
Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

PRIVACY-PRESERVING FINE-TUNING OF LARGE LAN-
GUAGE MODELS THROUGH FLATNESS

Tiejin Chen
Arizona State University
tiejin@asu.edu

Longchao Da
Arizona State University
longchao@asu.edu

Huixue Zhou
University of Minnesota
zhou1742@umn.edu

Pingzhi Li
The University of North Carolina at Chapel Hill
pingzhi@cs.unc.edu

Kaixiong Zhou
North Carolina State University
kzhou22@ncsu.edu

Tianlong Chen
University of North Carolina at Chapel Hill
tianlong@cs.unc.edu

Hua Wei
Arizona State University
hua.wei@asu.edu

ABSTRACT

The privacy concerns associated with the use of Large Language Models (LLMs)
have grown dramatically with the development of pioneer LLMs such as ChatGPT.
Differential Privacy (DP) techniques that utilize DP-SGD are explored in exist-
ing work to mitigate their privacy risks at the cost of generalization degradation.
Our paper reveals that the flatness of DP-SGD trained models’ loss landscape
plays an essential role in the trade-off between their privacy and generalization. We
further propose a holistic framework Privacy-Flat to enforce appropriate weight flat-
ness, which substantially improves model generalization with competitive privacy
preservation. It innovates from three coarse-to-grained levels: Perturbation-aware
min-max optimization within a layer, flatness-guided sparse prefix-tuning across
layers, and weight knowledge distillation between DP & non-DP weights copies.
We empirically demonstrate that our framework Privacy-Flat outperforms vanilla
DP training baseline while preserving strong privacy by the evaluation of mem-
bership inference attacks. Comprehensive experiments of both black-box and
white-box scenarios are conducted to demonstrate the effectiveness of our proposal
in enhancing generalization.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT-4 (OpenAI, 2023) and Llama 2 (Touvron et al., 2023)
have become popular in various real-world applications, including story generation (Zhou et al., 2023;
Yang et al., 2022a), AI agents (Mialon et al., 2023; Da et al., 2023b), chatbots (Luo et al., 2022) and
sim-to-real learning (Da et al., 2023a). Despite their widespread use, these models raise significant
privacy concerns. Previous studies have shown that LLMs can memorize and potentially leak sensitive
information from their training data (Carlini et al., 2021; Mireshghallah et al., 2022), which often
includes personal details like emails (Huang et al., 2022), phone numbers and addresses (Carlini et al.,
2021). There are also LLMs trained especially for clinical and medical usage with highly sensitive
data (Yang et al., 2022b). The leakage of such information from LLMs may cause privacy issues.

Differential Privacy (DP) has emerged as a key method for protecting data privacy in LLMs, yet
sacrificing the generalization ability. Specifically, techniques such as Differentially Private Stochastic
Gradient Descent (DP-SGD) (Abadi et al., 2016) have been employed to improve the trade-off
between privacy and performance. However, there remains a noticeable performance gap between
DP-trained models and standard models in both full fine-tuning and parameter-efficient training
settings (Li et al., 2021; Du et al., 2023). Moreover, most current works focus on improving privacy
for white-box LLMs, which have limited applicability to closed-source LLMs in real-world scenarios.
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Figure 1: Left: Weight loss landscape for DP-trained LLMs and normal (non-private) training on
SST-2. The DP-trained model has a sharper loss landscape. Right: The privacy-performance trade-off
for DP-trained LLMs: Compared with normal trained models, the DP-trained model has lower privacy
risks (better privacy) under Membership Inference Attack (MIA), while it shows lower classification
accuracy (worse performance).
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Figure 2: Our methods improve the flatness of the weight loss landscape from three aspects: (1)
Within-layer flattening, where a perturbation-aware min-max optimization is utilized to encourage
the loss flatness within the weight space of each LLM layer. (2) Cross-layer flattening, where a
sparse prefix-tuning algorithm guides layer selection with a flatness-ware indicator. (3) Cross-model
flattening, where non-private prefixes are used to guide DP-SGD training through weight knowledge
distillation regularization.

Therefore, there is an urgent call for pioneering efforts to design effective algorithms in black-box
privacy-preserving optimization.

To understand this performance gap, we examine the loss landscape of DP-trained models compared
to the ones from non-private training. As shown in Figure 1, it illustrates the analysis with the
following formula:

f(η) = L(D | w + η · d),
where D and w represent the dataset and model weights, respectively, and d is a random noise
sampled from a standard Gaussian distribution and η is the magnitude. It reveals that DP-trained
models tend to have a sharper (i.e., less flatness) loss landscape with respect to model weights. Then,
a natural question comes:

Q: Does the Loss Flatness Affect the Privacy and Performance Trade-off in DP-trained LLMs?

If so, could we take one step further — improving performance with competitive privacy by appropri-
ately enhancing the loss landscape’s flatness? We present a holistic framework, consisting of three
novel strategies to promote weight-level flatness from three coarse-to-grained perspectives:

▷ Within-layer flattening. We introduce a perturbation-aware min-max optimization to encourage the
loss landscape flatness within the weight space of each LLM layer.

▷ Cross-layer flattening. We propose a sparse prefix-tuning algorithm to facilitate the landscape
flatness across LLM layers (Li & Liang, 2021), where a flatness-ware indicator will guide the sparse
layer selection.

▷ Cross-model flattening. We design a novel approach using non-private prefixes to guide DP-SGD
training through knowledge distillation regularization with non-private weights, aiming to improve
the flatness in the whole weight space of LLMs.

Our main contributions can be summarized as follows:

• We conduct pioneering efforts to investigate the critical role of weight flatness in DP-trained
LLMs. We show that appropriately enforced weight flatness improves the performance of LLMs with
DP-SGD.
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•We propose a holistic framework named Privacy-Flat to promote weight flatness in three coarse-
to-grained levels, including perturbation-ware mix-max optimization on weights within a layer,
flatness-guided sparse prefix-tuning on weights across layers, and weight knowledge distillation
between Privacy-Flat & non-private weight copies. Our experimental results show that under DP-
SGD, our framework can have good privacy empirically.

•We make pioneering efforts to propose effective privacy-preserving algorithms for closed-source
large language models with tailored black-box optimization.

• Comprehensive experiments in both black-box and white-box settings are conducted to show that
our proposed methods can bridge the notorious gap between non-private LLMs and LLMs with
good privacy. For example, on the text classification dataset QNLI, Privacy-Flat even outperforms
non-private full fine-tuning.

2 METHODS

In this paper, we mainly focus on the DP-SGD (Abadi et al., 2016) and its variants for providing
privacy even without a strict DP guarantee. ϵ and δ are the privacy budgets for DP-SGD where small
values of ϵ and δ indicate strong privacy protection. DP-SGD algorithm could be realized via three
interleaved steps: clipping per-sample gradient, sampling a random noise z ∼ N(0, σ2I), and adding
z to the accumulated clipped gradient. The variance parameter σ2 is determined by several factors
including total training steps, ϵ, and δ.

2.1 ENHANCING FLATNESS IN WHITE-BOX SETTING

To mitigate the negative impact of private training, we propose a flatness-aware framework, termed as
Privacy-Flat, to enhance the accuracy-privacy trade-off. Specifically, considering a multi-layer white-
box model, we smooth the sharp local minima of LLMs comprehensively from three perspectives,
including within-layer, cross-layer, and cross-model weight flattening.

Within-layer Weight Flattening. We mainly adjust adversarial weight perturbation (AWP) (Wu
et al., 2020) to flatten the weight loss landscape. In detail, Let w represent the trainable parameters
in LLMs, and let D represent the training dataset. Typically in prefix tuning of LLMs, w is given
by the appending learnable tokens at each layer (Li & Liang, 2021). AWP updates the model
weights with two gradient backpropagation steps: First, v = argmaxv L(D;w + v); Second,
w← (w + v)− η∇w+vL(D;w + v)− v. We tailor AWP to DP-SGD with two critical changes.
First, we only consider applying the adversarial perturbation gradients in the first T rounds of training,
following which the normal model updating is turned on. With this procedure, we can save the
external time cost of adversarial computation while guiding the model towards a smooth loss region.
Second, during the initial T rounds, the required noises in DP-SGD are only added to the final
gradient∇w+vL(D;w + v), instead of the process of computing v.

Cross-layers Weight Flattening. Given a n-layer LLMs, prefix weights wi are appended at the i-th
layer and we have w = [w1, ...,wn]. However, as the prefix added to a layer influences its following
output, the flatness of the weight loss landscape is determined by where the prefix modules are added.
Thus we explore how to quickly quantify the model sharpness and how to adopt it for controlling the
positions of prefix layers.

Definition 1 (Prefix Sharpness). Given prefix parameters w′ within a box in parameter space Cη
with sides of length η > 0, centered around a minima of interest at parameters w, the sharpness of

loss∇L(w) at w is defined as: Sharpness :=
maxw′∈Cη (L(w′)−L(w))

1+L(w) .

In practice, we approximate the above prefix sharpness by sampling prefix weights w′: w′ ∈
{w − η∇L(w|D)|η ∈ [0, 1]}. Based on the sharpness definition, we design a greedy solution to
gradually eliminate the prefix layers and keep those resulting in lowest sharpness. First, with the
prefix initialization at all the layers of LLMs, we can compute the its sharpness value. Next we remove
one prefix layer each time and calculate the corresponding sharpness of remaining model parameters.
The prefix layer where its removing is associated with the lowest sharpness will be permanently
deleted. We will continue this loop until the remaining prefixes meet our sparse requirement or the
sharpness metric does not decrease.
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Figure 3: (a): Comparison of MIA accuracy under both white-box and black-box settings on SST-2;
(b): Performance of Privacy-Flat compared with baseline methods in black-box settings; (c): Ablation
study on SST-2 where we gradually remove our methods.

Cross-models Weight Flattening. Recall that DP-SGD inevitably results in a sharper loss landscape
than that of normal training. One of the intuitive ways to generalize private model is to regularize it
with the normal counterpart via knowledge distillation (Gou et al., 2021). For this purpose, given
parameters w fine-tuned with DP framework, we create their duplicates wnor using the same network
architecture and initialization but fine-tuning them normally. We then define a new term of loss
function to force the weight closeness between w and wnor: Lg = ∥w− wnor∥2 Therefore, the final
loss function will be: Lf = L(D|w) + λLg, where L can be any loss function in general, such as
cross-entropy loss for sentence classification tasks, and λ is the balancing factor for regularization. It
is minimized using the DP-SGD framework to achieve both data privacy protection and the desired
accuracy. Finally, we summarize our training pipeline for the white-box setting in the Appendix
Appendix A.3. and show how each part of Privacy-Flat helps to reduce the sharpness in Appendix A.4.

2.2 ENHANCING FLATNESS IN BLACK-BOX SETTING

While LLMs of interest are oftentimes black boxes, i.e., their weights are not accessible for training.
in this section, we extend our Privacy-Flat framework to the black-box settings. And we will utilize
zeroth-order (ZO) optimizer (Malladi et al., 2023) to estimate the gradient and DPZero (Zhang
et al., 2023) to provide the DP guarantee. Implementing zeroth-order optimization is not enough
for considering application in the real-world scenario since the weights of black-box models are not
accessible. In this case, only manipulating input embedding is more practical. Therefore, in the
black-box setting, we adopt Prompt Tuning (Lester et al., 2021), which only adds learnable tokens
before input embedding.

In the black-box setting, we only consider improving through non-private duplication. Compared with
the white-box setting, wnor is also trained with the black-box setting. We don’t consider enhancing
the within-layer weight flatness since the min-max training framework with zeroth order optimization
suffers from the high variance of an additional gradient estimation to compute v (Zhang et al., 2022).

2.3 DISCUSSION

Since Privacy-Flat does not consider the DP framework every time like generating model perturbation
gradient v, Privacy-Flat cannot provide a strict DP guarantee. Though our method cannot provide a
strict DP guarantee, we prove that under the framework of DP-SGD, our method can still have good
privacy in the experimental parts and thus improve the trade-off between accuracy and privacy. We
leave the theoretical proof of why Privacy-Flat can still maintain good privacy in future work.

3 EXPERIMENTS

Experimental Settings In this paper, we consider use text classification datasets from GLUE (Wang
et al., 2018): SST-2 (Socher et al., 2013), MNLI (Williams et al., 2017), QNLI (Wang et al., 2018),
QQP and TREC (Voorhees et al., 1999). For text generation tasks, we mainly consider table2text
generation with E2E (Novikova et al., 2017) and DART dataset (Nan et al., 2020). And we mainly
consider Roberta-base (Liu et al., 2019) and consider the privacy budget ϵ = [3, 8] and δ = 1

2|D| .

3.1 EMPIRICAL EVALUATION OF PRIVACY RISKS

In this section, we conduct experiments to show that Privacy-Flat shows a similar capability in
privacy-preserving as vanilla DP training. To measure the privacy-preserving ability, we apply a loss-
based membership inference attack to different models with SST-2 and Roberta-base. More detailed
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descriptions of the MIA setting can be found in the Appendix A.2. From the results in Figure 3 (a),
we can see that Privacy-Flat show similar MIA accuracies with DP-trained prefixes and lower the
privacy risks a lot compared with non-private training.

Method Roberta-base BERT

MNLI QNLI SST-2 QQP TREC MNLI QNLI SST-2 QQP TREC

Non-private (ϵ =∞)

Full Fine-tuning 85.95 91.06 94.68 88.05 93.00 83.09 88.94 91.85 90.17 92.60
Prefix Tuning 86.12 91.59 94.15 87.79 91.40 79.95 86.34 91.62 89.25 96.00

ϵ = 3

Full Fine-tuning 80.95 86.03 92.08 83.61 79.00 72.57 81.70 87.50 81.46 73.60
Prefix Tuning 79.03 83.70 91.28 80.13 78.40 60.07 65.15 81.19 71.99 48.40
Privacy-Flat 84.12 90.72 93.57 86.05 82.20 65.32 71.02 88.53 74.68 47.80

ϵ = 8

Full Fine-tuning 81.42 86.03 92.18 83.61 85.40 73.64 82.37 88.30 81.92 80.60
Prefix Tuning 79.56 84.64 91.51 81.02 86.80 62.72 67.62 82.34 72.46 61.80
Privacy-Flat 85.30 91.29 94.03 87.13 90.60 67.42 72.08 89.56 74.29 70.20

Table 1: Performance of our weight flattening methods with baselines for the sentence classification
task w.r.t accuracy on white-box settings across different language models. The higher, the better.
The best performance under the same DP training is highlighted. The results show that Privacy-Flat
can increase the performance of DP-trained LLMs for various text classification tasks.

3.2 EVALUATION IN RESULTS

We conduct experiments under both black-box and white-box settings to show the performance of
Privacy-Flat in classification and generation tasks.

White-box Setting We first explore whether Privacy-Flat can bridge the gap between private
models and non-private models (ϵ =∞) in a white-box setting. In Table 1, we provide the results.
Privacy-Flat can increase the performance of models trained with private prefix tuning a lot across
different datasets and model architectures and beat all DP full-tuning models for Roberta-base.
Privacy-Flat can even beat the non-private setting for QNLI when ϵ = 8. Privacy-Flat also shows an
improvement for table2text generation and the detailed results are shown in Appendix A.5.

Black-box Setting In this section, we test Privacy-Flat in the black-box setting where we can
only manipulate input embedding. Therefore, instead of prefix tuning, only prompt tuning could
be implemented. The results are shown in Figure 3 (b) across different datasets with Roberta-base,
which shows that compared with white-box setting, black-box setting is much harder than white-box
setting. However, Privacy-Flat can still improve the performances of private models due to the flat
loss landscape in most tasks.

Ablation Study on Different Flatness Aspects We conduct ablation studies to show the perfor-
mance while gradually removing our methods on SST-2 as shown in Figure 3 (c). Each component
will enhance the performance while maintaining the privacy guarantee, indicating the effectiveness of
the proposed flattening methods.

4 CONCLUSION

In this paper, we address the challenge of balancing privacy with performance in Large Language
Models. We introduce a novel framework aimed at enhancing the flatness of the loss landscape in
DP-SGD-trained models, proposing strategies at three levels: within-layer flattening, cross-layer
flattening, and cross-model flattening. Our approach provides a better balance between privacy and
performance, as well as offering pioneering solutions for privacy-preserving algorithms in closed-
source settings. Our comprehensive experiments demonstrate significant performance improvements
across different tasks in both black-box and white-box settings while maintaining good privacy.

Acknowledgement The work was partially supported by NSF award #2153311. The views and con-
clusions contained in this paper are those of the authors and should not be interpreted as representing
any funding agencies.
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A EXPERIMENT SETUPS

A.1 HYPERPARAMETERS

Different tasks and methods require different parameters. For example, full fine-tuning requires a
much smaller learning rate while prefix tuning needs a much larger learning rate. Besides, tasks
like table-to-text generation require a small learning with a large training epoch. The only fixed
hyperparameter is the batch size. We set the batch size to 1024 for all settings with gradient
accumulation. Detailed hyperparameters for MNLI and E2E can be found in Table 2. For Privacy-Flat,
we set the regularization weight λ to 0.01 for all experiments. For the DP-SGD, we follow the common
practice to set the privacy budget as ϵ = [3, 8] and δ = 1e− 5 for all settings,

Methods Learning Rate Training Epoch
Non private-MNLI

Full Fine-tuning 5e-5 5
Prefix Tuning 0.01 20
Privacy-Flat 0.01 20

DP setting-MNLI
Full Fine-tuning 5e-4 5
Prefix Tuning 0.01 20
Privacy-Flat 0.01 20

Non private-E2E
Full Fine-tuning 2e-3 15
Prefix Tuning 5e-4 30
Privacy-Flat 5e-4 30

DP setting-E2E
Full Fine-tuning 2e-3 15
Prefix Tuning 5e-4 100
Privacy-Flat 5e-4 100

Table 2: Detailed hyperparameters for DP training and normal training on MNLI and E2E.

A.2 SETTINGS FOR MEMBERSHIP INFERENCE ATTACK

We evaluate the privacy risks empirically by membership inference attack (MIA) using Likelihood
Ratio test (LiRA) (Mireshghallah et al., 2022). For SST-2, because of the distributional bias between
the training and test sets, we filter the training set to include samples with more than 20 tokens, in
which case only 15 test samples are eliminated. The data filtering can avoid undesired high MIA
accuracy due to the lack of short samples in test sets. Then we compute the loss for all samples in
D̂ and rank every sample by its loss. We label all the samples with 1% lowest loss as training data
and compute the success rate of MIA only on samples with 1% lowest loss. Note that a model that
preserves more privacy indicates that the success rate of MIA is closer to 50% because if attackers
get an MIA success rate below 50%, they could use reverse results to implement attacks. The results
are reported in Figure 3 under text classification datasets with both white-box and black-box settings.

A.3 ALGORITHM

We provide the detailed algorithm in Algorithm 1.

A.4 HOW EACH PART OF PRIVACY-FLAT INFLUENCE THE FLATNESS

To test whether our proposed methods can help to flatten the loss landscape, we compute the sharpness
for DP prefix tuning and DP prefix tuning with the proposed methods. The results shown in Figure 5
shown that even with only one (and each one) method added to the DP prefix tuning, it can help to
reduce the sharpness of weight loss landscape.
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Algorithm 1 Privacy-Flat White-box DP training pipeline
1: Input: λ, η,warm-up epochs E, DP training total epochs Tdp, normal training epochs Tnor , elimination

rounds R, random initialization prefix w = [w1, ...,wn].
2: if Cross-layers Weight Flattening then
3: for r = 1 to R do
4: Smin =∞
5: P = 0
6: for i = 1 to n do
7: Get w−i

8: Compute sharpness S for w−i

9: if S < Smin then
10: Smin = S, P = i
11: end if
12: end for
13: w← w−P

14: end for
15: end if
16: wnor = w
17: for t = 1 to Tnor do
18: wnor ← wnor − η∇wnorL(D|wnor)
19: end for
20: for t = 1 to T do
21: if t <= E and Within-layer Weight Flattening then
22: Compute v
23: Lf = L(D|w + v)
24: else
25: Lf = L(D|w)
26: end if
27: if Cross-model Weight Flattening then
28: Lf = Lf + λ∥w− wnor∥2
29: else
30: Lf = Lf

31: end if
32: Update w with Lf and DP-Adam
33: end for

Figure 4: Sharpness for DP trained prefix tuning plus our proposed three weight flattening methods
on SST-2. Our proposed model has a flatter loss landscape.

A.5 DETAILED EXPERIMENTAL RESULTS

We provide the detailed results for generation task in Table 3. we get the following observations:

(1) Privacy-Flat outperforms DP-trained models across all datasets in private training settings. With
the same privacy budget ϵ, Privacy-Flat consistently performs the best.

(2) The performance of DP training models increases higher privacy budget ϵ, while Privacy-Flat
achieve competitive performance with DP prefix tuning methods with higher ϵ. This indicates that
Privacy-Flat can provide a strong utility for conservative privacy budgets.
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Figure 5: Sharpness for DP trained prefix tuning plus our proposed three weight flattening methods
on SST-2. Our proposed model has a flatter loss landscape.

(3) For tasks with different difficulties, Privacy-Flat shows competitive or better performances. In
simple tasks (E2E dataset), the gap between DP-trained models and non-private models (ϵ = ∞)
is small. When ϵ = 8, Privacy-Flat can even compete with prefix tuning with non-private training.
For difficult tasks (DART dataset), the performance gap between the non-private model and the
DP-trained model becomes much larger. The performance of DP prefix tuning can compete or become
even better than DP full fine-tuning, indicating the advantages of full fine-tuning rely on the easy
dataset.

We also show our detailed results for black-box setting across different datasets in Table 4 to show
that Privacy-Flat has a great performance.

Method E2E DART

BLEU ROUGE-L BLEU ROUGE-L

Non-private (ϵ =∞)

Full Fine-tuning 66.59 69.54 43.16 57.85
Prefix Tuning 64.79 68.24 37.08 53.35

ϵ = 3

Full Fine-tuning 60.3 65.31 30.75 51.69
Prefix Tuning 58.2 64.51 30.26 51.43
Privacy-Flat 62.13 65.84 33.14 52.40

ϵ = 8

Full Fine-tuning 62.9 66.69 32.92 53.43
Prefix Tuning 62.7 67.19 33.45 53.45
Privacy-Flat 64.30 67.22 37.06 53.49

Table 3: Comparison of our weight smooth methods with baselines for the table-to-text task on GPT2
and white-box settings. The higher, the better. The best performance under the same DP training is
highlighted. Privacy-Flat performs consistently better than other DP-trained methods on various text
generation tasks.

A.6 SENSITIVITY ON DIFFERENT λ

The regularization factor λ balances the flattening with knowledge distillation and DP training. As is
shown in Figure 6, when we use knowledge distillation, Privacy-Flat performs better Privacy-Flat
without knowledge distillation. Note that when λ = 0, our method will not consider cross-model
flattening. In this paper, we set λ as 1e−2 as it performs the best empirically.
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Method Roberta-base

MNLI QQP SST-2 TREC

Non-private (ϵ =∞)

Prompt Tuning with MEZO 64.51 60.93 88.46 70.61

ϵ = 3

Prompt Tuning with DPZero 53.99 53.41 85.2 52.14
Privacy-Flat 55.07 53.22 86.12 55.46

ϵ = 8

Prompt Tuning with DPZero 55.41 53.51 86.35 53.02
Privacy-Flat 57.13 53.42 87.38 56.44

Table 4: Comparison of our flattening methods with baselines for the sentence classification task
on black-box setting. The higher, the better. The best performance under the same DP training is
highlighted. Under the black-box setting, only prompt tuning could be implemented. Privacy-Flat
achieves competitive performance under different text classification tasks.
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Figure 6: Influences of different values of factor λ on the classification performance w.r.t. accuracy
under SST-2 dataset on Roberta-base. The higher, the better.
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