
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENTIAL AI FOR INTEGRATED CONTINUAL LEARN-
ING, DELIBERATIVE BEHAVIOR, AND COMPREHENSI-
BLE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Contemporary machine learning paradigm excels in statistical data analysis, solv-
ing problems that classical AI couldn’t. However, it faces key limitations, such
as a lack of integration with planning, incomprehensible internal structure, and
inability to learn continually. We present initial design for an AI system, Agential
AI (AAI), in principle operating independently or on top of statistical methods,
that overcomes all these issues. AAI’s core is a learning method that models tem-
poral dynamics with guarantees of completeness, minimality, and continual learn-
ing. It integrates this with a behavior algorithm that plans on a learned model and
encapsulates high-level behavior patterns. Preliminary experiments on a simple
environment show AAI’s effectiveness and potential.

1 INTRODUCTION

The current machine learning (ML) paradigm uses continuous representations to approximate envi-
ronmental structures through fixed internal architectures like neural networks (NNs). This approach
has effectively addressed numerous challenges once considered among the toughest in AI, includ-
ing vision (Khan et al. (2021)), language processing (Zhao et al. (2023)), and complex behavior
(Li (2017)). However, as these problems are solved, important limitations related to the methods
of solving them and their practical integration into larger systems start to receive more attention
(Clune (2019); Zador (2019); Marcus (2018); LeCun (2022)). In particular; these models, heav-
ily overparameterized with finite expressive potential, adapt by tuning continuous parameters rather
than learning the structure topologically. Consequently, information is embedded in a distributed
manner, leading to several important issues that are widely regarded as core limitations of machine
learning (and NNs, its current dominant paradigm) - most notably the incapability of continual learn-
ing and information reuse, incomprehensibility and non-designability of the internal structure, and
difficulty integrating learned information with deliberative behavior; as detailed below.

Common Limitations Two most important core limitations of current ML systems are the inability
of continual learning and incomprehensibility of internal structure; often tackled in isolation (Kirk-
patrick et al. (2017); Rusu et al. (2016); Jacobson et al. (2022); Hadsell et al. (2020); Zhuang et al.
(2020); Xu et al. (2019)). These methods don’t fully resolve the fundamental limitations of NNs but
aim to mitigate their effects. For example, many continual learning solutions rely on assumptions
that simplify the problem (e.g. externally defined task boundaries (Rusu et al. (2016); Jacobson et al.
(2022)) or storage and replay of past observations (Buzzega et al. (2020))) or only bias learning to-
wards past tasks without ensuring true continual learning (Kirkpatrick et al. (2017)). Likewise,
Explainable AI approaches (Xu et al. (2019)) aim to explain operation of NNs post-hoc, without
resolving the fundamental incomprehensibility of their internal structure and hence still unable to
make them a properly engineerable.

Deliberative Behavior Planning is a well-established area of AI research (Ghallab et al. (2016)), of-
fering advantages over reward-based learning for reactive behavior (Çalışır & Pehlivanoğlu (2019)),
as it is more precise and doesn’t require relearning for new goals. Traditional planning methods typ-
ically do not incorporate environment model learning. While model-based reinforcement learning
(Moerland et al. (2023; 2020)) partially addresses deliberative behavior through experience-driven
learning, it suffers from limitations due to its non-structured representation of environments. This

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Main aims of current learning agents research, representative subfields tackling these aims,
and inherent limitations of their approaches.

Aim Continual
learning

Deliberative
behavior

Behavior
decomposition

Understandability-
controllability

Subfield Various Model based RL Hierarchical RL Explainable AI
Limitations Require either

task boundaries
or replay of past
samples

Imprecise delib-
eration based on
future-state sam-
pling

Rigid prespec-
ified hierarchy,
subpolicies not
decomposable

Post-hoc, keeps
incomprehen-
sible internal
structure

makes it challenging to represent alternative pathways to goals and conduct goal-oriented back-
ward searches, often relying on random state sampling (Hammersley (2013)). Our method’s planner
explicitly represents alternative pathways using a learned model, enabling precise goal-directed be-
havior without the need for next-state sampling.

Behavior Decomposition A longstanding objective within the learning agents community has been
to automatically break down behavior into distinct subunits, which is the primary motivation behind
the subfield of Hierarchical Reinforcement Learning (HRL) (Pateria et al. (2021)). However, this
goal has yet to be achieved: current HRL methods produce rigid hierarchies that require predefining
the structure in some form, with no exceptions known to us. Additionally, there is no existing
capability for HRL-learned policies to be divided into multiple subpolicies, which is a fundamental
requirement for flexible hierarchical structures. In this work, we present an initial demonstration of a
behavior encapsulation mechanism (currently independent of the agent’s operation) that can generate
arbitrary hierarchical decompositions of behaviors designed by the planner. This mechanism can
identify relevant subpolicies, along with their internal preconditions and subgoals, without any prior
definitions, thus achieving the goal of HRL in a different context.

Table 1 provides a summary of the previous discussion. These issues all originate from the shared
limitation of approximating environmental structures with fixed models, rather than learning them
topologically. They can be addressed collectively and without limitations of individual subfields
tackling them separately, through a different design philosophy that tackles the problem from the
ground up, which is the purpose of this work. To that end, we present the initial design of a sys-
tem called Agential AI (AAI). The system consists of three components: Modelleyen (meaning
”the one who models” in Turkish), an alternative learning mechanism that captures the structure
of the environment topologically in a discrete network without using gradients,1 enabling continual
learning without destructive adaptation, and without task boundaries or replay; Planlayan (”the one
who plans”), a planning algorithm that executes goal-directed actions based on a model generated
by Modelleyen; and a behavior encapsulation mechanism, currently demonstrated independently
of agent operation, that decomposes behavior patterns produced by Planlayan into arbitrary hierar-
chical structures with autonomously detected subgoals. We detail these components, explain how
they overcome multiple major limitations of contemporary ML (Table 1), and demonstrate their
proof-of-principle operation on a simple test environment.

2 MODELLEYEN

Modelleyen is designed to model sequential observations from an environment, but can be applied
to any prediction task. It learns the environment’s structure with minimal exposure, enabling infor-
mation reuse and continual learning while maintaining consistency with past experiences. At the
core of our method is a local variation and selection process - an important fundamental property of
biological systems that has not found their way explicitly into AI methods, whose importance in the
generation of biological structures and facilitation of their further evolution (Gerhart & Kirschner
(2007); Marc (2005); West-Eberhard (2003)), including in the brain (Marc (2005); Edelman (1993))
has recently been particularly appreciated. As it will be clear, this mechanism essential to the re-
alization of continual learning and structured environment modelling, which in turn leads to all the
other capabilities.

1Our approach to modelling is also possibly applicable to Bayesian structure learning Kitson et al. (2023);
although this is not our primary motivation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of SV types and relationships. The figure shows BSVs (Bi), their DSVs for
activation (A) and deactivation (D), and CSVs (Ci). Here, CSV C0 takes as positive source BSV B0,
as negative source the activation DSV of B1; and conditions the CSV C1 as well as the deactivation
of B2, modelling ”B2 is deactivated and C1 is active if B0 is active and B1 is not activated.”

Below, we outline Modelleyen’s core mechanism. We note in advance that the current version
operates within a discrete state space and only accounts for immediate event succession without
long-term relationship modeling (see Section for a discussion of them). Due to space limitations,
we provide only an overview of the key definitions, basic learning mechanism, and core continual
learning properties. For a full description, see Appendix A.1, and Algorithms 1 and 2.

Definition 1 (State Variable - SV) A state variable X is a unit in our system whose state, SX , can
take values 1 (active), -1 (inactive), or 0 (unobserved/undefined depending on context).

SVs can be interpreted as boolean variables with additional possibility to take an additional ”unob-
served” value. The integers assigned for states are only for notation and not for algebraic operation.
The following are subtypes of SVs:

Definition 2 (Base SV - BSV and Dynamics SV - DSV) A BSV X is an SV whose values are provided
by the environment each timestep and whose state is limited by SX ∈ {−1, 1}. Each BSV comes with
two DSVs, XA and XD, that represent its activation and deactivation at current step (t) compared
to previous timestep respectively; where SXA

= 1 if and only if SX(t− 1) = −1 ∧ SX(t) = 1, and
SXD

= 1 if and only if SX(t− 1) = 1 ∧ SX(t) = −1.

Definition 3 (Conditioning SV - CSV) A CSV C is a type of SV with mutable sets of positive sources
XP , negative sources XN , and conditioning targets Y . Positive and negative sources are BSVs and
DSVs, while targets can be DSVs or other CSVs. The sources of C are considered ”satisfied” if all
positive sources are active and all negative sources are not active. If sources are satisfied, SC = 1
if sources are satisfied and SY ∈ {0, 1}, ∀x ∈ Y (targets are active); SC = −1 if sources are
satisfied and SY ∈ {0,−1}, ∀x ∈ Y (targets are inactive), and SC = 0 otherwise. Additionally,
each CSV has a ”unconditionality” flag, which indicates if the CSV has, in the past, been always
observed active when sources were satisfied (”unconditional”), was never observed active without
a predictive explanation (”conditional”), or was sometimes observed active without a predictive
explanation (”possibly conditional”), the latter representing uncertainty in a qualitative manner.

BSVs are essentially environment observations, while DSVs represent their changes. CSVs model
the presence or absence of a relationship between a learned condition (sources) and its effect (active
target states), indicated by the CSV being active (1) or inactive (-1). Figure 1 shows these SV types
and their connections. Note that CSVs are not feedforward computational units; they represent the
relationship between sources and targets - states of their targets are set independently of the CSV,
unlike feedforward units that determine target states based on source states. CSVs partially function
as feedforward units only when used for prediction of alternative outcomes.

Initially, the model includes only BSVs and their DSVs, with no CSVs. At each step, Modelleyen
seeks to explain the observed states of CSVs and DSVs in the previous timestep (modeling BSVs
indirectly via DSVs). It does so by creating new CSVs to account for unexplained DSVs and CSVs.
These retrospective explanations captured by CSVs become predictions for potential outcomes in
the next timestep. Learning capability of Modelleyen comes from the operations on CSVs - their
formation, and the modification of their positive and negative sources; summarized as follows (de-
tailed on Algorithms 1 and 2):

Initial formation: Figure 2b. At each step, if there are active DSVs or CSVs without an explanation
(an active conditioner or an unconditionality flag, see Appendix), a new CSV is generated to explain

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d) (e)

Figure 2: Sample formation of a CSV in a continual manner. The relationship to be modelled is Y =
X0 and !X2 (”!” denotes ”not”). Black and orange arrows represent positive and negative sources
for CSV C0 respctively. Xi can be interpreted either as single or grouped SVs. (a) Initial state
with no relation formed between X0 − 3 and Y . (b) X0, X1 → Y observed. Positive connections
hypothesizing both X0 & X1 are required for Y are formed. (c) X0 → Y is observed. X1 is
deduced unnecessary for Y . (d) X0, X2, X3 →!Y observed. Y is hypothesized to be suppressed
by X2 and X3. (e) X0, X2 →!Y observed. X3, seen unnecessary for suppression of Y , refined.
Correct structure learned and is stable from now on.

them. Initially, the CSV has no negative sources (XN = ∅) and includes all active BSVs and DSVs
at that timestep as positive sources (XP ). No additional positive sources can be added to the CSV.

Negative connections formation: Figure 2d. At the first instance where a CSV’s sources are satisfied
but its state is inactive, the CSV receives all active DSVs and BSVs at that timestep as negative
sources (XN ), similar to previous step. No additional negative sources are added thereafter.

Refinements: Figures 2c and 2e. When a CSV’s state is determined as 1 with at least one active
positive source and active targets, we remove nonactive positive sources (x ∈ XP : SX ̸= 1) from
XP and active negative sources (x ∈ XN : SX = 1) from XN . When the state is 0, with at least one
active positive source, inactive targets, and at least one active negative source, we remove nonactive
negative sources (x ∈ XN : SX ̸= 1) from XN .

Intuitively, a CSV starts by being connected to all active SVs at formation, representing a com-
prehensive hypothesis of relationships. These relationships are then refined based on observations
where some connections are deemed unnecessary, ensuring the CSV remains consistent with past
observations locally. This refinement is central to Modelleyen’s continual learning ability, evident
from its lowest organizational level of CSVs, as formalized of the following property.

Theorem 1 Let yi be an instance that includes the previous states of all the positive and negative
sources of a CSV C and the current states of all its conditioning targets. Then, if C undergoes any
modification as a result of encounter with an instance y1, its state in reponse to any past instance
y0 is not altered by this modification; as long as its set of targets remain identical and C does not
undergo negative sources formation (either because inactive state is not observed or because it has
already undergone it).2 The proof is in Appendix A.3.

Theorem 1 is exemplified in Figure 2: In 2b, after elimination of X1 as a positive source, the
earlier exposure of X0, X1 → Y still results in a state of activity in C0, and likewise for X2 &
X3. With this property, we know that the state of a CSV in response to any past encounter is not
altered except possibly for initial negative sources formation (happening only once per CSV), hence
realizing continual learning without destructive adaptation in Modelleyen inherently and from the
lowest level of organization.

A CSV can condition/predict not only the activation of direct environmental dynamics (DSVs), but
also possibly the activation of other CSVs. This latter capability allows for the upstream complexifi-
cation of the model, by which arbitrary complex logical relations can be represented in a structurally
minimal manner. This formation of upstream conditioning pathways is exemplified on Figure 3, con-
tinuing our example from Figure 2. The processes of refinements, negative sources formations, and
even further upstream conditioning are identical regardless of what the target of a CSV is.

2The requirement for identicality of targets in this theorem is only to account for the fact that heterogeneous
targets result in duplication of CSVs - see the Appendix for details of this mechanism. The theorem holds when
one considers the response of the duplicated CSVs with respect to the targets assigned to each duplicate as well.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 3: Example of upstream conditioning, continuing from Figure 2. Assume that the uncondi-
tionality flag of C0 is set following an observation that (X0, !X2) did not result in its activation
(see main text). (a) X0, !X2, X4, X5 → Y observed. C0 is observed to be active, since XO, !X2
led to Y . A new CSV C1 is formed & conditions C0. Note that (X4, X5) alone will not predict
activation of C0 if C0’s sources are not also active. (b) New conditioners are also subject to the
CSV processes: Here, the source X5 of C1 has been refined, and new conditioners C2 and C3 are
formed. Multiple conditioners represent alternative paths: In this case, C0 is expected to be active
when sources of either C1 or C2 is active. Any logical function can hence be incorporated in a
conditioning pathway in a minimal and ongoing manner without destroying past knowledge.

Additionally, we quantify the statistical significance of relationships between each CSV and their
targets - this prevents excessively large models and instability in environments with numerous ob-
servations and spurious relationships, expected to be especially important when scaling to higher-
dimensional environments. For this purpose, we use a straightforward metric we called normalized
causal effect, quantifying the increase in probability of a target that satisfaction of sources of its
conditioner causes. Details can be found in Appendix A.4 (excluded from the main text for brevity).

This learning approach is fundamentally different from methods like NNs. In Modelleyen, the agent
updates its model instantly with new information at each step, unlike other methods that make incre-
mental adjustments over many steps. This process can be seen as the agent initially ”overfitting” to
observations—fully accounting for them—while gradually refining the model to be as structurally
and explanatorily minimal as possible without contradicting past experiences. At every stage, the
model is as general as necessary based on prior exposures, but no more. The more specific rep-
resentation (e.g., more sources per CSV) allows for precise generalization when new observations
arise, increasing likelihood of consistency as sources are refined. This mechanism is central to Mod-
elleyen’s continual learning capability and reflects a fundamental process in biological systems,
where redundant variations are maintained and selected as needed (Gerhart & Kirschner (2007)).
Unlike conventional methods that start with underfitting and progressively adjust while avoiding
overfitting, this concern is irrelevant in Modelleyen, as the necessary level of generalization is in-
herently built into the model based on all previous observations.

3 PLANLAYAN

We introduce Planlayan, an extension of Modelleyen designed to demonstrate goal-directed plan-
ning through backward tracking from desired goal states to current states.

Preprocessing the model and Group SVs: We first briefly preprocess a learned model to reduce the
number of connections. To this end, we group the sets of BSVs in our that are either (1) collectively
act as positive or negative source of a CSV, or (2) have an event that is collectively predicted by
a CSV. Each such grouping becomes a constituent of a Group SV (GSV). For example, if a CSV
C0 has positive sources (B0, B1, B2) and predicts deactivation of (B3, B4); then two GSVs are
created: G0 = (B0, B1, B2), G2 = (B3, B4). This preprocessing stage is only for practical
purposes and is not in principle needed for the operation of Planlayan, but we think it is essential for
scalable representations of models learned by Modelleyen in the long run.

Main Process of Planlayan: Planlayan constructs an action network (AN) based on a model gener-
ated by Modelleyen, incorporating alternative outcomes. An AN is a dependency graph with root
nodes representing the current environmental states (current BSV, GSV, and DSVs), along with pos-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 4: Illustration step-by-step upstream generation of action network, operating on different SV
types. BX, CX and GX stand for BSV, CSV and GSV nodes respectively, (A) for activation, (0)
for nonactive state. Black arrows are positive sources and precondition targets, green arrows are
constituent (dashed) and constituency (solid) relations. The node that is extended at each step is
highlighted in red. (a) Step 1. CSV C0 is opened. For CSVs, their upstream conditioners (C1) and
sources are expanded (G0, B0(A)). (b) Steps 2-4. Each step opens up one of the sources of previous
step. For GSVs (G0), constituents (B2, B3), constituencies (G1) and precondition events (G0(A))
are opened. For DSVs (B0(A)), their precondition states (B0(0)) and their conditioners (C2) are
opened. Possible interrelations (e.g. B2 for C1, G0) do not need reopening if they already exist.

sible alternative connections (shown by multiple conditioning links from CSVs) needed to achieve
a specified goal state variable (see Figure 8a example from experiments). To build this, we use a
simple recursive function that generates the upstream action network for a given node (Figure 4 - see
Algorithm 3 in Appendix for details). At each call, the function adds predecessors for the specified
node until it reaches the root nodes that represent current environmental states. These predecessors
vary by state variable types based on their model functionality, as summarized in Figure 4b.

Action Choice: The agent generates an action network each time it needs to select an action. (While
this is computationally unnecessary—since the agent could reuse a generated AN until it reaches
the goal by tracking its position along the AN—we maintain this approach for simplicity.) From
the generated AN, the agent identifies actions that can immediately activate any CSV in the action
model, specifically those whose sources and sources of their downstream targets do not involve any
unactualized BSV states. The agent then randomly selects one of these actions for the current step.
Since only one action is chosen, the agent can consider the entire AN including alternative pathways.

Planlayan is explicitly goal-directed, identifying a path from initial states to the goal without need-
ing rewards, although rewards can help prioritize the search. Unlike methods like model-based RL,
which typically search from initial states to goals via forward-sampling, Planlayan considers both
initial and goal states, focusing on steps derived from the environment model. The planning algo-
rithm is a simple search method that unfolds upstream action networks from the model, as our main
aim is to demonstrate the interface between Modelleyen’s modeling components and general deliber-
ative behavior without going into extensive detail. Planning is a well-established field with efficient
methods and useful heuristics Ghallab et al. (2016), and once the interface between Modelleyen and
Planlayan is established, implementing more advanced algorithms is straightforward.

Finally, we note two visible limitations of the current version of Planlayan. First, the generated
action networks are exhaustive, including every possible path to initial states. Second, the current
version does not account for the precise timing of multiple events. In our experiments, for instance,
the RS environment subtype (see Figure 6) takes longer due to the BSV DO having two pathways
for deactivation, the correct one being the one that deactivates BSV W as well at the same time.
The planner fails to distinguish between these pathways, leading to some unnecessary loops. These
limitations are not addressed in current framework to keep its simplicity, since they do not affect our
demonstrative use of Planlayan to a major degree. They are discussed in Section 7.

4 BEHAVIOR ENCAPSULATION

Modelleyen and Planlayan together create a complete system capable of continual learning and
structured goal-directed behavior. However, the exhaustive action networks produced by Planlayan

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Illustrative example for the aim of behavior encapsulation process. To the left are two
action networks (ANs) that represent two alternative pathways, split from the unified AN generated
by Planner (node names are placeholders and can be of any SV type and target effect). We want
to encapsulate the pathways between X and Z. For that; all pathways that are reliably present in all
(here, both) networks are identified and a new encapsulated AN (EAN) is formed with them (right).
Each encapsulated edge (dashed) in EAN includes copies of subnetworks that corresponded to this
pathway in the original AN variants; which can be further encapsulated in subgroups via a recursive
call (for example, edge (D0,Y) would include two pathways; first one formed only of E0, the second
of C2 and E1). The EAN on right can be regarded as the subpolicy for realization of Z from X.

do not exemplify a comprehensible representation, which is one of our key goals. Additionally,
Planlayan does not fully leverage this structured representation to address a long-standing challenge
in AI behavior learning: the decomposition of learned behavior into subunits defined by automat-
ically determined preconditions and consequences in an arbitrary hierarchical manner. To address
this, we introduce a behavior encapsulation mechanism that operates on the action networks gen-
erated by Planlayan, transforming flat, exhaustive action plans into a hierarchically structured and
comprehensible format.

The action network (AN) produced by Planlayan contains multiple alternative pathways. Our first
step is to isolate each pathway into individual alternative action networks by creating copies of
the original network, each including only one of the conditioning alternatives for each CSV and
DSV. Next, we aim to develop a reduced, high-level network that captures the reliably observed
pathways across all these alternative ANs (see Figure 5 for an abstract example, and Figure 8b for
a specific case from our experiments). The nodes in this new graph represent necessary subgoals
for the current goal, while the encapsulated edges denote the subpolicies linking their start and end
states. We achieve this through a simple, edge-oriented process that starts with one action network
and refines edges by removing those whose source and target aren’t connected in other ANs, while
linking all relevant predecessors and successors. This process continues until no further changes
occur, resulting in a minimally structured version.

After generating the high-level network, we isolate the subgraphs that connect the subgoal nodes,
representing them as alternative pathways for the corresponding subpolicies. This process is done
recursively on the internal encapsulated subnetworks by grouping networks that share at least one
common node, continuing until no such groups can be formed. This results in a behavior repre-
sentation that, while complex in its extended form, is maximally structured and comprehensible at
each organizational level. Although this process is computationally intensive, it only needs to be
executed once for each action path, as long as the underlying model remains unchanged, making the
computational complexity manageable.

Beyond enhancing the comprehensibility of action networks post-hoc, this encapsulation process
can significantly aid agent behavior. Encapsulated behavioral subunits, (whose delimiters are not
provided to the agent in advance), can be reused when the same precondition/goal pairs arise. We
do not yet perform this integration of behavior encapsulation with the agent’s ongoing operations,
and present it separately as an illustration of what becomes possible with AAI.

5 EXPERIMENTAL SETUP

Environment: We demonstrate the operation of AAI on a simple test environment, which is a finite-
state machine (FSM) with two cells, each capable of seven states or inactivity, as shown in Figure 6.
The environment includes three subtypes (”RS”, ”SG”, ”NEG”), illustrated by different colors. This

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: The environment and its subenvironments that we test on, essentially a FSM with two
cells each of whom can take one of the states ”DO, DC, W, G, SG1, SG2, X” or be empty (”-”).
Each state is connected with arrows representing succession relations between them; filled circles
correspond to multiple alternatives that can result from it. Green, red and blue portions are ”RS”,
”SG”, and ”NEG” subtypes respectively (detailed in text), black portion is included in all subtypes.
In ”Complete” variant, all transitions and states are included. The agent’s goal is to activate state
”G” in the first cell, and optimal actions are indicated by bold transitions. The environment has 20
actions, much larger than what is actually useful, in order to make it difficult to reach goal randomly.

setup was designed to model various types of temporal successions, such as basic succession, cor-
related changes, alternative causes/outcomes, uncertain transitions, and negative conditons.3 There
is also a random variant of the environment where two additional states that get activated randomly
are introduced, in order to test statistical significance filtering mechanisms. This environment was
chosen in order to validate the core operation of AAI in a simple and understandable setting, which
made in-depth analysis and debug of the design very feasible during development process. There is
no inherent limitation to applying to more complex environments, akin to those used for testing e.g.
RL algorithms,4 except that the planner implementation should incorporate the changes needed to
make search nonexhaustive (see Sections 3 and 7). We leave validation on such environments and
changes in design to future work, as this presentation is dense enough already.

In our base planning experiments, we compare the performance of an agent that learns a model fol-
lowed by planning (with a 10% chance of random actions for exploration) to one that acts purely
randomly. The agent starts with 4000 random actions to learn the environment model, then uses
Planlayan for the next 4000 steps. We measure the average steps to reach the goal before and after
planning. Next, we conduct continual learning experiments where the agent learns with predefined
goals and the environment subtypes switch every 500 steps (with readaptation) or 1000 steps (with-
out readaptation). We test whether the agent can achieve similar performance in different subtypes,
both in vanilla and random environment variants without any readaptation of the model, and also
analyse learning progression when readaptation is enabled. Finally, we present a demonstrative case
of behavior encapsulation on a learned model. For more details on the experimental setup, see Ap-
pendix A.5. We do not provide comparison with any existing method since we are not aware of any
method that could provide a meaningful comparison: As discussed in Section 1, to the best of our
knowledge, there are no existing methods in literature that can either perform unsupervised continual
learning of an environment reliably with no task boundaries and no past sample replay, or perform
precise goal-directed behavior on a learned model together, or encapsulate & represent the behavior
in an automatically generated arbitrarily hierarchical structure in a comprehensible manner, let alone
solving all these seemingly disjoint issues with a common framework.

6 RESULTS AND DISCUSSION

Base Planning: Table 2 compares episode durations for random actions (first 4000 steps) and plan-
ning (next 4000 steps). The planner significantly reduces the time needed to reach goals compared to

3The environment was vaguely inspired from Multiroom environment in Minigrid (Chevalier-Boisvert et al.
(2023)). For intuition behind this FSM, see the Appendix.

4With the possible exception of high-dimensional visual inputs, which will need an extension of AAI to
incorporate their inherent structure, akin to Convolutional NNs as compared to fully connected ones.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Base goal-directed behavior. Mean episode durations (across 4000 steps) before and after
the introduction of goal, for Complete (nonrandom) and Complete-Random variants of the environ-
ment. For the latter, Modelleyen’s statistical significance filtering have been enabled. Actions are
chosen randomly before the introduction of the goal. All results are averages across 5 independent
trials. Inside paranthesis are standard deviations.

Before goal specification After goal specification
Complete 98.1 (17.69) 7.28 (0.5)

Complete-Random 99.22 (32.61) 22.33 (28.2)

Table 3: Continual learning. Mean episode durations with environment change, for vanilla, random
environment, and readaptation variants. Columns represent the successive environment subtypes.
Subtypes indexed ”L” have model learning enabled, ”NL” have it disabled (except for ”readaptation”
variant, which continues learning throughout the end). All results are averages across 5 trials.

RS-L SGS-L NEG-L RS-NL SGS-NL
Vanilla 45.58 (25.55) 5.33 (0.28) 4.47 (0.22) 10.38 (1.68) 4.3 (0.11)

Random Env. 190.86 (148.0) 32.3 (9.93) 9.87 (3.45) 121.69 (82.33) 35.05 (5.42)
Readaptation 89.01 (58.72) 28.19 (21.45) 6.06 (0.74) 13.73 (3.45) 4.71 (0.15)

Random actions 275.86 67.53 52.48 275.86 67.53

random actions. These results demonstrate AAI’s effectiveness in accurately modeling the environ-
ment and performing goal-directed behavior. The agent consistently achieves similar performance
across the 4000 steps after the goal introduction, indicating it can learn the environment indepen-
dently of the goal and immediately realize the goal in a learned environment without further training.
This efficiency reduces training costs compared to existing methods, as approaches like RL require
a goal-dependent reward signal, necessitating some relearning when goals change, even in identical
environments. However, randomness does have a notable impact: while planning and modeling
remain effective, the presence of additional connections above the significance threshold leads to
more redundant action choices. This issue arises from relying only on first-order significance and
the challenge of establishing a universal causal effect limit, a limitation we will address in future
work—see Appendix A.4 for details.

Continual Learning: Table 3 displays the agent’s continual learning performance across changing
environments, with the goal defined from the start. Both vanilla and random variants maintain or
even improve their performance after exposure to different environments, often outperforming initial
learning periods, without readaptation. For instance, the vanilla version averages 5.33 steps on the
SGS variant during learning and 4.3 steps after intermittent exposure to other subtypes. Figure 7 also
illustrates this, showing that with model adaptation enabled, the agent performs consistently with its
previous endpoint performance in the same environment subtype, without any spikes indicating
destructive adaptation. Additionally, most steps are spent in the RS variant due to the precise timing
requirements of Planlayan (as discussed in Section 3).

Behavior encapsulation Figure 8 shows a sample action network and a demonstration of the result-
ing encapsulated AN. Here the start states are (DC,W), hence encapsulation is between these states
(and inactive states for all the rest) and the goal state. The full action network even for this sim-
ple environment is clearly very complex; however encapsulation can turn it into a comprehensible,
structured, minimal format. On Figure 8b, many paths that are seen to be alternatives have been
encapsulated (example shown from Group35-D to 1G-A), and only reliable (i.e. necessary) connec-
tions remain; which, upon inspection, can be seen to correspond to the transition (DC,W)→ (DO,W)
that is invariably needed for reaching the goal from (DC,W). As discussed before, the identified sub-
goals and pathways, as well as encapsulated components, can be used as building-block subpolicies
for future behavior, though we did not yet incorporate this integration with ongoing agent behavior.

7 CONCLUSION

Agential AI, comprising Modelleyen, Planlayan, and the behavior encapsulator, has the potential to
address the key challenges in classical machine learning. This paper primarily showcases its effec-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Average (5 trials) episode durations throughout learning with changing environment sub-
types, with model readaptation enabled. Vertical limits show the environment changes, note that the
actual step of change varies by a few steps across trials since end of the ongoing episode is waited.

(a) Full action network. (b) Encapsulated action network.

Figure 8: Example of action networks on test environment. Bold edges are encapsulated.

tiveness in continual learning, comprehensibility, reliable integration of learning and planning, and
behavior decomposition into arbitrary hierarchies. The success of this approach lies in recognizing
the shared foundation of these capabilities: learning a structured model of the environment while
preserving past information, using a method based on local variation and selection.

The only inherent limitation of AAI is its reliance on discrete observation and state spaces. Address-
ing continuous spaces will require additional methods like preprocessing or analog-digital conver-
sions (Pelgrom & Pelgrom (2013)). However, many relevant AI problems can be represented with
non-continuous observations or converted into such formats (e.g., feature-based vision or tasks in-
volving relative values). The primary exceptions are tasks that require precise, fine-tuned control; in
such cases, AAI could work alongside statistical learning methods like neural networks for low-level
behavior control. Therefore, explicit support for continuous spaces may not be necessary, as AAI is
primarily designed for cognitive tasks in structured environments rather than control tasks.

Future work As mentioned earlier, the current version of AAI serves as a foundation to demonstrate
core mechanisms. It has some venues of development that will addressed in future work. First,
the model assumes a Markovian environment, focusing only on immediate state transitions and not
accounting for long-term dependencies; however the basic modelling paradigm can be extended to
operate across time as well. Second, the statistical significance computations currently consider
only first-order relations and should be expanded to include upstream conditioning. Third, while
Modelleyen can handle structured spaces like large visual observations, adapting it to specific struc-
tures (similar to CNNs or transformers for NNs) would increase its scalability. To scale Planlayan to
more complex environments, selective extension of pathways during planning is needed. This can be
achieved using existing mechanisms in Modelleyen, such as immediately returning when finding a
viable path or prioritizing pathways based on statistical significance. Precise timing can be handled
by considering the full consequences of each pathway and excluding those that reverse precondition
states or activate conditions that hinder future actions. Another future direction is integrating be-
havior encapsulation into ongoing operations for reusable behavior patterns. Once these issues are
addressed with future iterations, we believe this approach has the potential to significantly advance
the development of more capable and controllable AI systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Sinan Çalışır and Meltem Kurt Pehlivanoğlu. Model-free reinforcement learning algorithms: A
survey. In 2019 27th signal processing and communications applications conference (SIU), pp.
1–4. IEEE, 2019.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Gerald M Edelman. Neural darwinism: selection and reentrant signaling in higher brain function.
Neuron, 10(2):115–125, 1993.

John Gerhart and Marc Kirschner. The theory of facilitated variation. Proceedings of the National
Academy of Sciences, 104(suppl 1):8582–8589, 2007.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and acting. Cambridge Uni-
versity Press, 2016.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–1040, 2020.

John Hammersley. Monte carlo methods. Springer Science & Business Media, 2013.

Maxwell J Jacobson, Case Q Wright, Nan Jiang, Gustavo Rodriguez-Rivera, and Yexiang Xue.
Task detection in continual learning via familiarity autoencoders. In 2022 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 1–8. IEEE, 2022.

Abdullah Ayub Khan, Asif Ali Laghari, and Shafique Ahmed Awan. Machine learning in computer
vision: a review. EAI Endorsed Transactions on Scalable Information Systems, 8(32):e4–e4,
2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Neville Kenneth Kitson, Anthony C Constantinou, Zhigao Guo, Yang Liu, and Kiattikun Chobtham.
A survey of bayesian network structure learning. Artificial Intelligence Review, 56(8):8721–8814,
2023.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1), 2022.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Kirschner Marc. The plausibility of life. Yale University Press, 2005.

Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. A framework for reinforcement
learning and planning. arXiv preprint arXiv:2006.15009, 127, 2020.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Marcel JM Pelgrom and Marcel JM Pelgrom. Analog-to-digital conversion. Springer, 2013.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Mary Jane West-Eberhard. Developmental plasticity and evolution. Oxford University Press, 2003.

Feiyu Xu, Hans Uszkoreit, Yangzhou Du, Wei Fan, Dongyan Zhao, and Jun Zhu. Explainable ai:
A brief survey on history, research areas, approaches and challenges. In Natural Language Pro-
cessing and Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang,
China, October 9–14, 2019, Proceedings, Part II 8, pp. 563–574. Springer, 2019.

Anthony M Zador. A critique of pure learning and what artificial neural networks can learn from
animal brains. Nature communications, 10(1):3770, 2019.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILS OF MODELLEYEN SYSTEM COMPONENTS

We define a state variable (SV) as a variable that can take three values: 1 for active, -1 for inactive,
and 0 which can be interpreted as unobserved, undefined, or irrelevant depending on context. Note
that the numerical values are given only as shorthand notation and do not participate in an algebraic
operation anywhere. The phrase nonactive refers to any SV that is not active. The SV construct
comes in three subtypes: Base SVs (BSVs), Dynamics SVs (DSVs), Conditioning SVs (CSVs).

BSV: BSVs are the externally-specified SVs whose states, which is assumed to be either 1 or -1,
are provided externally to the system at each time instant. These can be regarded as the direct
observations from the environment.

DSV: Each BSV comes with two associated DSVs, for activation (A-DSV) and deactivation (D-
DSV) respectively. Activation at timestep t is defined as the transition of a BSV state from -1 in step
t−1 to 1 in step t; and likewise deactivation at t is defined from 1 in t−1 to -1 in t. At step t, A-DSV
is deduced active (state 1) if activation is observed at step t, inactive (-1) if a BSV is inactive at t−1
and no activation is observed at t, and undefined (0) if the BSV is already active. Symmetrically,
at step t, D-DSV is deduced active (state 1) if deactivation is observed at step t, inactive (-1) if a
BSV is active at t − 1 and no deactivation is observed at t, and undefined (0) if the BSV is already
inactive. The BSVs are modelled only through changes in their states via their associated DSVs,
and are not predicted by themselves.

CSV: A CSV is a SV that conditions either DSVs or other CSVs (but not BSVs since they are not
subject to direct modelling of their states); that is, predicts their activation. More specifically; each
CSV comes with a set of positive and negative sources, where each source is either a BSV or DSV;
and a set of targets, which correspond to the SVs that this CSV conditions. At steady state, a CSV’s
source conditions are said to be satisfied when all its positive sources were active and all its negative
sources were nonactive in the previous step - in other words, the satisfaction corresponds to the
condition all(positive sources) and not(any(negative source)) in the previous step. A CSV
state is undefined (0) if its source conditions are not satisfied. If its source conditions are satisfied;
a CSV’s state is active (1) if the state of all its targets are either active or unobserved; and inactive
(-1) if the state of all its targets are either inactive or unobserved. In case inactive and active targets
are observed together, the CSV is duplicated to encompass the corresponding subsets of targets (as
detailed below), hence we always ensure that one of the two above conditions will be satisfied with
respect to the states of the targets. A CSV is to be interpreted as a state variable that represents
the observance of a particular relationship - it being active means that this particular relationship
(e.g. a change, as represented by a DSV, is observed conditioned on some sources) is observed,
and it being inactive means that this relationship is not observed. The CSV being undefined or
unobserved corresponds to the case in which the conditions for the observation of the relationship
are not satisfied in the first place.

Potential targets of conditioning (i.e. DSVs and CSVs), when they are not undefined, are expected to
be active if one of their conditioners are active; and inactive otherwise. Furthermore, these types of
SVs also possess an unconditionally flag, that allow for exceptions in this activity prediction, and are
used to model uncertainty regarding activation of SVs. This flag can take three values: It starts with
a value ”unconditional” at the creation of the CSV and, if the CSV is observed to always be active
whenever its sources were satisfied, it remains so. At the first observation of a case where the sources
of the CSV are satisfied without the CSV being active, this flag changes to ”conditional,” signalling
that sources alone do not suffice for the activation of the CSV and activity of one of its upstream
conditioners is expected. The ”conditional” value persists until the first observation of a case where
CSV is observed active without any upstream conditioner being active and no new conditioner could
be formed (see below and the main text); in which case the flag changes to ”possibly unconditional”
and remains as such.

Over the course of interaction with the environment, Modelleyen learns a model that predicts the
BSV states at the next step indirectly via the prediction of the DSV states. Within the predictions
uncertainty is also represented where needed, as apparent from the description of the SVs. Since
uncertainty is represented in a local basis (by unconditionality flags of individual SVs), and since
CSVs are points of connection relating potentially multiple sources to potentially multiple targets;

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 1 Pseudocode of the main Modelleyen adaptation loop; formed of state computations
followed by CSV generation for unexplained SVs.
Parameter: N Set of all target nodes
Function ProcessEnvironmentStep(observations)

1: BSV States← observations
2: ComputeDSV States() {Computes DSV states by BSV events}
3: for level ∈ reverse(ComputationLevels) do
4: for CSV ∈ SV sin(level) do
5: ComputeState(CSV )
6: end for
7: end for
8: UnexplainedSV s← [SV : SV.state = 1 and NoConditionerActive(SV )]
9: sources← [SV : SV in [BSV s,DSV s] and SV.state = 1 and isEligible(SV )]

10: NewCSV = CreateCSV (sources, [SV : SV in UnexplainedSV s and TargetEligible(SV )])

11: ModelRefinement() {Removes CSVs with no source or target}

the uncertainty representation can represent alternative correlated outcomes in a tree-like manner
where each downstream “branch” corresponding to the alternative outcomes in one direction or an-
other can include multiple outcomes that occur together - we note that representation of uncertainty
as such is not possible in a local manner with e.g. classical neural networks.

A.2 LEARNING THE MODEL

First, we provide an overview of the learning process in one step of interaction with the environment.
During a step, the model is traversed, and the states of all its SVs are computed. For CSVs sources
and targets are modified to be able to match the current states to the predictions/explanations of the
CSV, so that the model is consistent with the environment at each step. After that, new CSVs are
generated for the DSVs and CSVs that lack an explanation at the current step. The new CSV takes as
positive sources all currently active eligible SVs in an exhaustive manner. Finally, model is refined
by removal of unnecessary state variables.

The learning process is summarized formally on Algorithms 1 and 2. Below, we provide a detailed
breakdown of the processes described on those algorithms.

Initially, the model is generated with only BSVs and their associated DSVs, and without any CSV.
At every step, the current and previous states of all the SVs are recorded, as well as the current and
previous events (activation and deactivation) of every BSV.

At each step, the effective network created by DSVs and CSVs are traversed in the reverse order
of computation, similar to backpropagation algorithm; starting from DSVs, then the CSVs that
condition these BSVs, then the conditioners of these CSVs, and so on. Each traversed SV gets their
state computed, and additionally CSV compositions are changed where needed, as in Figure 2 and
detailed below.

A.2.1 PROCESSING OF A CSV

The process for CSVs are carried as follows: If no positive source of a CSV is observed at a given
step, its state is deduced as 0 (undefined/unobserved). If at least one source is observed, and if there
are both active and inactive targets among the CSV targets, then the CSV is duplicated with different
target sets to create one copy that includes active targets and one copy that includes inactive targets
(and any undefined targets are shared by both). This ensures that the CSV remains consistent, since
it’s activation represents the activation of all its targets provided they are not undefined. There is
no way to say whether an undefined target will be consistent with one duplicate or another after the
changes to the CSV described below without observing a non-undefined state in them, so they are
put into both copies and do not otherwise affect the state deduction of the CSV (except if all targets
are undefined, see below).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2 Pseudocode for CSV state computation.
Function ComputeState(CSV )

1: if AnySourceActive() then
2: SeparateActiveInactiveTargets() {Creates two CSVs from current one with active and

inactive targets in either of them}
3: if AnyTargetObserved() then
4: State = 1
5: PosSources← [source : source in PosSources and source.state = 1]
6: NegSources← [source : source in NegSources and source.state! = 1]
7: else if AnyTargetInactive() then
8: if not(AllSourcesActive()) then
9: State = 1

10: else
11: if AnyNegativeSourceActive() then
12: State = 0
13: NegSources← [source : source in NegSources and source.State = 1]
14: else
15: State = −1 {No negative source active to explain inactivity of targets}
16: end if
17: end if
18: end if
19: else
20: State = 0 {Unobserved if targets are not observed}
21: end if
22: if State = −1 then
23: if NegativeConnectionsFormed then
24: FormNegativeConnections()
25: else
26: unconditionality = ”isConditional” {-1 for }
27: end if
28: end if

Following this operation, if a CSV has any target active, then its state is deduced as active (1). If
there is no perfect match with the standing sources of CSV and their activations (i.e. there are
either inactive positive sources or active negative sources), these source lists are refined so that the
remaining sources correspond perfectly to the current state of the network - in other words, any
positive source that is inactive and any negative source that is active is removed. This refinement
eliminates parts of the previously-posited relationships “hypothesized” to be necessary by the CSV
in an exhaustive manner (see details on CSV formation, below) that are observed to be not necessary
for the observation of the effect that the CSV models (Figure 2c.

If, on the other hand, the CSV has any inactive target (which is exclusive with any target being
active due to the duplication-differentiation operation made above) and if not all its positive sources
are active, then the state is deduced as 0, being consistent with the interpretation of a CSV as being
defined only if all its positive sources are active. If however, all positive sources are active; then
we look if any negative source is active that can justify the inactivation of the targets of the CSV. If
there is at least one negative source that is active, we deduce the state as 0 since source conditions
are not satisfied; and refine the negative targets that are not currently active in the same manner we
described in the previous paragraph (due to the observation that they are seen to be not necessary for
the suppression of the CSV - Figure 2e).

If, instead, all the targets of CSV are undefined, then the CSV is undefined as well.

A CSV is always created with only positive sources at first and no negative sources, and a CSV
always starts as an unconditional CSV for whom we never expect to observe an inactive state (see
below part for details on the generation of CSVs). At the observation of an inactive state in the
CSV (i.e. one in which sources are active but targets are inactive), only once after the creation
of the CSV, we duplicate the CSV and separate the targets that are currently undefined (to protect
them from the change being made). In the duplicate that has the inactive targets, we connect the

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CSV with the negative sources by forming a negative sources list that encompasses all the currently-
active eligible BSVs and DSVs in the model, which will be subject to future refinement (criteria
of eligibility is detailed in the Appendix, essentially corresponding to SVs that do not yield useful
information). This, essentially, attempts to explain the CSV’s observed inactivation. If, however,
an inactive state is observed despite already having formed connection with negative sources, then
the unconditionally flag of the CSV is set to ”conditional”, representing that the CSV’s state is now
uncertain (setting aside its possible conditioners).

A.2.2 CSV GENERATION AND MODEL REFINEMENT

After the traversal of SVs for computation of their states and modifications in CSV compositions, all
DSVs and CSVs who are observed active but are neither unconditional nor have an active conditioner
that explains their activation are labelled as unexplained. We then form a CSV that, as positive
sources, has all the eligible, currently-active BSVs and DSVs; and as target, has all the eligible
SVs in unexplained list (Figure 2a). Any target which is left outside of this CSV, and hence remain
unexplained, have their unconditionally flags set to ”possibly conditional” (which basically signals
that the SV can go active without any explanation or predictor).

Finally, at the end of the step, we refine the general model by removing any CSVs that may be
duplicates of other CSVs (ending up representing the same thing from different histories), as well
as any CSV that has no sources or targets left as a result of refinement or duplication operations.

A.2.3 SOURCE ELIGIBILITY FOR CSVS

To reduce model complexity and avoid the need for repeated exposures to the environment, we
pre-filter sources during CSV formation or CSV negative-sources formation by their eligibility as
follows: We define trivial sources of a CSV as the sources of all the SVs that lie downstream starting
from this CSV (i.e. SVs conditioned by this CSV, and CSVs conditioned by them, and so on), plus
the associated BSV if a DSV is reached. Intuitively, these are the sources whose states can be
determined by the knowledge that the CSV is active (since a CSV being active means that it’s target
will be active as well, which will inform us about the states of its sources), and hence wouldn’t
be informative sources for the current CSV as any information conveyed by them will be trivial.
When forming a CSV, among all the currently-active BSV and DSVs, we filter those that provide
trivial information to all the unexplained SVs (i.e. prospective targets for the generated CSV) out as
positive sources, and take only those that do not provide trivial information as source to at least one
of them. Furthermore, after this filtering, if there is a prospective target for which all the remaining
prospective sources provide trivial information, then this target is not taken as a target of the CSV
and hence remains unexplained.

In a similar spirit, when forming negative sources, we filter out all the candidates that provide trivial
information for the CSVs. In addition, however, we filter out any upstream positive source (that is,
the cumulative list of all positive sources among all upstream CSVs of this CSV, i.e. its conditioners
and conditioners of its conditioners, including itself) because we already know (by the definition of
the conditioning process) that there was an instance in which this CSV was observed when the SVs
in this list of positive conditioners was also observed; and hence these negative sources would be
eliminated in exposure with the same instance again.

A.2.4 CONDITIONER FORMATION FOR UNCONDITIONAL CSVS

Here we note a modification that we do not employ currently, but is possible: Currently we allow no
CSVs to condition unconditional CSVs since they are not informative and hence prevent the model
from being minimal. However, we note that allowing for conditioners to be formed to unexplained
(no active conditioners) unconditional CSVs as well could result in these CSVs already having
some conditioners learned from the previous encounters with the environment in case they ever turn
conditional, reducing the required number of interactions for the learning of the full environment
model, at the cost of making the model more exhaustive in terms of what is being modelled. This
would require two changes: (1) At CSV formation, not excluding the unexplained CSVs that are
unconditional; and (2) when refining positive sources, we create a CSV which takes as its initial
positive sources that are being removed, and that conditions the CSV whose sources are being refined
currently. This way, instead of removing what was observed to be active at previous encounters at

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

which the CSV was active, we push them to an upper level of computation to represent an alternative
condition in which the CSV was observed to be active before.

A.3 PROOF OF THEOREM 1

Let Xi
P and Xi

N be positive and negative sources of C respectively that remains after refinements
that instance yi causes. Since we know that C does not undergo negative sources formation, and that
y0 comes before y1, we can say that X1

P ⊆ X0
P and X1

N ⊆ X0
N since only refinements are allowed

on XP and XN sets of C by our definition of operations.

We now analyse the two possible cases with respect to satisfaction of sources:

• If, in the original encounter with y0 the sources of C were satisfied, then we had Sx =
1∀x ∈ X0

P and Sx = 1∀x ∈ X0
P . Since X1

P ⊆ X0
P and X1

N ⊆ X0
N , we will also have

Sx = 1 ∀x ∈ X1
P and Sx = 1 ∀x ∈ X1

P at the new encounter with instance y0. Hence, if
sources of C were satisfied in the previous encounter with y0, they will remain satisfied in
the new encounter. The value of SC can be -1 or 1 if and only if sources of C are satisfied;
in which case it is exclusively determined by the state of its targets (-1 if targets are inactive
and 1 if targets are active). Since the states of targets are determined by y0 and hence is the
same across the past and new encounter with y0; if SC = 1(−1) in the past exposure with
y0, then it will be 1(−1) in the new exposure as well.

• If, in the original encounter with y0 the sources of C were not satisfied (and hence original
encounter yielded SC = 0), then we either had Sx ̸= 1 ∀x ∈ X0

P or Sx = 1 ∀x ∈ X0
N (note

that we defined Xi
P and Xi

N as source sets after the refinements; and hence we know that
in both cases it will be the whole of positive/negative source sets that have the property, and
not a subset of them; since the source SVs that were not a part of that subset will have been
refined). Since X1

P ⊆ X0
P and X1

N ⊆ X0
N , we will also have either Sx ̸= 1 ∀x ∈ X1

P (if
former) or Sx = 1 ∀x ∈ X1

N (if latter), both of them not satisfying the sources conditions
of C (hence the new encounter with y0 also yielding SC = 0.

Therefore, in all cases, response to y0 remains identical before and after exposure to y1.

A.4 LEARNING THE STATISTICAL SIGNIFICANCE OF ENCOUNTERED RELATIONS

The base mechanisms of Modelleyen as described in the main text rest on an attempt of prediction
of all encountered changes in state variables in the environment, forming an explanatory/predictive
relationship between any two observed events in that attempt of full modelling of the environment.
Unlike neural networks (or other statistical learning methods), the naive algorithm does not depend
on, but also does not naturally incorporate, a method of statistically averaging and filtering learned
relationships. Such a means of estimation of statistical significance of learned relationships can be
incorporated into the models learned by modelleyen in a straightforward manner into the learned
relationships locally, which in turn can be used to filter out non-significant relationships, hence
preventing overcomplexification of the model.

Let C be a CSV, and let T be a target SV of that CSV. We define the event sources satisfied, SS(C),
to be the event where all positive sources of C are active and all negative sources are nonactive. For
each target, we define an observation of the target O(T ) to be when the target is observed (i.e. either
active or inactive, state 1 or -1, as defined in the main text) and an incidence of the target I(T ) to be
when the target is active (state 1). We define the event concurrence to be the event where both the
sources of C are satisfied and there is an indicence of target, CC(C, T ) = SS(C) ∧ I(T ).

We quantify the statistical significance of a learned relationship between a set of sources of a CSV
and one of its targets as the amount of increase in the probability of the incidence of the target given
the satisfaction of the sources of the CSV. We define normalized causal effect (NCE) as the amount
of increase in probability of incidence of T that satisfaction of sources of CSV C causes, normalized
by the original probability of incidence:

NCE =
P (I(T )|SS(C))− P (I(T ))

P (I(T ))
(1)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The conditional probability in the nominator can be expanded as:

P (I(T )|SS(C)) =
P (I(T ), SS(C))

P (SS(C))
=

P (CC(C, T ))

P (SS(C))
(2)

by our definition of concurrence CC(C, T ) above. All of the probabilities can be computed by
locally tracking of the number of instances that the corresponding events are observed, when the
target is observed (i.e. O(T ) = 1). When the target is unobserved/undefined, by extension none of
the other events are observed.

A positive NCE means that SS(C) increases probability of I(T ) and a negative NCE means that
SS(C) decreases it. An NCE of e.g. 2.0 means that SS(C) increases probability of I(T ) to 3 times
the original probability. Within the context of our modelling mechanism, a negative NCE means
that the relationship between sources of C and T has been learned in the wrong direction - actual
negative relations learned in proper direction will still result in positive NCE, because the sources
of that relation will go within the negative sources of C instead of the positive ones, still in the end
resulting in the SS(C). The lower the magnitude of NCE, the less significant the relationship is.

Given NCE values for each relationship, one can set a positive threshold ϵT , where NCE values with
magnitude below it are regarded as statistically insignificant. ϵT represents the trade-off between
complete modelling and model complexity. After that separation of relationships into significant
and insignificant ones, one can proceed either with their removal, or simply with blocking further
conditioner formation for them to prevent overcomplexification in an attempt to predict a near-
random relationship (i.e. to prevent ”fitting the noise”). Since our main aim in employing this
mechanism is to prevent overcomplexification, and since removal of such insignificant relationships
from the model completely would result in their re-learning if the agent is exposed to them again;
we opt for the latter option and block further conditioner formation for them.

NCE values may have other utilities for the processes of the agent. An example might be that it can
be used in the prioritization of subgoals in Planlayan (see main text), where more reliable causal
relationhips are prioritized over less reliable ones. We do not investigate into such utilities at this
stage.

Effect on continual learning: Notice that there is no change (particularly no decay) in NCE if the tar-
get is not observed - hence, this measure of statistical significance does not decay (relationship ”for-
gotten”) in case of a changed environment in which the new one does not display the co-occurance
of the two events (target and CSV sources being satisfied), as long as its target is not observed in
isolation as well. If its target is observed in the new environment, two cases may occur:

1. P (I(T )) is stable. This would be expected in an already-mature model or in environments
where there is not much variability in the occurance of individual targets (even if the con-
ditions under which they occur differ). In this case, there is no change in NCE.

2. P (I(T )) changes. In this case, NCE will change according to P (I(T )). Note, however,
that additional exposure can only mean a more accurate estimate of the true P (I(T )) value
- any change in P (I(T )) hence does not have a detrimental effect, but instead makes the
causal effect estimate more reliable in the context of the complete model; provided that
the new environment itself does not have a probability of P (I(T )) in itself that is non-
representative of the general probability, in particularly one that is excessively higher than
the general one. This latter possibility (an immature estimate of P (I(T )) and an unnatu-
rally high P (I(T )) in the new environment) is the only case in which a previously-learned
correct relationship can be wrongly destroyed in case of a changing environment. But
even such cases would have no long-term ramifications as P (I(T )) for any given target T
would reach to a reliable estimate after a few cycles of exposures to environments where T
is observed.

The current method of computing and filtering based on statistical significance has one drawback,
however; and it is that only first-order significance of relations are considered. In other words: If
we have a CSV C0 with a target D0, and C0 (possibly unconditional) is conditioned by another
CSV C1, then whether C0-D0 relationship will be regarded as significant or not depends only on
the observations of sources of C0 and D0; and will not consider their dependency on C1. This

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

may result in unnecessary filtering in cases where a said statistical relationship is insignificant in the
absence of a particular upstream conditioner, but becomes significant with that - we also see effects
of this limitation to some degree in our results in the main text. Resolution of this limitation requires
consideration of and conditioning on higher-order conditioners when computing the NCE value, and
is left for future work.

A.5 DETAILS OF EXPERIMENTAL FRAMEWORK

Significance filtering Modelleyen’s mechanism of filtering based on statistical significance (i.e.
NCE) is enabled only for the random variant of the environment. When enabled, we used a cutoff
NCE of 0.25 for blocking upstream conditioner formations (i.e. no more upstream conditioners are
formed if the CSV does not cause a ¿25% in the probability of occurrence of its target).

Intuition regarding the design of environment in Figure 6 The environment was inspired from
Multiroom environment in Minigrid. The states represent closed door (DC), open door (DO), wall
(W), subgoal 1/2 (SG1/2), goal (G) and a random variable (X); ”RS” stands for ”rooms” and rep-
resents an agent going through multiple rooms opening doors in each, and ”SGS” represents one
in which agent reaches two subgoals and then reaches the goal afterwards, and ”NEG” represents
a case where goal appears conditioned on one positive and one negative conditon. In all, the goal
can be moving. Alternative outcomes are present in all environment subtypes, since each of them
allows for multiple outcomes following an empty (”-/-”) state. Alternative predecessors are tested
in ”SGS” environment where SG2 can be preceded by SG1 in either of the two cells; and likewise
in general the appearance of G can be preceded by any of the alternatives associated with different
environment subtypes. The capability to represent positive and negative relations together is tested
in subtype ”NEG”, in which G appears only if X is enabled in the first cell and not the second one.

Computation resources All experiments were run on a 2.4GHz 8-Core Intel Core i9 processor
with 32 GB 2667MHz DDR4 memory. No GPU was used. Giving an accurate estimate for compu-
tation time is impossible since experiments were run in parallel to unevenly-distributed independent
workloads.

A.6 A SAMPLE MODEL LEARNED ON SMR

A sample model learned on the SMR environment (Figure 6) is provided on Figure 9. Figure 10
provides, as an example, the pathway of BSV 1G (state G at cell 1), in which the specific pathways
connecting to this BSV can be seen more clearly in a human-comprehensible manner. Figure 11
shows the whole model, but only with reliable connections; clearly showing ”islands of certain state
transitions” which can be an example of a delimiting criterion that can be used for abstractions as
discussed in the main text.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 9: A sample environment model learned by Modelleyen. In the visualized model, brown
nodes are BSVs, blues are DSVs, and the rest are CSVs. The enlarged pathways (bold arrows and
large nodes) are reliable outcomes (i.e. unconditional CSVs) and the rest are uncertain (possibly con-
ditional) ones. Black arrows represent conditioning relationships and gray arrows represent source
relationships (all positive in this example). Disconnected SVs (those that can never be activated by
environment design) are cut for visual clarity.

Figure 10: Same model as Figure 9, but for the predictive pathway of BSV 1G only. Many pathways
for the activation of 1G can be seen in a human-comprehensible way in this model via the distinct
CSVs preceding it (C3, C6, C12 C16, C23) and that the only reliable one of them is C6, and whose
further sources can be seen by pursuing them upstream. In contrast, interpretation of a neural net-
work model is much less straightforward due to nonlinearities, continuous parameters, and extensive
connectivity that ties each neuron at the output to virtually all other neurons in the network.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: Same model as Figure 9, but with reliable pathways only, showing ”islands of certainty”
as potential candidates for abstraction.

Algorithm 3 Simplified overview of the planning algorithm, relying on recursive generation of
upstream action networks (the graph of behaviors required to realize the desired goals from the
currently active SVs).
Function Plan(currentActiveSVs, goalSVs)

1: ActionNetwork← EmptyNet
2: for SV, target ∈ goalSVs do
3: GenerateUpstreamAN(SV, target)
4: end for

Comment: Argument ”target” states what the desired state is in the SV, which can be activation (A),
deactivation (D), active (1) or nonactive (0). Irrelevant for CSVs.
Function GenerateUpstreamAN(SV, target)

1: if satisfiedByCurrentActives(SV, target): return True
2: pathways← EmptyList
3: if type(SV) in [BSV, GSV] then
4: pathways.add(Precondition(sv, target))
5: Comment: These are the preconditions for target to occur in a SV. For (A, D, 1, 0) they are (0,

1, A, D) respectively; since a SV must be activated for itself to be active, needs to be inactive
for itself to get activated, and so on.

6: pathways.add(Constituents(sv), target)
7: pathways.add(Constituencies(sv), target)
8: if target in [’A’, ’D’]: pathways.add(Conditioners(sv, target))
9: else if type(SV) is CSV then

10: pathways.add(Sources(sv))
11: pathways.add(Conditioners(sv))
12: end if
13: if pathways is Empty: return False
14: for upstreamSV, upstreamTarget in pathways do
15: ActionNetwork.AddEdge((upstreamSV, upstreamTarget), (SV, target))
16: GenerateUpstreamAN(upstreamSV, upstreamTarget)
17: end for

21


	Introduction
	Modelleyen
	Planlayan
	Behavior Encapsulation
	Experimental setup
	Results and Discussion
	Conclusion
	Appendix
	Details of Modelleyen system components
	Learning the model
	Processing of a CSV
	CSV generation and model refinement
	Source eligibility for CSVs
	Conditioner formation for unconditional CSVs

	Proof of Theorem 1
	Learning the statistical significance of encountered relations
	Details of experimental framework
	A sample model learned on SMR


