
Agentic Neural Networks: A Neuro-Symbolic Approach to Multi-Agent
Systems with Textual Backpropagation

Anonymous ACL submission

Abstract

Leveraging multiple Large Language Models001
(LLMs) has proven effective for addressing002
complex, high-dimensional tasks, but current003
approaches often rely on static, manually en-004
gineered multi-agent configurations. To over-005
come these constraints, we present the Agen-006
tic Neural Network (ANN), a framework that007
conceptualizes multi-agent collaboration as a008
layered neural network architecture. In this de-009
sign, each agent operates as a node, and each010
layer forms a cooperative “team” focused on011
a specific subtask. Agentic Neural Network012
follows a two-phase optimization strategy: (1)013
Forward Phase—Drawing inspiration from neu-014
ral network forward passes, tasks are dynami-015
cally decomposed into subtasks, and cooper-016
ative agent teams with suitable aggregation017
methods are constructed layer by layer. (2)018
Backward Phase—Mirroring backpropagation,019
we refine both global and local collaboration020
through iterative feedback, allowing agents to021
adaptively improve their roles, prompts, and022
coordination. This neuro-symbolic approach023
enables ANN to create new or specialized agent024
teams post-training, delivering notable gains in025
accuracy and adaptability. Across four bench-026
mark datasets, ANN surpasses leading multi-027
agent baselines under the same configurations,028
showing consistent performance improvements.029
Our findings indicate that ANN provides a scal-030
able, data-driven framework for multi-agent031
systems, combining the collaborative capabili-032
ties of LLMs with the efficiency and flexibility033
of neural network principles. We plan to open-034
source the entire framework.035

1 Introduction036

Large Language Models (LLMs) have ushered in a037

new era of artificial intelligence, exhibiting strong038

capabilities in reasoning, content generation, and039

multi-step problem-solving (Kojima et al., 2023;040

Ouyang et al., 2022). By grouping these models041

into multi-agent systems (MAS), researchers have042

addressed an array of complex tasks, ranging from 043

code generation and debugging (Jimenez et al., 044

2024) to retrieval-augmented generation (Khattab 045

et al., 2023a; Lewis et al., 2020; Gao et al., 2023) 046

and data analysis (Hong et al., 2024; Hu et al., 047

2024). Often, MAS outperform their single-agent 048

equivalents by bringing together diverse agent roles 049

and expertise, including verifier agents (Shinn et al., 050

2023) or debating agents (Qian et al., 2024; Zhuge 051

et al., 2024), thus creating more adaptable and ro- 052

bust solutions. However, designing and deploying 053

effective MAS remains demanding. Developers 054

frequently invest substantial effort into prompt en- 055

gineering, role assignment, and topology definition 056

by trial and error (Chen et al., 2023; Hong et al., 057

2023), especially for dynamic, high-dimensional 058

tasks. 059

Recent advances in automating aspects of MAS 060

design aim to relieve these challenges. For in- 061

stance, Khattab et al. (2024) introduced system- 062

atic methods for generating in-context exemplars; 063

M. Hu and Zhou (2024) presented a meta-agent 064

capable of creating new topologies in code; and 065

Zhang et al. (2024) employed Monte Carlo Tree 066

Search to find improved workflow configurations. 067

These innovations mirror earlier developments in 068

neural network research, where layer-wise opti- 069

mization gave way to holistic, end-to-end back- 070

propagation (Jacobs et al., 1991; Hinton et al., 071

2006). Similarly, symbolic or agent-level frame- 072

works that model entire multi-agent pipelines as 073

computational graphs have emerged (Khattab et al., 074

2023a; Zhuge et al.; Zhou et al., 2024). By in- 075

tegrating agents, prompts, and tools into a single 076

optimization process, these frameworks pave the 077

way for data-centric approaches in which perfor- 078

mance and learning signals, rather than manual 079

design, guide architectural decisions (Hinton and 080

Salakhutdinov, 2006; Yao et al., 2022). 081

Building on these insights, we introduce the 082

Agentic Neural Network (ANN), a framework that 083

1



Figure 1: A conceptual comparison between classic neural networks (left) and our ANN (right). In the classic
paradigm, learnable weights and numeric optimizers enable end-to-end training via gradient-based updates. In
ANN, each layer corresponds to a team of language agents whose roles, prompts, and tools can be jointly optimized
through textual gradients.

adapts principles from classic neural networks to084

orchestrate multiple LLM agents. As shown in Fig-085

ure 1, conventional neural networks rely on learn-086

able weights and numeric optimizers for end-to-end087

training via gradient-based updates, whereas ANN088

considers each layer as a team of language agents,089

jointly optimizing roles, prompts, and tools through090

textual gradients (Yuksekgonul et al., 2024). In-091

stead of a purely engineering-driven approach,092

ANN divides a complex task into smaller sub-093

problems, assigning each to a layer of specialized094

agents, and iteratively refines both local design (i.e.,095

agent prompts and configurations) and global co-096

ordination (i.e., inter-layer flows and topologies).097

Our approach proceeds in two stages. First, dur-098

ing the forward agent team generation phase, the099

main task is decomposed into subtasks, with spe-100

cialized agent teams dynamically assigned layer101

by layer, ensuring each layer is responsible for a102

distinct subtask. Then, if performance is subopti-103

mal, the backward agent team optimization phase104

backpropagates textual feedback to isolate errors105

and propose targeted adjustments. These textual106

critiques act like gradient signals, guiding prompt107

updates and connection refinements (Yao et al.,108

2022; Verma, 2024; Khattab et al., 2023a).109

To illustrate this framework’s capabilities, we110

evaluate ANN on four challenging tasks. First,111

MATH probes advanced mathematical reasoning,112

requiring agents to manage multi-step proofs and113

symbolic manipulations. Second, DABench cen-114

ters on data science tasks such as filtering, transfor-115

mation, and analysis. Third, Creative Writing de-116

mands coherent narrative construction and consis-117

tent text generation. Lastly, HumanEval evaluates118

the system’s coding abilities, with strict demands 119

on correctness and efficiency. Our experiments 120

show that ANN not only simplifies MAS design 121

by automating prompt tuning, role assignment, and 122

agents collaboration but also outperforms existing 123

baselines in accuracy. 124

By uniting symbolic agent coordination with 125

connectionist optimization, ANN provides a cohe- 126

sive, data-driven solution that lowers reliance on 127

manual and heuristic engineering. Our results indi- 128

cate that a fully unified perspective—one in which 129

LLM-based agents, prompts, and workflows are 130

co-optimized—could pave the way for more robust 131

and flexible multi-agent systems. 132

2 Related Works 133

In this section, we review the evolution of AI agents 134

into LLM-based systems, discuss the emerging 135

concept of agentic workflows, survey automated 136

methods for optimizing agent configurations, and 137

outline the remaining challenges in multi-agent set- 138

tings. 139

Evolution of AI Agents Early AI agents were 140

highly specialized and depended chiefly on sym- 141

bolic reasoning, as seen in board-game-playing 142

systems like Chess and Go. Subsequent innova- 143

tions introduced reactive and reinforcement learn- 144

ing agents with greater adaptability. More re- 145

cently, LLM-based agents have appeared, incor- 146

porating large-scale language models (Radford and 147

Narasimhan, 2018; Radford et al., 2019; Ouyang 148

et al., 2022) at their foundation. By processing 149

natural language inputs and outputs, these agents 150

enable more flexible, human-like interactions and 151

2



reasoning.152

LLM-Based Agentic Workflows Modern work-153

flows often rely on multiple LLM invocations to154

address complex, multi-step tasks (Wei et al., 2022;155

Madaan et al., 2023; Gao et al., 2022). In these156

agentic workflows, each stage or node corresponds157

to specific subtasks like prompt creation, tool uti-158

lization, or domain-specific strategies (Hong et al.,159

2023; Yang et al., 2023; Cai et al., 2023). Through160

specialized roles—including data analyzers, veri-161

fiers, or debaters—LLM-based agents can collab-162

orate efficiently on a range of domain challenges,163

from code generation (Hong et al., 2024; Lee et al.,164

2023) to advanced data analysis (Li et al., 2024).165

Automated Optimization Approaches As task166

workflows grow more involved, automated meth-167

ods aim to minimize manual engineering. Prompt168

optimization tailors textual inputs to steer LLM169

outputs (Khattab et al., 2023a; Zhuge et al., 2024).170

Hyperparameter tuning fine-tunes model parame-171

ters or scheduling (Liu et al., 2024a), and workflow172

optimization revises entire computational graphs173

or code structures (M. Hu and Zhou, 2024; Zhang174

et al., 2024; Zhuge et al.). Symbolic learning frame-175

works (Hong et al., 2024; Zhuge et al., 2024; Zhou176

et al., 2024) optimize prompts, tools, and node177

configurations collectively, mitigating local optima178

that can emerge from optimizing each component179

independently.180

MAS Integration and Key Challenges In multi-181

agent systems, LLMs facilitate inter-agent com-182

munication, strategic planning, and iterative task183

decomposition (Yao et al., 2022; Wang et al., 2024).184

However, scaling these agents prompts concerns185

about computational overhead, privacy, and the186

opaque “black box” nature of large models (Liu187

et al., 2024b; Verma, 2024). These considerations188

highlight the need for robust design, continuous189

oversight, and data-centric strategies that balance190

performance and interpretability.191

Overall, the field has moved from manually de-192

signed agent architectures to more data-driven,193

automated approaches that harness LLMs’ lan-194

guage capabilities. Despite noteworthy gains in195

prompt tuning, structural optimization, and inte-196

grated workflows, a gap remains for frameworks197

that unify these methods into efficient, adaptable,198

and end-to-end automated systems suited for large-199

scale real-world deployments.200

3 Methodology 201

This section details the Agentic Neural Network 202

(ANN) methodology, a multi-agent system frame- 203

work designed to solve complex, multi-step com- 204

putational tasks. Figure 2 shows the comparison 205

between static and dynamic approaches. ANN is 206

inspired by classic neural networks but replaces nu- 207

merical weight optimizations with dynamic agent- 208

based team selection and iterative textual refine- 209

ment. By structuring multi-agent collaboration 210

hierarchically, ANN enables dynamic role assign- 211

ment, adaptive aggregation, and data-driven coordi- 212

nation improvements through a forward-pass team 213

selection process and a backward-pass optimiza- 214

tion strategy. 215

3.1 Forward Dynamic Team Selection 216

The ANN framework initiates task processing by 217

decomposing the problem into structured subtasks. 218

These subtasks are assigned across multiple layers, 219

where each layer comprises a team of specialized 220

agents working collaboratively on their designated 221

subtask. Unlike static multi-agent workflows, ANN 222

dynamically constructs these teams and their aggre- 223

gation mechanisms based on task complexity. Two 224

primary processes guide this phase: (1) defining 225

the ANN structure and (2) selecting aggregation 226

functions that control how agent outputs are com- 227

bined. 228

3.1.1 Structure of the Agentic Neural 229

Network 230

The architecture of ANN is inspired by neural net- 231

works, where each layer consists of nodes repre- 232

sented by agents. These agents are connected in a 233

sequence that facilitates seamless information flow 234

from one layer to the next, ensuring that outputs 235

from a layer serve as structured inputs for the sub- 236

sequent layer. This modular yet interconnected de- 237

sign enables efficient data processing, flexible task 238

decomposition, and adaptive decision-making. Un- 239

like static agent configurations, ANN dynamically 240

refines its internal collaboration structure based on 241

performance feedback, enhancing scalability and 242

adaptability. 243

3.1.2 Selection of Layer-wise Aggregation 244

Functions 245

At each layer, ANN employs a mechanism to dy- 246

namically determine the most appropriate aggre- 247

gation function, which dictates how outputs from 248

3



Figure 2: Difference between static agentic team and our framework. The left panel illustrates a static agentic team,
where a fixed workflow is predefined for a given task without adaptability. In contrast, the right panel demonstrates
our ANN framework, which dynamically selects and refines agent teams layer by layer. During the forward phase,
ANN constructs task-specific agent teams through dynamic selection mechanisms. If performance does not meet
predefined criteria, the backward phase triggers layer-wise local optimizations and global refinements through
textual feedback and gradient updates.

multiple agents are combined. This selection pro-249

cess considers the specific subtask requirements250

and complexity, ensuring that the most suitable251

collaborative strategy is applied to maximize per-252

formance.253

Let Fℓ be the set of candidate aggregation func-254

tions available for layer ℓ, Iℓ the input to the layer,255

and I the task-specific information. The aggrega-256

tion function selection at each layer is determined257

by258

fℓ = DynamicRoutingSelect(Fℓ, ℓ, Iℓ, I),259

where DynamicRoutingSelect selects candidate260

functions based on task complexity and prior ex-261

ecution trajectory and fℓ represents the selected262

aggregation function. Once an aggregation func-263

tion is selected, the layer processes input as:264

Oℓ = ExecuteLayer(ℓ, fℓ, Iℓ, I),265

where Oℓ serves as the input to the next layer with266

Iℓ+1 = Oℓ. This dynamic aggregation mechanism267

ensures that ANN adapts to changing task condi-268

tions, optimizing efficiency and accuracy in multi-269

agent collaboration.270

3.2 Backward Optimization271

Upon completion of the forward phase, the system272

evaluates its performance. If the predefined per-273

formance thresholds are not met, ANN triggers a 274

backward optimization phase to refine agent inter- 275

actions and aggregation functions at both the global 276

(system-wide) and local (layer-specific) levels. 277

3.2.1 Global Optimization 278

Global optimization analyzes inter-layer coordi- 279

nation, refining interconnections and data flow to 280

improve overall system performance. This pro- 281

cess adjusts aggregation functions and optimizes 282

information transfer across layers to better align 283

with global objectives. Mathematically, the global 284

gradient is computed as: 285

Gglobal = ComputeGlobalGradient(S, τ), 286

where S represents the global workflow, and τ de- 287

notes the trajectory of execution, which includes 288

agent interactions and input-output information 289

transformations. The system structure is then up- 290

dated accordingly 291

Sglobal ← GlobalGradientUpdate(Gglobal, τ). 292

3.2.2 Local Optimization 293

While global optimization refines inter-layer inter- 294

actions, local optimization fine-tunes agents and 295

aggregation functions within each layer, adjusting 296

their parameters based on detailed performance 297

4



feedback. This targeted approach addresses inef-298

ficiencies and bottlenecks identified during exe-299

cution, enhancing overall adaptability. The local300

gradient for each layer is computed as:301

Gtlocal,ℓ = βGglobal + (1− β)302

× ComputeLocalGradient(ℓ, fℓ, τ),303

where β is a weighting factor that balances the304

influence of global optimization and layer-specific305

gradients. In t-th step, the aggregation function is306

updated as307

f t+1
ℓ = f t

ℓ − ηGtlocal,ℓ,308

where η is a step size parameter that regulates up-309

dates.310

Several additional techniques are incorporated311

throughout the pipeline. Figure 2 compares the full312

framework with a static workflow. Additionally, the313

appendix provides pseudo-algorithms and prompts314

used to obtain textual global feedback and local315

gradients.316

Momentum To improve stability, ANN employs317

momentum-based optimization, preventing sudden318

changes in agent parameters. The momentum-319

adjusted update rule is:320

Gtlocal,ℓ′ = αGtlocal,ℓ + (1− α)Gt−1
local,ℓ,321

where α is the momentum coefficient, controlling322

how past updates influence the current optimization323

step.324

Format Validation Ensures that all agent in-325

teractions comply with predefined communication326

protocols, maintaining system reliability and coher-327

ence.328

Performance Validation Regular performance329

assessments validate the efficacy of the optimiza-330

tions, ensuring that each adjustment contributes331

positively to the system’s overall functionality.332

4 Experiments333

In this section, we provide a comprehensive334

overview of our experimental setup, datasets, base-335

lines, and results. We evaluate the proposed Agen-336

tic Neural Network (ANN) across four datasets:337

HumanEval, Creative Writing, MATH, and338

DABench. These datasets are chosen for their di-339

versity and prior usage in related work, allowing340

us to situate our contributions within established341

benchmarks. We divide our experiments into two342

main categories: (i) HumanEval and Creative Writ- 343

ing, following the protocols described in (Zhou 344

et al., 2024), and (ii) MATH and DABench, align- 345

ing with the evaluation approaches in (Song et al., 346

2024). 347

4.1 Datasets 348

HumanEval. The HumanEval dataset (Chen 349

et al., 2021) consists of human-written coding prob- 350

lems requiring the model to generate executable 351

code that correctly solves each problem. It has 352

long been used to benchmark code-generation per- 353

formance for language models. 354

Creative Writing. Following (Zhou et al., 2024), 355

the Creative Writing dataset is comprised of short 356

textual prompts (each consisting of four random 357

sentences) and requires the model or agent to com- 358

pose a coherent narrative ending in these predeter- 359

mined sentences. Unlike standard benchmark tasks, 360

Creative Writing emphasizes open-ended genera- 361

tion, coherence, and creativity. 362

MATH. We also evaluate on MATH (Hendrycks 363

et al., 2021), a collection of high-level competition 364

math problems encompassing diverse mathemati- 365

cal fields. This dataset is widely recognized as a 366

rigorous benchmark for logical reasoning and sym- 367

bolic manipulation. We note that MATH problems 368

often involve step-by-step reasoning and multi- 369

stage computations, providing a challenging test- 370

ing ground for multi-agent coordination and textual 371

gradient refinement. 372

DABench. Finally, we use DABench (Hu et al., 373

2024) for data-analysis tasks, including feature en- 374

gineering, statistical computations, and real-world 375

data manipulations. As per (Song et al., 2024), we 376

employ a random split into training and validation 377

sets. DABench’s tasks not only require robust cod- 378

ing and data manipulation skills but also demand a 379

coherent workflow for reading, transforming, and 380

interpreting data. 381

4.2 Experimental Settings 382

Overview of Training and Validation. Follow- 383

ing the practice in both (Zhou et al., 2024) and 384

(Song et al., 2024), we split dataset into training 385

set and validation set for each dataset. However, 386

each reference employs a slightly different splitting 387

strategy: 388

1. HumanEval & Creative Writing. We adopt the 389

ratio and split procedure described in (Zhou 390

5



et al., 2024), ensuring direct comparability to391

their reported baselines.392

2. MATH & DABench (Adaptive protocol). We393

follow (Song et al., 2024), who suggest a ran-394

dom subset for training and another subset395

for validation in their ablation studies. Each396

dataset’s split ratio is consistent with their rec-397

ommended setting.398

LLM Backbones To contain costs and yet main-399

tain strong performance, we unify the training pro-400

cess using only the GPT-4o mini model (Achiam401

et al., 2023). Concretely, all fine-tuning, agent402

configuration, and prompt optimizations are car-403

ried out on 4o mini. Then, during validation, we404

evaluate each dataset with three backbone variants:405

GPT-3.5, GPT-4o mini, and GPT-4. This proce-406

dure allows us to:407

1. Demonstrate how our approach generalizes408

across different model capacities,409

2. Compare against prior work that primarily re-410

ports results on GPT-3.5 or GPT-4,411

3. Highlight that 4o mini, even though it is lower-412

cost, achieves competitive (often superior)413

performance relative to existing baselines, ef-414

fectively bridging a cost-effectiveness gap in415

agent-based experimentation.416

Because neither (Zhou et al., 2024) nor (Song et al.,417

2024) report 4o mini results, our findings add a new418

dimension to the performance landscape, showing419

how a budget-friendly large language model can420

still match or surpass top-tier methods on standard421

tasks. By training on GPT-4o mini (see details422

below) and validating on multiple LLM backbones,423

we aim to demonstrate the flexibility and robustness424

of our framework in real-world various scenarios.425

Baselines and Comparisons. We compare ANN426

(ours) with various baseline approaches, each427

drawn from the references: GPTs (Brown et al.,428

2020; Chen et al., 2021) – A direct usage of GPT-429

based models with carefully designed prompts.430

Agents (Zhou et al., 2023) – A language-agent431

method that organizes multi-step reasoning and432

tool usage through a pipeline of prompts. Agents433

w/ AutoPE (Yang et al., 2024) – A variant wherein434

each prompt node is optimized by an LLM, but435

without full language gradient back-propagation.436

DSPy/ToT (Khattab et al., 2023b) – A pipeline op-437

timization framework that performs search-based438

Method HumanEval Creative Writing

3.5/4o mini/4 3.5/4o mini/4

GPTs 59.2 / - / 71.7 4.0 / - / 6.0

Agents 59.5 / - / 85.0 4.2 / - / 6.0

Agents w/ AutoPE 63.5 / - / 82.3 4.4 / - / 6.5

DSPy / ToT 66.7 / - / 77.3 3.8 / - / 6.8

Symbolic 64.5 / - / 85.8 6.9 / - / 7.4

ANN (ours) 72.7 / 93.9 / 87.8 9.0 / 8.6 / 7.9

Table 1: Comparison results on HumanEval and Cre-
ative Writing benchmarks. The best results in each
category are marked in bold.

tuning of prompt components. Applicable mostly 439

to tasks with a tractable evaluation function. Sym- 440

bolic (Zhou et al., 2024) – An agent-based system 441

employing symbolic learning methods for dynamic 442

prompt improvements. Vanilla LLM – A single- 443

turn GPT-based approach without agent collabora- 444

tion. Meta-prompting (Suzgun and Kalai, 2024) 445

– An adaptive prompting strategy that attempts to 446

generate meta-level instructions for new tasks. Au- 447

toAgents (Chen et al., 2024) – An automated agent 448

system that attempts to orchestrate multi-agent in- 449

teractions but can be unstable in large-scale settings. 450

DyLAN (Liu et al., 2024c) – A dynamic language- 451

agent approach to break down tasks with feedback 452

loops. AgentVerse (Chen et al., 2023) – A multi- 453

agent platform emphasizing flexible agent compo- 454

sition. AutoGen (Wu et al., 2023) – A system fea- 455

turing an “Assistant + Executor” design for multi- 456

step problem-solving. Captain Agent (Song et al., 457

2024) – An adaptive team-building agent frame- 458

work that spawns specialized sub-agents based on 459

task progress. 460

Unless otherwise stated, the baseline results in 461

Table 1 (HumanEval and Creative Writing) are 462

taken from (Zhou et al., 2024), while those in Ta- 463

ble 2 (MATH and DABench) are from (Song et al., 464

2024). Since none of these works tested on 4o mini, 465

we omit highlighting the best results for 4o mini in 466

the tables. 467

4.3 Experimental Results 468

4.3.1 Main Results 469

Table 1 compares our method with prior approaches 470

on HumanEval and Creative Writing. Because 471

(Zhou et al., 2024) provide baseline results only 472

for GPT-3.5 and GPT-4, we supplement these with 473

our own evaluations under 4o mini for a thorough 474

comparison. We note the following key findings: 475

6



Method MATH DABench

3.5 / 4o mini / 4 3.5 / 4o mini / 4

Vanilla LLM - / - / 51.53 - / - / 6.61

Meta-
prompting - / - / 68.88 - / - / 39.69

AutoAgents - / - / 56.12 - / - / 57.98

DyLAN - / - / 62.24 - / - / -

AgentVerse - / - / 69.38 - / - / -

AutoGen - / - / 74.49 - / - / 82.88

Captain Agent - / - / 77.55 - / - / 88.32

ANN (ours) 55.0 / 82.5 / 80.0 76.0 / 95.0 / 92.0

Table 2: Comparison results on the MATH and
DABench datasets. The best results in each category are
marked in bold.

• Humaneval: Our ANN approach consistently476

surpasses all baselines. On HumanEval, we477

achieve 72.7% and 87.8% for GPT-3.5 and478

GPT-4, respectively, outperforming the best479

baseline by a clear margin. Notably, even our480

4o mini results 93.9/% show competitive or481

superior performance despite 4o mini being a482

lower-cost model.483

• Creative Writing: For open-ended text gen-484

eration, our method scores 9.0/7.9 on GPT-485

3.5/GPT-4. We attribute this to ANN’s struc-486

tured “layerwise” approach, which fosters cre-487

ative synergy among specialized agents while488

maintaining logical consistency in narrative489

structure.490

Next, in Table 2, we contrast our method with491

baseline results from (Song et al., 2024) on MATH492

and DABench. Again, (Song et al., 2024) report493

GPT-3.5 and GPT-4 but omit 4o mini. Observations494

include:495

• MATH: We record 55.0, 82.5, and 80.0 across496

GPT-3.5, 4o mini, and GPT-4. Despite using497

4o mini in training, our method exhibits strong498

generalization to both GPT-3.5 and GPT-4.499

On GPT-4, our 80.0% accuracy significantly500

outperforms Captain Agent (77.55%) and Au-501

toGen (74.49%).502

• DABench: On data-analysis tasks, ANN at-503

tains 75.6, 95.0, and 88.88 on GPT-3.5, 4o504

mini, and GPT-4, respectively, consistently505

outperforming prior baselines. We observe506

that 4o mini again surprisingly yields top-507

tier results (95.0), indicating that data-centric508

tasks can benefit from well-structured agent 509

orchestration without always requiring the 510

largest language models. 511

Experiments demonstrate that the multi-agent ar- 512

chitecture discovered by our ANN framework, even 513

when using the weaker GPT-4o-mini, can general- 514

ize effectively to more powerful LLMs, achieving 515

superior performance. Additionally, our results 516

highlight GPT-4o mini as a cost-effective yet high- 517

performing alternative, reinforcing ANN’s robust- 518

ness across different model scales. 519

4.4 Ablation Studies 520

We conduct a unified ablation study using only 4o 521

mini to further investigate the design choices in our 522

ANN framework. Specifically, we compare four 523

variants: 524

1. Full ANN: Our complete approach with 525

momentum-based optimization, validation- 526

based performance checks, and backward op- 527

timization. 528

2. w/o Momentum: Disables the momentum 529

technique in textual gradient refinement. 530

3. w/o Validation Performance: Skips the 531

validation-based filtering stage when selecting 532

improved prompts and agent roles. 533

4. w/o Backward Optimization: Does not use 534

the backward pass to refine prompts; i.e., 535

omits textual gradients for “error signals.” 536

Training Procedure. All four variants are 537

trained for 20 epochs on each dataset (HumanEval, 538

Creative Writing, MATH, DABench) using the 539

training splits described above. To mitigate the 540

randomness inherent in LLM sampling, we repeat 541

each condition three times and report the average 542

results on the validation set at regular epoch inter- 543

vals. 544

Results and Analysis. Figure 3 illustrates the 545

validation accuracy (or relevant score) as a function 546

of training epoch. We observe a consistent upward 547

trend across all four datasets, with the full ANN 548

approach converging to the highest performance. 549

Detailed findings: 550

• Impact of Momentum: Removing momen- 551

tum (w/o Momentum) leads to the largest per- 552

formance drop on HumanEval, suggesting that 553

7



Figure 3: Ablation results on HumanEval, Creative Writing, MATH and DABench, each using 4o mini for training
and validation. We compare the full ANN framework against variants that remove momentum (w/o Momentum),
remove validation performance checks (w/o Validation), and remove backward textual optimization (w/o Backward).
Performance trends upward with more epochs, showing the critical role of each component.

gradual accumulation of textual gradient sig-554

nals is crucial for code-generation tasks that555

require precise correctness.556

• Validation-Based Checks: Omitting valida-557

tion performance filtering can cause more er-558

ratic updates, particularly evident in MATH,559

where narrative consistency can degrade if560

suboptimal agent prompts are accepted too561

frequently.562

• Backward Optimization: Without the back-563

ward pass, we lose a key mechanism for pin-564

pointing errors and refining agent roles. This565

shortfall manifests in weaker improvements566

per epoch, especially on the mathematically567

oriented Creative Writing dataset.568

Overall, our ablation highlights that each compo-569

nent contributes significantly to performance, and570

combining them yields the most reliable and robust571

improvements.572

5 Future Work573

Although our current ANN framework provides574

a flexible mechanism for agent configuration and575

task partitioning, it still depends substantially on576

manually defined initial structure candidates and577

node prompts, limiting its adaptability to diverse578

domains. A more automated strategy, such as meta-579

prompt learning (S. Hu and Clune, 2024; Yin et al.,580

2024), could reduce reliance on human-crafted tem-581

plates by generating initial layouts from accumu-582

lated agent experience. Another challenge is that583

as the number of candidate teams grows, computa-584

tional overhead increases, making it less efficient585

to identify the most effective teams. Advanced586

pruning techniques, such as periodic pruning and587

performance-driven filtering, could be integrated588

in future work to enhance efficiency while pre-589

serving diversity. Moreover, current agent roles590

are largely static once a team is instantiated, re- 591

stricting flexibility for highly intricate or evolv- 592

ing tasks. Introducing a dynamic role adjustment 593

mechanism that reacts in real time to changing re- 594

quirements would enhance adaptability and task 595

performance. Finally, although momentum-based 596

optimization and structured optimization strategies 597

have been proposed, they have not yet been deeply 598

integrated into one cohesive approach. Addressing 599

these directions—meta-prompt learning, pruning, 600

dynamic role reassignment, and enhanced optimiza- 601

tion—would equip ANN to become a more pow- 602

erful, efficient, and versatile platform for dynamic 603

multi-agent collaboration. 604

6 Conclusion 605

Our experimental results establish that ANN 606

achieves high accuracy and adaptability across 607

tasks ranging from code generation to creative 608

writing, surpassing traditional static configurations. 609

Through a dynamic formation of agent teams and 610

a two-phase optimization pipeline, the framework 611

delivers robust performance rooted in neural net- 612

work design principles. These findings underscore 613

the potential of ANN as a scalable and efficient so- 614

lution for orchestrating complex multi-agent work- 615

flows. Detailed ablation studies highlight the sig- 616

nificance of each component. Ultimately, this in- 617

tegrated agentic paradigm paves the way for fully 618

automated multi-agent systems, effectively com- 619

bining symbolic coordination with connectionist 620

optimization. 621

7 Limitations 622

Despite its advantages, the Agentic Neural Network 623

framework has limitations. Its reliance on manually 624

defined structures and prompts reduces adaptabil- 625

ity across tasks, which could be improved through 626

meta-prompt learning to automate structure genera- 627

8



tion. Moreover, candidate selection becomes com-628

putationally expensive as the pool grows, requiring629

periodic pruning, though this risks homogenization,630

which could be mitigated by stochastic retention of631

lower-ranked candidates. Furthermore, while ANN632

dynamically selects aggregation functions, agent633

roles remain fixed, limiting adaptability to evolv-634

ing tasks, which could be improved by allowing635

agents to adjust roles based on real-time feedback.636

Future work will address these limitations by in-637

tegrating meta-prompt learning, adaptive pruning,638

and dynamic role adjustments to enhance ANN’s639

scalability and adaptability.640

Potential Risks While the Agentic Neural Net-641

work (ANN) offers enhanced adaptability and ef-642

ficiency in multi-agent collaboration, it also in-643

troduces potential risks. One concern is the in-644

terpretability of emergent agent behaviors, as dy-645

namically evolving agent teams may develop com-646

plex interaction patterns that are difficult to analyze647

or debug. Additionally, increased computational648

demands from iterative optimization cycles could649

limit scalability in resource-constrained environ-650

ments, requiring careful management to balance651

performance with efficiency.652

References653

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama654
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,655
Diogo Almeida, Janko Altenschmidt, Sam Altman,656
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.657
arXiv preprint arXiv:2303.08774.658

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie659
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind660
Neelakantan, Pranav Shyam, Girish Sastry, Amanda661
Askell, Sandhini Agarwal, Ariel Herbert-Voss,662
Gretchen Krueger, Tom Henighan, Rewon Child,663
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,664
Clemens Winter, Christopher Hesse, Mark Chen,665
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin666
Chess, Jack Clark, Christopher Berner, Sam Mc-667
Candlish, Alec Radford, Ilya Sutskever, and Dario668
Amodei. 2020. Language models are few-shot learn-669
ers. Preprint, arXiv:2005.14165.670

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,671
and Denny Zhou. 2023. Large language models as672
tool makers. ArXiv, abs/2305.17126.673

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,674
Jaward Sesay, Börje F. Karlsson, Jie Fu, and Yemin675
Shi. 2024. Autoagents: A framework for automatic676
agent generation. Preprint, arXiv:2309.17288.677

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming678
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-679

plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 680
Greg Brockman, Alex Ray, Raul Puri, Gretchen 681
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 682
try, Pamela Mishkin, Brooke Chan, Scott Gray, 683
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 684
Kaiser, Mohammad Bavarian, Clemens Winter, 685
Philippe Tillet, Felipe Petroski Such, Dave Cum- 686
mings, Matthias Plappert, Fotios Chantzis, Eliza- 687
beth Barnes, Ariel Herbert-Voss, William Hebgen 688
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 689
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 690
William Saunders, Christopher Hesse, Andrew N. 691
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 692
Morikawa, Alec Radford, Matthew Knight, Miles 693
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 694
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 695
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 696
ing large language models trained on code. Preprint, 697
arXiv:2107.03374. 698

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 699
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Ya-Ting 700
Lu, Yi-Hsin Hung, Cheng Qian, Yujia Qin, Xin Cong, 701
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie 702
Zhou. 2023. Agentverse: Facilitating multi-agent 703
collaboration and exploring emergent behaviors. In 704
International Conference on Learning Representa- 705
tions. 706

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 707
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 708
ham Neubig. 2022. Pal: Program-aided language 709
models. ArXiv, abs/2211.10435. 710

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 711
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo, 712
Meng Wang, and Haofen Wang. 2023. Retrieval- 713
augmented generation for large language models: A 714
survey. ArXiv, abs/2312.10997. 715

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 716
Arora, Steven Basart, Eric Tang, Dawn Song, and 717
Jacob Steinhardt. 2021. Measuring mathematical 718
problem solving with the math dataset. Preprint, 719
arXiv:2103.03874. 720

Geoffrey E Hinton, Simon Osindero, and Yee-Whye 721
Teh. 2006. A fast learning algorithm for deep belief 722
nets. Neural computation, 18(7):1527–1554. 723

Geoffrey E. Hinton and Ruslan Salakhutdinov. 2006. 724
Supporting online material for reducing the dimen- 725
sionality of data with neural networks. 726

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, 727
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang, 728
Lingyao Zhang, Mingchen Zhuge, Taicheng Guo, 729
Tuo Zhou, Wei Tao, Wenyi Wang, Xiangru Tang, 730
Xiangtao Lu, Xinbing Liang, Yaying Fei, Yuheng 731
Cheng, Zhibin Gou, Zongze Xu, Chenglin Wu, 732
Li Zhang, Min Yang, and Xiawu Zheng. 2024. Data 733
interpreter: An llm agent for data science. ArXiv, 734
abs/2402.18679. 735

Sirui Hong, Xiawu Zheng, Jonathan P. Chen, Yuheng 736
Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing 737

9

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:258947222
https://api.semanticscholar.org/CorpusID:258947222
https://api.semanticscholar.org/CorpusID:258947222
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://api.semanticscholar.org/CorpusID:263831900
https://api.semanticscholar.org/CorpusID:263831900
https://api.semanticscholar.org/CorpusID:263831900
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://api.semanticscholar.org/CorpusID:262637400
https://api.semanticscholar.org/CorpusID:262637400
https://api.semanticscholar.org/CorpusID:262637400
https://api.semanticscholar.org/CorpusID:268063292
https://api.semanticscholar.org/CorpusID:268063292
https://api.semanticscholar.org/CorpusID:268063292


Yau, Zi Hen Lin, Liyang Zhou, Chenyu Ran,738
Lingfeng Xiao, and Chenglin Wu. 2023. Metagpt:739
Meta programming for multi-agent collaborative740
framework. ArXiv, abs/2308.00352.741

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin742
Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming743
Zhu, Yao Cheng, Jianbo Yuan, Kun Kuang, Yang744
Yang, Hongxia Yang, and Fei Wu. 2024. Infiagent-745
dabench: Evaluating agents on data analysis tasks.746
ArXiv, abs/2401.05507.747

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,748
and Geoffrey E Hinton. 1991. Adaptive mixtures of749
local experts. Neural computation, 3(1):79–87.750

Carlos E. Jimenez, John Yang, Alexander Wettig,751
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik752
Narasimhan. 2024. Swe-bench: Can language mod-753
els resolve real-world github issues? Preprint,754
arXiv:2310.06770.755

O. Khattab, Arnav Singhvi, Paridhi Maheshwari,756
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-757
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.758
Joshi, Hanna Moazam, Heather Miller, Matei Zaharia,759
and Christopher Potts. 2023a. Dspy: Compiling760
declarative language model calls into self-improving761
pipelines. ArXiv, abs/2310.03714.762

O. Khattab, Arnav Singhvi, Paridhi Maheshwari,763
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-764
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.765
Joshi, Hanna Moazam, Heather Miller, Matei Za-766
haria, and Christopher Potts. 2024. Dspy: Compiling767
declarative language model calls into state-of-the-art768
pipelines. In International Conference on Learning769
Representations.770

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,771
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-772
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.773
Joshi, Hanna Moazam, Heather Miller, Matei Zaharia,774
and Christopher Potts. 2023b. Dspy: Compiling775
declarative language model calls into self-improving776
pipelines. Preprint, arXiv:2310.03714.777

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-778
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-779
guage models are zero-shot reasoners.780

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,781
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee782
Kim. 2023. Who wrote this code? watermarking for783
code generation. arXiv preprint arXiv:2305.15060.784

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio785
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-786
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-787
täschel, Sebastian Riedel, and Douwe Kiela. 2020.788
Retrieval-augmented generation for knowledge-789
intensive nlp tasks. ArXiv, abs/2005.11401.790

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao,791
Ge Qu, Yurong Wu, Chenhao Ma, Jian-Guang Lou,792

and Reynold Cheng. 2024. Tapilot-crossing: Bench- 793
marking and evolving llms towards interactive data 794
analysis agents. arXiv preprint arXiv:2403.05307. 795

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir 796
Zaki, Bedoor AlShebli, and Talal Rahwan. 2024a. 797
Self-reflection outcome is sensitive to prompt con- 798
struction. 799

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir 800
Zaki, Bedoor AlShebli, and Talal Rahwan. 2024b. 801
Self-reflection outcome is sensitive to prompt con- 802
struction. 803

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi 804
Yang. 2024c. A dynamic llm-powered agent network 805
for task-oriented agent collaboration. 806

T. Lin M. Hu and C. Zhou. 2024. Adas: An automatic 807
design framework for agent systems using llm-based 808
optimization. arXiv preprint arXiv:2401.05507. 809

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 810
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 811
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 812
Sean Welleck, Bodhisattwa Prasad Majumder, 813
Shashank Gupta, Amir Yazdanbakhsh, and Peter 814
Clark. 2023. Self-refine: Iterative refinement with 815
self-feedback. ArXiv, abs/2303.17651. 816

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, 817
Carroll L. Wainwright, Pamela Mishkin, Chong 818
Zhang, Sandhini Agarwal, Katarina Slama, Alex 819
Ray, John Schulman, Jacob Hilton, Fraser Kelton, 820
Luke E. Miller, Maddie Simens, Amanda Askell, Pe- 821
ter Welinder, Paul Francis Christiano, Jan Leike, and 822
Ryan J. Lowe. 2022. Training language models to 823
follow instructions with human feedback. ArXiv, 824
abs/2203.02155. 825

Cheng Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu- 826
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang, 827
Zhiyuan Liu, and Maosong Sun. 2024. Scaling 828
large-language-model-based multi-agent collabora- 829
tion. ArXiv, abs/2406.07155. 830

Alec Radford and Karthik Narasimhan. 2018. Im- 831
proving language understanding by generative pre- 832
training. 833

Alec Radford, Jeff Wu, Rewon Child, David Luan, 834
Dario Amodei, and Ilya Sutskever. 2019. Language 835
models are unsupervised multitask learners. 836

C. Lu S. Hu and J. Clune. 2024. Automated design of 837
agentic systems. arXiv preprint arXiv:2408.08435. 838

Noah Shinn, Federico Cassano, Beck Labash, Ashwin 839
Gopinath, Karthik Narasimhan, and Shunyu Yao. 840
2023. Reflexion: language agents with verbal re- 841
inforcement learning. In Neural Information Pro- 842
cessing Systems. 843

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, 844
Ao Luo, Shijian Wang, Qingyun Wu, and Chi Wang. 845
2024. Adaptive in-conversation team building for 846
language model agents. Preprint, arXiv:2405.19425. 847

10

https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:266933185
https://api.semanticscholar.org/CorpusID:266933185
https://api.semanticscholar.org/CorpusID:266933185
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:263671701
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://api.semanticscholar.org/CorpusID:271532771
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:270379482
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2405.19425


Mirac Suzgun and Adam Tauman Kalai. 2024. Meta-848
prompting: Enhancing language models with task-849
agnostic scaffolding. Preprint, arXiv:2401.12954.850

Ashwin Verma. 2024. Advances in Multi-agent De-851
cision Making Systems with Adaptive Algorithms.852
Ph.D. thesis, University of California, San Diego.853

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen,854
and Sercan Ö. Arık. 2024. Astute rag: Overcom-855
ing imperfect retrieval augmentation and knowledge856
conflicts for large language models.857

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten858
Bosma, Ed H. Chi, F. Xia, Quoc Le, and Denny Zhou.859
2022. Chain of thought prompting elicits reasoning860
in large language models. ArXiv, abs/2201.11903.861

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,862
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,863
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-864
lah, Ryen W White, Doug Burger, and Chi Wang.865
2023. Autogen: Enabling next-gen llm applications866
via multi-agent conversation.867

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao868
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.869
2023. Large language models as optimizers. ArXiv,870
abs/2309.03409.871

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,872
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.873
Large language models as optimizers. Preprint,874
arXiv:2309.03409.875

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak876
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.877
React: Synergizing reasoning and acting in language878
models. ArXiv, abs/2210.03629.879

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun880
Wan, and William Yang Wang. 2024. G\" odel agent:881
A self-referential agent framework for recursive self-882
improvement. arXiv preprint arXiv:2410.04444.883

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,884
Sheng Liu, Zhi Huang, Carlos Guestrin, and James885
Zou. 2024. Textgrad: Automatic "differentiation" via886
text. Preprint, arXiv:2406.07496.887

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,888
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin889
Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng,890
Bang Liu, Yuyu Luo, and Chenglin Wu. 2024. Aflow:891
Automating agentic workflow generation.892

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,893
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,894
Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu895
Chen, Wentao Zhang, Xiangru Tang, Ningyu Zhang,896
Huajun Chen, Peng Cui, and Mrinmaya Sachan. 2023.897
Agents: An open-source framework for autonomous898
language agents. Preprint, arXiv:2309.07870.899

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long 900
Li, Jialong Wu, Tiannan Wang, Jiamin Chen, 901
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Hua- 902
jun Chen, and Yuchen Eleanor Jiang. 2024. Sym- 903
bolic learning enables self-evolving agents. Preprint, 904
arXiv:2406.18532. 905

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, 906
Francesco Faccio, Dmitrii Khizbullin, and Jürgen 907
Schmidhuber. Gptswarm: Language agents as opti- 908
mizable graphs. In Forty-first International Confer- 909
ence on Machine Learning. 910

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, 911
Francesco Faccio, Dmitrii Khizbullin, and Jürgen 912
Schmidhuber. 2024. Language agents as optimizable 913
graphs. ArXiv, abs/2402.16823. 914

11

https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2401.12954
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://api.semanticscholar.org/CorpusID:261582296
https://arxiv.org/abs/2309.03409
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532
https://api.semanticscholar.org/CorpusID:268032156
https://api.semanticscholar.org/CorpusID:268032156
https://api.semanticscholar.org/CorpusID:268032156


A appendix 915

A.1 Pseudo Code 916

This section provides pseudocode for the system’s 917

overall architecture and the local gradient optimiza- 918

tion process. Algorithm 1 outlines how the network 919

leverages a dynamic routing mechanism alongside 920

an agentic neural network structure, integrating 921

both global optimization and layerwise optimiza- 922

tion. Dynamic routing selects the most suitable 923

path for a given task, thereby enhancing overall sys- 924

tem performance and stability. Global optimization 925

steers the entire network toward optimal solutions, 926

while layerwise optimization fine-tunes each layer 927

for improved learning efficiency and reliability. Al- 928

gorithm 2 focuses on local optimization within each 929

specialized layer. By applying localized gradient 930

updates, each module can concentrate on its respec- 931

tive sub-task. Such targeted adjustments accelerate 932

convergence, improve learning efficiency, and, in 933

conjunction with the global optimization strategy, 934

enhance the system’s overall performance. 935

A.2 Prompt Examples 936

This section serves as a Prompt Template dedicated 937

to defining the Loss Function and Optimizer used 938

in our system. By systematically tailoring the loss 939

function and choosing the most suitable optimizer 940

strategies, this template enhances the model’s abil- 941

ity to learn effectively and improve overall perfor- 942

mance. 943

A.3 Team Structure Examples with 944

optimization 945

This section describes the evolutionary process of 946

nodes within the system, illustrating how they tran- 947

sition from an initial linear architecture to more 948

sophisticated, graph-based structures. By monitor- 949

ing performance, synergy, and task requirements, 950

the network dynamically reconfigures its connec- 951

tions. This adaptive strategy allows for enhanced 952

connectivity, efficient information flow, and robust 953

cooperative behavior among nodes, ultimately lead- 954

ing to improved performance, and greater scalabil- 955

ity. 956

12



Algorithm 1 Agentic Neural Network with Dynamic Routing and Adaptive Optimization

Require: I: dataset input; L: layers in the workflow; Fℓ: set of possible aggregation functions for each
layer ℓ; S: workflow updation for optimization

Ensure: Updated structure and prompts for the agentic neural network
1: Traj← [] ▷ Initialize Trajectory
2: Iℓ ← I ▷ Initialize input of first layer
3: Forward Pass with Dynamic Routing and Aggregation
4: for each layer ℓ in L do
5: fℓ ← DynamicRoutingSelect(Fℓ, ℓ, Iℓ, I) ▷ fℓ: selected agg. function
6: Oℓ ← ExecuteLayer(ℓ, fℓ, Iℓ, I) ▷ Oℓ: output of layer ℓ
7: Append (ℓ, fℓ, Iℓ, Oℓ) to Traj
8: Iℓ+1 ← Oℓ ▷ Iℓ+1: input to the next layer
9: end for

10: Back-propagation:
11: Global Optimization
12: Gglobal ← ComputeGlobalGradient(S,Traj) ▷ Compute global gradient
13: Sglobal ← GlobalGradientUpdate(Gglobal,Traj) ▷ Sglobal: Update workflow in global level
14: Layerwise Optimization
15: for each layer ℓ in reverse(L) do
16: Gtlocal,ℓ ← ComputeLocalGradient(ℓ, fℓ,Traj,Lglobal) ▷ Compute local gradient
17: if momentum_needed then
18: Slocal ← LocalGradientUpdate(ℓ, fℓ,Gtlocal,ℓ,Sglobal) ▷ Slocal: Update layer-wise workflow
19: else
20: Gtlocal,ℓ′ ← ApplyMomentum(ℓ,Traj,Gtlocal,ℓ,G

t−1
local,ℓ) ▷ Gtlocal,ℓ′ : Adjusted gradient

21: Slocal ← LocalGradientUpdate(ℓ, fℓ,Gtlocal,ℓ′ ,Sglobal) ▷ Slocal: Update layer-wise workflow
22: end for
23: return (Fℓ,Traj) ▷ Return updated Fℓ

13



Algorithm 2 LocalGradientUpdate

Require: ℓ: current layer; fℓ: selected aggregation function; Traj: trajectory of execution; Gglobal: global
gradient; Sglobal: current global structure; Fℓ: set of possible aggregation functions for each layer ℓ

Ensure: Updated global structure Sglobal and valid aggregation function fℓ
1: Glocal,ℓ ← ComputeLocalGradient(ℓ, fℓ,Traj,Gglobal) ▷ Compute local gradient in layer ℓ
2: Slocal ← LocalGradientUpdate(ℓ, fℓ,Glocal,ℓ, Sglobal): ▷ Slocal: Update layer-wise workflow
3: for k ← 1 to 3 do ▷ Attempt up to 3 updates
4: f ′

ℓ ← LocalGradientUpdate(ℓ, fℓ,Glocal,ℓ, Sglobal)
5: ValidateUpdate (f ′

ℓ): ▷ If update passes validation
6: Node Validation:
7: if VariableSourcesValid(f ′

ℓ) & FormatValid(f ′
ℓ) then

8: Edge Validation:
9: if AllNodesHaveEdges(f ′

ℓ) then
10: Structure Validation:
11: if StructureNotUnique(f ′

ℓ) then
12: if ValidatePerformance(f ′

ℓ, fℓ) then
13: Append f ′

ℓ to Fℓ ▷ add new agg func f ′
ℓ into Fℓ

14: break ▷ Exit update loop on success
15: end if
16: end if
17: end if
18: end if
19: end for
20: return Sglobal

A.2.1 Prompt Template for Language Loss Function
You are a helpful AI assistant. You will use your math skills to verify the answer.
You are given:
1. A problem: {problem}
2. Reply with the answer to the problem: {final_answer}
3. A ground truth answer: {solution}
Please do the following:
Extract the answer in the reply: "The answer is <answer extracted>".
Check whether the answer in the reply matches the ground truth answer.
After everything is done, please choose and only output a reply from the following options:
1. "The answer is correct."
2. "The answer is approximated but should be correct."
3. "The answer is incorrect. Correct Answer: <ground truth answer></ground truth answer> | Answer
extracted: <answer extracted></answer extracted>."
4. "The reply doesn’t contain an answer."

14



A.2.2 Loss with ground truth and score:
Evaluate the following creative writing piece based on the provided task requirements.
Task Description: {task_prompt}
Creative Writing Output: {finalized_text_from_last_layer}
Evaluation Criteria:
- Logical coherence: Is the text logically organized?
- Emotional engagement: Does the text evoke the desired emotions?
- Adherence to task requirements: Does the text align with the original task prompt?
- Creativity: Is the text original and imaginative?
Output Format:
- Coherence: [Score out of 10, with a brief explanation]
- Engagement: [Score out of 10, with a brief explanation]
- Adherence: [Score out of 10, with a brief explanation]
- Creativity: [Score out of 10, with a brief explanation]
- Suggestions for Improvement: [Text]
- Overall Score: [Score out of 10]

15



A.2.3 Prompt Template for Gradient Back-propagation
Task Description:
You are an advanced global workflow analysis assistant tasked with diagnosing inefficiencies and
proposing optimizations for a multi-step process. Your goal is to analyze the workflow trajectory and
determine which aspects need improvement to address task failures and enhance overall performance.
Instructions:
You will evaluate the provided consolidated information from a workflow task. Identify
which sub-task outputs or prompts likely caused the failure and provide specific suggestions
for each subtask. Your output should be concise and only structured like this output format:
<output_format>{example_global_loss_format}</output_format>.
Notice:
All analyses and suggestions should be based on a general level rather than providing very
targeted suggestions for this specific task. All needed information for global optimization are
provided:{initial_solution} For this global optimization, consider the following:
1. Final Result Evaluation: <final result> to determine if the task failed.
2. Solution Comparison:Compare the <canonical solution> and <generated solution>:
- Is the logic in the <generated solution> aligned with the <canonical solution>?
- Where is the gap between the analysis and the standard answer?
- Pinpoint specific issues in the <generated solution> that contributed to the failure.
- Write your findings into the ’global_analysis’ section of the <output_format>.
3. Block Input and Output Analysis:
Based on the <task description>, analyze the <workflow trajectory> to:
- Do not compare the output of each block with <canonical solution>. Instead, analyze which block
the problem occurred.
- Examine the block_input and block_output of each block.
- Identify which block (or blocks) caused the task to fail.
- Identify inefficiencies or redundancies in the processing of the <workflow trajectory>.
- Document these optimization suggestions in the ’structure_suggestion’ section of the corresponding
block in the <output_format>.
- Review the block_description of these blocks from <workflow trajectory>. If any modifications
are necessary, provide suggestions and document them in the ’prompt_suggestions’ section of the
corresponding block in the <output_format>. If modifications are not necessary, please don’t give any
extra suggestion.
4. Node-Level Analysis within Blocks: Based on the block(s) identified in the previous step, conduct a
detailed analysis of the node_input and node_output for each node within the problematic block(s)
from <workflow trajectory>:
- Evaluate whether the team collaboration structure or workflow within the block is effective.
- Propose specific adjustments to the team collaboration structure, if required.
- Document these optimization suggestions in the ’structure_suggestion’ section of the corresponding
block in the <output_format>.

16



A.2.4 Layer Optimizer
You will evaluate the provided information for a specific block of the workflow. Your task is to suggest
optimizations for this block, focusing on both prompt improvements and structural changes, while
ensuring consistency and efficiency.
Block Information
1. Block Name: <block_name> {block_name} </block_name> 2. Global Loss Feedback: <global loss
feedback>
{global_loss_feedback} </global_loss_feedback>. (This is feedback for the entire workflow in the global
optimization stage. Use it as a reference, but base final modification suggestions on the best optimization
solution for each layer.)
3. You should give feedback based on this blocksLog mentioned structure. Blocks Log is a record of the
running track of the entire workflow when executing this task. It includes the architecture of the entire
workflow, every node’s input and output, and important information about all blocks and nodes. Blocks
Log: {blocks_log}.
4. canonical solution of this task: <canonical solution> {canonical_solution} </canonical_solution>
5. Current task description: <current_task_ description> {task_prompt} </current_task_description>
Notice:
1. Evaluate Each Node:
- Check the ‘input_variables‘ for each node to ensure they are valid and consistent. Valid sources for input
variables include:
- Known state variables available in the workflow:
- "task_data", "task_prompt","task_id".
- Explanation:
- "task_data": Detailed task data including ID, prompt, and solutions (rarely used due to verbosity).
- "task_prompt": Description of the current task.
- "task_id": ID of the current task.
- Outputs of preceding nodes in the block, referenced by their node names (e.g., calculation_expert1_output
refers to the ‘node_output‘ of the node named calculation_expert1).
- If ‘block_name‘ is ‘ProblemSolveBlockX‘, an additional variable ‘math_model‘ is available as the
output of the ‘ProblemAnalysisBlockX‘ for calculate tasks.
- When suggesting prompt modifications for a node:
- Include the updated ‘prompt_template‘ with specific, clear instructions.
- Explicitly list all ‘input_variables‘ along with their sources.
2. Propose Structural Changes:
- Suggest adding or removing nodes if necessary.
- For added nodes, specify:
- ‘node_name‘: The name of the node.
- ‘agent‘: The agent to be used by the node.
- ‘Output format‘: The expected output format (e.g., math tool, text, number).
- ‘prompt_template‘: The complete prompt for the node. If it contains curly braces, they must be escaped
- ‘variable_sources‘: A dictionary specifying all input variables and their sources.
- ‘constraints‘: The usage context and purpose of the node.
- Specify changes to node connections, including:
- ‘from‘ and ‘to‘ connections for new nodes.
- Impacts on other nodes, including updates to their ‘input_variables‘ if necessary.
- Clearly identify the new ‘entry_node‘ and ‘end_node‘ after modifications. Each block has only one entry
point and one end_node.
- Please ensure that each node has subsequent nodes connected to it to form an edge, except end_node.
- Maximal add 3 nodes.
- Include ‘all_edges_now‘ and ‘all_nodes_now‘ to provide a clear list of all edges and nodes in the updated
block structure.

17



3. Impact on Other Nodes:
- Maintain logical consistency and alignment with the workflow’s goals.
4. Incorporate Available Agents:
- Use the list of available agents as references for potential additions: {available_agents}.
- Refer to each agent’s ‘constraints‘ to determine effective usage.
- Ensure agents can be modified as necessary to better align with the workflow’s structure, including
updates to ‘prompt_template‘, ‘input_variables‘, ‘variable_sources‘, or even the creation of new agents
tailored to this block.
5. Dynamic Block ID and Naming:
- Assign a unique ‘block_id‘ from the pre-calculated ‘new_block_id‘: {new_block_id}.
- Name the block in the format ‘{block_name}X‘, where ‘X‘ corresponds to the new ‘block_id‘.
6. Block Structure Description:
- Include two descriptions for the block:
- ‘block_structure_description‘: A high-level overview of the block’s purpose and role in the workflow.
- ‘block_structure_description_details‘: A detailed explanation of the block’s internal structure, including:
1. The nodes included in the block.
2. The connections (edges) between these nodes.
3. Each node’s specific responsibilities.
4. How the block processes inputs and generates outputs. - Ensure both descriptions are concise, clear,
and aligned with the actual block structure.
7. provided <canonical solution> and <test cases>:
- The block we are currently providing is only a part of the entire workflow, and it is possible that the
failure to complete the task was not caused by this block. Therefore, please avoid over-optimization.
- Our team focuses on the entire dataset rather than a specific task. Please avoid overfitting during the
refinement of suggestions and ensure that the feedback remains generalized.
- The <canonical solution> we provide is the final correct answer for this task, and the <test cases> are the
test cases generated after running the entire workflow, provided for reference only. Since the block we are
providing is just one part of the workflow, it is possible that the failure is not attributable to this block.
8. Output Format:
- Please provide all suggestions in the following JSON format: {layerwise_loss_format}
- Don’t use an arrow to connect two nodes to represent an edge!

18



n = initial initial < n < final n = final

Creative
writing
Layer 1

team_X_n

Creative
writing
Layer 2

team_Y_n

draft_generator_1

draft_generator_2

draft_selector

editor_1_
check_text

editor_2_
check_text

editor_3_
check_text

editor_
decision_maker

draft_generator_1

draft_generator_2

draft_generator_3

editor_
check_text

editor_1_
check_text

editor_2_
check_text

editor_3_
check_text

editor_
decision_maker

editor_check_
text_after_

decision_maker

draft_generator_1

draft_generator_2

agent_1_
optimize_text

editor_
check_text

agent_2_
optimize_text

editor_
check_text

editor_1_
check_text

editor_2_
check_text

creative_
improvement_
suggestions

editor_check_
text_final

MATH
Layer 1

team_X_n

MATH
Layer 2

team_Y_n

problem_identifier

math_model_
generator_1

geometric_relationship_
analyzer

math_model_
selector

solution_designer

calculation_expert_1

calculation_expert_2

evaluation_
specialist

problem_analyzer

math_model_
generator_1

math_model_
generator_2

math_model_
selector

coordinate_
verifier

calculation_expert_1

calculation_expert_2

evaluation_
specialist

problem_
identifier

repeating_
decimal_handler

math_model_
generator_1

math_model_
generator_2

math_model_
selector

solution_designer

calculation_expert_1

calculation_
expert_2

model_
validator

evaluation_
specialist

Humaneval
Layer 1

team_X_n

Humaneval
Layer 2

team_Y_n

agent_review_code

agent_initial_check

agent_review_code
agent_check_

code_after_review

agent_static_analysis

agent_initial_check

agent_1_finalize_code

agent_2_finalize_code

agent_3_
decision_maker

agent_review_code

agent_static_analysis

agent_check_
code_after_review

agent_logic_error_detector

agent_initial_check

agent_1_finalize_code

agent_2_finalize_code

agent_3_
decision_maker

agent_logic_
error_detector

DA_bench
Layer 1

team_X_n

DA_bench
Layer 2

team_Y_n

agent_1_provide_strategy

agent_code_generation

initial_
analysis_agent

agent_1_review_strategy

agent_decision_
maker_with_2_options

agent_debug_
task_analysis

agent_
code_generation

agent_1_refine_
code_after_generation

agent_2_refine_
code_after_generation

agent_decision_
maker_with_2_options

initial_
analysis_agent

agent_1_
review_strategy

agent_2_
review_strategy

agent_data_
cleaning_check

agent_decision_
maker_with_2_options

agent_
code_generation

agent_1_refine_
code_after_generation

agent_2_refine_
code_after_generation

agent_decision_
maker_with_2_options

agent_column_name_
check_after_decision

Figure 4: Team Structure Examples with optimization

19


	Introduction
	Related Works
	Methodology
	Forward Dynamic Team Selection
	Structure of the Agentic Neural Network
	Selection of Layer-wise Aggregation Functions

	Backward Optimization
	Global Optimization
	Local Optimization


	Experiments
	Datasets
	Experimental Settings
	Experimental Results
	Main Results

	Ablation Studies

	Future Work
	Conclusion
	Limitations

