
Multi-Domain Causal Representation Learning via
Weak Distributional Invariances

Kartik Ahuja
FAIR, Meta

Amin Mansouri
Mila-Quebec AI Institute

Yixin Wang
University of Michigan

Abstract

Causal representation learning has emerged as the center of action in causal machine
learning research. In particular, multi-domain datasets present a natural opportunity
for showcasing the advantages of causal representation learning over standard
unsupervised representation learning. While recent works have taken crucial steps
towards learning causal representations, they often lack applicability to multi-
domain datasets due to over-simplifying assumptions about the data; e.g. each
domain comes from a different single-node perfect intervention. In this work, we
relax these assumptions and capitalize on the following observation: there often
exists a subset of latents whose certain distributional properties (e.g., support,
variance) remain stable across domains; this property holds when, for example,
each domain comes from a multi-node imperfect intervention. Leveraging this
observation, we show that autoencoders that incorporate such invariances can
provably identify the stable set of latents from the rest across different settings.

1 Introduction

Despite the incredible success of modern AI systems, they possess limited reasoning and planning
skills (Bubeck et al., 2023) and often lack controllability (Leivada et al., 2023). Towards alleviating
these concerns, causal representation learning (Schölkopf et al., 2021) aims to build models with a
better causal understanding of the world.

The theory of causal representation learning to date has largely focused on developing algorithms
that are capable of identifying the underlying causal structure of the data-generating process under
minimal supervision. This capability is enabled by endowing these learners with inductive biases
that capture natural properties of the data (Locatello et al., 2020; Brehmer et al., 2022). Despite the
advances, existing causal representation learners remain far from readily applicable to the increasingly
prevalent multi-domain datasets in practice (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). One
wonders why? An important reason is that existing approaches rely on strong assumptions about the
data-generating process. For example, many assume that the data in different domains is gathered
under perfect interventions. Moreover, many existing algorithms also require that the relationships
between the latents can be described by the same fixed directed acyclic graph (DAG) across all data
points. This assumption is commonly violated: e.g. the causal relationships between the latents
can have different causal directions in two images, where a cat chases a dog in one image and the
dog chases the cat in the other. In this work, we relax these assumptions, making progress towards
tackling the challenge of causal representation learning from complex multi-domain datasets.

Contributions. The invariance principle we consider here is reminiscent of the invariance principle
underlying Peters et al. (2016); Arjovsky et al. (2019), though we focus on unlabelled multi-domain
data. Under this principle, a fixed subset of latents do not undergo any intervention across domains.
We study different forms of distributional invariance, ranging from weak invariance on the support to
strong invariance on the marginal distribution of certain latents. We divide our analysis into two parts.
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Table 1: Our results compared with related works (details in Appendix). Existing works assume that the
relationship between latents can be described by a fixed DAG across domains. We relax this assumption to work
with general multi-domain settings.

Input data Assm. on pZ Assm. on g Identification

Observational zr ⊥ zs|u, u aux info. Diffeomorphism Perm & scale (Khemakhem et al.)
Multi do intvn/node Non-parametric Diffeomorphism ≈ Comp-wise (Ahuja et al.)
Perfect intvn Linear Linear Comp-wise (Seigal et al.)
Perfect intvn Non-parametric Polynomial Comp-wise (Ahuja et al.)
Perfect intvn Non-parametric Diffeomorhic Comp-wise (Kugelgen et al.)
Imperfect (1-node) Non-parametric Linear Mix consistency (Varici et al.)
Imperfect (1-node) Non-parametric + ind support Polynomial Block affine (Ahuja et al.)
Imperfect (1-node) Linear Gaussian Diffeomorphism Affine (Buchholz et al.)
Imperfect (multi-node) Non-linear Polynomial Block affine (Theorem 3)
General multi-domain Non-param, sup inv S Polynomial Block affine (Theorem 4)
General multi-domain Non-param, sup inv S Diffeomorphism Γc identification (Theorem 5)
Counterfactual Non-parametric Diffeomorphism Comp-wise (Brehmer et al.)

We first study the settings where the latents in the entire data are governed by a fixed acyclic structural
causal model and then relax this assumption. We study these settings under varying assumptions on
the mixing function that generate the observations. The identification results we obtain are of the
form “latents with invariant distributional properties can be disentangled from the rest.”

2 Multi-domain causal representation learning

Figure 1: The distribution of the alpha-
bet styles are stable across the domains
but the distribution of color is unstable.

Problem statement. We are given unlabelled data—set
of x’s (e.g., images)—from multiple domains. Consider
a domain j ∈ [k], where k is the number of domains,
[k] is shorthand for {1, · · · , k}. The latent variables
z ∈ Rd in domain j are sampled from a distribution
p
(j)
Z whose support is denoted as Z(j). These sampled

latents z are then rendered by an injective mixing function
g : Rd → Rn to generate x ∈ Rn. The support of the
corresponding x’s in domain j is denoted as X (j). De-
fine the union of the support of the latents across domains
as Z = ∪j∈[k]Z(j) and correspondingly for the observa-
tions x’s as X = ∪j∈[k]X (j). The data-generating process
(DGP) is formally stated as follows,

z ∼ p
(j)
Z , x← g(z) ∀j ∈ [k]. (1)

The goal of causal representation learning is provable representation identification, i.e. to learn an
encoder function that can take in the observation x and provably output its underlying true latent z (or
its desirable approximation). In practice, such an encoder is often learned via solving a reconstruction
identity, h ◦ f(x) = x,∀x ∈ X , where f : Rn → Rd and h : Rd → Rn are a pair of encoder and
decoder that jointly satisfy the reconstruction identity. The pair (f, h) together is referred to as the
autoencoder. Given the learned encoder f , the resulting representation is ẑ ≜ f(x), which holds
the encoder’s estimate of the latents. A common goal in causal representation learning is to achieve
component-wise disentanglement, i.e., each ẑi is a scalar and invertible function of some zj , where ẑi
and zj are ith and jth components of ẑ and z.

Invariance principle for causal representations. The invariance principle we consider here is
inspired by the folklore cow-on-the-beach example (Beery et al., 2018). The distributional properties
of a certain set of latents (e.g., the alphabets across domains as shown in Figure 1, or the cow
characteristics across domains) are stable. In contrast, the distribution properties of the other latents
(e.g. color characteristics in Figure 1) are unstable; they vary across domains. More concretely,
we divide the different components of latent z into two sets, S and U , where S corresponds to the
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stable set of latents and U corresponds to the unstable set of latents. Further, some aspect of the joint
distribution of S—denoted as p(j)zS —does not vary across domains. Formally, there exists a functional
F such that F

[
p
(j)
zS

]
is invariant across j. If F [·] is the identity functional, then the distribution itself

is invariant. Other examples of F [·] include the support of the latents’ distributions, the mean of the
latents, or the variance of the latents, etc. To realize this invariance principle in causal representation
learning, we study autoencoders that enforce similar invariance on a certain subset Ŝ ⊆ [d] of its
estimated latents ẑ:

h ◦ f(x) = x, ∀x ∈ X ; (2)

F
[
p
(p)
ẑŜ

]
= F

[
p
(q)
ẑŜ

]
, ∀p ̸= q, p, q ∈ [k]. (3)

In what follows, we will show how autoencoders equipped with this class of invariance constraints
can learn to disentangle the stable latents from the unstable latents: they return representations ẑ that
can provably satisfy ẑŜ = u(zS), where u(·) is an injective map. For some choice of Ŝ, a solution
to the reconstruction identity under invariance constraint may not exist. The learner can select Ŝ as
follows. It can start with largest possible Ŝ , i.e. set of size d. It reduces the size of the set by one until
a solution to the reconstruction identity under invariance constraint is found, which is guaranteed to
occur when |Ŝ| = |S|.

2.1 Acyclic structual causal models pz

We start with the setting where the distribution of the latents pz comes from an acyclic causal model.
To identify the stable latents, we first leverage previous results to achieve affine identification of all
latents. We then use distributional invariance to achieve the identification of the stable latents. Below
we revisit a result from Ahuja et al. (2022b) for affine identification under a polynomial mixing g.
Assumption 1. (Polynomial mixing) The interior of the support of z, denoted as Z , is a non-empty
subset of Rd. The mixing map g is a polynomial of finite degree p whose corresponding coefficient
matrix G has full column rank. Specifically, g is determined by the coefficient matrix G as follows,

g(z) = G[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]⊤ ∀z ∈ Rd,

where ⊗̄ represents the Kronecker product with all distinct entries; for example, if z = [z1, z2],
then z⊗̄z = [z21 , z1z2, z

2
2 ].

Constraint 1. (Polynomial decoder) The learned decoder h is a polynomial of degree p that is
determined by its corresponding coefficient matrix H as follows,

h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]⊤ ∀z ∈ Rd.

Moreover, the interior of the image of the encoder f(X ) is a non-empty subset of Rd.
Theorem 1 (Ahuja et al. (2022b)). Suppose the multi-domain data is gathered from the DGP in
equation (1) under Assumptions 1. Then the autoencoder that solves the reconstruction identity
(equation (2)) under Constraint 1 achieves affine identification, i.e., ∀z ∈ Z, ẑ = Az + c, where ẑ is
the encoder f ’s output, z is the true latent, A ∈ Rd×d is invertible and c ∈ Rd.

Next, we consider how the distributional invariance of some subset of latents can help us further
identify the stable latents. In this section, we focus on the latents pz that follow some acyclic structural
causal model as follows. In each domain j ∈ [k],

z
(j)
i ← qi

(
z
(j)
Pa(i)

)
+ ϱ

(j)
i , z

(j)
Pa(i) ⊥ ϱ

(j)
i ,∀i ∈ [d]; x← g(z), (4)

where qi(·) refers to the map that generate z
(j)
i , namely the ith component of z(j); Pa(i) is the set of

parents of z(j)i ; ϱ(j)i is noise in domain j. We use domain index 1 to denote the observational dataset.
The domains from index 2 and onwards correspond to interventional datasets. The interventions
considered in this section correspond to imperfect interventions, where the mapping qi(·) remains
unchanged but the distribution of the noise variables changes across domains. We assume that the
nodes in U undergo imperfect interventions while the nodes in S are never intervened.
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Assumption 2 (Single-node imperfect). In interventional domain j (j ≥ 2), exactly one node in U
undergoes an imperfect intervention on the noise term. Moreover, across all domains, each node in U
undergoes intervention at least once. Further, the children of any node in U must also belong to U .

Assumption 2 implies that the distribution of zS remains invariant across domains. To identify zS ,
we thus impose the following invariance constraint: the marginal distribution of some subset Ŝ ⊆ [d]
of the estimated latents must remain invariant across domains.

Constraint 2. (Marginal invariance) For each i ∈ Ŝ , p
ẑ
(p)
i

= p
ẑ
(q)
i

,∀p ̸= q, p, q ∈ [k].

Theorem 2 (Single-node imperfect). Suppose the multi-domain data is gathered from the DGP in
equation (4) under Assumptions 1 and 2. Then the autoencoder that solves the reconstruction identity
(equation (2)) under Constraints 1 and 2 achieves block-affine identification, i.e., ∀z ∈ Z, ẑŜ =

DzS + e, where ẑ is the encoder’s output, z is the true latent, D ∈ R|Ŝ|×|S|, and e ∈ R|Ŝ|.

Theorem 2 implies that, under single-node imperfect interventions and polynomial mixing, the
invariant latents zS are disentangled from the rest of the latents. While the SCM (equation (4)) of the
DGP in Theorem 2 does not involve any confounders, we show how this result readily extends to
settings with confounders in the Appendix.

We next study multi-domain data coming from multi-node imperfect interventions. For ease of
exposition, we begin with two-node imperfect interventions and assume that the noise distributions
are Gaussian. (We discuss how to relax these assumptions in the Appendix.) Below we describe the
key assumptions we make about the mechanisms underlying the interventions.

Assumption 3. (Multi-node imperfect) (1) The children of any node in U must also belong to U .
Further, the underlying DAG must have at least two terminal nodes; and the noise ϱ′s in (4) are zero-
mean Gaussians with variances for observational data (domain 1) sampled i.i.d. from a non-atomic
density pσϱ

. (2) Interventional data in each domain j ≥ 2 is generated as follows. For each i ∈ U ,
select a random node j from U \ {i} uniformly. The noise variance for those two nodes (i, j) are two
independent draws from from density pσϱ . Repeat this procedure t times for each node i ∈ U .

Theorem 3 (Multi-node imperfect). Suppose the multi-domain data is gathered from the DGP in
equation (4) under Assumptions 1 and 3. If the number of multi-node interventions t impacting
each node is more than log((d)/δ)

log(1/(1−1/2d)) , then, with probability 1 − δ, the autoencoder that solves
the reconstruction identity ((2)) under Constraints 1 and 2 achieves block-affine identification, i.e.,
∀z ∈ Z, ẑŜ = DzS + e, where ẑ is the encoder’s output, z is the true latent, D ∈ R|Ŝ|×|S|, e ∈ R|Ŝ|.

Theorem 3 established that, given sufficiently many random multi-node interventions, we can block
identify the stable latents zS . Moreover, the required number of domains scales as d

(
log((d−1)/δ)

log(1/(1−1/d))

)
.

2.2 General distributions pz

In the previous section, we made the standard assumption that the relationships between the latents
z generating the data x are described by a fixed DAG. In this section, we study a relaxation that
is suited to more complex multi-domain datasets, where a fixed DAG is insufficient to capture the
complexities of the entire data. For example, in the cow-on-the-beach example, the relationship of
the cow to its surroundings changes across samples (Beery et al., 2018). We also study a weaker
invariance than one considered in the previous section, i.e., the support of each latent in the target set
S is invariant. Under these relaxations, we prove that one can still identify the stable latents, except
that the number of required domains is much larger. We will also discuss how additional assumptions
can help reduce this number in the Appendix. Below we begin by stating the invariance condition.

Assumption 4. (Marginal support invariance.) For each i ∈ S

min
z∈Z(p)

i

z = min
z∈Z(q)

i

z, max
z∈Z(p)

i

z = max
z∈Z(q)

i

, ∀p, q ∈ [k]. (5)

We now state the key assumptions for our first identification result: there exists a pair of domains
whose supports are sufficiently different. We make this notion mathematically precise below.
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Assumption 5 (Support variability). There exists two domains p, q ∈ [k] such that for each z ∈ Z(p),
there exists a z

′ ∈ Z(q) such that z
′
≽ z, namely each component of z

′
is greater than or equal to z,

i.e., z
′

i ≥ zi. Further, we require that the inequality is strict for unstable components j ∈ U , z
′

j > zj .

We illustrate the above assumption using an example in Figure 2. The two domains shown in Figure 2
satisfy Assumption 4, 5. The latent z1 in Domains 1 and 2 satisfies support invariance (Assumption 4).
The latents z = [z1, z2] in Domains 1 and 2 satisfy Assumption 5. Under Assumptions 1, 4, 5,
we perform causal representation learning with constraints of polynomial decoder, non-collapsing
encoder, and support invariance on a set Ŝ of the estimated latents.

Constraint 3. (Marginal support invariance) For each i ∈ Ŝ,

min
z∈Ẑ(p)

i

z = min
z∈Ẑ(q)

i

z max
z∈Ẑ(p)

i

z = max
z∈Ẑ(q)

i

, ∀p, q ∈ [k]

Figure 2: z1 satisfies support invariance (Assump-
tion 4). (z1, z2) satisfies support variability (As-
sumption 5). In panel a), we show that if ẑ1 linearly
depends on both z1 and z2, then it achieves a differ-
ent maximum value across the two domains. Thus,
support invariance (Constraint 3) is not satisfied
by such functions that depend on both z1 and z2.
In contrast, the function in panel b), which only
depends on z1, achieves the same maximum across
domains and satisfies support invariance.

Next, we use the above assumptions to prov-
ably block affine identify the stable latents under
polynomial mixing.

Theorem 4. Suppose the multi-domain data is
generated from equation 1 and satisfies Assump-
tions 1, 4, 5. Then the autoencoder that solves
the reconstruction identity in equation 2 under
Constraints 1 and 3 achieves the following iden-
tification guarantees: Each latent component
i ∈ S satisfies ẑi = A⊤

i z + ci, where, among
all the vectors Ai ≽ 0, the ones that are feasible
under the assumptions and constraints in this
theorem must satisfy Air = 0 for all r ∈ U .

Extending the theorem beyond the positive
orthant. Theorem 4 leveraged the invariance
assumption (Assumption 4) to show that ẑi only
depends on the set of invariant latents in S , pro-
vided that Ai’s are from the positive orthant, i.e.,
Ai ≽ 0. We next extend this argument to other
orthants. Consider Ai’s from a different orthant
with sign vector s, where each component of
s corresponds to the sign of the corresponding
component of Ai. We thus multiply z element-
wise with s and denote it as z̃ = z · s and define the set of transformed latents of domain q as
Z̃(q) = {z · s, z ∈ Z(q)}. If we modify Assumption 5 with set Z̃(q) instead of Z(q), then the
condition in Theorem 4 extends to all vectors Ai in orthant with sign vector s. Given this assumption,
we require a pair of domains that satisfy a condition analogous to the one in Assumption 5 for each
orthant. Since the total number of orthants is 2d, the total number of domains required grows as 2d+1.
In Appendix A.4, we show that the number of domains required can be reduced to d under some
additional structural assumptions, e.g. the support is a polytope.

In Theorem 4, we relied on the assumption that g is a polynomial. We next relax this assumption. For
ease of exposition, we consider the two-variable case and present the general case in the Appendix.

Two-variable case. Consider two-dimensional z’s, i.e., z = [z1, z2]. We assume that the support of
the first component z1 is invariant across domains and the support of z2 varies across domains. For
the rest of this section, we assume that z1 and z2 are bounded between 0 and 1 across all domains.
Specifically, the support of z1 satisfies Assumption 4 and is set to the entire interval [0, 1] across
domains. Next, denote the support of the first component of the encoder in domain p as Ẑ(p)

1 . Under
the support invariance constraint (Constraint 3), we require that Ẑ(p)

1 does not vary with p. Recall
ẑ = f(x) = a(z), where a = f ◦ g. The first component of ẑ thus satisfies ẑ1 = a1(z), where a1(·)
is the first component of the map a. Under this notation, we define a large class of functions Γ and
show that, if the supports are sufficiently diverse, then a1 cannot be an element of Γ, provided that the
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Constraint 3 is enforced – we call this Γc identification. The larger the set Γ is, the more likely a1(·)
is equal to a map that only depends on z1, which is the ideal situation. In contrast, if Constrain 3
is not enforced, then all the invertible maps a(·) will be allowed under reconstruction identity in
equation (2). Below we state the result formally.
Definition 1. Fix some constants η > 0, ε > 0, and ι > 0. We then define a set of functions Γ as
follows. Each function γθ : [0, 1]× [0, 1]→ R in Γ satisfies i) it is parametrized by θ ∈ Θ, where Θ
is a bounded subset of Rs,ii) the minima of γθ over [0, 1]× [0, 1] lie in the ε interior of the set, i.e., in
[ε, 1− ε]× [ε, 1− ε], and iii) there exists an interval [α†, β†] of width at least ι such that∣∣∣∣ min

z∈[0,1]×[0,1]
γθ(z1, z2)− min

z∈[0,1]×[α†,β†]
γθ(z1, z2)

∣∣∣∣ ≥ η. (6)

For each (z1, z2) ∈ [0, 1]× [0, 1], γθ is Lipschitz continuous in θ ∈ Θ with Lipschitz constant L.

The above family Γ consists of functions γθ whose minima over the entire support [0, 1]× [0, 1] is η
better than any other minima obtained by constraining z2 to some interval. In particular, functions
that only depend on z1 do not belong to Γ because the minima of such a map do not depend on
z2. A simple illustrative example of the function class Γ is as follows: γθ : [0, 1] × [0, 1] → R,
γθ(z1, z2) = (z1 − 1

2 )
2 + (z2 − θ)2, where θ ∈ [ 12ε, 1 −

3
2ε]. This function has its minima over

[0, 1]× [0, 1] at ( 12 , θ). The function is Lipschitz continuous in θ for all (z1, z2) ∈ [0, 1]× [0, 1]. Set
η = ε2

4 and α† = θ + ε
2 and β† = θ + 5

8ε; then the conditions in Definition 1 are satisfied. This
example illustrates how these conditions may be satisfied when γθ has one unique global minima
over the region [0, 1]× [0, 1]. For our next result, we assume that the domains are drawn at random
and their supports satisfy the following variability condition.
Assumption 6 (Support variability). The support of z1 does not vary across domains and is fixed to be
[0, 1]. The support of z2 satisfies P

(
Z(p)

2 ⊆ [α, β]
)
≥ c1|(β−α)|l and P

(
Z(p)

2 ⊇ [κ, 1−κ]
)
≥ c2κ

r,
where l and r are some integers, c1, c2 are some constants and α, β, κ ∈ [0, 1].

The first condition on z2 in Assumption 6 states that the probability of the support of z2 in a randomly
drawn domain being contained in the interval [α, β] grows faster than a polynomial in (|β − α|). The
second condition states that the support of z2 captures the set [κ, 1− κ] with probability at least c2κr.
Below we give an example where these conditions are satisfied: suppose the support of z2 is sampled
as follows. Sample two random variables A and B independently from the uniform distribution over
the interval [0, 1]. Define the upper limit of the support as max{A,B} and the lower limit of the
support as min{A,B}. In this case, the probabilities in Assumption 6 are given as (β − α)2 and 2κ2.

The next result relies on the following insight. If we sample sufficiently many diverse domains, then
it is likely that, for each map γθ ∈ Γ, we encounter two domains such that their minima are at least η
different as in Definition 1. Thus, ẑ1 constructed from Γ violates the support invariance constraint.
Theorem 5. If we gather data generated from equation (1), where the support of z2 for each domain
is sampled i.i.d. from Assumption 6 and support of z1 is fixed to [0, 1]. Further, suppose the number
of domains satisfies k ≥ N(δ, ε, η, ι), where

N(δ, ε, η, ι) = Nc log

(
2Nc

δ

)(
1/ log

(
1/(1− c1ι

l)

)
+ 1/ log

(
1/(1− c2ε

r)

))
,

with Nc =

(
2maxθ∈Θ ∥θ∥

√
s

ρ

)s

and ρ = η
4L . Then the set of maps a1(·) that relate ẑ1 to [z1, z2] does

not contain any function from Γ and thus achieves Γc identification, where ẑ is obtained by solving
the reconstruction identity (equation 2) under support invariance constraint (Constraint 3) on ẑ1.

3 Conclusions

In this work, we have made crucial progress towards the theory of multi-domain causal represen-
tation learning applicable to multi-domain datasets arising from complex domain shifts including
multi-node imperfect interventions and beyond. We consider a simple invariance principle, namely
the distributional properties of the target latents remain invariant across domains. Following this
invariance principle, we propose a natural class of autoencoders that enforce different distributional
invariances. We establish identification guarantees of the stable latents for different invariances,
ranging from weak invariance of the support to the stronger invariance on the marginal.
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A Appendix

A.1 Related Works

The field of causal representation learning has a deep connection to the field of independent component
analysis (Hyvarinen et al., 2023). The seminal work of Comon (1994) on linear independent
component analysis studied linear mixing of independent non-Gaussian latents and proposed a
method that identifies the true latents up to permutation and scaling. Since then a lot of progress
has taken place and it is hard to do justice to the plethora of works in the area. Existing works
in the area of representation identification can be categorized into the following categories based
on the assumptions: i) assumptions on the distribution of latent factors, ii) assumptions on the
mixing functions. In the pivotal work of (Khemakhem et al., 2020a), the authors studied general
diffeomorphisms mixing but made certain strong assumptions such as the availability of auxiliary
information that renders latents conditionally independent. Recently (Kivva et al., 2022) considered
setup similar to (Khemakhem et al., 2020a). They relaxed the crucial assumption that auxiliary
information is observed but restricted the family of mixing maps to piecewise linear diffeomorphisms
to obtain a similar level of identification as (Khemakhem et al., 2020a). A recent work Liang et al.
(2023) takes the connection between causal representation learning and ICA one step further. The
authors study the question of identifiability under the supposition that the underlying causal graph
is known much in the same spirit that ICA supposes the graph is known and all latent variables are
independent.

In recent times the problem of interventional causal representation learning has come to attention in
Ahuja et al. (2022b); Seigal et al. (2022); Varici et al. (2023). Ahuja et al. (2022b) study a) polynomial
mixing with interventions that induce independent support; b) general diffeomorphisms with hard
do interventions. Seigal et al. (2022) study linear mixing with perfect interventions and Varici et al.
(2023) study linear mixing with perfect and imperfect interventions. In relatively recent works von
Kügelgen et al. (2023), the setting studied considers general diffeomorphism mixing with perfect
interventions, and in Buchholz et al. (2023), the setting studied considers general diffeomorphisms
with latents that follow linear Gaussian SCM under both perfect and imperfect interventions. The
different identification guarantees established in this work are summarized in Table 1, where we also
contrast our results. There are a few aspects that separate us from existing works. Firstly, these works
study single-node interventions and we study multi-node imperfect interventions. We also study the
setting where a fixed DAG does not explain the relationships between the latents for the entire dataset.
A close line of work focuses on the intermediate goal of learning the underlying causal graph. Some
examples in this line of work include (Cai et al., 2019; Xie et al., 2020; Jiang and Aragam, 2023) and
a concurrent work Zhang et al. (2023).

Aside from the above works, there are other common settings that have been studied, which while
qualitatively different from ours, are still worth mentioning. These include settings where learner has
access to i) paired observations (e.g., data generated pre and post intervention) (Locatello et al., 2020;
Lachapelle et al., 2022; Ahuja et al., 2022a; Lippe et al., 2022b,a; Von Kügelgen et al., 2021), ii)
temporal data – (Hyvarinen et al., 2019; Yao et al., 2022; Lachapelle and Lacoste-Julien, 2022; Ahuja
et al., 2021), iii) multi-view data – Gresele et al. (2020) iv) other forms of auxiliary information –
(Khemakhem et al., 2020a,b; Hyvarinen et al., 2019).

Lastly, the distributional invariances used in our work may remind the reader of the seminal
works (Ganin et al., 2016; Muandet et al., 2013). There are a few notable differences – i) these works
focus on domain generalization in the presence of labelled data, while we focus on the unsupervised
setting, ii) these works enforce invariance of the joint distribution of all the latents, while we enforce
a weaker invariance on a subset of the latents.

A.2 Theorems and Proofs

Theorem 2 (Single-node imperfect). Suppose the multi-domain data is gathered from the DGP in
equation (4) under Assumptions 1 and 2. Then the autoencoder that solves the reconstruction identity
(equation (2)) under Constraints 1 and 2 achieves block-affine identification, i.e., ∀z ∈ Z, ẑŜ =

DzS + e, where ẑ is the encoder’s output, z is the true latent, D ∈ R|Ŝ|×|S|, and e ∈ R|Ŝ|.
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Proof. We begin by first checking that the solution to reconstruction identity under the above-said
constraints exists. Set f = g−1 and h = g and Ŝ = S. Firstly, the reconstruction identity is easily
satisfied. Also, the Constraint 2 is satisfied as Assumption 2 holds.

We construct a proof based on the principle of induction. We sort the vertices in U in the reverse
topological order based on the DAG to obtain a list U⋆. We use the principle of induction on this
sorted list. Due to Assumption 2, it follows that the first node in the sorted list has to be a terminal
node, say this node is j. Consider a component ẑi of ẑŜ . From affine identification (follows from
Theorem 1), we already know that ẑi = A⊤

i z + ci. Suppose j undergoes an imperfect intervention
in domain p. We write the invariance constraint condition equating the distribution of ẑi between
domain 1 and domain p as

ẑ
(1)
i

d
= ẑ

(p)
i ,

A⊤
i z

(1) d
= A⊤

i z
(p),

A⊤
i [z

(1)
j , z

(1)
−j ]

d
= A⊤

i [z
(p)
j , z

(p)
−j ].

(7)

Recall z(q)j = qj
(
z
(q)
Pa(j)

)
+ ϱ

(q)
j ,∀q ∈ [k]. For all q ∈ [k], define w(q) = A⊤

i,−jz
(q)
−j +Aijqj

(
z
(q)
Pa(j)

)
,

where Ai,−j is the vector of components in Ai other than Ai,j and z
(q)
−j is the vector of all components

of z(q) except z(q)j . Define v(q) = Aijϱ
(q)
j ,∀q ∈ [k]. Substitute these in the above to obtain

w(1) + v(1)
d
= w(p) + v(p). (8)

We make some important observations now. Observe that v(1) ⊥ w(1) and v(p) ⊥ w(p). Also,
since the intervention only changes the noise distribution of j and leaves all rest nodes in the graph
unaltered w(1) d

= w(p). We now write the moment generating function (MGF) of w(1) + v(1) and
equate it to MGF of w(p) + v(p) as follows.

Mw(1)(t)Mv(1)(t) = Mw(p)(t)Mv(p)(t) (9)

Since w(1) d
= w(p), the MGFs are equal. As a result, the MGFs of v(1) and v(p) are equal as well.

If the MGFs are equal, then v(1)
d
= v(p). If Aij ̸= 0, then this implies ϱ(1)

d
= ϱ(p), which is a

contradiction. Therefore, Aij = 0. This establishes the base case for the induction.

Consider an arbitrary j ∈ U⋆. Suppose Air = 0 for all that preceded j in U⋆. Say this node j

undergoes an imperfect intervention in domain s, where the distribution of ϱ(s)j is different from ϱ
(1)
j .

From the invariance condition between domain 1 and domain s it follows that

ẑ
(1)
i

d
= ẑ

(s)
i ,

A⊤
i z

(1) d
= A⊤

i z
(s),

A⊤
i [z

(1)
j , z

(1)
−j ]

d
= A⊤

i [z
(s)
j , z

(s)
−j ].

(10)

In domain s, where node j above is intervened, the only nodes that are impacted are j and its
descendants. In w(q) = A⊤

i,−jz
(q)
−j + Aijqj

(
z
(q)
Pa(j)

)
, the distribution of second term Aijqj

(
z
(q)
Pa(j)

)
is determinded by distribution of parents of j, which are not impacted. The first term A⊤

i,−jz
(q)
−j

comprises of both the descendants of j and other non-descendants. Observe that all the descendants of
j precede it in the list U⋆. As a result, all the coefficients in Ai,−j corresponding to the descendants of
j are zero. Therefore, the distribution of the first term A⊤

i,−jz
(s)
−j is same as distribution of A⊤

i,−jz
(1)
−j .

On the whole, the distribution of w(s) is same as distribution of w(1). Also, since the contribution
of descendants of j in w(q) is zero, we can conclude that v(q) ⊥ w(q). We now repeat the same
argument as before. We now write the moment generating function (MGF) of w(1) + v(1) and equate
it to MGF of w(s) + v(s) as follows.

Mw(1)(t)Mv(1)(t) = Mw(s)(t)Mv(s)(t) (11)
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Since w(1) d
= w(s), the MGFs are equal. As a result, the MGFs of v(1) and v(s) are equal as well.

If the MGFs are equal, then v(1)
d
= v(s). If Aij ̸= 0, then this implies ϱ(1)

d
= ϱ(s), which is a

contradiction. Therefore, Aij = 0. This completes the proof.

Extension of Theorem 2 The DGP considered above has the form z
(q)
j = qj

(
z
(q)
Pa(j)

)
+ ϱ

(q)
j .

Alternatively, if we consider a new DGP that involves confounder z(q)j = qj
(
z
(q)
Pa(j), u

(q)
Pa(j)

)
+ ϱ

(q)
j ,

where u
(q)
Pa(j) are confounders that impact at least two latents but are not input to the mixing map g,

i.e., x← g(z). The exact proof steps can be repeated for this more general data generation process
provided the additive noise variable is independent of the parent variables, i.e., ϱ(q)j ⊥

(
z
(q)
Pa(j), u

(q)
Pa(j)

)
.

Observe that the crucial steps: i) affine identification, ii) v(1) ⊥ w(1), v(p) ⊥ w(p) and w(1) d
= w(p),

iii) product of MGFs based separation in equation (9), are not impacted by this change and as a result
the proof of this extension goes through.

Define u(δ) =
log
(
d/δ
)

log
(
1/(1−1/2d)

) . We characterize good interventions next. If a node s is paired with

terminal node w and if the variance of both the intervened nodes increases or decreases in comparison
to observational data, then s undergoes a good intervention.

Lemma 1. Consider the random intervention mechanism described in Assumption 3. If t ≥ u(δ),
then with probability 1− δ each node in U is involved in a good intervention with one of the terminal
nodes.

Proof. Select one of the terminal node w. Consider all other nodes in U \ {w}. The mechanism
of interventions described in Assumption 3 goes over the nodes in U iteratively. In iteration cor-
responding to interventions for node s, each node in U \ {s} is equally likely to be selected for
concurrent intervention. Define an event O, which is true if under the intervention the variance
of both intervened nodes is increased in comparison to observational data (Domain 1) or if under
the intervention variance of intervened is decreased in comparison to observational data. Due to
symmetry and non-atomic density pσϱ , the probability of this event is 1

2 . Therefore, the probability p

that in iteration for node s it undergoes a good intervention is p = 1
2(|U|−1) .

Define an event S such that S occurs if in all of (|U| − 1)t interventions each node in U \ {w}
undergoes a good intervention, i.e., it is paired with the terminal node w at least once and for each of
these interventions event O occurs for the paired nodes. Consider a node s ∈ U \ {w}. Define event
Es, where Es occurs if none of the t interventions conducted in the iteration concerning s are good
interventions. This probability evaluates to P (Es) = (1− p)t. The probability that at least one of
Es is true is bounded above using union bound as follows: P (∪s∈U\{w}Es) ≤ (|U| − 1)(1 − p)t.
The probability P (S) = 1 − P (∪s∈U\{w}Es) ≥ 1 − (|U| − 1)(1 − p)t. Observe that if t ≥ u(δ),
then P (S) ≥ 1− δ.

Theorem 3 (Multi-node imperfect). Suppose the multi-domain data is gathered from the DGP in
equation (4) under Assumptions 1 and 3. If the number of multi-node interventions t impacting
each node is more than log((d)/δ)

log(1/(1−1/2d)) , then, with probability 1 − δ, the autoencoder that solves
the reconstruction identity ((2)) under Constraints 1 and 2 achieves block-affine identification, i.e.,
∀z ∈ Z, ẑŜ = DzS + e, where ẑ is the encoder’s output, z is the true latent, D ∈ R|Ŝ|×|S|, e ∈ R|Ŝ|.

Proof. We begin by first checking that the solution to reconstruction identity under the above-said
constraints exists. Set f = g−1 and h = g and Ŝ = S. Firstly, the reconstruction identity is easily
satisfied. Also, the Constraint 2 is satisfied as Assumption 3 holds.

We construct a proof based on the principle of induction.

Consider a component ẑi of ẑŜ . From affine identification (follows from Theorem 1), we already
know that ẑi = A⊤

i z + ci. We sort the vertices in U in the reverse topological order to obtain a list

11



U⋆. We use the principle of induction on this sorted list. Due to Assumption 3, it follows that the
first two nodes in the sorted list have to be a terminal node, which we denote as {j, l}. Suppose these
nodes are intervened in domain p. Observe that since t ≥ u(δ) both of these nodes are intervened
with probability 1− δ. From the invariance constraint on distribution ẑi in domain 1 and p it follows

ẑ
(1)
i

d
= ẑ

(p)
i ,

A⊤
i z

(1) d
= A⊤

i z
(p),

A⊤
i [z

(1)
j , z

(1)
l , z

(1)
−jl]

d
= A⊤

i [z
(p)
j , z

(p)
l , z

(p)
−jl].

(12)

Recall z(q)j = qj
(
z
(q)
Pa(j)

)
+ϱ

(q)
j ,∀q ∈ [k]. For all q ∈ [k], define w(q) = A⊤

i,−jlz
(q)
−jl+Aijqj

(
z
(q)
Pa(j)

)
+

Ailql
(
z
(q)
Pa(l)

)
,∀q ∈ [k], where Ai,−jl is the vector of components in Ai other than Ai,j and Ai,l,

and z
(q)
−jl is the vector of all components of z(q) except z(q)j and z

(q)
l . Define v(q) = Aijϱ

(q)
j +

Ailϱ
(q)
l , ∀q ∈ [k]. Substitute these in the above to obtain

w(1) + v(1)
d
= w(p) + v(p). (13)

We make some important observations now. Observe that v(1) ⊥ w(1) and v(p) ⊥ w(p). This is true
since v(q) is determined by the noise variables at the terminal nodes. Also, since the intervention
only changes the noise distribution of j and l, which are terminal nodes, leaving the rest of the
nodes unaltered. Therefore, w(1) d

= w(p). We now write the moment generating function (MGF) of
w(1) + v(1) and equate it to MGF of w(p) + v(p) as follows

Mw(1)(t)Mv(1)(t) = Mw(p)(t)Mv(p)(t). (14)

Since w(1) d
= w(p), the MGFs are equal. As a result, the MGFs of v(1) and v(p) are equal as well. If

the MGFs are equal, then v(1)
d
= v(p). If Aij ̸= 0 and Ail = 0, then this implies ϱ(1)j

d
= ϱ

(s)
j , which

is a contradiction. Similarly, Ail ̸= 0 and Aij = 0 is not possible either. The last case is Aij ̸= 0 and

Ail ̸= 0. From v(1)
d
= v(p) =⇒ Aijϱ

(1)
j + Ailϱ

(1)
l

d
= Aijϱ

(p)
j + Ailϱ

(p)
l . This can only be true if

A2
ijσ

2

ϱ
(1)
j

+A2
ilσ

2

ϱ
(1)
l

= A2
ijσ

2

ϱ
(p)
j

+A2
ilσ

2

ϱ
(p)
l

. Due to Lemma 1, the selected domain p is such that the

two terminal nodes undergo a good intervention and as a result the variance in LHS are strictly less
or strictly greater, which makes the equality impossible. Therefore, Aij = 0 and Ail = 0.

This establishes the base case for the induction.

Consider an arbitrary vertex say s ∈ U⋆. Suppose Air = 0 for all that preceded s in U⋆. Further,
suppose that this node s undergoes an imperfect intervention along with terminal node l in domain u.
Note here again since t ≥ u(δ), such a domain exists with probability 1− δ. From the invariance
condition between domain 1 and domain u, it follows

ẑ
(1)
i

d
= ẑ

(u)
i ,

A⊤
i z

(1) d
= A⊤

i z
(u),

A⊤
i [z

(1)
s , z

(1)
l , z

(1)
−sl]

d
= A⊤

i [z
(u)
s , z

(u)
l , z

(u)
−sl].

(15)

Consider domain u, where node s and l above are intervened simultaneously. Recall w(q) =

A⊤
i,−slz

(q)
−sl + Aisqs

(
z
(q)
Pa(s)

)
+ Ailql

(
z
(q)
Pa(l)

)
,∀q ∈ [k]. We already showed that Ail = 0 so the

third term is zero. Further, in Ai,−sl the terms corresponding to the descendants of s are zero
due to supposition in induction principle that Air = 0 for all that preceded s in U⋆. Hence, no
descendant of s contributes to the expression w(q). The term v(q) = Aisϱ

(q)
s +Ailϱ

(q)
l , which again

simplifies to v(q) = Aisϱ
(q)
s . Since w(q) does not involve s or its descendants, we can conclude that

w(q) ⊥ v(q),∀q ∈ [k] and w(u) d
= w(1).
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The above expressions in equation (15) can be stated as

w(u) + v(u)
d
= w(1) + v(1) (16)

Since w(q) ⊥ v(q) and w(u) d
= w(1), it follows that v(u) d

= v(1). If Ais ̸= 0, then this implies
ϱ
(u)
s

d
= ϱ

(1)
s , which leads to a contradiction. Hence, Ais = 0. This completes the proof.

Extension of Theorem 3 In Theorem 3, we considered two-node interventions. Let us ask what
happens if m-interventions occur at the same time. If we extend the Assumption 2 to require m
terminal nodes, the rest of the argument extends to this case too. Firstly, in Lemma 1 we showed that
if the minimum number of interventions t that each node is involved is sufficiently large, then all the
nodes end up being paired with one of the terminal nodes. The extension of Lemma 1 reads: if the
minimum number of interventions t that each node is involved is sufficiently large, then all the nodes
end up being paired with m− 1 terminal nodes under a good intervention. In the proof of Theorem 3,
in the base case we showed that the Aij and Ail are zero where {j, l} are two terminal nodes involved
in the intervention. In the extension, we consider the domain in which m terminal nodes are involved
in the intervention and the coefficient Air is zero for all r corresponding to indices of the terminal
nodes intervened in that domain. The rest of the argument from principle of induction is identical.
Theorem 4. Suppose the multi-domain data is generated from equation 1 and satisfies Assumptions 1,
4, 5. Then the autoencoder that solves the reconstruction identity in equation 2 under Constraints
1 and 3 achieves the following identification guarantees: Each latent component i ∈ S satisfies
ẑi = A⊤

i z+ci, where, among all the vectors Ai ≽ 0, the ones that are feasible under the assumptions
and constraints in this theorem must satisfy Air = 0 for all r ∈ U .

Proof. We begin by first checking that the solution to reconstruction identity under the above-said
constraints exists. Set f = g−1 and h = g and Ŝ = S. Firstly, the reconstruction identity is easily
satisfied. Also, the Constraint 3 is satisfied as Assumption 4 holds.

From the Assumptions 1 and Constraint 1 we know that ẑ = Az + c (follows from Theorem 1). Let
us consider i ∈ Ŝ. We know that ẑi = A⊤

i z + ci. Suppose Ai ≽ 0, where each component of Ai is
non-negative.

Let us consider the domains p, q, from Assumption 5. We compute the maximum value of ẑi in
domain p and q below.

zmax,p = arg max
z∈Z(p)

A⊤
i z + ci (17)

zmax,q = arg max
z∈Z(q)

A⊤
i z + ci (18)

From Constraint 3, A⊤
i z

max,p = A⊤
i z

max,q . Suppose Aik > 0 for some k ∈ U . From Assumption 5,
it follows that there exists a z ∈ Z(q) such that z ≽ zmax,p and zj > zmax,q

j for all j ∈ U . Therefore,
A⊤

i z > A⊤
i z

max,p. This contradicts A⊤
i z

max,p = A⊤
i z

max,q . Therefore, Aik = 0.

Remark on Definition 1 We illustrate the type of functions captured by Definition 1 in Figure 3.
In Figure 3, we show that a function γθ has three minima (shown as stars) over [0, 1] × [0, 1]. We
illustrate two domains in panels a) and b). For Domain 1 in panel a), the minima over Domain 1
coincides with minima over [0, 1]× [0, 1] but for Domain 2 that is not the case. The figure lays down
the examples idea behind the proof we are about to present next. Under sufficiently many diverse
interventions, it can be guaranteed that we obtain one domain that is similar to Domain 1 (capturing
the minima over [0, 1] × [0, 1]) in Figure 3 and another domain that is similar to Domain 2 (not
capturing the minima over [0, 1]× [0, 1])in Figure 3.
Theorem 6. If we gather data generated from equation (1), where the support of z2 for each domain
is sampled i.i.d. from Assumption 6. Further, if the number of domains k ≥ N(δ, ε, η, ι), then the
maps a1(·), which are obtained from autoencoders that solve the reconstruction identity in equation 2
under support invariance constraint (Constraint 3) on ẑ1, do not contain function from Γ.
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(a) (b)
z1 z1

z2 z2

(0,0) (0,0)(1,0)

(0,1) (1,1)

(1,0)

(1,1)(0,1)

Figure 3: The minima of a candidate function γθ over [0, 1]× [0, 1] is attained at points shown in
stars. Support of Domain 1 and Domain 2 are shown in light and dark grey. The minimum value of
γθ over Domain 1 is not the same as the minimum over Domain 2. Therefore, a1(·) relating the first
component of the autoencoder, which satisfies support invariance constraint, to the true latent cannot
be equal to the candidate function γθ.

Proof. Consider the set Θ of parameters, which characterize all the functions in Γ. Let us construct
a ρ-cover for the set Θ with ρ = η

4L , where η and L are constants from Definition 1. We define
the set of functions in the cover as Γc = {γ1, · · · , γNc

}, where Nc is the size of the cover and

Nc =

(
2maxθ∈Θ ∥θ∥

√
s

ρ

)s

(follows from (Shalev-Shwartz and Ben-David, 2014)).

Consider a γj ∈ Γc with parameters θj . From Definition 1, there exists an interval [α†, β†] with
width at least ι such that the minimum value in [0, 1]× [α†, β†] is at least η more than the minimum
value over the entire set [0, 1]× [0, 1]. Since the support to z2 is sampled randomly, we compute the
probability that one of the sampled domain’s support is contained in [α†, β†]. The probability of first
success (where success is the event that support of z2 is a subset of [α†, β†]) in one of the t trials is
1− (1− ps)

t. We want

1− (1− ps)
t ≥ 1− δ

2
=⇒ δ

2
≥ (1− ps)

t =⇒ log

(
2

δ

)
/ log(1/(1− ps)) ≤ t

We plug ps = c1ι
l following Assumption 6. If we set t ≥ t1min = log( 2δ )/ log(1/(1 − c1ι

l)), then
with probability 1− δ/2 at least for one of the domains indexed from 1 to t1min the minimum value of
γj in [0, 1]× [α†, β†] is η larger than the minimum value in [0, 1]× [0, 1].

Next, we show that if the number of domains is sufficiently large, then the probability that one of
the domains support contains [ε, 1− ε] is sufficiently high. The probability of first success (where
success is the event that the intervention support contains [ε, 1− ε]). In this case, we follow the same
calculations as above. It follows that if t ≥ t2min = log( 2δ )/ log(1/(1− c2ε

r)), then with probability
1− δ/2 the support of z2 in at least one of the domains indexed from t1min+1 to t1min+ t2min contains
[ε, 1− ε] the global minimum of γj with probability at least 1− δ/2. Hence, we can conclude that
with probability 1− δ both the success events described above happen. In the case of this event, the
function γj cannot satisfy the support invariance constraint.

Let us consider all the elements in Γc together now. We now derive a bound on the number of domains
such that none of the elements in Γc satisfy the support invariance constraint. We divide the total k
domains into blocks of equal length. The first block is chosen to be sufficiently large to ensure that
with probability 1− δ

Nc
, the first element of Γc, i.e., γ1 does not satisfy support invariance constraints.

Similarly, the second block is chosen to be sufficiently large such that γ2 cannot satisfy support
invariance constraints and so on. The minimum size of each block is computed by substituting δ with
δ/Nc in the expression for t1min + t2min derived above. The final expression for N(δ, ε, η, ι) is given
as
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Nc

(
log

(
2Nc

δ

)
/ log

(
1/(1− c1ι

l)

)
+ log

(
2Nc

δ

)
/ log

(
1/(1− c2ε

r)

))

where Nc =

(
2maxθ∈Θ ∥θ∥

√
s

ρ

)s

and ρ = η
4L .

Observe that since the probability of success is bounded below by 1− δ
Nc

, the overall probability is
bounded by at least 1− δ. So far, we have shown that none of the elements in the cover of Θ, i.e., Γc

satisfy support invariance constraints.

Let us now consider a γθ ∈ Γ. The nearest neighbor of this γθ in the cover is say γj . Suppose the
parameter associated with γj is θj . Therefore, γj = γθj . Since θj is an element of ρ−cover, the
separation between their corresponding parameters is ∥θj − θ∥ ≤ ρ. Since the number of domains is
larger than N(δ, ε, η, ι) we can state the following. With probability 1− δ/Nc, there exists a pair of
domains whose supports say Z and Z̃ , where γθj ’s minimum value on the former is at least η higher
than the minimum value on Z̃ . Let us now compute a lower bound on the minimum value of γ on Z .
For all z ∈ Z

|γθ(z)− γθj (z)| ≤ L∥θ − θj∥ ≤ Lρ =⇒ γθ(z) ≥ γθj (z)− Lρ

In the first inequality, we rely on Lipschitz continuity of γθ in θ (from Assumption 6). From the
above, it follows that

min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)− Lρ (19)

Next, we compute an upper bound on the minimum value of γθ on Z̃

|γθ(z)− γθj (z)| ≤ L∥θ − θj∥ ≤ Lρ =⇒ γθ(z) ≤ γθj (z) + Lρ

From the above, it follows that

min
z∈Z̃

γθ(z) ≤ min
z∈Z̃

γθj (z) + Lρ (20)

We now take the difference of the bounds in equation (19) and (20) above to arrive at the following.

min
z∈Z̃

γθ(z)−min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)−min
z∈Z̃

γθj (z)− 2Lρ ≥ η − 2Lρ =
η

2

where we set ρ = η/4L in the last inequality. Therefore, γθ does not satisfy support invariance. We
require the above argument to hold for all γθ ∈ Γ. Here we exploit the fact that with probability 1− δ
all elements in the cover Γc do not satisfy the support invariance constraint. Therefore, we can pick
any γθ ∈ Γ, select the corresponding nearest neighbor in the cover, and apply the argument stated
above. This completes the proof.

A.3 Beyond the two variable case

In this section, we aim to generalize the results presented in the previous section to more than two
variables. We first adapt the Definition 1.
Definition 2. Fix some constants η > 0, ε > 0 and ι > 0. Given these constants, we define a set of
functions Γ as follows. Each function γθ : [0, 1]d → R in Γ i) is parameterized by θ ∈ Θ, where Θ is
a bounded subset of Rs,ii) the minima of γθ over the entire set [0, 1]d lie in the ε interior of the set,
i.e., in [ε, 1− ε]d, and iii) there exists a hypercube L of volume at least ι such that∣∣∣∣ min

z∈[0,1]d
γ(z)− min

z∈[0,1]×L
γ(z)

∣∣∣∣ ≥ η.

For each z ∈ [0, 1]d, γθ is Lipschitz continuous in the parameter θ ∈ Θ with Lipschitz constant L.
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Next, we adapt Assumption 6.
Assumption 7. We assume that the domains are drawn at random and the support of latents in U

satisfy P
(
Z(p)

U ⊆ [α1, β1] × · · · [α|U|, β|U|]

)
≥ c1vol

l[[α1, β1] × · · · [α|U|, β|U|]] and P
(
Z(p)

U ⊇

[κ, 1− κ]q
)
≥ c2κ

qr, where l and r are some integers and c1, c2 some constants.

Theorem 7. If we gather data generated from equation (1), where the support of z2 for each domain is
sampled i.i.d. from Assumption 7. Further, if the number of domains k ≥ Ñ(δ, ε, η, ι), then the maps
a1(·), which are obtained from autoencoders that solve the reconstruction identity in equation (2)
under support invariance constraint (Constraint 3) on ẑ1, do not contain function from Γ.

Proof. We will follow exactly the same line of reasoning as in the proof of the two variable case.
Consider the set Θ characterizing the functions γ. Let us construct a ρ-cover for the set Θ. The cover
consists of functions in the set Γc = {γ1, · · · , γNc

}, where Nc is the size of the cover. Consider
γj ∈ Γc with parameters θj . From Assumption 7, there exists a hypercube L with volume at least ι
such that the minimum value in that hypercube is η more than the global minimum on the set [0, 1]d.
The probability that one of the domain’s support is contained in the hypercube L is calculated as
follows. The probability of first success (where success is the event that intervention support is a
subset of [α†, β†]) in one of the t trials is 1− (1− ps)

t. We want

1− (1− ps)
t ≥ 1− δ

2
=⇒ δ

2
≥ (1− ps)

t =⇒ log

(
2

δ

)
/ log(1/(1− ps)) ≤ t

Finally we have t ≥ t1min = log
(
2
δ

)
/ log(1/(1− c1ι

l)). Therefore, with probability 1− δ/2 at least
one of the domains s indexed from 1 to t1min achieves a minima η larger than the global minimum of
γj .

Next, we derive the probability that one of the domain’s support contains [ε, 1− ε]d. The probability
of first success (where success is the event that the domain contains [ε, 1 − ε]d). In this case, we
have t ≥ t2min = log(2δ )/ log(1/(1− c2ε

rd)). Therefore, with probability 1− δ/2 at least one of the
domains indexed from t1min +1 to t1min + t2min achieves the global minimum of γj with probability at
least 1− δ/2. Hence, we can conclude that with probability 1− δ both the success events described
above happen. In the case of this event, the function γj cannot satisfy the invariance constraint.

Let us consider all the elements in Γc together now. We would require the total interventions to be
divided into blocks of equal length. The first block is chosen to be sufficiently large to ensure that
with probability 1− δ

Nc
, γ1 cannot satisfy support invariance constraints. Similarly, the second block

is chosen to be sufficiently large such that γ2 cannot satisfy support invariance constraints and so on.
Due to symmetry, the minimum size of each block is computed by substituting δ with δ/Nc in the
expression for t1min + t2min derived above. The final expression for Ñ(δ, ε, η, ι) is given as

Nc

(
log

(
2Nc

δ

)
/ log

(
1/(1− c1ι

l)

)
+ log

(
2Nc

δ

)
/ log

(
1/(1− c2ε

dr)

))

where Nc =

(
2maxθ∈Θ ∥θ∥

√
s

ρ

)s

and ρ = η
4L . Observe that since the probability of success is

bounded below by 1− δ
Nc

, the overall probability is bounded by at least 1− δ. So far we have shown
that none of the elements in the cover of Θ, i.e., Γc satisfy support invariance constraints.

Let us now consider a γ ∈ Θ. The nearest neighbor of this γ in the cover is say γj . Suppose the
parameter of γj is θj . Therefore, γj = γθj . The separation between their corresponding parameters is
∥θj − θ∥ ≤ ρ. We know that with probability 1− δ, γi does not satisfy support invariance constraint.
There exist interventional distributions whose supports say Z and Z̃ , where γj’s minimum value on
the former is at least η higher than the minimum value on Z̃ . Let us now compute a lower bound on
the minimum value of γ on Z .

|γθ(z)− γθj (z)| ≤ L∥θ − θj∥ ≤ Lρ =⇒ γθ(z) ≥ γθj (z)− Lρ
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From the above, it follows that

min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)− Lρ

Next, we compute an upper bound on the minimum value of γ on Z̃

|γθ(z)− γθj (z)| ≤ L∥θ − θj∥ ≤ Lρ =⇒ γθ(z) ≤ γθj (z) + Lρ

From the above it follows that

min
z∈Z̃

γθ(z) ≤ min
z∈Z̃

γθj (z) + Lρ

We now take the difference of the bounds above to arrive at the following.

min
z∈Z̃

γθ(z)−min
z∈Z

γθ(z) ≥ min
z∈Z

γθj (z)−min
z∈Z̃

γθj (z)− 2Lρ ≥ η − 2Lρ =
η

2

where we set ρ = η/4L in the last inequality. Therefore, γ does not satisfy support invariance. Note
that the above argument is general and applies to every γ ∈ Θ since we can pick the corresponding
nearest neighbor in the cover.

This completes the proof.

A.4 Polytope support

In this section, we assume that the support of latents in each domain is characterized by bounded
polytopes – the convex hull of a finite number of vertices, where each vertex has a bounded norm.
Under the assumptions and the constraint (Assumption 1 and Constraint 1) we know that ẑ is an
affine function of z. If the support of z is a bounded polytope, then evaluating the maximum and
minimum value that each component of ẑ depends only on the vertices of the polytope following
the fundamental theorem of linear programming. This allows us to provide identification guarantees
by placing assumptions on the diversity of these polytopes, i.e., on these vertices, observed across
domains.

Following Constraint 3, we equate the maximum value of components in Ŝ across domains. Suppose
we equate the maximum of ẑi across domain p and q. We obtain A⊤

i (z
max,p − zmax,q) = 0, where

zmax,p, zmax,q correspond to the vertex of the support polytope in domain p, q respectively. Observe
how the expression depends on the difference of vertices from different polytopes. We define a set
of matricesM formed by taking the difference of vertices from the different polytopes as follows.
Firstly, we fix the first domain as the reference domain and we define difference vectors with respect
to the vertices in this domain. We also fix some arbitrary ordering of vertices in the polytope; say
they are in the increasing order of the first coordinate. We start with the first vertex in the first domain.
Next, pick the second domain and pick its first vertex. Take the difference of the two selected vectors,
this difference vector forms the first row of one of the matrices. Pick the third domain, take its first
vertex, and again take the difference to get the second row of the matrix. Repeat this process for all
the domains. As a result, we get a matrix with k − 1 rows and d columns. To summarize, the set
of matricesM consists of k − 1× d matrices that satisfy the following condition. For each matrix
M ∈M, the rth row of the matrix is defined as the difference between some vertex from (r + 1)th

domain and another vertex from the first domain.

Assumption 8. • The support of latents in each domain p ∈ [k], i.e., Z(p) is a bounded
polytope; the number of domains k ≥ d+ 1. Each matrix M ∈M has a rank equal to the
number of non-zero columns.

• For each component j ∈ U , there exists a domain p ∈ [k] such that the following condition
holds. We denote the value assumed by zj in Z(1) on vertex r as vr. We assume that there
exists another domain p with support Z(p) such that zj does not take the same value as vr

at any vertex of Z(p).
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The first part of the above assumption states a simple regularity condition on matrix M . The second
part of the above assumption is also a simple regularity condition on components in U . The condition
only requires that the value attained at some vertex is not attained at any other vertex for some other
domain.

Further remarks on Assumption 8. Next, we illustrate that the Assumption 8 holds rather easily
in many settings. Consider a setting where z = [z1, z2] and both z1, z2 take values between 0 and 1.
We consider the setting where the support of z forms a polytope. For each domain p, the polytope is
sampled as follows. Each polytope consists of M vertices and we sample M values for z2 uniformly
at random [0, 1]. For z1, we sample M − 2 vertices uniformly at random from the interval [0, 1]. For
the remaining 2 vertices, we fix z1 to take value 0 on one of them and 1 on the other. We generate k
polytopes following the above process and check if the rank constraint in the first part of Assumption
8 is satisfied. We repeat this process over ten thousand trials and find that the assumption always
holds for different values of M and k. The second part of the assumption holds trivially in the above
case as two uniform random variables sampled independently from [0, 1] are not equal to probability
one.

In what follows, we use the notation aB to denote a vector formed by components of a whose indices
in a are from the set B.

Theorem 8. Suppose the data is generated from different domains following equation (1) such
that Assumptions 1, 4, 8 are satisfied. The autoencoder that solves the reconstruction identity in
equation (2) under Constraint 1, 3 satisfies

ẑŜ = DzS + e

where D ∈ R|Ŝ|×|S|, e ∈ R|Ŝ|.

Proof. We begin by first checking that the solution to reconstruction identity under the above-said
constraints exists. Set f = g−1 and h = g and Ŝ = S. The reconstruction identity and Constraint 3
is satisfied as Assumption 4 holds.

Consider a component m ∈ Ŝ . From Constraint 3, we know that the support of ẑm does not change.
From Theorem 1, we also know that there is an affine relationship between ẑ and z. Therefore, we
can write

ẑm = A⊤
mz + cm (21)

The support of ẑm is determined by the maximum and minimum of A⊤
mz + cm computed on the

respective domains. Let us compute the maximum and minimum of ẑm in domain p as follows.

zmax(Am, p) = arg max
z∈Z(p)

A⊤
mz + cm (22)

zmin(Am, p) = arg min
z∈Z(p)

A⊤
mz + cm (23)

We define a vector AU
m that contains components of Am whose indices in Am form the set U . We

now show that support invariance constraints in Constraint 3 implies that AU
m = 0. Suppose AU

m ̸= 0
(at least one element of this vector is non-zero). In this case, we write the maximum value of the
objective as ∑

l

Amlz
max(Am, p)

Due to support invariance constraint we get

∑
l

Amlz
max
l (Am, p) =

∑
l

Amlz
max
l (Am, 1)
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∑
l

Aml

(
zmax
l (Am, p)− zmax

l (Am, 1)
)
= 0

z⊤diff(Am, p)Am = 0

z⊤diff(Am, p) is the difference vector formed by taking the difference zmax
l (Am, p)− zmax

l (Am, 1).
Construct a matrix Zdiff(Am) ∈ Rk−1×l by stacking the difference vectors z⊤diff(Am, p) for all p in
{2, · · · , k}.
Let us consider the largest submatrix of Zdiff(Am) with no zero columns and denote it as Zs

diff(Am).
Following Assumption 8, Zs

diff(Am) has a full column rank. Therefore, a non-trivial solution to
Zs
diff(Am)v = 0 does not exist and thus v = 0. Consider an element j ∈ U . Due to Assumption 8,

the column in Zdiff(Am) corresponding to j is non-zero. Therefore, for each element j ∈ U the
corresponding columns in Zdiff(Am) are non-zero. The columns of Zs

diff(Am) contain all coefficients
in U , which implies AU

m = 0. This completes the proof.
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