Agentic Neural Networks: A Neuro-Symbolic Approach to Multi-Agent
Systems with Textual Backpropagation

Anonymous ACL submission

Abstract

Leveraging multiple Large Language Models
(LLMs) has proven effective for addressing
complex, high-dimensional tasks, but current
approaches often rely on static, manually en-
gineered multi-agent configurations. To over-
come these constraints, we present the Agen-
tic Neural Network (ANN), a framework that
conceptualizes multi-agent collaboration as a
layered neural network architecture. In this de-
sign, each agent operates as a node, and each
layer forms a cooperative “team” focused on
a specific subtask. Agentic Neural Network
follows a two-phase optimization strategy: (1)
Forward Phase—Drawing inspiration from neu-
ral network forward passes, tasks are dynami-
cally decomposed into subtasks, and cooper-
ative agent teams with suitable aggregation
methods are constructed layer by layer. (2)
Backward Phase—Mirroring backpropagation,
we refine both global and local collaboration
through iterative feedback, allowing agents to
adaptively improve their roles, prompts, and
coordination. This neuro-symbolic approach
enables ANN to create new or specialized agent
teams post-training, delivering notable gains in
accuracy and adaptability. Across four bench-
mark datasets, ANN surpasses leading multi-
agent baselines under the same configurations,
showing consistent performance improvements.
Our findings indicate that ANN provides a scal-
able, data-driven framework for multi-agent
systems, combining the collaborative capabili-
ties of LLMs with the efficiency and flexibility
of neural network principles. We plan to open-
source the entire framework.

1 Introduction

Large Language Models (LLMs) have ushered in a
new era of artificial intelligence, exhibiting strong
capabilities in reasoning, content generation, and
multi-step problem-solving (Kojima et al., 2023;
Ouyang et al., 2022). By grouping these models
into multi-agent systems (MAS), researchers have

addressed an array of complex tasks, ranging from
code generation and debugging (Jimenez et al.,
2024) to retrieval-augmented generation (Khattab
et al., 2023a; Lewis et al., 2020; Gao et al., 2023)
and data analysis (Hong et al., 2024; Hu et al.,
2024). Often, MAS outperform their single-agent
equivalents by bringing together diverse agent roles
and expertise, including verifier agents (Shinn et al.,
2023) or debating agents (Qian et al., 2024; Zhuge
et al., 2024), thus creating more adaptable and ro-
bust solutions. However, designing and deploying
effective MAS remains demanding. Developers
frequently invest substantial effort into prompt en-
gineering, role assignment, and topology definition
by trial and error (Chen et al., 2023; Hong et al.,
2023), especially for dynamic, high-dimensional
tasks.

Recent advances in automating aspects of MAS
design aim to relieve these challenges. For in-
stance, Khattab et al. (2024) introduced system-
atic methods for generating in-context exemplars;
M. Hu and Zhou (2024) presented a meta-agent
capable of creating new topologies in code; and
Zhang et al. (2024) employed Monte Carlo Tree
Search to find improved workflow configurations.
These innovations mirror earlier developments in
neural network research, where layer-wise opti-
mization gave way to holistic, end-to-end back-
propagation (Jacobs et al., 1991; Hinton et al.,
2006). Similarly, symbolic or agent-level frame-
works that model entire multi-agent pipelines as
computational graphs have emerged (Khattab et al.,
2023a; Zhuge et al.; Zhou et al., 2024). By in-
tegrating agents, prompts, and tools into a single
optimization process, these frameworks pave the
way for data-centric approaches in which perfor-
mance and learning signals, rather than manual
design, guide architectural decisions (Hinton and
Salakhutdinov, 2006; Yao et al., 2022).

Building on these insights, we introduce the
Agentic Neural Network (ANN), a framework that

I. Classic Neural Network

Input < Output — = Loss

II. Agentic Neural Network

| Language
< 3 Output = guag
Input | . b) P Loss

® ® ® ® ®

Figure 1: A conceptual comparison between classic neural networks (left) and our ANN (right). In the classic
paradigm, learnable weights and numeric optimizers enable end-to-end training via gradient-based updates. In
ANN, each layer corresponds to a team of language agents whose roles, prompts, and tools can be jointly optimized

through textual gradients.

adapts principles from classic neural networks to
orchestrate multiple LLM agents. As shown in Fig-
ure 1, conventional neural networks rely on learn-
able weights and numeric optimizers for end-to-end
training via gradient-based updates, whereas ANN
considers each layer as a team of language agents,
jointly optimizing roles, prompts, and tools through
textual gradients (Yuksekgonul et al., 2024). In-
stead of a purely engineering-driven approach,
ANN divides a complex task into smaller sub-
problems, assigning each to a layer of specialized
agents, and iteratively refines both local design (i.e.,
agent prompts and configurations) and global co-
ordination (i.e., inter-layer flows and topologies).
Our approach proceeds in two stages. First, dur-
ing the forward agent team generation phase, the
main task is decomposed into subtasks, with spe-
cialized agent teams dynamically assigned layer
by layer, ensuring each layer is responsible for a
distinct subtask. Then, if performance is subopti-
mal, the backward agent team optimization phase
backpropagates textual feedback to isolate errors
and propose targeted adjustments. These textual
critiques act like gradient signals, guiding prompt
updates and connection refinements (Yao et al.,
2022; Verma, 2024; Khattab et al., 2023a).

To illustrate this framework’s capabilities, we
evaluate ANN on four challenging tasks. First,
MATH probes advanced mathematical reasoning,
requiring agents to manage multi-step proofs and
symbolic manipulations. Second, DABench cen-
ters on data science tasks such as filtering, transfor-
mation, and analysis. Third, Creative Writing de-
mands coherent narrative construction and consis-
tent text generation. Lastly, HumanEval evaluates

the system’s coding abilities, with strict demands
on correctness and efficiency. Our experiments
show that ANN not only simplifies MAS design
by automating prompt tuning, role assignment, and
agents collaboration but also outperforms existing
baselines in accuracy.

By uniting symbolic agent coordination with
connectionist optimization, ANN provides a cohe-
sive, data-driven solution that lowers reliance on
manual and heuristic engineering. Our results indi-
cate that a fully unified perspective—one in which
LLM-based agents, prompts, and workflows are
co-optimized—could pave the way for more robust
and flexible multi-agent systems.

2 Related Works

In this section, we review the evolution of Al agents
into LLM-based systems, discuss the emerging
concept of agentic workflows, survey automated
methods for optimizing agent configurations, and
outline the remaining challenges in multi-agent set-
tings.

Evolution of AI Agents Early Al agents were
highly specialized and depended chiefly on sym-
bolic reasoning, as seen in board-game-playing
systems like Chess and Go. Subsequent innova-
tions introduced reactive and reinforcement learn-
ing agents with greater adaptability. More re-
cently, LLM-based agents have appeared, incor-
porating large-scale language models (Radford and
Narasimhan, 2018; Radford et al., 2019; Ouyang
et al., 2022) at their foundation. By processing
natural language inputs and outputs, these agents
enable more flexible, human-like interactions and

reasoning.

LLM-Based Agentic Workflows Modern work-
flows often rely on multiple LLM invocations to
address complex, multi-step tasks (Wei et al., 2022;
Madaan et al., 2023; Gao et al., 2022). In these
agentic workflows, each stage or node corresponds
to specific subtasks like prompt creation, tool uti-
lization, or domain-specific strategies (Hong et al.,
2023; Yang et al., 2023; Cai et al., 2023). Through
specialized roles—including data analyzers, veri-
fiers, or debaters—LILM-based agents can collab-
orate efficiently on a range of domain challenges,
from code generation (Hong et al., 2024; Lee et al.,
2023) to advanced data analysis (Li et al., 2024).

Automated Optimization Approaches As task
workflows grow more involved, automated meth-
ods aim to minimize manual engineering. Prompt
optimization tailors textual inputs to steer LLM
outputs (Khattab et al., 2023a; Zhuge et al., 2024).
Hyperparameter tuning fine-tunes model parame-
ters or scheduling (Liu et al., 2024a), and workflow
optimization revises entire computational graphs
or code structures (M. Hu and Zhou, 2024; Zhang
etal., 2024; Zhuge et al.). Symbolic learning frame-
works (Hong et al., 2024; Zhuge et al., 2024; Zhou
et al., 2024) optimize prompts, tools, and node
configurations collectively, mitigating local optima
that can emerge from optimizing each component
independently.

MAS Integration and Key Challenges In multi-
agent systems, LLLMs facilitate inter-agent com-
munication, strategic planning, and iterative task
decomposition (Yao et al., 2022; Wang et al., 2024).
However, scaling these agents prompts concerns
about computational overhead, privacy, and the
opaque ‘“black box” nature of large models (Liu
et al., 2024b; Verma, 2024). These considerations
highlight the need for robust design, continuous
oversight, and data-centric strategies that balance
performance and interpretability.

Overall, the field has moved from manually de-
signed agent architectures to more data-driven,
automated approaches that harness LLMs’ lan-
guage capabilities. Despite noteworthy gains in
prompt tuning, structural optimization, and inte-
grated workflows, a gap remains for frameworks
that unify these methods into efficient, adaptable,
and end-to-end automated systems suited for large-
scale real-world deployments.

3 Methodology

This section details the Agentic Neural Network
(ANN) methodology, a multi-agent system frame-
work designed to solve complex, multi-step com-
putational tasks. Figure 2 shows the comparison
between static and dynamic approaches. ANN is
inspired by classic neural networks but replaces nu-
merical weight optimizations with dynamic agent-
based team selection and iterative textual refine-
ment. By structuring multi-agent collaboration
hierarchically, ANN enables dynamic role assign-
ment, adaptive aggregation, and data-driven coordi-
nation improvements through a forward-pass team
selection process and a backward-pass optimiza-
tion strategy.

3.1 Forward Dynamic Team Selection

The ANN framework initiates task processing by
decomposing the problem into structured subtasks.
These subtasks are assigned across multiple layers,
where each layer comprises a team of specialized
agents working collaboratively on their designated
subtask. Unlike static multi-agent workflows, ANN
dynamically constructs these teams and their aggre-
gation mechanisms based on task complexity. Two
primary processes guide this phase: (1) defining
the ANN structure and (2) selecting aggregation
functions that control how agent outputs are com-
bined.

3.1.1 Structure of the Agentic Neural
Network

The architecture of ANN is inspired by neural net-
works, where each layer consists of nodes repre-
sented by agents. These agents are connected in a
sequence that facilitates seamless information flow
from one layer to the next, ensuring that outputs
from a layer serve as structured inputs for the sub-
sequent layer. This modular yet interconnected de-
sign enables efficient data processing, flexible task
decomposition, and adaptive decision-making. Un-
like static agent configurations, ANN dynamically
refines its internal collaboration structure based on
performance feedback, enhancing scalability and
adaptability.

3.1.2 Selection of Layer-wise Aggregation
Functions

At each layer, ANN employs a mechanism to dy-
namically determine the most appropriate aggre-
gation function, which dictates how outputs from

I. static agentic team

II. dynamic agentic team with backward optimization

forward dynamic team selection

Task description

| ©

Agent team
candidate sets

Task description

nput

Fixed workflow with
LLM agent team

| ®

Updated agent team
candidate set

result

A . ground truth
Dynamic agent team selection Result
memorytrajectory

prompt

Figure 2: Difference between static agentic team and our framework. The left panel illustrates a static agentic team,
where a fixed workflow is predefined for a given task without adaptability. In contrast, the right panel demonstrates
our ANN framework, which dynamically selects and refines agent teams layer by layer. During the forward phase,
ANN constructs task-specific agent teams through dynamic selection mechanisms. If performance does not meet
predefined criteria, the backward phase triggers layer-wise local optimizations and global refinements through

textual feedback and gradient updates.

multiple agents are combined. This selection pro-
cess considers the specific subtask requirements
and complexity, ensuring that the most suitable
collaborative strategy is applied to maximize per-
formance.

Let F, be the set of candidate aggregation func-
tions available for layer ¢, I, the input to the layer,
and [the task-specific information. The aggrega-
tion function selection at each layer is determined
by

f¢ = DynamicRoutingSelect(Fy, ¢, I, I),

where DynamicRoutingSelect selects candidate
functions based on task complexity and prior ex-
ecution trajectory and fy represents the selected
aggregation function. Once an aggregation func-
tion is selected, the layer processes input as:

Oy = ExecuteLayer(¢, fy, Iy, I),

where Oy serves as the input to the next layer with
Iy 1 = Oy. This dynamic aggregation mechanism
ensures that ANN adapts to changing task condi-
tions, optimizing efficiency and accuracy in multi-
agent collaboration.

3.2 Backward Optimization

Upon completion of the forward phase, the system
evaluates its performance. If the predefined per-

formance thresholds are not met, ANN triggers a
backward optimization phase to refine agent inter-
actions and aggregation functions at both the global
(system-wide) and local (layer-specific) levels.

3.2.1 Global Optimization

Global optimization analyzes inter-layer coordi-
nation, refining interconnections and data flow to
improve overall system performance. This pro-
cess adjusts aggregation functions and optimizes
information transfer across layers to better align
with global objectives. Mathematically, the global
gradient is computed as:

Gelobal = ComputeGlobalGradient(S, 7),

where S represents the global workflow, and 7 de-
notes the trajectory of execution, which includes
agent interactions and input-output information
transformations. The system structure is then up-
dated accordingly

Sglobal < GlobalGradientUpdate(Ggiobal, 7)-

3.2.2 Local Optimization

While global optimization refines inter-layer inter-
actions, local optimization fine-tunes agents and
aggregation functions within each layer, adjusting
their parameters based on detailed performance

feedback. This targeted approach addresses inef-
ficiencies and bottlenecks identified during exe-
cution, enhancing overall adaptability. The local
gradient for each layer is computed as:

gltocal,é = /B gglobal + (1 - B)
x ComputeLocalGradient(¢, fy,),

where [is a weighting factor that balances the
influence of global optimization and layer-specific
gradients. In ¢-th step, the aggregation function is
updated as

f£+1 = f; - ngltocal,é?
where 7 is a step size parameter that regulates up-
dates.

Several additional techniques are incorporated
throughout the pipeline. Figure 2 compares the full
framework with a static workflow. Additionally, the
appendix provides pseudo-algorithms and prompts
used to obtain textual global feedback and local
gradients.

Momentum To improve stability, ANN employs
momentum-based optimization, preventing sudden
changes in agent parameters. The momentum-
adjusted update rule is:

t _ t t—1
glocal,f/ - aglocal,ﬁ + (1 - O‘)glocal,ﬁ’

where « is the momentum coefficient, controlling
how past updates influence the current optimization
step.

Format Validation Ensures that all agent in-
teractions comply with predefined communication
protocols, maintaining system reliability and coher-
ence.

Performance Validation Regular performance
assessments validate the efficacy of the optimiza-
tions, ensuring that each adjustment contributes
positively to the system’s overall functionality.

4 Experiments

In this section, we provide a comprehensive
overview of our experimental setup, datasets, base-
lines, and results. We evaluate the proposed Agen-
tic Neural Network (ANN) across four datasets:
HumanEval, Creative Writing, MATH, and
DABench. These datasets are chosen for their di-
versity and prior usage in related work, allowing
us to situate our contributions within established
benchmarks. We divide our experiments into two

main categories: (i) HumanEval and Creative Writ-
ing, following the protocols described in (Zhou
et al., 2024), and (ii) MATH and DABench, align-
ing with the evaluation approaches in (Song et al.,
2024).

4.1 Datasets

HumanEval. The HumanEval dataset (Chen
et al., 2021) consists of human-written coding prob-
lems requiring the model to generate executable
code that correctly solves each problem. It has
long been used to benchmark code-generation per-
formance for language models.

Creative Writing. Following (Zhou et al., 2024),
the Creative Writing dataset is comprised of short
textual prompts (each consisting of four random
sentences) and requires the model or agent to com-
pose a coherent narrative ending in these predeter-
mined sentences. Unlike standard benchmark tasks,
Creative Writing emphasizes open-ended genera-
tion, coherence, and creativity.

MATH. We also evaluate on MATH (Hendrycks
et al., 2021), a collection of high-level competition
math problems encompassing diverse mathemati-
cal fields. This dataset is widely recognized as a
rigorous benchmark for logical reasoning and sym-
bolic manipulation. We note that MATH problems
often involve step-by-step reasoning and multi-
stage computations, providing a challenging test-
ing ground for multi-agent coordination and textual
gradient refinement.

DABench. Finally, we use DABench (Hu et al.,
2024) for data-analysis tasks, including feature en-
gineering, statistical computations, and real-world
data manipulations. As per (Song et al., 2024), we
employ a random split into training and validation
sets. DABench’s tasks not only require robust cod-
ing and data manipulation skills but also demand a
coherent workflow for reading, transforming, and
interpreting data.

4.2 Experimental Settings

Overview of Training and Validation. Follow-
ing the practice in both (Zhou et al., 2024) and
(Song et al., 2024), we split dataset into training
set and validation set for each dataset. However,
each reference employs a slightly different splitting
strategy:

1. HumanEval & Creative Writing. We adopt the
ratio and split procedure described in (Zhou

et al., 2024), ensuring direct comparability to
their reported baselines.

2. MATH & DABench (Adaptive protocol). We
follow (Song et al., 2024), who suggest a ran-
dom subset for training and another subset
for validation in their ablation studies. Each
dataset’s split ratio is consistent with their rec-
ommended setting.

LLM Backbones To contain costs and yet main-
tain strong performance, we unify the training pro-
cess using only the GPT-40 mini model (Achiam
et al., 2023). Concretely, all fine-tuning, agent
configuration, and prompt optimizations are car-
ried out on 40 mini. Then, during validation, we
evaluate each dataset with three backbone variants:
GPT-3.5, GPT-40 mini, and GPT-4. This proce-
dure allows us to:

1. Demonstrate how our approach generalizes
across different model capacities,

2. Compare against prior work that primarily re-
ports results on GPT-3.5 or GPT-4,

3. Highlight that 40 mini, even though it is lower-
cost, achieves competitive (often superior)
performance relative to existing baselines, ef-
fectively bridging a cost-effectiveness gap in
agent-based experimentation.

Because neither (Zhou et al., 2024) nor (Song et al.,
2024) report 40 mini results, our findings add a new
dimension to the performance landscape, showing
how a budget-friendly large language model can
still match or surpass top-tier methods on standard
tasks. By training on GPT-40 mini (see details
below) and validating on multiple LLM backbones,
we aim to demonstrate the flexibility and robustness
of our framework in real-world various scenarios.

Baselines and Comparisons. We compare ANN
(ours) with various baseline approaches, each
drawn from the references: GPTs (Brown et al.,
2020; Chen et al., 2021) — A direct usage of GPT-
based models with carefully designed prompts.
Agents (Zhou et al., 2023) — A language-agent
method that organizes multi-step reasoning and
tool usage through a pipeline of prompts. Agents
w/ AutoPE (Yang et al., 2024) — A variant wherein
each prompt node is optimized by an LLM, but
without full language gradient back-propagation.
DSPy/ToT (Khattab et al., 2023b) — A pipeline op-
timization framework that performs search-based

Method HumanEval Creative Writing
3.5/40 mini/4 3.5/40 mini/4
GPTs 59.2/-171.7 4.0/-7/6.0
Agents 59.5/-/85.0 42/-7/6.0
Agents w/ AutoPE 63.5/-/82.3 44/-165
DSPy / ToT 66.7/-/71.3 38/-/6.8
Symbolic 64.5/-/85.8 69/-/74
ANN (ours) 72.7/93.9/87.8 9.0/8.6/7.9

Table 1: Comparison results on HumanEval and Cre-
ative Writing benchmarks. The best results in each
category are marked in bold.

tuning of prompt components. Applicable mostly
to tasks with a tractable evaluation function. Sym-
bolic (Zhou et al., 2024) — An agent-based system
employing symbolic learning methods for dynamic
prompt improvements. Vanilla LLM — A single-
turn GPT-based approach without agent collabora-
tion. Meta-prompting (Suzgun and Kalai, 2024)
— An adaptive prompting strategy that attempts to
generate meta-level instructions for new tasks. Au-
toAgents (Chen et al., 2024) — An automated agent
system that attempts to orchestrate multi-agent in-
teractions but can be unstable in large-scale settings.
DyLAN (Liu et al., 2024¢) — A dynamic language-
agent approach to break down tasks with feedback
loops. AgentVerse (Chen et al., 2023) — A multi-
agent platform emphasizing flexible agent compo-
sition. AutoGen (Wu et al., 2023) — A system fea-
turing an “Assistant + Executor” design for multi-
step problem-solving. Captain Agent (Song et al.,
2024) — An adaptive team-building agent frame-
work that spawns specialized sub-agents based on
task progress.

Unless otherwise stated, the baseline results in
Table 1 (HumanEval and Creative Writing) are
taken from (Zhou et al., 2024), while those in Ta-
ble 2 (MATH and DABench) are from (Song et al.,
2024). Since none of these works tested on 40 mini,
we omit highlighting the best results for 40 mini in
the tables.

4.3 Experimental Results
4.3.1 Main Results

Table 1 compares our method with prior approaches
on HumanEval and Creative Writing. Because
(Zhou et al., 2024) provide baseline results only
for GPT-3.5 and GPT-4, we supplement these with
our own evaluations under 40 mini for a thorough
comparison. We note the following key findings:

Method MATH DABench
35/4omini/4 3.5/4omini/4
Vanilla LLM -/-151.53 -/-16.61
ngmng ~/-168.88 -/-139.69
AutoAgents -/-156.12 -/-157.98
DyLAN -/-162.24 -/-1/-
AgentVerse -/-169.38 -/-1-
AutoGen -/-174.49 -/-1782.88
Captain Agent -/-1171.55 -/-/88.32
ANN (ours) 55.0/82.5/80.0 76.0/95.0/92.0

Table 2: Comparison results on the MATH and
DABench datasets. The best results in each category are
marked in bold.

* Humaneval: Our ANN approach consistently
surpasses all baselines. On HumanEval, we
achieve 72.7% and 87.8% for GPT-3.5 and
GPT-4, respectively, outperforming the best
baseline by a clear margin. Notably, even our
40 mini results 93.9/% show competitive or
superior performance despite 40 mini being a
lower-cost model.

* Creative Writing: For open-ended text gen-
eration, our method scores 9.0/7.9 on GPT-
3.5/GPT-4. We attribute this to ANN’s struc-
tured “layerwise” approach, which fosters cre-
ative synergy among specialized agents while
maintaining logical consistency in narrative
structure.

Next, in Table 2, we contrast our method with
baseline results from (Song et al., 2024) on MATH
and DABench. Again, (Song et al., 2024) report
GPT-3.5 and GPT-4 but omit 40 mini. Observations
include:

* MATH: We record 55.0, 82.5, and 80.0 across
GPT-3.5, 40 mini, and GPT-4. Despite using
40 mini in training, our method exhibits strong
generalization to both GPT-3.5 and GPT-4.
On GPT-4, our 80.0% accuracy significantly
outperforms Captain Agent (77.55%) and Au-
toGen (74.49%).

* DABench: On data-analysis tasks, ANN at-
tains 75.6, 95.0, and 88.88 on GPT-3.5, 40
mini, and GPT-4, respectively, consistently
outperforming prior baselines. We observe
that 40 mini again surprisingly yields top-
tier results (95.0), indicating that data-centric

tasks can benefit from well-structured agent
orchestration without always requiring the
largest language models.

Experiments demonstrate that the multi-agent ar-
chitecture discovered by our ANN framework, even
when using the weaker GPT-40-mini, can general-
ize effectively to more powerful LLLMs, achieving
superior performance. Additionally, our results
highlight GPT-40 mini as a cost-effective yet high-
performing alternative, reinforcing ANN’s robust-
ness across different model scales.

4.4 Ablation Studies

We conduct a unified ablation study using only 40
mini to further investigate the design choices in our
ANN framework. Specifically, we compare four
variants:

1. Full ANN: Our complete approach with
momentum-based optimization, validation-
based performance checks, and backward op-
timization.

2. w/o Momentum: Disables the momentum
technique in textual gradient refinement.

3. w/o Validation Performance: Skips the
validation-based filtering stage when selecting
improved prompts and agent roles.

4. w/o Backward Optimization: Does not use
the backward pass to refine prompts; i.e.,
omits textual gradients for “error signals.”

Training Procedure. All four variants are
trained for 20 epochs on each dataset (HumanEval,
Creative Writing, MATH, DABench) using the
training splits described above. To mitigate the
randomness inherent in LLM sampling, we repeat
each condition three times and report the average
results on the validation set at regular epoch inter-
vals.

Results and Analysis. Figure 3 illustrates the
validation accuracy (or relevant score) as a function
of training epoch. We observe a consistent upward
trend across all four datasets, with the full ANN
approach converging to the highest performance.
Detailed findings:

* Impact of Momentum: Removing momen-
tum (w/o Momentum) leads to the largest per-
formance drop on HumanEval, suggesting that

Humaneval (gpt-40-mini) Creative Writing (gpt-40-mini)

Epoch Epoch

MATH (gpt-4o-mini) DA Bench (gpt-do-mini)

7
Epoch Epoch

Figure 3: Ablation results on HumanEval, Creative Writing, MATH and DABench, each using 40 mini for training
and validation. We compare the full ANN framework against variants that remove momentum (w/o0 Momentum),
remove validation performance checks (w/o Validation), and remove backward textual optimization (w/o Backward).
Performance trends upward with more epochs, showing the critical role of each component.

gradual accumulation of textual gradient sig-
nals is crucial for code-generation tasks that
require precise correctness.

* Validation-Based Checks: Omitting valida-
tion performance filtering can cause more er-
ratic updates, particularly evident in MATH,
where narrative consistency can degrade if
suboptimal agent prompts are accepted too
frequently.

* Backward Optimization: Without the back-
ward pass, we lose a key mechanism for pin-
pointing errors and refining agent roles. This
shortfall manifests in weaker improvements
per epoch, especially on the mathematically
oriented Creative Writing dataset.

Overall, our ablation highlights that each compo-
nent contributes significantly to performance, and
combining them yields the most reliable and robust
improvements.

5 Future Work

Although our current ANN framework provides
a flexible mechanism for agent configuration and
task partitioning, it still depends substantially on
manually defined initial structure candidates and
node prompts, limiting its adaptability to diverse
domains. A more automated strategy, such as meta-
prompt learning (S. Hu and Clune, 2024; Yin et al.,
2024), could reduce reliance on human-crafted tem-
plates by generating initial layouts from accumu-
lated agent experience. Another challenge is that
as the number of candidate teams grows, computa-
tional overhead increases, making it less efficient
to identify the most effective teams. Advanced
pruning techniques, such as periodic pruning and
performance-driven filtering, could be integrated
in future work to enhance efficiency while pre-
serving diversity. Moreover, current agent roles

are largely static once a team is instantiated, re-
stricting flexibility for highly intricate or evolv-
ing tasks. Introducing a dynamic role adjustment
mechanism that reacts in real time to changing re-
quirements would enhance adaptability and task
performance. Finally, although momentum-based
optimization and structured optimization strategies
have been proposed, they have not yet been deeply
integrated into one cohesive approach. Addressing
these directions—meta-prompt learning, pruning,
dynamic role reassignment, and enhanced optimiza-
tion—would equip ANN to become a more pow-
erful, efficient, and versatile platform for dynamic
multi-agent collaboration.

6 Conclusion

Our experimental results establish that ANN
achieves high accuracy and adaptability across
tasks ranging from code generation to creative
writing, surpassing traditional static configurations.
Through a dynamic formation of agent teams and
a two-phase optimization pipeline, the framework
delivers robust performance rooted in neural net-
work design principles. These findings underscore
the potential of ANN as a scalable and efficient so-
lution for orchestrating complex multi-agent work-
flows. Detailed ablation studies highlight the sig-
nificance of each component. Ultimately, this in-
tegrated agentic paradigm paves the way for fully
automated multi-agent systems, effectively com-
bining symbolic coordination with connectionist
optimization.

7 Limitations

Despite its advantages, the Agentic Neural Network
framework has limitations. Its reliance on manually
defined structures and prompts reduces adaptabil-
ity across tasks, which could be improved through
meta-prompt learning to automate structure genera-

tion. Moreover, candidate selection becomes com-
putationally expensive as the pool grows, requiring
periodic pruning, though this risks homogenization,
which could be mitigated by stochastic retention of
lower-ranked candidates. Furthermore, while ANN
dynamically selects aggregation functions, agent
roles remain fixed, limiting adaptability to evolv-
ing tasks, which could be improved by allowing
agents to adjust roles based on real-time feedback.
Future work will address these limitations by in-
tegrating meta-prompt learning, adaptive pruning,
and dynamic role adjustments to enhance ANN’s
scalability and adaptability.

Potential Risks While the Agentic Neural Net-
work (ANN) offers enhanced adaptability and ef-
ficiency in multi-agent collaboration, it also in-
troduces potential risks. One concern is the in-
terpretability of emergent agent behaviors, as dy-
namically evolving agent teams may develop com-
plex interaction patterns that are difficult to analyze
or debug. Additionally, increased computational
demands from iterative optimization cycles could
limit scalability in resource-constrained environ-
ments, requiring careful management to balance
performance with efficiency.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. ArXiv, abs/2305.17126.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Borje F. Karlsson, Jie Fu, and Yemin
Shi. 2024. Autoagents: A framework for automatic
agent generation. Preprint, arXiv:2309.17288.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-

plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Ya-Ting
Lu, Yi-Hsin Hung, Cheng Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie
Zhou. 2023. Agentverse: Facilitating multi-agent
collaboration and exploring emergent behaviors. In
International Conference on Learning Representa-
tions.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. ArXiv, abs/2211.10435.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. ArXiv, abs/2312.10997.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh. 2006. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527-1554.

Geoffrey E. Hinton and Ruslan Salakhutdinov. 2006.
Supporting online material for reducing the dimen-
sionality of data with neural networks.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu,
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang,
Lingyao Zhang, Mingchen Zhuge, Taicheng Guo,
Tuo Zhou, Wei Tao, Wenyi Wang, Xiangru Tang,
Xiangtao Lu, Xinbing Liang, Yaying Fei, Yuheng
Cheng, Zhibin Gou, Zongze Xu, Chenglin Wu,
Li Zhang, Min Yang, and Xiawu Zheng. 2024. Data
interpreter: An llm agent for data science. ArXiv,
abs/2402.18679.

Sirui Hong, Xiawu Zheng, Jonathan P. Chen, Yuheng
Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:258947222
https://api.semanticscholar.org/CorpusID:258947222
https://api.semanticscholar.org/CorpusID:258947222
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://api.semanticscholar.org/CorpusID:263831900
https://api.semanticscholar.org/CorpusID:263831900
https://api.semanticscholar.org/CorpusID:263831900
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://api.semanticscholar.org/CorpusID:262637400
https://api.semanticscholar.org/CorpusID:262637400
https://api.semanticscholar.org/CorpusID:262637400
https://api.semanticscholar.org/CorpusID:268063292
https://api.semanticscholar.org/CorpusID:268063292
https://api.semanticscholar.org/CorpusID:268063292

Yau, Zi Hen Lin, Liyang Zhou, Chenyu Ran,
Lingfeng Xiao, and Chenglin Wu. 2023. Metagpt:
Meta programming for multi-agent collaborative
framework. ArXiv, abs/2308.00352.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin
Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming
Zhu, Yao Cheng, Jianbo Yuan, Kun Kuang, Yang
Yang, Hongxia Yang, and Fei Wu. 2024. Infiagent-
dabench: Evaluating agents on data analysis tasks.
ArXiv, abs/2401.05507.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

O. Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Zaharia,
and Christopher Potts. 2023a. Dspy: Compiling
declarative language model calls into self-improving
pipelines. ArXiv, abs/2310.03714.

O. Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. Dspy: Compiling
declarative language model calls into state-of-the-art
pipelines. In International Conference on Learning
Representations.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Zaharia,
and Christopher Potts. 2023b. Dspy: Compiling
declarative language model calls into self-improving
pipelines. Preprint, arXiv:2310.03714.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao,
Ge Qu, Yurong Wu, Chenhao Ma, Jian-Guang Lou,

10

and Reynold Cheng. 2024. Tapilot-crossing: Bench-
marking and evolving llms towards interactive data
analysis agents. arXiv preprint arXiv:2403.05307.

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir
Zaki, Bedoor AlShebli, and Talal Rahwan. 2024a.
Self-reflection outcome is sensitive to prompt con-
struction.

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir
Zaki, Bedoor AlShebli, and Talal Rahwan. 2024b.
Self-reflection outcome is sensitive to prompt con-
struction.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2024c. A dynamic llm-powered agent network
for task-oriented agent collaboration.

T. Lin M. Hu and C. Zhou. 2024. Adas: An automatic
design framework for agent systems using 1lm-based
optimization. arXiv preprint arXiv:2401.05507.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. ArXiv, abs/2303.17651.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Cheng Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu-
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024. Scaling
large-language-model-based multi-agent collabora-
tion. ArXiv, abs/2406.07155.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

C.Lu S. Hu and J. Clune. 2024. Automated design of
agentic systems. arXiv preprint arXiv:2408.08435.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: language agents with verbal re-
inforcement learning. In Neural Information Pro-
cessing Systems.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang,
Ao Luo, Shijian Wang, Qingyun Wu, and Chi Wang.
2024. Adaptive in-conversation team building for
language model agents. Preprint, arXiv:2405.19425.

https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:266933185
https://api.semanticscholar.org/CorpusID:266933185
https://api.semanticscholar.org/CorpusID:266933185
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2405.19425

Mirac Suzgun and Adam Tauman Kalai. 2024. Meta-
prompting: Enhancing language models with task-
agnostic scaffolding. Preprint, arXiv:2401.12954.

Ashwin Verma. 2024. Advances in Multi-agent De-
cision Making Systems with Adaptive Algorithms.
Ph.D. thesis, University of California, San Diego.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen,
and Sercan O. Arik. 2024. Astute rag: Overcom-
ing imperfect retrieval augmentation and knowledge
conflicts for large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, F. Xia, Quoc Le, and Denny Zhou.
2022. Chain of thought prompting elicits reasoning
in large language models. ArXiv, abs/2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W White, Doug Burger, and Chi Wang.
2023. Autogen: Enabling next-gen llm applications
via multi-agent conversation.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2023. Large language models as optimizers. ArXiv,
abs/2309.03409.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.
Large language models as optimizers. Preprint,
arXiv:2309.03409.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. ArXiv, abs/2210.03629.

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun
Wan, and William Yang Wang. 2024. G\" odel agent:
A self-referential agent framework for recursive self-
improvement. arXiv preprint arXiv:2410.04444.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,
Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. 2024. Textgrad: Automatic "differentiation” via
text. Preprint, arXiv:2406.07496.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng,
Bang Liu, Yuyu Luo, and Chenglin Wu. 2024. Aflow:
Automating agentic workflow generation.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu
Chen, Wentao Zhang, Xiangru Tang, Ningyu Zhang,
Huajun Chen, Peng Cui, and Mrinmaya Sachan. 2023.
Agents: An open-source framework for autonomous
language agents. Preprint, arXiv:2309.07870.

11

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long
Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Hua-
jun Chen, and Yuchen Eleanor Jiang. 2024. Sym-
bolic learning enables self-evolving agents. Preprint,
arXiv:2406.18532.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as opti-
mizable graphs. In Forty-first International Confer-
ence on Machine Learning.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. 2024. Language agents as optimizable
graphs. ArXiv, abs/2402.16823.

https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://api.semanticscholar.org/CorpusID:261582296
https://arxiv.org/abs/2309.03409
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532
https://api.semanticscholar.org/CorpusID:268032156
https://api.semanticscholar.org/CorpusID:268032156
https://api.semanticscholar.org/CorpusID:268032156

A appendix
A.1 Pseudo Code

This section provides pseudocode for the system’s
overall architecture and the local gradient optimiza-
tion process. Algorithm 1 outlines how the network
leverages a dynamic routing mechanism alongside
an agentic neural network structure, integrating
both global optimization and layerwise optimiza-
tion. Dynamic routing selects the most suitable
path for a given task, thereby enhancing overall sys-
tem performance and stability. Global optimization
steers the entire network toward optimal solutions,
while layerwise optimization fine-tunes each layer
for improved learning efficiency and reliability. Al-
gorithm 2 focuses on local optimization within each
specialized layer. By applying localized gradient
updates, each module can concentrate on its respec-
tive sub-task. Such targeted adjustments accelerate
convergence, improve learning efficiency, and, in
conjunction with the global optimization strategy,
enhance the system’s overall performance.

A.2 Prompt Examples

This section serves as a Prompt Template dedicated
to defining the Loss Function and Optimizer used
in our system. By systematically tailoring the loss
function and choosing the most suitable optimizer
strategies, this template enhances the model’s abil-
ity to learn effectively and improve overall perfor-
mance.

A.3 Team Structure Examples with
optimization

This section describes the evolutionary process of
nodes within the system, illustrating how they tran-
sition from an initial linear architecture to more
sophisticated, graph-based structures. By monitor-
ing performance, synergy, and task requirements,
the network dynamically reconfigures its connec-
tions. This adaptive strategy allows for enhanced
connectivity, efficient information flow, and robust
cooperative behavior among nodes, ultimately lead-
ing to improved performance, and greater scalabil-

ity.

12

Algorithm 1 Agentic Neural Network with Dynamic Routing and Adaptive Optimization

Require: [: dataset input; L: layers in the workflow; Fj: set of possible aggregation functions for each
layer ¢; S: workflow updation for optimization
Ensure: Updated structure and prompts for the agentic neural network

1: Traj < |] > Initialize Trajectory
2 Iy 1 > Initialize input of first layer
3: Forward Pass with Dynamic Routing and Aggregation

4: for each layer £ in L do

5: fe < DynamicRoutingSelect(Fy, ¢, Iy, I) > fo: selected agg. function
6: Oy «+ ExecuteLayer (¢, fy, Iy, I) > Oy: output of layer £
7: Append (¢, fy, Iy, Op) to Traj

8: Ipy1 < Oy > Iyy1: input to the next layer
9: end for
10: Back-propagation:
11: Global Optimization
12: Gglobal +— ComputeGlobalGradient (.S, Traj) > Compute global gradient
13: Sglobal <— GlobalGradientUpdate(Ggiopar, Traj) > Sglobal: Update workflow in global level
14: Layerwise Optimization

15: for each layer £ in reverse(L) do

16: g;o care < ComputeLocalGradient(, f;, Traj, Liobal) > Compute local gradient
17: if mofnentum_needed then

18: Siocal < LocalGradientUpdate (¢, f, g;focal 0> Salobal) > Siocat: Update layer-wise workflow
19: else 7

20: Glocarer < ApplyMomentum(¢, Traj, G, oy 4, g;oj:;l,g) > Glocar, et Adjusted gradient
21: Siocal < LocalGradientUpdate (¢, fy, g;fo cal 0 Selobal) > Siocal: Update layer-wise workflow
22: end for

23: return (F), Traj) > Return updated Fy

13

Algorithm 2 LocalGradientUpdate

Require: /: current layer; f;: selected aggregation function; Traj: trajectory of execution; Ggjobar: global
gradient; Sgjopar: current global structure; Fy: set of possible aggregation functions for each layer £

Ensure: Updated global structure Syjopa and valid aggregation function f

1: Giocar ¢ < ComputeLocalGradient(?, fr, Traj, Geiobal) > Compute local gradient in layer £
2: Sjocal +— LocalGradientUpdate(?, f¢,Giocat,¢> Sglobal): > Sjocal: Update layer-wise workflow
3: for k< 1to3 do > Attempt up to 3 updates
4 fé — LocalGradientUpdate(ﬁ, féyGlocal,b Sglobal)

5: ValidateUpdate (f)): > If update passes validation
6: Node Validation:

7 if VariableSourcesValid(f;) & FormatValid(f;) then

8 Edge Validation:

9: if AllNodesHaveEdges(f;) then

10: Structure Validation:
11: if StructureNotUnique(f;) then
12: if ValidatePerformance(f;, f¢) then

13: Append f; to Fy > add new agg func f; into Fy
14: break > Exit update loop on success
15: end if

16: end if

17: end if

18: end if

19: end for

20: return Sgopal

A.2.1 Prompt Template for Language Loss Function

You are a helpful Al assistant. You will use your math skills to verify the answer.

You are given:

1. A problem: {problem}

2. Reply with the answer to the problem: {final_answer}

3. A ground truth answer: {solution}

Please do the following:

Extract the answer in the reply: "The answer is <answer extracted>".

Check whether the answer in the reply matches the ground truth answer.

After everything is done, please choose and only output a reply from the following options:
1. "The answer is correct."

2. "The answer is approximated but should be correct."

3. "The answer is incorrect. Correct Answer: <ground truth answer></ground truth answer> | Answer
extracted: <answer extracted></answer extracted>."

4. "The reply doesn’t contain an answer."

14

A.2.2 Loss with ground truth and score:

Evaluate the following creative writing piece based on the provided task requirements.
Task Description: {task_prompt}

Creative Writing Output: {finalized_text_from_last_layer}

Evaluation Criteria:

- Logical coherence: Is the text logically organized?

- Emotional engagement: Does the text evoke the desired emotions?

- Adherence to task requirements: Does the text align with the original task prompt?
- Creativity: Is the text original and imaginative?

Output Format:

- Coherence: [Score out of 10, with a brief explanation]

- Engagement: [Score out of 10, with a brief explanation]

- Adherence: [Score out of 10, with a brief explanation]

- Creativity: [Score out of 10, with a brief explanation]

- Suggestions for Improvement: [Text]

- Overall Score: [Score out of 10]

15

A.2.3 Prompt Template for Gradient Back-propagation

Task Description:

You are an advanced global workflow analysis assistant tasked with diagnosing inefficiencies and
proposing optimizations for a multi-step process. Your goal is to analyze the workflow trajectory and
determine which aspects need improvement to address task failures and enhance overall performance.
Instructions:

You will evaluate the provided consolidated information from a workflow task. Identify
which sub-task outputs or prompts likely caused the failure and provide specific suggestions
for each subtask. Your output should be concise and only structured like this output format:
<output_format>{example_global_loss_format}</output_format>.

Notice:

All analyses and suggestions should be based on a general level rather than providing very
targeted suggestions for this specific task. All needed information for global optimization are
provided:{initial_solution} For this global optimization, consider the following:

1. Final Result Evaluation: <final result> to determine if the task failed.

2. Solution Comparison:Compare the <canonical solution> and <generated solution>:

- Is the logic in the <generated solution> aligned with the <canonical solution>?

- Where is the gap between the analysis and the standard answer?

- Pinpoint specific issues in the <generated solution> that contributed to the failure.

- Write your findings into the ’global_analysis’ section of the <output_format>.

3. Block Input and Output Analysis:

Based on the <task description>, analyze the <workflow trajectory> to:

- Do not compare the output of each block with <canonical solution>. Instead, analyze which block
the problem occurred.

- Examine the block_input and block_output of each block.

- Identify which block (or blocks) caused the task to fail.

- Identify inefficiencies or redundancies in the processing of the <workflow trajectory>.

- Document these optimization suggestions in the ’ structure_suggestion’ section of the corresponding
block in the <output_format>.

- Review the block_description of these blocks from <workflow trajectory>. If any modifications
are necessary, provide suggestions and document them in the ’prompt_suggestions’ section of the
corresponding block in the <output_format>. If modifications are not necessary, please don’t give any
extra suggestion.

4. Node-Level Analysis within Blocks: Based on the block(s) identified in the previous step, conduct a
detailed analysis of the node_input and node_output for each node within the problematic block(s)
from <workflow trajectory>:

- Evaluate whether the team collaboration structure or workflow within the block is effective.

- Propose specific adjustments to the team collaboration structure, if required.

- Document these optimization suggestions in the ’ structure_suggestion’ section of the corresponding
block in the <output_format>.

16

A.2.4 Layer Optimizer

You will evaluate the provided information for a specific block of the workflow. Your task is to suggest
optimizations for this block, focusing on both prompt improvements and structural changes, while
ensuring consistency and efficiency.

Block Information

1. Block Name: <block_name> {block_name} </block_name> 2. Global Loss Feedback: <global loss
feedback>

{global_loss_feedback} </global_loss_feedback>. (This is feedback for the entire workflow in the global
optimization stage. Use it as a reference, but base final modification suggestions on the best optimization
solution for each layer.)

3. You should give feedback based on this blocksLog mentioned structure. Blocks Log is a record of the
running track of the entire workflow when executing this task. It includes the architecture of the entire
workflow, every node’s input and output, and important information about all blocks and nodes. Blocks
Log: {blocks_log}.

4. canonical solution of this task: <canonical solution> {canonical_solution} </canonical_solution>

5. Current task description: <current_task_ description> {task_prompt} </current_task_description>
Notice:

1. Evaluate Each Node:

- Check the ‘input_variables‘ for each node to ensure they are valid and consistent. Valid sources for input
variables include:

- Known state variables available in the workflow:

- "task_data", "task_prompt","task_id".

- Explanation:

- "task_data": Detailed task data including ID, prompt, and solutions (rarely used due to verbosity).

- "task_prompt": Description of the current task.

- "task_id": ID of the current task.

- Outputs of preceding nodes in the block, referenced by their node names (e.g., calculation_expert1_output
refers to the ‘node_output® of the node named calculation_expert1).

- If ‘block_name‘ is ‘ProblemSolveBlockX*, an additional variable ‘math_model‘ is available as the
output of the ‘ProblemAnalysisBlockX* for calculate tasks.

- When suggesting prompt modifications for a node:

- Include the updated ‘prompt_template‘ with specific, clear instructions.

- Explicitly list all ‘input_variables‘ along with their sources.

2. Propose Structural Changes:

- Suggest adding or removing nodes if necessary.

- For added nodes, specify:

- ‘node_name‘: The name of the node.

- ‘agent’: The agent to be used by the node.

- ‘Output format‘: The expected output format (e.g., math tool, text, number).

- ‘prompt_template‘: The complete prompt for the node. If it contains curly braces, they must be escaped
- ‘variable_sources‘: A dictionary specifying all input variables and their sources.

- ‘constraints‘: The usage context and purpose of the node.

- Specify changes to node connections, including:

- ‘from* and ‘to‘ connections for new nodes.

- Impacts on other nodes, including updates to their ‘input_variables‘ if necessary.

- Clearly identify the new ‘entry_node‘ and ‘end_node* after modifications. Each block has only one entry
point and one end_node.

- Please ensure that each node has subsequent nodes connected to it to form an edge, except end_node.

- Maximal add 3 nodes.

- Include ‘all_edges_now* and ‘all_nodes_now" to provide a clear list of all edges and nodes in the updated
block structure.

17

3. Impact on Other Nodes:

- Maintain logical consistency and alignment with the workflow’s goals.

4. Incorporate Available Agents:

- Use the list of available agents as references for potential additions: {available_agents}.

- Refer to each agent’s ‘constraints‘ to determine effective usage.

- Ensure agents can be modified as necessary to better align with the workflow’s structure, including
updates to ‘prompt_template‘, ‘input_variables®, ‘variable_sources‘, or even the creation of new agents
tailored to this block.

5. Dynamic Block ID and Naming:

- Assign a unique ‘block_id‘ from the pre-calculated ‘new_block_id*‘: {new_block_id}.

- Name the block in the format ‘{block_name}X°, where ‘X‘ corresponds to the new ‘block_id".

6. Block Structure Description:

- Include two descriptions for the block:

- ‘block_structure_description‘: A high-level overview of the block’s purpose and role in the workflow.

- ‘block_structure_description_details‘: A detailed explanation of the block’s internal structure, including:
1. The nodes included in the block.

2. The connections (edges) between these nodes.

3. Each node’s specific responsibilities.

4. How the block processes inputs and generates outputs. - Ensure both descriptions are concise, clear,
and aligned with the actual block structure.

7. provided <canonical solution> and <test cases>:

- The block we are currently providing is only a part of the entire workflow, and it is possible that the
failure to complete the task was not caused by this block. Therefore, please avoid over-optimization.

- Our team focuses on the entire dataset rather than a specific task. Please avoid overfitting during the
refinement of suggestions and ensure that the feedback remains generalized.

- The <canonical solution> we provide is the final correct answer for this task, and the <test cases> are the
test cases generated after running the entire workflow, provided for reference only. Since the block we are
providing is just one part of the workflow, it is possible that the failure is not attributable to this block.
8. Output Format:

- Please provide all suggestions in the following JSON format: {layerwise_loss_format}

- Don’t use an arrow to connect two nodes to represent an edge!

18

Creative
writing

Layer 1

team_X_n

Creative

writing

Layer 2
team_Y_n

MATH
Layer 1
team_X_n

MATH
Layer 2
team_Y_n

Humaneval
Layer 1
team_X_n

Humaneval
Layer 2
team_Y_n

DA_bench
Layer 1
team_X _n

DA_bench
Layer 2
team_Y_n

n = initial

draft_generator_2

T

draft_generator_1 draft_selector

editor_2_
check_text

editor_
decision_maker

Ny

editor_1_ editor_3_

check_text check_text
math_model_ math_model_
generator_1 selector

N

geometric_relationship_
analyzer

problem_identifier

calculation_expert_1

solution,d;;;;;;;“\\‘\\\‘ AAAA““A“‘;;;;uation_

specialist
calculation_expert_2

agent_review_code

agent_initial_check

agent_1_provide_strategy

agent_code_generation

initial < n < final

editor_
check_text

N,

draft_generator_1

draft_generator_2

draft_generator_3

editor_2_
check_text

editor_
decision_maker

RN

editor_1_ editor_3_ editor_check_
check_text check_text text_after_
decision_maker
math_model_

generator_1

problem,a;;;;;;;\\\\\‘\\‘ AAAA““A“‘;;;;_model_

selector
math_model_

generator_2

calculation_expert_1

i, A,AA““A“‘;;;;uation_

verifier specialist

calculation_expert_2

agent_check_
code_after_review

\/

agent_static_analysis

agent_review_code

agent_1_finalize_code

agent,in;;;;Ij;E;EF“* A““//"rfflgg;nt,B,

decision_maker
agent_2_finalize_code

initial_
analysis_agent

agent_decision_
maker_with_2_options

~.

agent_1_review_strategy

agent_debug_
task_analysis

agent_1_refine_
code_after_generation

agen;i“‘\\\\\\‘* A—AA““EQQ;E:;;Cision_

code_generation . maker_with_2_options
agent_2_refine_

code_after_generation

n = final

agent_1_
optimize_text

P o
draft,genem /e;i tor_

check_text
agent_2_

optimize_text

draft_generator_1

editor_1_
check_text

,/””’/)
editor,\

check_text

editor_check_
text_final

\/

creative_
improvement_

editor_2_ gyggestions

check_text

math_model_
generator_1

—
RN

selector

-

/\

problem_ repeating_

identifier decimal_handler
math_model_

generator_2

calculation_expert_1

/\
\

solution_designer e
L validator

calculation_
expert_2

evaluation_
specialist

agent_check_
code_after_review

agenc,revj;;i;;EE“

agent_static_analysis

\

agent_logic_error_detector

agent_1_finalize_code

L \ agent_3_
agent_initial_checl S
decision_maker

agent_2_finalize_code

agent_logic_
error_detector

\

agent_1_
review_strategy agent_data_
cleaning_check
U

/\

/_/4/—/""’_/;;;;2:;:cision_

maker_with_2_options

initial_

analysis_agent
agent_2_

review_strategy

agent_1_refine_

code_after_generation
agent_column_name_

T checkafter decision
agen{i\\\\\\\§ ,»"’Eggzt_decJSJOn_

code_generation maker_with_2_options
agent_2_refine

code_after_generation

Figure 4: Team Structure Examples with optimization

19

	Introduction
	Related Works
	Methodology
	Forward Dynamic Team Selection
	Structure of the Agentic Neural Network
	Selection of Layer-wise Aggregation Functions

	Backward Optimization
	Global Optimization
	Local Optimization

	Experiments
	Datasets
	Experimental Settings
	Experimental Results
	Main Results

	Ablation Studies

	Future Work
	Conclusion
	Limitations

