to [...] 12 = x  (Initial Attempt)

So, x equals 12? Let me check my steps to make sure I didn't make any mistakes [...] That
seems to check out.  (Checking Steps)

But wait, let me verify by plugging x = 12 back into the original expressions and see if the
average is indeed 4x - 7 [...] Hmm, so I think that's it. My answer is x = 12.  (Self-Verification)

Wait, just to be thorough, let me check again if my initial equation was set up correctly [...] Yes,
that's correct.  (Checking Again)

Alternatively, maybe I can think of another way to approach the problem, just to confirm [...] So
definitely, x is 12. So, confident now that the answer is 12.  (Another Approach)

**Final Answer**
The value of x is \boxed{12}.

Figure 2. Left: An example of a standard CoT from DeepSeek-R1, naturally containing multiple discrete thinking units (the start of
each new unit is marked with an orange highlight). Right: Empirical analysis of unit-level redundancy, which is calculated based on
Equation (5), in R1-distilled models on the MATH-500 dataset, showing an average redundancy rate of 69.8% for the 1.5B model and
35.8% for the 7B model.

Reinforcement Learning for Reasoning Optimization
Reinforcement learning (RL) has become an essential tool
for optimizing LLM reasoning, providing precise control
over decision-making processes. Group Relative Policy Op-
timization (GRPO) (Shao et al., 2024) is one of the most
influential methods in this domain, aligning reward signals
with step-wise reasoning validity rather than simply final an-
swer correctness. Building on this foundation, frameworks
like DAPO (Yu et al., 2025) and R1-Zero (Liu et al., 2025)
incorporate dynamic reward shaping and entropy-controlled
exploration to further refine model outputs. Recent advance-
ments have also focused on integrating search-based tech-
niques to enhance reasoning efficiency. For instance, Search-
R1 (Jin et al., 2025) combines Monte Carlo Tree Search with
policy gradients to optimize reasoning path selection, reduc-
ing unnecessary token usage. Similarly, length-aware con-
trol frameworks like L1-Controller (Aggarwal & Welleck,
2025) balance correctness and token efficiency through dual
reward signals, achieving substantial latency reductions.
Other approaches, such as R1-Searcher (Song et al., 2025),
incorporate dynamic halting mechanisms to automatically
terminate unproductive reasoning chains, significantly im-
proving efficiency in open-domain tasks. ThinkPrune (Hou
et al., 2025) adopts length clipping to the reward function,
pruning outputs to reduce redundancy.

Training-Based Efficiency Enhancements Training
strategies also significantly enhance reasoning efficiency.
Supervised fine-tuning (SFT) methods like Thinking-
Optimal Scaling (Yang et al., 2025b) align models with
optimal solution trajectories, reducing token redundancy
without compromising accuracy. Hybrid training regimes
have also gained traction, combining imitation learning and

reinforcement learning to refine reasoning efficiency. For
example, the SpecReason framework (Pan et al., 2025) em-
ploys a two-stage process, beginning with teacher-student
distillation for foundational policy approximation, followed
by adversarial reward shaping for fine-grained optimization.

3. Method
In this section, we first introduce the standard Chain-
of-Thought (CoT) reasoning of Large reasoning models
(LRMs) and briefly review Group Relative Policy Optimiza-
tion (GRPO) (DeepSeek-AI, 2025). We then present an
empirical study showing how redundant reasoning steps
commonly arise in LRMs. Finally, we outline MinD, which
reformulates the standard CoT into a multi-turn structure,
and discuss how to leverage GRPO to encourage concise
and effective multi-turn reasoning.

3.1. Preliminary

CoT for LRMs LRMs commonly adopt a “think-then-
answer” paradigm for complex problem solving. Given a
query q, an LRM typically produces an output o of the form:

q → o = <think> t </think> a , (1)

where t denotes the internal thinking process, delimited
by <think> and </think>, and a is the final answer.
The thinking process t can be viewed as an exploration
of the solution space and is naturally decomposed into
multiple thinking units—self-contained logical steps that
can induce a candidate answer to q, with an example
from DeepSeek-R1 (Guo et al., 2025) depicted in Figure 2
(left). Formally, letting ui denote a thinking unit, there is
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 (  ,            )
Decompose into Thinking Units

A Vanilla LRM

GPT-4o

Think-Then-Answer

Intermediate Answer
Generation

Transition to Multi-Turn Reasoning

Figure 3. Transforming think-then-answer LRMs into a multi-turn reasoning paradigm, consisting of four steps: (1) Rejection sampling
to filter out responses with correct final answers; (2) Unit segmentation using GPT-4o to divide CoTs into discrete reasoning units; (3)
Intermediate answer completion to extract answers (ak) for each prefix sub-trace (t≤k); and (4) SFT to align LRMs with the multi-turn
format.

t = (u1, u2, . . . , un). These units may arise from (1) an
initial attempt to solve the problem, (2) depth-wise explo-
ration such as validation, backtracking, or correction along
a single line of reasoning, or (3) breadth-wise search involv-
ing alternative methods or perspectives. Each unit can thus
be interpreted as a path in the reasoning space, potentially
building on previous steps, and may terminate with a pro-
visional answer to the query. However, current LRMs tend
to employ many thinking units before gaining the final an-
swer to solve the problem as ‘perfectly’ as possible, causing
significant inefficiency issues.

GRPO Let πθ denote the current policy and πθold the
reference policy from the previous iteration. Given a query
q, GRPO samples G completions o1, . . . , oG and optimizes
the objective:

Eq, {oi}G
i=1

[ 1
G

G∑
i=1

1

|oi|

|oi|∑
j=1

min
(
ρi,jAi, clip(ρi,j , 1− ϵ, 1 + ϵ)Ai

)] (2)

where ρi,j =
πθ(oi,j |q,oi,<j)

πθold
(oi,j |q,oi,<j)

is the ratio between the new
and old policies for token j in sequence oi and |oi| is the
sequence length. Ai is the group-standardized advantage:

Ai =
R(oi)−mean({R(o1), . . . , R(oG)})

std({R(o1), . . . , R(oG)})
, (3)

where R denotes the reward function, and
mean({r1, . . . , rG}) and std({r1, . . . , rG}) represent
the mean and standard deviation of group rewards, respec-
tively. For clarity, we omit the KL regularization term, as it
is not the focus of our analysis.

3.2. Unit-Level Redundancy in LRMs

Before devoting to reducing the number of thinking units
of LRMs, we first systematically investigate the unit-level

redundancy, which is intuitively high considering the re-
peated depth-wise validations or breadth-wise explorations
of alternative solution paths, even after repeatedly arriving
at essentially the same valid answer, in long CoTs. Concret-
ley, we conducted a detailed analysis using DeepSeek-R1-
Distill-Qwen-1.5B/7B (DeepSeek-AI, 2025). We extracted
their CoT traces from the MATH (Lightman et al., 2023)
and GSM8K (Cobbe et al., 2021) training sets (restricted
to correctly answered examples), and segmented each trace
into discrete thinking units using GPT-4o (OpenAI et al.,
2024) (see Section B for details).

For each segmented trace t = (u1, u2, . . . , un), we con-
structed prefix sub-traces t≤k = (u1, . . . , uk) for 1 ≤ k ≤
n. We then prompted the model to generate an intermediate
answer ak by appending a special stop token </think>
after t≤k given the current partial reasoning:

q → ok = <think> t≤k </think> ak , k = 1, · · · , n .
(4)

To quantify unit-level redundancy, we define the minimal
sufficient prefix t≤n∗ as the shortest prefix that leads to a
correct final answer. The unit-level redundancy rate is then
defined as:

URR =
n− n∗

n
· 1an is correct , (5)

where n is the total number of thinking units and n∗ is the
minimal number required for correctness. A higher URR in-
dicates a greater proportion of unnecessary reasoning steps.

Our empirical results, summarized in Figure 2 (right), show
that the average unit-level redundancy rates are 69.8% for
the 1.5B model and 35.8% for the 7B model. This reveals
that a large portion of reasoning in current LRMs is unnec-
essary for problem-solving.

3.3. Multi-Turn Decomposition (MinD)

Our basic notion is that the model should not be that cau-
tious. Given that “done is better than perfect”, we aim to
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let the model yield a candidate answer as soon as possible.
Besides, we would also like to penalize the unit-level redun-
dancy. MinD realizes these through two key innovations.

Multi-Turn CoT Reformulation MinD first employs su-
pervised fine-tuning (SFT) to shift the reasoning paradigm
from “think-then-answer” (i.e., Equation (1)) to a structured
multi-turn format:

<think> u1 </think> a1 <think> u2 </think> a2

· · ·<think> un </think> an ,
(6)

where the thinking units (u1, u2, . . . , un) in the original
CoT t are distributed into a sequence of reasoning turns.
Each turn also includes an intermediate answer ak.

To construct the training data for multi-turn SFT, we first seg-
ment the original thinking process t into (u1, u2, . . . , un),
and then generate an intermediate answer ak after each uk,
as described in Section 3.2. The overall pipeline is illus-
trated in Figure 3.

After training, the learned multi-turn LRM enables flexi-
ble management of the thinking units (e.g., choose to con-
tinue or abort from the reasoning by manipulating the token
</think>), but we empirically observe that when apply-
ing no control, the model tends to generate even more output
tokens than the original one (see Table 4). This is because
SFT primarily reshapes the reasoning format without di-
rectly addressing unit-level redundancy, and ak incurs fur-
ther token usage. To bridge the gap, we suggest leveraging
GRPO to prioritize efficient reasoning traces.

Reducing Reasoning Turns via GRPO We define a re-
ward function R comprises three components for GRPO:

R = Rformat +Raccuracy +Runit . (7)

In detail, they are: (1) Format Consistency Reward Rformat,
which ensures that the generated output adheres to the multi-
turn structure described in Equation (6). (2) Answer Accu-
racy Reward Raccuracy, which rewards the model for produc-
ing a correct final answer, as determined by matching an
to the ground truth. (3) Unit Compactness Reward Runit,
which penalizes cases where a single reasoning unit con-
tains multiple exploratory trajectories and thus encourages
a clear separation between reasoning turns. See Section 4.3
for further analysis of this component. The specific weights
for each reward component are detailed in Table 1.

Note that we do not introduce an explicit reward term re-
garding the number of turns, because GRPO inherently
introduces an implicit bias toward generating shorter CoTs
that yield correct answers. As shown in Equation (2), for a
fixed advantage Ai, the per-token normalization 1/|oi| results
in larger per-token updates for shorter outputs (Lin et al.,

2025; Yu et al., 2025; Liu et al., 2025), thereby encourag-
ing the model to produce more concise and efficient com-
pletions. This effect is particularly pronounced in LRMs,
which exhibit strong reasoning abilities and can generate di-
verse correct completions during training. Thus, the GRPO
framework naturally encourages shorter reasoning chains,
as empirically shown in Figure 5 by the marked reduction
in reasoning turns after training.

4. Experiments
In this section, we evaluate the efficiency of MinD across
several benchmarks. Section 4.1 describes the experimental
setup. Section 4.2 presents the main results, focusing on
token reduction, accuracy, and latency. Ablation studies and
additional discussion are provided in Section 4.3.

4.1. Setup

Table 1. Reward function value settings.

Rformat Raccuracy Runit

Compliance +1 +2 0
Non-Compliance -1 -2 -0.3

Table 2. Training data sizes.

1.5B 7B

SFT 3610 3532
GRPO 7500 7500

Training Details The training process for MinD consists
of two key phases, as described in Section 3.3. The first
SFT phase is conducted using the LLaMA-Factory reposi-
tory (Zheng et al., 2024). We perform full-parameter fine-
tuning for 2 epochs with a learning rate of 5e-5. The second
GRPO phase leverages the veRL repository (Sheng et al.,
2024). During this phase, we train for 1 epoch with an actor
learning rate of 1e-6. For each training step, 10 roll-out
completions are generated for each sample, with all other
hyperparameters set to the default values provided by veRL.
The reward function described in Section 3.3 is adopted
with the weight configurations listed in Table 1.

Models & Datasets Our experiments are based on
DeepSeek-R1-Distill-Qwen-1.5B/7B (DeepSeek-AI, 2025).
For SFT, the training data consists of questions from the
GSM8K (Cobbe et al., 2021) and MATH (Lightman et al.,
2023) training sets. Model-generated responses are fil-
tered via rejection sampling to retain only correct an-
swers, then pre-processed as shown in Figure 3. For
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Table 3. Performance comparison of various baselines and our proposed method, MinD, across four reasoning benchmarks: MATH-500,
AIME24, AMC23, and GPQA-Diamond. The table reports both accuracy (Acc.; higher is better) and average output token usage
(Tokens; lower is better) for each model. Results are shown for both 1.5B and 7B parameter configurations, covering the original LRM
(DeepSeek-R1-Distill-Qwen-1.5B and 7B), ThinkPrune (Hou et al., 2025), Dynasor (Fu et al., 2025), DEER (Yang et al., 2025a), and our
method, MinD. Note that for MinD, GRPO is performed only on the MATH training set, making MATH-500 in-domain and the others
out-of-domain. As shown in the table, MinD consistently achieves competitive or superior accuracy while significantly reducing token
usage, demonstrating its effectiveness for efficient and generalizable reasoning.

MATH-500 AIME24 AMC23 GPQA-Diamond

Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓

1.5B

Original LRM 85.4 5389 26.7 15177 67.5 9956 32.3 9842

ThinkPrune (Hou et al., 2025) 83.2 -2.6% 1938 -64% 27.1 +1.5% 5631 -63% 73.2 +8.4% 3039 -70% - -
DEER (Yang et al., 2025a) 73.2 -14.3% 1118 -79% 20.0 -25.1% 3302 -78% 47.5 -29.6% 2384 -76% 5.6 -82.7% 4128 -58%

MinD 82.8 -3.0% 1719 -68% 30.0 +12.4% 4856 -68% 77.5 +14.8% 2384 -76% 31.3 -3.1% 4690 -52%

7B

Original LRM 93.0 3928 50.0 14107 90.0 6076 50.5 8390

Dynasor (Fu et al., 2025) 88.5 -4.8% 2591 -34% 47.7 -4.6% 8760 -38% 87.1 -3.2% 4913 -19% - -
DEER (Yang et al., 2025a) 87.4 -6.0% 975 -75% 33.3 -33.4% 3235 -77% 82.5 -8.3% 1622 -73% 27.3 -45.9% 2265 -73%

MinD 91.6 -1.5% 2859 -27% 46.7 -6.6% 7258 -49% 95.0 +5.6% 3777 -38% 53.0 +5.0% 6845 -18%

GRPO, we use the MATH training set exclusively, with
sample sizes detailed in Table 2. We evaluate on both in-
distribution (MATH-500 (Lightman et al., 2023)) and out-
of-distribution benchmarks, including AIME24 (of Amer-
ica, 2024), AMC23 (of Science, 2023), and GPQA-
Diamond (Rein et al., 2023), to assess generalization.

Baselines To assess the efficiency of our method, we
compare against the following baselines: Original LRM:
The base models used in this work, DeepSeek-R1-Distill-
Qwen-1.5B and 7B. ThinkPrune (Hou et al., 2025): Adds
length clipping to the GRPO reward and is trained on the
AIME-AMC subset, progressively pruning outputs at the
token level to reduce response length. DEER (Yang et al.,
2025a): A training-free approach that detects “action transi-
tion points” (e.g., “Wait,” “Alternatively,” “Hmm”) to trigger
answer generation, and halts decoding when the mean token
probability surpasses a confidence threshold. Dynasor (Fu
et al., 2025): Periodically inserts probes (e.g., every 32, 64,
or 128 tokens) to extract intermediate answers and assess
their consistency, enabling early termination of generation.

Evaluation Metrics We evaluate MinD using three pri-
mary metrics: accuracy, average output token usage, and
time-to-first-token (TTFT). TTFT measures the time it takes
for the model to generate the first answer token of the re-
sponse, from when the prompt was sent—a key determinant
of user experience. The evaluations are conducted using the
Open-R1 evaluation scripts (Face, 2025), with a maximum
sequence length of 32,768 tokens, a temperature setting of

0.6, and a top-p value of 0.95, running on four NVIDIA
A100 GPUs.

4.2. Main Results

Reducing Output Tokens for Efficient Reasoning Af-
ter training the 1.5B and 7B multi-turn reasoning models
as described in Section 4.1, we evaluated their token effi-
ciency across a range of reasoning benchmarks. The re-
sults, summarized in Table 3, show that MinD consistently
reduces output token usage while maintaining strong per-
formance. On in-domain MATH-500, MinD lowers the
average token usage to 1719 for the 1.5B model—a 68%
reduction from the Original LRM (5389 tokens)—while
achieving 82.8% accuracy. Although ThinkPrune attains
similar accuracy (83.2%), it requires more tokens (1938).
DEER achieves the lowest token usage (1118), but with
a substantial accuracy drop to 73.2%. For the 7B model,
MinD reduces average token usage by 27% compared to
the Original LRM (2859 vs. 3928), with a high accuracy
of 91.6%, outperforming both Dynasor and DEER in the
balance of accuracy and efficiency. MinD’s efficiency gener-
alizes well to out-of-domain benchmarks. For example, on
AMC23 (1.5B), MinD reaches 77.5% accuracy with 2384
tokens, substantially outperforming ThinkPrune and DEER
in both accuracy and token reduction. Similar trends are
observed on AIME24 and GPQA-Diamond. These results
demonstrate that MinD effectively eliminates unnecessary
reasoning steps, producing concise outputs without compro-
mising performance.
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Table 4. Comparison of different training strategies on DeepSeek-R1-Distill-Qwen-1.5B. Original LRM refers to the pretrained baseline.
SFT-Only applies only the supervised fine-tuning step from MinD. Non-Multi-Turn applies GRPO without explicit multi-turn segmentation.
MinD denotes our full method with both multi-turn segmentation and GRPO. Acc.↑ indicates accuracy (higher is better), and Tokens↓
indicates average output length (lower is better).

Original LRM SFT-Only Non-Multi-Turn MinD

Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓
MATH-500 85.4 5389 82.8 5655 82.0 1866 82.8 1719
AIME24 26.7 15177 26.7 20675 20.0 7654 30.0 4856
AMC23 67.5 9956 77.5 8409 65.0 3415 77.5 2384
GPQA-Diamond 32.3 9842 28.3 12501 28.8 3397 37.4 4345
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Figure 4. TTFT (time to first token) and total
latency of two DeepSeek-R1-distilled models
on MATH-500. MinD achieves up to 4.2×
(1.5B) and 2.1× (7B) speedups over the origi-
nal LRMs in TTFT, and 3.2× (1.5B) and 1.6×
(7B) in total latency.

0 20 40 60 80 100
Percentage (%)

SFT

GRPO-100

GRPO-200

GRPO-300

GRPO-400

GRPO-468

Number of Reasoning Turns
1 2 3 4 5 6 7 8+

Figure 5. The distribution of reasoning turns for MinD at different training stages
(1.5B model) on the MATH-500 dataset. Each bar represents a model checkpoint,
including the SFT model and successive GRPO training steps. As GRPO train-
ing progresses, the number of reasoning turns per output decreases and becomes
increasingly concentrated at 1 or 2 turns (highlighted in red and orange), demon-
strating the effectiveness of GRPO in mitigating reasoning redundancy.

Reducing TTFT and Total Latency The TTFT and total
response latency for the original R1-distilled LRMs and
our MinD models are summarized in Figure 4. As shown,
MinD significantly reduces both TTFT and total latency
across both model sizes. For the 1.5B configuration, the
original 1.5B model requires 35.4s TTFT, which drops to
21.8s after SFT and further to 8.4s with MinD, resulting in
a 4.2× speedup. The total latency is similarly reduced from
35.8s (original) to 25.8s (SFT) and 11.3s (MinD), a 2.1×
improvement. For the 7B model, TTFT decreases from
27.8s (original) to 21.6s (SFT) and 13.2s (MinD), achieving
a 2.1× speedup. The total latency is reduced from 30.5s to
25.3s and 18.9s, for a 1.6× speedup. These results show
that MinD shortens both the time to first answer token and
the overall response latency.

4.3. Discussion & Ablation

GRPO is Crucial for Efficient Reasoning As discussed
in Section 3.3, SFT alone does not guarantee efficient rea-
soning. To demonstrate this, we compare the performance
of models after SFT and after the full MinD pipeline, as
shown in Table 4. The results reveal that SFT-only training
often increases average output token usage relative to the
original LRM. In contrast, applying GRPO further leads to
substantial reductions in token usage while preserving accu-
racy, underscoring the essential role of GRPO in enabling
concise and effective reasoning.

Role of Runit in Maintaining Multi-Turn Reasoning As
discussed in Section 3.3 and detailed in Table 1, our GRPO
framework introduces a Unit Compactness Reward, Runit,
to enforce that each reasoning turn contains only a single,
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GRPO-100, w/o 

<think>
Okay, so I have this problem [...] So, the answer
should be 2
</think>
[...] Answer: 
<think>
Let me just visualize the triangle to make sure [...]
I don't think I made any mistakes here.
</think>
[...] Answer: 
<think>
So, I think I'm confident that tan A is indeed 2
</think>
[...] Answer: 

Question: In right triangle  with , we have . What is ?

GRPO-400, w/o 

<think>
Okay, so I have this problem [...] tan A would be
(2 cos A) over cos A, which simplifies to 2. 
Wait, that seems straightforward. But let me make
sure I'm not missing anything [...] So, tan A is 2.
Wait, but let me double-check using the identity
sin^2 A + cos^2 A = 1 [...] So, both methods
confirm that tan A is 2 [...]
</think>
[...] 
<think>
But let me just visualize the triangle to make sure
[...] I think I'm confident that tan A is 2
</think>
The value of  is .

Figure 6. Left: Comparison of GRPO training with and without Runit on MATH-500 for different 1.5B model checkpoints, showing
Average Output Tokens for each. Removing Runit leads to instability and collapse in output length. Right: An illustrative case comparing
the outputs of GRPO-100-step and GRPO-400-step checkpoints trained without Runit. While the earlier checkpoint (GRPO-100) maintains
clear multi-turn reasoning, the later checkpoint (GRPO-400) exhibits several thinking units within a single turn (the start of each new
unit is marked with an orange highlight), demonstrating that omitting Runit results in blurred step boundaries and loss of controllable,
structured reasoning.

coherent exploratory trajectory. This mechanism is essen-
tial for preventing the model from degenerating into the
original monolithic think-then-answer style—a common
outcome under GRPO’s token-level averaging (Section 3.3),
which tends to favor shorter correct outputs. Without a
specific penalty for multi-trajectory turns, the model may
skip intermediate answers, collapsing the multi-turn reason-
ing structure into a single-block CoT. To counteract this,
Runit penalizes reasoning turns that contain multiple ex-
ploratory trajectories, detected by linguistic cues such as
phrases like “double-check.” This strategy encourages each
turn to contain only one exploratory trajectory—especially
in the critical first turn—without requiring external supervi-
sion, and thus maintains the multi-turn paradigm throughout
training. The impact of Runit is demonstrated in Figure 6,
which shows how its absence leads to a collapse in output
structure and length.

MinD Effectively Alleviates Redundancy To demon-
strate the effectiveness of GRPO in reducing redundancy,
we plotted the distribution of reasoning turns for SFT and
GRPO models on the MATH-500 dataset, as shown in Fig-
ure 5. The figure clearly illustrates that GRPO significantly
reduces the number of reasoning turns, indicating a more
compact and efficient reasoning process compared to the
purely SFT-trained models. Additionally, from the data
in Table 3, GRPO reduces the average output tokens on
MATH-500 by 68.1% for the 1.5B model and 27.2% for
the 7B model, compared to their respective original LRMs.
This aligns well, though not directly, with the redundancy
rates of 69.8% and 35.8% for these models, as reported

in Figure 2 (Right). While not directly comparable, these
figures collectively show that MinD via GRPO significantly
reduces redundancy, yielding more concise and efficient
outputs.

The Importance of Multi-Turn Structure To evaluate
the impact of the multi-turn design, we performed SFT using
responses from the original distilled-1.5B model, without
applying any multi-turn segmentation (i.e., using the same
question set as in step (1) of Figure 3), followed by GRPO
with only the format and outcome rewards. As shown in
Table 4, the Non-Multi-Turn model achieves comparable
results to MinD on in-distribution MATH-500, but exhibits
a notable drop in accuracy and only marginal reductions in
token usage on out-of-distribution benchmarks. We hypoth-
esize that the standard CoT format limits models’ flexibility
in adjusting reasoning steps, hindering the learning of con-
trollable and generalizable processes.

Additional discussion can be found in Section A.

5. Conclusion And Limitation
In this paper, we introduced Multi-Turn Decomposition
(MinD), an efficient method for improving the reasoning
efficiency of large language models. MinD significantly
reduces token usage and latency while preserving strong
performance across diverse tasks. Our results show that
structured reasoning mitigates slow responses and high com-
putational costs in large language models. Future work in-
cludes scaling MinD to larger models, extending to more
domains, and adapting turn counts to difficulty or user needs.
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Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,
G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D.,
Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam,
P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,
Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such,
F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N.,
Thompson, M. B., Tillet, P., Tootoonchian, A., Tseng, E.,
Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone,
A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang,
J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann,
C., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wi-
ethoff, M., Willner, D., Winter, C., Wolrich, S., Wong,
H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu,
T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,
Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J.,
Zhuk, W., and Zoph, B. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Pan, R., Dai, Y., Zhang, Z., Oliaro, G., Jia, Z., and Ne-
travali, R. Specreason: Fast and accurate inference-
time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang,
R. Y., Dirani, J., Michael, J., and Bowman, S. R. Gpqa:
A graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022, 2023.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X.,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

She, J., Li, Z., Huang, Z., Li, Q., Xu, P., Li, H., and Ho,
Q. Hawkeye:efficient reasoning with model collabora-
tion, 2025. URL https://arxiv.org/abs/2504.
00424.

Shen, X., Wang, Y., Shi, X., Wang, Y., Zhao, P., and Gu,
J. Efficient reasoning with hidden thinking, 2025. URL
https://arxiv.org/abs/2501.19201.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang,
R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A flexi-
ble and efficient rlhf framework. arXiv preprint arXiv:
2409.19256, 2024.

Song, H., Jiang, J., Min, Y., Chen, J., Chen, Z., Zhao, W. X.,
Fang, L., and Wen, J.-R. R1-searcher: Incentivizing
the search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592, 2025.

Su, D., Zhu, H., Xu, Y., Jiao, J., Tian, Y., and Zheng,
Q. Token assorted: Mixing latent and text tokens
for improved language model reasoning, 2025. URL
https://arxiv.org/abs/2502.03275.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C.,
Li, C., Xiao, C., Du, C., Liao, C., et al. Kimi k1. 5:
Scaling reinforcement learning with llms. arXiv preprint
arXiv:2501.12599, 2025.

Team, Q. Qwen3, April 2025. URL https://qwenlm.
github.io/blog/qwen3/.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35,
pp. 24824–24837, 2022.

Xia, H., Wang, W., Yu, H., Wang, X., Lin, X., and Zhou, M.
Tokenskip: Controllable chain-of-thought compression
in llms. arXiv preprint arXiv:2502.12067, 2024.

Yang, C., Si, Q., Duan, Y., Zhu, Z., Zhu, C., Lin, Z., Cao,
L., and Wang, W. Dynamic early exit in reasoning mod-
els, 2025a. URL https://arxiv.org/abs/2504.
15895.

Yang, W., Ma, S., Lin, Y., and Wei, F. Towards thinking-
optimal scaling of test-time compute for llm reasoning,
2025b. URL https://arxiv.org/abs/2502.
18080.

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2504.00424
https://arxiv.org/abs/2504.00424
https://arxiv.org/abs/2501.19201
https://arxiv.org/abs/2502.03275
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwen3/
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2502.18080


Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., Lin, H., Lin, Z., Ma, B.,
Sheng, G., Tong, Y., Zhang, C., Zhang, M., Zhang, W.,
Zhu, H., Zhu, J., Chen, J., Chen, J., Wang, C., Yu, H.,
Dai, W., Song, Y., Wei, X., Zhou, H., Liu, J., Ma, W.-
Y., Zhang, Y.-Q., Yan, L., Qiao, M., Wu, Y., and Wang,
M. Dapo: An open-source llm reinforcement learning
system at scale, 2025. URL https://arxiv.org/
abs/2503.14476.

Zhang, J., Wang, J., Li, H., Shou, L., Chen, K., Chen,
G., and Mehrotra, S. Draft & verify: Lossless large
language model acceleration via self-speculative de-
coding. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 11263–11282, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.607. URL https:
//aclanthology.org/2024.acl-long.607/.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng,
Z., and Ma, Y. Llamafactory: Unified efficient fine-
tuning of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstrations),
Bangkok, Thailand, 2024. Association for Computational
Linguistics. URL http://arxiv.org/abs/2403.
13372.

11

https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://aclanthology.org/2024.acl-long.607/
https://aclanthology.org/2024.acl-long.607/
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372


Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition

A. Word Frequency Analysis of Thinking Units
In this section, we collect and compare the number of distinct words representing thinking units in DeepSeek-R1-Distill-
1.5B, including the Original LRM, Non-Multi-Turn (GRPO applied without explicit multi-turn segmentation) , and MinD.
Although these words do not precisely correspond to the number of actual thinking units, they serve as a meaningful proxy
and offer indicative insights into their distribution(see Table 5 for details).

Table 5. The frequency of words representing thinking units in outputs generated by Original LRM, Non-Multi-Turn and MinD across
MATH-500, AIME24 and AMC23.

Wait Alternatively double-check check verify

MATH-500

Original LRM 13993 2206 368 1272 124
Non-Multi-Turn 1822 333 41 347 193
MinD 1651 237 10 434 249

AIME24

Original LRM 3742 415 20 215 17
Non-Multi-Turn 317 67 0 45 19
MinD 211 45 0 34 8

AMC23

Original LRM 2302 385 35 205 45
Non-Multi-Turn 246 38 3 42 17
MinD 215 30 0 50 22

B. Prompting for MinD
In this section, we present the complete prompt formats used in the MinD process (see Figure 3 for details).

Q&A Template

{Question}
Please reason step by step, and put your final answer within \\boxed{}.

Decomposing into Thinking Units

You will be provided with a math problem and a solution generated by a
reasoning model. The model’s response may contain multiple Reasoning
Rounds. One Reasoning Round is a part of the full model generation and
is defined as a complete reasoning process or verification process that
explicitly contains the final answer. Your task is to carefully analyze
the response and segment it into individual Reasoning Rounds. Specifically,
insert ‘‘[split]’’ between every two consecutive Reasoning Rounds.
---
Problem: {question}
Solution: {prediction}
---
Please give the solution with ‘‘[split]’’ tags without any redundant words.
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