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Abstract
Although LLMs have achieved remarkable per-
formance, the inherent stochasticity of their rea-
soning process and varying conclusions present
significant challenges. Majority voting or Best-
of-N with external verification models has been
explored to find the most promising solution
among multiple LLM outputs. However, these ap-
proaches have certain limitations, such as limited
applicability or the cost of an additional training
step. To address this problem, we propose a novel
and effective framework that Recycles Few-shot
examples to verify LLM outputs (ReFeri). Our
key idea is to additionally utilize the given few-
shot examples to evaluate the candidate outputs of
the target query, not only using them to generate
outputs as the conventional few-shot prompting
setup. Specifically, ReFeri evaluates the gener-
ated outputs by combining two different scores,
designed motivated from Bayes’ rule, and selects
the candidate that is both confidently determined
and contextually coherent through a few addi-
tional LLM inferences. Experiments with three
different LLMs and across seven diverse tasks
demonstrate that our framework significantly im-
proves the accuracy of LLMs-achieving an av-
erage gain of 4.8%-through effective response
selection, without additional training.

1. Introduction
Recently, large language models (LLMs) have shown re-
markable performance in many real-world tasks involving
complex reasoning such as math, coding, and robotics (An-
thropic, 2024; Dubey et al., 2024; OpenAI, 2024c; Team
et al., 2023). To enhance the reasoning capacity of LLMs,
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various approaches have been proposed from in-context
learning at test time (Wei et al., 2022; Kojima et al., 2022)
to recent RL training method (Qu et al., 2024; Guo et al.,
2025). Despite these improvements, the inherent stochastic
nature of LLM still presents significant challenges, since dif-
ferent reasoning paths can be generated for the same input
and can lead to varying conclusions (Kadavath et al., 2022;
Wang & Zhou, 2024; Qiu & Miikkulainen, 2024). Majority
voting approaches, such as self-consistency (Wang et al.,
2023; Aggarwal et al., 2023), have been widely adopted
to reduce such randomness by aggregating multiple LLM
outputs and determining a single prediction. However, this
approach is only applicable when the answer can be easily
extracted from the output and aggregated. Consequently, it
is difficult to apply to open-ended text generation tasks such
as summarization and personalized chatbot (Stiennon et al.,
2020; Salemi et al., 2024).

To address this challenge, finding the most promising one
among multiple LLM outputs using a specific selection
method, often called Best-of-N, has recently gained atten-
tion (Snell et al., 2024; Gui et al., 2024). For instance, one
of the most representative approaches is to score each output
using external verification models such as Outcome Reward
Models (ORMs) (Cobbe et al., 2021; Uesato et al., 2022)
or Process Reward Models (PRMs) (Lightman et al., 2024;
Wang et al., 2024a), and then selecting the highest-scoring
output. However, to obtain these reward models, training
with a large amount of task-specific labeled data is often
necessary; therefore, applying this framework to specific
target domain, which is far from well-explored domains
such as math and coding, is challenging. Prompting LLM
to select the most promising output such as LLM-as-judge
is considerable to remove the reliance on the verification
model (Chen et al., 2023; Zheng et al., 2023). However,
this approach is only effective when the given LLM has
sufficient intrinsic knowledge for the target domain; conse-
quently, it often requires separate training steps and datasets
again to achieve sufficient performance (Yuan et al., 2024;
Mahan et al., 2024; Zhang et al., 2025).

Motivated by this, we suggest a new perspective: utilization
of few-shot examples to verify and select among multiple
LLM outputs. As recent LLMs have been trained with an
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extensive instruction tuning step, they often exhibit better
performance without few-shot examples (Guo et al., 2025;
Sprague et al., 2025), and hence using these examples at
test time is recently losing attention (see results in Table
1). However, we argue that using few-shot examples is still
one of the easiest and most direct ways to let LLMs know
how to solve the given task with human prior knowledge,
even if LLMs have not encountered it before. Therefore, in
this work, we provide a new framework that enables better
exploitation of few-shot examples by using them not only
for generating multiple outputs, but also for selecting the
most promising one.

Contribution. In this work, we propose ReFeri, a novel
and effective framework that Recycles Few-shot examples
to verify LLM outputs. The core idea of ReFeri is ad-
ditionally utilizing the given few-shot examples to eval-
uate the candidate outputs of the target query, not only
using them to generate outputs as conventional few-shot
in-context learning.1 Specifically, ReFeri estimates the like-
lihood of the generated outputs by decomposing it into two
different scores conditioned on few-shot examples, which
are derived from Bayes’ rule. The forward confidence
score measures the likelihood of candidate outputs given
the few-shot examples and the test query, favoring more
confident ones. On the other hand, the backward consis-
tency score measures whether conditioning on the candidate
output affects the likelihood of the few-shot examples com-
pared to conditioning on their queries alone. By combin-
ing these scores, ReFeri selects the candidate that is both
confidently determined and contextually coherent through
a few additional LLM inferences. Consequently, ReFeri
does not require additional model training to select the most
promising output, and allows better leverage of both intrin-
sic knowledge of LLM and human prior within the pro-
vided few-shot examples. See Figure 1 for the illustration.
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Figure 2. Summary of results.
Average accuracy across seven
benchmarks with training-free
selection methods. ReFeri
shows consistent effectiveness
(see Section 4.2).

We validate the effec-
tiveness of ReFeri across
three different LLMs
(GPT-4o, GPT-4o-mini,
and LLaMA-3.1-8B) and
seven different bench-
marks. When selecting
one response among five
candidates generated
by few-shot chain-of-
thought(CoT) prompting,
ReFeri consistently outper-
forms other training-free
selection across all tasks, with an average gain of 4.8% over

1In-context learning uses given few-shot examples as additional
input context upon the target query.

random selection and 2.6% over prompt-based selection
methods (see Figure 2). ReFeri also scales reliably with
the number of candidate responses, demonstrating its
practical utility in test-time scaling. To better understand
the behavior of ReFeri, we conduct two complementary
analyses, showing that our method is robust to both
variations in few-shot example selection and the choice
of model used for likelihood estimation. Furthermore, we
evaluate ReFeri in more challenging and practical scenarios.
Although recent reasoning LLMs (Guo et al., 2025)
show degraded performance under a few-shot prompting,
ReFeri consistently finds out the most promising reasoning
path. Moreover, ReFeri shows effectiveness on LLM
personalization (Salemi et al., 2024) requires open-ended,
user-specific generation.

2. Related Works
Few-shot in-context learning of LLM. Few-shot in-context
learning (ICL) revealed that LLMs can generalize to unseen
tasks with just a handful of input-output demonstrations
(Brown et al., 2020). To handle complex reasoning prob-
lems, chain-of-thought (CoT) prompting was proposed to
append intermediate steps to the few-shot examples, leading
to substantial gains in tasks such as arithmetic, common-
sense reasoning, and symbolic manipulation (Wei et al.,
2022; Fu et al., 2023; Jin et al., 2024). To further enhance
ICL, various strategies have been developed to retrieve bet-
ter examples using semantic similarity or entropy-based
selection (Wu et al., 2023; Peng et al., 2024). However,
some studies have shown that few-shot ICL does not always
guarantee improvements. For instance, label shuffling or for-
mat changes can often leave performance unaffected (Min
et al., 2022), and the performance gap between zero-shot
and few-shot CoT is narrowing in several benchmarks as
instruction tuning becomes more effective (Sprague et al.,
2025). In particular, recent LLMs such as DeepSeek-R1,
which are trained with reinforcement learning-based reason-
ing steps, sometimes even show performance degradation
when few-shot CoT examples are added (Guo et al., 2025).
Nonetheless, carefully selected demonstrations are still ef-
fective (Huang et al., 2024). For example, (Ge et al., 2025)
show that few-shot examples can reduce overconfidence in
multi-step reasoning, and (Yan et al., 2025) show that they
help mitigate hallucinations and memory-based mistakes
in complex tasks. These observations motivate us to go be-
yond using few-shot examples for generation, and recycling
few-shot examples to evaluate the possible multiple LLM
responses and to select the most promising one.

Selection of diverse LLM outputs. Due to the proba-
bilistic nature of LLM decoding, LLM can provide diverse
outputs for a single input, each reflecting different reason-
ing paths (Kadavath et al., 2022; Wang & Zhou, 2024; Qiu
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Figure 1. An overview of ReFeri. For K candidate responses from LLMs, ReFeri assigns each candidate a forward confidence score
(how likely candidate is to be generated conditioned on few-shot examples) and a backward consistency score (how candidate affect to
reconstruct the answers of few-shot examples). Then, the response with the best joint score is selected as the final answer.

& Miikkulainen, 2024). To handle this variability, self-
consistency (Wang et al., 2023) samples K independent
reasoning paths and selects the majority answer to improve
accuracy. However, it assumes that the model produces a
single, well-formatted answer, and this assumption is often
violated in open-ended tasks such as summarization or free-
form dialogue (Stiennon et al., 2020; Salemi et al., 2024).
Alternatively, recent Best-of-N approaches aim to directly
select the best output among candidates, often using external
verification models. For instance, Outcome Reward Mod-
els (ORMs) grade final outputs (Cobbe et al., 2021; Uesato
et al., 2022), while Process Reward Models (PRMs) assess
intermediate reasoning steps to provide finer supervision
(Lightman et al., 2024; Wang et al., 2024a). Despite their
successes, these models require large-scale, task-specific
annotations or domain-specific checkers, limiting their scala-
bility to new domains or unseen tasks. To eliminate the need
for external verification models, prompting-based methods
such as LLM-as-Judge ask LLM to evaluate its own outputs
(Chen et al., 2023; Zheng et al., 2023). However, their effec-
tiveness heavily depends on the model’s prior knowledge in
the target domain. When this knowledge is lacking, these
methods require additional fine-tuning with curated evalua-
tion datasets for sufficient performance, which reintroduces
the need for supervision (Yuan et al., 2024; Mahan et al.,
2024; Zhang et al., 2025). In contrast, ReFeri is training-
free and task-agnostic by recycling a few-shot examples for
verification.

3. Training-free Verification of LLM Outputs
via Recycling Few-shot Data

3.1. Preliminary

Let us denote LLM asM and a given test query as q̃. We
assume that we have N -shot examples X = {xi}Ni=1,xi =
(qi, ai) where qi is another input query from the same task

and ai is the ground-truth answer, which can be provided
by human annotator or generated by LLM itself. Then, few-
shot prompting incorporates the few-shot examples xi in X
as additional input context to obtain the response rk, which
is expected to be improved thanks to the in-context learning
capability of LLMs:

rk ∼M(q̃,X), (1)

where multiple non-identical predictions rk, k = 1, . . . ,K
can be sampled. Then, our goal is to find the most appro-
priate response rk∗ among them. For example, the self-
consistency method (Wang et al., 2023) simply applies ma-
jority voting to determine the single prediction. On the other
hand, the best-of-K method uses the external verifier such as
reward models (Cobbe et al., 2021; Lightman et al., 2024)
to score the predictions and select the highest scored one.
Formally, with the external verifier Rϕ, it can be described
as below:

rk∗ = arg max
k=1,...,K

Rϕ(yk), (2)

where yk = (q̃, rk). While these approaches are widely
used in practice, there are certain challenges due to the
limited applicability and the need for a verification model
for the target task.

3.2. ReFeri: Verification of LLM outputs with
Bayes-inspired scores with few-shot data

In this section, we introduce a framework that selects can-
didates from LLM by Recycling Few-shot examples for
the verification (ReFeri). The core idea of ReFeri is to
leverage few-shot examples not only for generation but also
for validation, thereby recycling them to score and select
answers without additional training. Specifically, ReFeri
estimates the plausibility of each answer candidate by com-
bining two complementary signals: (1) a forward confidence
score which captures how likely the model is to generate re-
sponse rk given test query q̃, few-shot examples X, and (2)
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a backward consistency score, measuring how rk is effective
to correctly answer the queries qi in X.

Problem setup. Let us assume that we have an estimation
model P which can measure the likelihood P (yk) = P (rk |
q̃) of the response rk conditioned on the given query q̃.2

Then, our goal is to select the response rk∗ which yields the
highest likelihood if the estimation is accurate:

k∗ = arg max
k=1,...,K

P (yk). (3)

We note that the likelihood has shown effectiveness to find
high-quality reasoning path (Wang & Zhou, 2024). How-
ever, selecting based on the estimated P (yk) could be inef-
fective in practice, as it entirely depends on the estimation
model’s intrinsic knowledge, which can be limited in unfa-
miliar or challenging domains. Furthermore, when there is
a mismatch betweenM and P , the estimated likelihoods
can be unreliable as minor syntactic variations in response
can make large deviations. To address this, we propose
to reinterpret P (yk) with few-shot examples X, through
Bayes’ rule:

P (yk) =
P (yk | X) · P (X)

P (X | yk)
. (4)

Then, in the log form, this can be decomposed into two
intuitive forward and backward scores:

logP (yk) = logP (yk | X)︸ ︷︷ ︸
forward

−
(
logP (X | yk)− logP (X)

)︸ ︷︷ ︸
backward

.
(5)

While Eq. 5 holds mathematically, discrepancies between
the left- and right-hand sides can arise in practice due to
the limitations of the estimation model. To address this, the
core idea of ReFeri is to estimate the forward and backward
scores separately, as each can be more accurately approxi-
mated by the estimation model with the help of few-shot ex-
amples. Then, ReFeri combines these two estimated scores
to yield the final selection score. Overall algorithm is pre-
sented in Algorithm 1.

Forward confidence score. Intuitively, logP (yk|X) cap-
tures the confidence of candidate response rk to test query
q̃; this score is high when rk well-aligns with the reasoning
patterns in the few-shot examples X. This forward score has
certain advantages over direct estimation of P (yk), as it al-
lows the estimation to be grounded in the few-shot examples
and hence reduces the reliance on its prior knowledge alone.
As a result, the forward score provides a more context-aware
and robust estimation, especially important in unfamiliar or
domain-shifted scenarios. When the estimation model P

2For the experiments in Section 4, we use pre-trained LLM as
the estimation model.

is equal to generation LLMM, the forward score can be
freely obtained during generation of rk. Formally, under
the autoregressive assumption for estimation model P , the
forward score is derived as below:

SForw(yk) := logP (yk | X)

=

T∑
t=1

logP (rk,t | q̃,X, rk,<t),
(6)

where each candidate response is a sequence of T tokens
rk = (rk,1, . . . , rk,T ).

Backward consistency score. The backward score,
logP (X|yk) − logP (X), evaluates how the inclusion of
test query q̃ and candidate response rk affect to explain the
few-shot examples X. At a high level, this score serves
as a form of consistency check between the response and
the given few-shot examples. Under the assumption of
mutual independence between few-shot examples, the back-
ward score can also be derived similar to Eq. 6. However,
to better evaluate how well the candidate response rk ex-
plains the few-shot examples X, we refine the backward
term using a leave-one-out strategy (Perez et al., 2021; Izac-
ard et al., 2023) through prompt replacement; namely, we
construct new demonstration X̃i by replacing i-th exam-
ple xi = (qi, ai) with a pair of test query and candidate
response (q̃, rk):

X̃i := X−i ∪ {(q̃, rk)}, (7)

where X−i denotes the few-shot examples excluding xi.
Then, by including X̃i during the estimation for xi as addi-
tional input context similar to forward term, we define the
modified backward score:

SBack(yk) := logP (X | yk)− logP (X)

=

N∑
i=1

(
logP (ai | qi, X̃i)− logP (ai | qi)

)
.

(8)

This inclusion of remaining examples X−i enables more
accurate estimation of the likelihood of target example
xi by leveraging the in-context learning capability of P
(see more discussions in Appendix B.2). Similar to Eq. 6,
logP (ai|qi, X̃i) and logP (ai|qi) can be calculated through
a token-level decomposition using the autoregressive nature
of P .

Final score. By combining forward and backward scores
following Eq. 5, we design our main selection score SComb

to find the most promising output rk⋆ as below:

k⋆ = arg max
k=1,...,K

SComb(yk),

SComb(yk) := SForw(yk)− SBack(yk).
(9)

However, the direct estimation of P (yk) can be effective,
particularly when both the estimation model P and the gen-
eration LLMM perform reliably—as is often the case in
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well-covered, generic domains. Therefore, to utilize this
information upon the proposed combined score SComb, we
define the final score SFin by jointly considering both com-
ponents as follows:

SFin(yk) := (1− β) · SDire(yk) + β · SComb(yk), (10)

where SDire = P (yk) and β is a hyperparameter to control
the effect from two sources. This is helpful to prevent over-
reliance on noisy few-shot examples of SComb and improves
the robustness of selection. When β = 1, the score relies
fully on the score derived forward-backward decomposition.

4. Experiments
In this section, we design our experiments to investigate the
following questions:
◦ Is ReFeri effective to select the correct output across

various tasks and LLMs? (Table 1)
◦ Can ReFeri enable test-time scaling without external

reward model and training? (Figure 3)
◦ What is the effect of each component in ReFeri? (Tables

2, 3, and Figure 4)
◦ Can ReFeri be generalized to recent reasoning LLM and

broader tasks? (Tables 4, 5)

4.1. Setups

Datasets. We evaluate our method on seven bench-
marks encompassing diverse reasoning paradigms, includ-
ing symbolic-numeric, expertise-based, and multi-hop tex-
tual reasoning tasks. (1) MATH500 (Lightman et al., 2024);
a 500-problem subset of the MATH benchmark (Hendrycks
et al., 2021b), focused on symbolic manipulation and multi-
step mathematical reasoning. (2) MMLU-pro (Wang et al.,
2024b); 4200 examples, including 300 randomly sampled
questions per domain (e.g., physics, law, computer science)
extends the original MMLU benchmark (Hendrycks et al.,
2021a) by adding reasoning-focused questions and expand-
ing the choice set from four to ten options. (3) HotpotQA
(Yang et al., 2018); 500 samples from (Kim et al., 2024)
which is a multi-hop question-answering benchmark requir-
ing reasoning across multiple Wikipedia paragraphs with
annotated supporting facts. (4) DROP (Dua et al., 2019);
500 randomly sampled questions from this reading com-
prehension benchmark, which queries demand discrete nu-
merical reasoning (e.g., addition, counting, sorting) over
paragraphs. (5) GPQA-diamond (Rein et al., 2024) (GPQA);
198 graduate-level questions assessing complex reasoning in
biology, physics, and chemistry. (6,7) MuSR (Sprague et al.,
2024); 256 examples in Object Placement (MuSR-op) and
250 examples in Team Allocation (MuSR-ta) tasks assessing
spatial and relational reasoning.

Notably, prior work (Sprague et al., 2025) has shown that
few-shot Chain-of-Thought (CoT) prompting yields signif-
icant gains over zero-shot CoT in MuSR, highlighting the

role of in-context examples in complex reasoning. As few-
shot examples are necessary for some baselines and ReFeri,
we collect them following the previous works. MATH500:
5 examples from (Yang et al., 2024) (GPTs), 4 examples
from (Lewkowycz et al., 2022) (LLaMA).3 MMLU-Pro: 5
examples from (Wang et al., 2024b). HotpotQA: 6 examples
from (Yao et al., 2023). DROP: 3 examples following (Zhou
et al., 2022). GPQA-Diamond: 5 examples from (Rein
et al., 2024). MuSR: 3 examples from (Sprague et al., 2025).
Complete prompt templates are available in Appendix A.1.

Baselines. We compare ReFeri against five prompt-based
methods that require no additional training, with some re-
flecting different uses of few-shot examples: (1) Zero-shot
CoT appends a trigger phrase (”Let’s think step by step.”) to
each query without providing exemplars, relying on LLM’s
intrinsic reasoning capabilities. (2) Few-shot CoT prepends
a fixed set of few examples, enabling LLM to generalize
from few in-context demonstrations. (3) USC asks LLM
to select the best answer from multiple CoT outputs, by
following (Chen et al., 2023). We report the results without
using few-shot examples as it degrades performance (see
Appendix B.3). (4) CoT-WP (Wang & Zhou, 2024) scores
each candidate response using token-level probabilities from
LLM conditioned on the same few-shot examples. Specifi-
cally, the score is a confidence gap between top-1 and top-2
tokens at answer positions. To estimate confidence, we use
LLaMA-3.1-8B as same as ReFeri. (5) LEAP (Zhang et al.,
2024) improves few-shot prompting by intentionally induc-
ing mistakes on few examples. Then extracting generaliz-
able task-specific principles through self-reflection without
human annotations, and prompting the model to apply these
principles to unseen questions. Specific prompts for each
baseline are in Appendix A.2.

Implementation details. For the experiments, we use (1)
gpt-4o-2024-08-06 (GPT-4o) (OpenAI, 2024a), (2)
gpt-4o-mini-2024-07-18 (GPT-4o-mini) (OpenAI,
2024b), and (3) LLaMA-3.1-8B-Instruct (LLaMA-
3.1-8B) (Dubey et al., 2024) as target LLMs, i.e., response
generation models. We generate K = 5 responses per
each query using temperature of 1.0 to encourage diverse
candidates. For Zero-shot CoT, Few-shot CoT and LEAP,
we report the average accuracy for all five responses without
applying any selection mechanism, which can be viewed as
randomly selecting the response. For USC, COT-WP, and
ReFeri, we use the same candidates generated from Few-
shot CoT. In USC, the generation and judge models are same
and we use temperature of 0. For the estimation model P ,
we employ LLaMA-3.1-8B-Instruct, except the experiments
in Figure 4. For the hyper-parameter of ReFeri, we consider

3(1) Using the same prompt as GPT results in sig-
nificantly lower accuracy, and (2) LLaMA-based mod-
els provide their own optimized prompt templates (see
meta-llama/Llama-3.2-3B-Instruct-evals).
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β ∈ [0.5, 0.75, 1]. More details are in Appendix A.3.

4.2. Main results

Table 1 summarizes the experimental results across seven
different reasoning benchmarks and three different LLMs.
For instance, across all tested LLMs and benchmarks,
ReFeri improves average accuracy by 4.8% over Few-shot
CoT, which corresponds to apply random selection instead.
Compared to the second-best method, CoT-WP, ReFeri
achieves an average improvement of 1.7% across all bench-
marks. Notably, CoT-WP relies solely on the forward like-
lihood of each candidate, while ReFeri combines both for-
ward and backward signals via a Bayes-deriven scoring
function. This bidirectional formulation allows ReFeri to
capture not just the confidence of an answer, but also its con-
sistency with few-shot examples upon the LLM’s intrinsic
knowledge about the task; consequently, it enables a better
selection across various tasks. We note that performance
of prompt-base selection, USC, largely varies depending
on the task and used LLMs, which reveals the limitation of
solely relying on LLM’s intrinsic knowledge. In addition,
as mentioned in Section 4.1, MuSR is a benchmark where
few-shot examples play a critical role (Sprague et al., 2025)
and our results also support this with 21.0% average im-
provement by Few-shot CoT over Zero-shot CoT. Here, we
find that ReFeri further enlarges the improvement with the
largest gain, outperforming the second-best method by 4.5%.
This result shows that ReFeri is particularly effective in new
domains where there LLM has a little prior knowledge and
need to heavily rely on a few examples without additional
training or reward models.

Next, to assess whether ReFeri scales effectively with
the number of candidate outputs similar to the conven-
tional reward-based best-of-K selection, we evaluate per-
formance as the candidate pool grows. Specifically, we
test K = {1, 5, 10, 15} candidates on three represen-
tative tasks—MATH500, GPQA, and MuSR-ta by using
GPT-4o-mini as the generation model under Few-shot
CoT. We present the results in Figure 3. Across the three
tasks, ReFeri yields consistent improvements as K increases.
On MATH500, while the accuracy of random selection
decreases as the number of generated samples increases,
ReFeri consistently selects higher-quality responses, im-
proving from 75.8% at K = 1 to 79.2% at K = 15. On
GPQA, where ReFeri raises performance from 41.4% to
45.5% as the candidate pool grows. Consistently, the largest
gain is observed on MuSR-ta, which saw a sharp jump in
accuracy from 75.6% to 86.0%, an improvement of 10.4%.
In contrast, while USC is effective on MATH500, its perfor-
mance even degrades with more candidates on GPQA and
MuSR-ta, where candidate responses are more diverse and
LLM has relatively less relavant knowledge. In addition,
we observe an inherent ordering bias in USC: over 90% of

selections come from the first two responses (see Appendix
B.3), indicating a limitation of this prompt-base approach.
Overall, these results confirm that ReFeri scales well with
more candidates, demonstrating effectiveness and reliability
in practical test-time scaling.

4.3. Additional analyses

In this section, we conduct additional analyses of ReFeri.
We mainly conduct experiments using GPT-4o-mini on
MATH500, GPQA, and MuSR-ta. More results are pre-
sented in Appendix B.

Ablation study. To better understand which components
contribute to the effectiveness of ReFeri, we conduct an
ablation study on each part of the proposed scoring function
(Eq. 10). We focus on two primary components: the forward
confidence score (Eq. 6) and the backward consistency score
(Eq. 8), both of which are grounded in Bayes’ rule (Eq. 5).
The results are presented in Table 2. First, it is observed
that combining forward and backward scores outperforms
either score alone, validating the joint consideration. This
complementary effect is from their different nature; while
forward score focuses on model-generated response which
may contain noise, backward score utilizes given few-shot
examples which are well-curated inputs and ground-truth
labels, and thus relatively clean. Accordingly, the forward
and backward scores anchored on few-shot examples form
the structural backbone of our method. Interestingly, adding
the direct estimation like Eq. 10 consistently improves ac-
curacy across benchmarks, though it is not required by the
Bayes formulation. This result suggests its utility as a sup-
plementary prior for verifying LLM outputs. More results
are in Appendix B.

Estimation models and few-shot examples. To ex-
amine whether ReFeri is sensitive to the choice of
estimation model pθ, we evaluate its performance
using three LLMs with diverse scales and archi-
tectures: LLaMA-3.2-1B-Instruct (MetaAI,
b), Qwen-2.5-7B-Instruct (Qwen), and
LLaMA-3.1-70B-Instruct (MetaAI, a). The
generation model is fixed (either GPT-4o-mini, GPT-4o, or
LLaMA-3.1-8B), and we apply each estimation models to
two tasks on MATH500 and GPQA. The average accuracy
of three generation LLMs is presented in Figure 4 (Full
results are in Appendix B). Here, ReFeri consistently
improves Few-shot CoT across all settings, with an
average gain of 5.0% on MATH500 and 5.3% on GPQA.
Notably, the smallest model (LLaMA-3.2-1B) performs
competitively, and even achieves competitive performance
on MATH500. We attribute this to the relative simplicity
of MATH benchmark, as recent small LLMs often exhibit
reasonable performance; hence, they can make reliable
likelihood estimates for selection. In contrast, GPQA
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Table 1. Main Results. Overall performance on seven reasoning benchmarks comparing the proposed ReFeri with different baselines
not require additional training, under three different state-of-the-art LLMs. The best and second-best scores are highlighted in bold and
underline, respectively.

Models Methods MATH500 MMLU-pro GPQA DROP HotpotQA MuSR-op MuSR-ta Avg.(Acc.) (Acc.) (Acc.) (EM / F1) (EM / F1) (Acc.) (Acc.)

G
PT

-4
o-

m
in

i Zero-shot CoT 76.4 63.0 43.0 77.6 / 85.6 31.5 / 41.4 58.1 56.2 58.0
Few-shot CoT 75.2 63.0 41.3 76.8 / 83.1 34.0 / 45.1 59.4 77.0 61.0

USC 78.6 62.5 42.4 78.8 / 85.8 36.6 / 48.2 59.8 76.4 62.2
CoT-WP 77.8 64.2 42.4 77.6 / 83.1 34.0 / 45.6 57.0 79.6 61.8

LEAP 74.5 63.2 43.9 75.8 / 83.0 34.0 / 45.1 59.8 74.4 60.8
ReFeri (Ours) 78.2 65.0 42.4 79.6 / 85.3 36.2 / 47.9 61.3 82.8 63.6

G
PT

-4
o

Zero-shot CoT 77.5 73.9 48.8 75.1 / 85.3 37.6 / 49.9 61.7 66.6 63.0
Few-shot CoT 75.6 73.7 47.8 80.6 / 89.2 44.6 / 58.4 69.7 87.0 68.4

USC 79.8 72.1 50.5 82.0 / 90.2 45.8 / 60.4 73.4 87.6 70.2
CoT-WP 78.0 75.0 48.5 83.0 / 90.8 48.0 / 61.2 70.3 88.8 70.2

LEAP 75.6 74.0 45.5 81.5 / 89.8 45.1 / 58.4 66.8 87.2 68.0
ReFeri (Ours) 78.4 75.5 51.5 83.6 / 91.2 47.4 / 61.0 72.3 90.8 71.4

L
L

aM
A

-3
.1

-8
B Zero-shot CoT 44.2 39.8 21.6 60.4 / 66.4 15.2 / 21.2 50.6 43.0 39.3

Few-shot CoT 42.9 38.7 24.0 61.4 / 67.3 19.0 / 25.1 53.3 64.8 43.1
USC 49.6 35.6 28.8 69.6 / 75.8 24.4 / 32.5 52.3 67.2 46.8

CoT-WP 47.8 44.8 32.3 70.2 / 75.1 25.0 / 32.2 56.6 71.6 49.8
LEAP 42.3 37.3 27.8 58.2 / 64.1 19.9 / 26.8 51.6 69.2 43.8

ReFeri (Ours) 51.0 45.1 34.8 70.2 / 76.7 25.0 / 33.0 56.6 80.0 51.8

Table 2. Ablation study. Evaluation of scoring variants on re-
sponses by GPT-4o-mini, comparing the contribution of metric
term (forward, backward, and direct) on MATH500 and GPQA.

Forw. Back. Dire. MATH500 GPQA

✗ ✗ ✗ 75.2 41.3
✓ ✗ ✗ 77.6 41.9
✗ ✓ ✗ 75.2 41.9
✓ ✓ ✗ 77.8 42.4

ReFeri ✓ ✓ ✓ 78.2 42.4

Table 3. Different few-shot examples. Accuracy across three
different choices of few-shot examples on MATH500 (top) and
GPQA (bottom) using GPT-4o-mini to generate responses.

Methods 1st 2nd 3rd Avg.

Few-shot CoT 74.4 73.8 74.7 74.3
ReFeri (Ours) 76.8 77.4 79.0 77.7

Few-shot CoT 41.7 39.7 44.8 42.1
ReFeri (Ours) 45.5 41.4 46.0 44.3

requires more complex reasoning; therefore, using the
large estimation model could be more beneficial. Indeed,
LLaMA-3.1-70B achieves the best performance on this
case. Despite these task-specific differences, the overall
improvements are consistent across all estimation models.
This suggests that the effectiveness of ReFeri primarily
stems from its validation strategy with few-shot examples,
rather than the specific choice of estimation model.
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Figure 4. Estimation model.
Each bar shows the average
accuracy of three generation
LLMs on MATH500 and GPQA.

Also, ReFeri highly re-
lies on few-shot exam-
ples for scoring of both
forward and backward
scores (Section 3.2). This
raises the question of
how sensitive the method
is to the choice of few-
shot exemplars. To this
end, we conduct a sensi-
tivity study on MATH500 and GPQA using GPT-4o-mini,
where we randomly sample three different few-shot exam-
ples from the training dataset. As shown in Table 3, both
Few-shot CoT and ReFeri show some variation across seeds.
Nevertheless, ReFeri consistently outperforms Few-shot
CoT which corresponeds to random selection, and the av-
erage gap remains approximately 2.8%. These results in-
dicate that ReFeri remains robust to exemplar choice and
is consistently effective, rather than overfitted to specific
demonstrations.

Generalization to reasoning LLM. As discussed in Section
2, few-shot prompting is often less effective for RL-tuned
LLMs such as DeepSeek-R1 (Guo et al., 2025). This degra-
dation may stem from several factors, including sensitivity
to prompt formatting, incompatibility with few-shot tem-
plates, or reliance on special tokens (e.g., <think>). We
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Figure 3. Test-time scaling with ReFeri. Accuracy of ReFeri versus other training-free selection methods (Random selection and USC)
on MATH500, GPQA, and MuSR-ta. GPT-4o-mini generate different numbers of candidate responses (K = 1, 5, 10, 15) using Few-shot
CoT, similar to Table 1. Solid lines indicate the performance of ReFeri (ours), USC, and Random, respectively.

Table 4. Generalization to reasoning LLM. Accuracy of
DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) under zero-shot
CoT and few-shot CoT methods with or without ReFeri.

Methods AIME24 AMC23

Zero-shot CoT 52.7 84.5
+ ReFeri (Ours) 63.3 90.0

Few-shot CoT 44.0 78.0
+ ReFeri (Ours) 50.0 85.0

also observe similar results through experiments on two
challenging benchmarks, AIME24 (aim) and AMC23 (amc),
with DeepSeek-R1-Distill-Qwen-7B (DeepSeek);
for the experiments, we generate five reasoning paths un-
der a temperature of 1.0 with five few-shot examples from
MATH500, following (Yang et al., 2024). We use this model
for both generation and estimation. More detailed setups are
presented in Appendix A.3. As shown in Table 4, Zero-shot
CoT achieves 52.7% and 84.5% respectively, while Few-
shot CoT yields a notable drop to 44.0% (-8.7%) and 78.0%
(-6.5%). Nevertheless, the proposed ReFeri successfully se-
lects the promising reasoning path and yields the significant
accuracy gain (+6.0% and +7.0%, respectively). This result
confirms the robustness of ReFeri from the utilization of
well formatted few-shot examples for the validation.

On the other hand, one can observe that the final accuracy
is still lower than the average accuracy by Zero-shot CoT,
mainly due to the limited accuracy of reasoning paths from
Few-shot CoT. However, as described in Eq. 3, ReFeri is
indeed applicable to select reasoning paths of zero-shot CoT,
while we primarily apply to few-shot CoT as it usually yields
better reasoning paths (Table 1). With the experiments, we
verify that applying ReFeri to Zero-shot CoT yields substan-
tial improvements that raise accuracy to 63.3% (+10.6%)
on AIME24 and 90.0% (+5.5%) on AMC23, respectively.
These results are evidence that few-shot examples in ReFeri
mainly serve as a form of post-hoc validation pipeline, not
the generation guidance like conventional Few-shot CoT.

Table 5. LLM personalization. Evaluation results on LaMP-4 and
LaMP-5 using GPT-4o-mini as generator. Vanilla uses no history,
while Few-shot RAG retrieves user history via BM25.

Methods LaMP-4 LaMP-5
Rouge-1 Rouge-L Rouge-1 Rouge-L

Vanilla 0.120 0.106 0.421 0.332
Few-shot RAG 0.142 0.126 0.453 0.368

ReFeri (Ours) 0.160 0.141 0.503 0.402

Also, this effectiveness of ReFeri under decoupling between
generation and selection suggests a robust alternative to con-
ventional few-shot prompting strategies, particularly in set-
tings where few-shot examples are ineffective with LLMs.

Application to LLM personalization. Lastly, we fur-
ther apply ReFeri for LLM personalization to evaluate its
broader applicability. The goal of LLM personalization
is steering LLMs’ responses towards the individual users,
which becomes progressively important (Salemi et al., 2024;
Tan et al., 2024; Kim & Yang, 2025). One representa-
tive baseline for LLM personalization is few-shot retrieval-
augmented generation (RAG) that retrieved the user’s previ-
ous data relevant to the given test query, and hence it’s natu-
ral to apply ReFeri. Specifically, we evaluate on two tasks
in LaMP benchmark (Salemi et al., 2024), LaMP-4 (person-
alized news headline generation) and LaMP-5 (personalized
scholarly title generation), and use GPT-4o-mini as gener-
ation LLM. We generate K = 5 candidate responses with
a temperature of 1.0 as same as Table 1. Vanilla baseline
directly answers to query without external context, while the
Few-shot RAG baseline augments input prompt with N = 5
examples retrieved via BM25 (Robertson et al., 2009) from
the user’s history. Following (Salemi et al., 2024), we eval-
uate all responses against gold references using ROUGE-1
and ROUGE-L. The average of all K responses is reported
for the baselines, and results with the selected response is re-
ported for ReFeri, respectively. As shown in Table 5, ReFeri
consistently outperforms both baselines across LaMP-4 and
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LaMP-5. Notably, it improves ROUGE-L from 0.368 to
0.402 on LaMP-5, and from 0.126 to 0.141 on LaMP-4.
This result demonstrates the applicability of ReFeri beyond
traditional reasoning tasks—to open-ended, user-specific
scenarios.

5. Conclusion
We propose ReFeri, a training-free framework for selecting
promising output from LLM that reuses few-shot exam-
ples not only for generation but also for validation. In our
experiments, ReFeri performs consistently effective in vari-
ous LLMs and tasks, demonstrating strong adaptability to
RL-tuned LLMs and open-ended personalization settings,
and highlighting its generality beyond reasoning tasks. Our
results suggest that ReFeri is a practical way to find the reli-
able LLM output with minimal human involvement, opening
future directions to reconsider the broader utility of demon-
strations.

Limitation and future works. Since the selection by
ReFeri is determined by likelihoods produced by an estima-
tion model, it does not explain why a response is incorrect,
unlike PRMs, which offer step-level feedback, or LLM-as-
judge, which can easily generate explanations by prompting.
Additionally, performing multiple inferences with the esti-
mation model to obtain likelihoods for different few-shot
examples (Eq. 8) can be costly, although it is still more
efficient than generating responses with a state-of-the-art
LLM like GPT-4o. However, as shown in Table 4, smaller
estimation models can be highly effective depending on the
task and domain; consequently, adaptively using models of
varying scales of the estimation model could be effective in
solving this issue.

Impact Statement
ReFeri provides a training-free method for selecting promis-
ing outputs from LLMs. This makes it particularly valuable
in scenarios where labeled data is scarce or where model
fine-tuning is impractical such as personalization tasks with
limited access to user data, or applications in emerging do-
mains where predefined labels are unavailable. In addition,
ReFeri reduces the barrier to deploying LLMs in real-world
settings without additional supervision. This may contribute
to broader and more efficient adoption of LLMs in resource-
constrained environments.
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A. More Details of Experimental Setups
This section covers more details about the experiments from Section 4.

A.1. Datasets

This subsection provides more information about the dataset and the few-shot examples we used.

• MATH500. The MATH benchmark (Hendrycks et al., 2021b) consists of 12,500 LaTeX-formatted competition-level math
problems, with topics ranging from algebra and geometry to number theory. Each problem includes a step-by-step solution
and expects the model to generate a boxed final answer (e.g., an integer or simplified expression). We use MATH500, a
500-question subset introduced in (Lightman et al., 2024), uniformly sampled from the test split to preserve subject and
difficulty distribution. For few-shot examples, we follow (Yang et al., 2024)4 for GPT-based models and (Lewkowycz
et al., 2022)5 for LLaMA-based models. The reason for this choice is based on our empirical observation: Simply adding
”Please think step by step and put your final answer within \boxed{}.” as done in GPT-style few-shot prompts led to
a significant drop in accuracy. Namely, LLaMA-based models require prompt formats that are aligned with their own
instructions and are sensitive to deviations from the learned template. This benchmark evaluates symbolic reasoning
ability in mathematical domains.

• MMLU-Pro. MMLU-Pro (Wang et al., 2024b) is an extension of the original MMLU benchmark (Hendrycks et al.,
2021a), which evaluates broad knowledge and reasoning over 57 subjects using 14k 4-way multiple-choice questions.
MMLU-Pro introduces 12k curated 10-way multiple-choice questions across 14 professional domains, increasing task
difficulty and emphasizing complex, multi-step reasoning. Instead of using the full test set, we subsample 300 questions
per subject (totaling 4,200) using random seed 42 and we will share the used indices at the code. For few-shot examples,
we follow the format used in (Wang et al., 2024b). This benchmark is used to assess domain-specific and robust reasoning
performance.

• GPQA. GPQA (Rein et al., 2024) is a graduate-level QA benchmark consisting of 448 expert-authored multiple-choice
questions in domains such as physics, chemistry, and biology. Designed to be ”Google-proof,” it focuses on evaluating
complex scientific reasoning that cannot be answered through simple retrieval. We evaluate on GPQA-Diamond, a curated
subset of 198 especially difficult questions selected by the authors. Few-shot examples are taken directly from the official
release (Rein et al., 2024). This task measures deep scientific understanding.

• DROP. The DROP benchmark (Dua et al., 2019) contains 96k question-answer pairs requiring discrete reasoning over
Wikipedia passages (e.g., numerical operations, counting, or date comparison). Answers may include spans, numbers, or
dates. We evaluate on a 500-sample subset randomly selected from the dev set, and we will share the selected indices
at the code. We use 3-shot examples from (Zhou et al., 2022) and report both EM and F1 metrics following the official
implementation. This benchmark evaluates models’ symbolic reasoning grounded in natural language passages.

• HotpotQA. HotpotQA (Yang et al., 2018) consists of 113k multi-hop QA pairs requiring reasoning over multiple
Wikipedia documents. The model must retrieve at least two relevant passages and combine facts to answer each question.
We follow the (Kim et al., 2024), which uses 500 samples from the dev set. Few-shot examples are taken from (Yao et al.,
2023). This task tests compositional reasoning and the ability to aggregate distributed information across documents.

• MuSR. MuSR (Sprague et al., 2024) is a benchmark for multi-step reasoning over long-form narratives (800–1000
words), constructed via neuro-symbolic generation to embed logical dependencies into natural language. It includes
structured tasks such as TeamAllocation (constraint-based planning) and ObjectPlacement (spatial consistency reasoning).
We evaluate on the 256 TeamAllocation and 250 ObjectPlacement examples from the official release (Sprague et al.,
2024), using 3-shot prompts tailored to each task (Sprague et al., 2025). MuSR requires understanding of narrative flow,
contextual logic, and physical feasibility. As demonstrated in (Sprague et al., 2025), ICL plays a critical role in model
performance on MuSR, and demonstrates the effectiveness of ReFeri.

• AIME24. AIME24 (aim) consists of 30 official problems from the 2024 AIME I and II exams, widely known for their
difficulty in symbolic math reasoning. These integer-answer questions cover topics such as algebra, combinatorics,

4https://github.com/QwenLM/Qwen2.5-Math
5https://huggingface.co/datasets/meta-llama/Llama-3.2-3B-Instruct-evals
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and number theory, and are commonly used to evaluate mathematical reasoning capabilities of RLLMs. We use all 30
problems as-is and apply the same 5-shot prompting setup as in MATH500, following the implementation of (Yang et al.,
2024).

• AMC23. AMC23 (amc) consists of 40 problems and includes selected high-difficulty problems from the 2023 AMC
12A and 12B exams. Evaluation is performed using the same 5-shot prompting setup as MATH500, following the
implementation of (Yang et al., 2024). This benchmark provides additional resolution for evaluating symbolic reasoning
below the AIME level.

• LaMP. The LaMP benchmark (Salemi et al., 2024) evaluates personalized text generation across multiple tasks. We focus
on LaMP-4 (personalized news headline generation) and LaMP-5 (personalized scholarly title generation). In LaMP-4,
the model generates headlines conditioned on article content and author profile, while LaMP-5 requires generating
research paper titles conditioned on researcher profiles. We follow the official test splits and evaluate with ROUGE-L and
ROUGE-1. Few-shot RAG is an example of 5 shots retrieved from user history via BM25. These tasks test personalization
and style-aware generation in open-ended outputs.

A.2. Baselines

Here, we provide the template used for our baseline, using MATH500 as a representative task among multiple benchmarks.
(see list 1–7).

A.3. Implementation

This section provides the detailed information needed to implement the main experiment.

Resource details. To avoid out-of-memory, we used two NVIDIA H100 GPUs for evaluation with the LLaMA-3.1-70B-
Instruct model, and one H100 for DeepSeek-R1-Distill-Qwen-7B. All other experiments were performed on a single A6000
GPU.

Response generation. We use lm-eval-harness6 to generate responses from LLaMA-based models, with temperature set to
1.0 and 5 responses sampled per input. The prompt was written in chat template format and used vllm.7 For GPT-family
models, we use the official OpenAI API to generate completions under the same sampling configuration. The remaining
settings follow the GPT API default settings. During evaluation, we report the average score across the 5 generations. All
evaluations are conducted using our custom evaluation scripts to ensure consistent scoring and formatting across models.

Algorithm of ReFeri. In algorithm 1, we present the formal algorithm for ReFeri. Except Table 4, we generate multiple
candidate responses {r1, ..., rK} for each test query using Few-shot CoT, as it exhibit the better quality on the average (see
Table 1).

Generalization to reasoning LLM. We evaluate DeepSeek-R1-Distill-Qwen-7B (DeepSeek) on two challenging math
benchmarks: AMC23 and AIME24. For both datasets, we adopt the same 5-shot prompting used in MATH500, following
the implementation of (Yang et al., 2024), as no task-specific few-shot examples are readily available and most prior works
tend to prefer zero-shot formats due to frequent performance degradation under few-shot prompting (Guo et al., 2025).
We perform 5 generations per example using nucleus sampling (p = 0.95), and temperature 1, running vLLM with two
H100 GPUs, with a maximum input and output length of 32,768 tokens. Our implementation is adapted from the FuseAI
framework.8 We report the average of the five responses in the case of Zero-shot CoT and Few-shot CoT. To apply ReFeri,
we follow the same procedure as in all other experiments. When a zero-shot setting is required, we simply substitute the
model’s zero-shot response rk for each few-shot response in the same pipeline.

Application to LLM personalization. We experiment with two configurations: (1) vanilla generation, where only the user
query is used as input without any personalization; and (2) RAG-based personalization, where the prompt is augmented with
both a user profile and top-5 similar examples retrieved from the user’s history using BM25 (Salemi et al., 2024; Tan et al.,
2024). The responses are generated using the GPT-4o-mini model via the OpenAI API with temperature set to 1.0.

Building on the outputs generated through above pipeline, we apply our ReFeri method to select the most likely response

6https://github.com/EleutherAI/lm-evaluation-harness
7https://huggingface.co/datasets/meta-llama/Llama-3.1-8B-Instruct-evals
8https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/math_evaluation
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Algorithm 1 ReFeri algorithm
Input: estimation model P , test-query q̃, K candidate responses {r1, . . . , rK}, N few-shot examples X = {xi}Ni=1,

replaced prompt X̃i, hyperparmeter β

1: for k = 1 to K do
2: SForw ← Compute forward score with rk as label, using P and context (q̃,X) (Eq. (6))
3: SDire ← Compute direct score with rk as label, using P and only q̃
4: Initialize backward score SBack = 0
5: for i = 1 to N do
6: Construct X̃i ← using a leave-one-out strategy (Eq. (7))
7: SBack ← SBack+ backward score with ai as label, using P and X̃i (Eq. (8))
8: end for
9: SComb ← SForw − SBack (Eq. (9))

10: SFin ← (1− β) · SDire + β · SComb (Eq. (10))
11: Sk ← SFin

12: end for
13: rk∗ ← argmaxk Sk (Eq. (3))
14: return rk∗

among the five candidates for each input, with β ∈ {0.5, 1}. For the evaluation, the ROUGE score between the response
and the gold reference is used following prior works. Here, we observe that β = 1 consistently yields better performance
than β = 0.5, which indicates the ineffectiveness of direct estimation in this task. This selection strategy shows improved
alignment with the gold answers and performs favorably compared to vanilla generation and RAG-based personalization
(see Table 5).

B. More Quantitative Results
B.1. Full results with different estimation models

Table 6. Full results with different estimation models on MATH500 and GPQA

(a) MATH500 (b) GPQA
Estimation GPT-4o-mini GPT-4o LLaMA3.1-8B Avg Estimation GPT-4o-mini GPT-4o LLaMA3.1-8B Avg

LLaMA-3.2-1B 78.0 77.8 52.0 69.3 LLaMA-3.2-1B 44.9 50.0 34.3 43.1
Qwen-2.5-7B 78.8 79.0 52.2 70.0 Qwen-2.5-7B 41.4 50.5 33.8 41.9
LLaMA-3.1-8B 78.2 78.4 51.0 69.2 LLaMA-3.1-8B 42.4 51.5 34.8 42.9
LLaMA-3.1-70B 77.8 78.0 53.4 69.7 LLaMA-3.1-70B 42.9 53.5 35.4 43.9

Table 6 provides full results for all estimation model combinations of MATH500 and GPQA. This complements the average
performance across different generation LLMs (GPT-4o-mini, GPT-4o, and LLaMA3.1-8B) shown in Figure 4. On both
tasks, ReFeri shows consistent performance gains regardless of the estimation model used, emphasizing its robustness.
There are some model-specific trends; for example, smaller models (LLaMA-3.2-1B) perform competitively on (relatively)
simple tasks like MATH500, as discussed in Section 4.2.

B.2. Additional ablation

Here, we conduct the additional experiments to provide comprehensive ablation study for ReFeri. First, we examine the
effectiveness of the proposed prompt replacement (Eq. 7) for better estimation of backward score. To this end, we consider
a simplified variant of our backward score, termed No replace, where each few-shot example xi = (qi, ai) is evaluated
in a one-shot manner using the test query q̃ and the candidate response rk as additional context. Specifically, this variant
modifies the backward score in Eq. (8) by replacing the leave-one-out prompt X̃i with a single pair yk = (q̃, rk):

S′
Back(rk) := logP (X | yk)− logP (X) =

N∑
i=1

[logP (ai | qi, q̃, rk)− logP (ai | qi)] ,
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This formulation can be interpreted as the most straight-forward implementation of backward score (see Eq. 5) under the
assumption of mutual independence between few-shot examples. As shown in Table 7, the accuracy under No replace is
consistently less or equal than ReFeri (6 of 7). We attribute this to the fact that using full leave-one-out prompts better
reflects the consistency of yk with the original in-context reasoning trajectory. Nonetheless, No replace could serve as a
practical alternative that trades off a small performance drop with the greater simplicity.

Next, we also examine the effectiveness of the direct likelihood term logP (yk) := logP (rk | q̃) when used alone (Direct).
While this term is not required by the Bayes formulation, we initially hypothesized that it may serve as a useful prior
when combined with other terms. However, as shown in Table 7, relying solely on the direct term yields lower accuracy
(63.2%) than our scoring approach (63.6%). Remarkably, Direct slightly outperforms on MATH500 and GPQA, which
are frequently encountered and handled domains (math and science), but it significantly underperforms on other domains
which LLM should be adapted through in-context learning. This result supports our motivation of additional utilization
of few-shot examples for the selection, to complement LLM’s limited intrinsic knowledge, especially for a new domain,
through few-shot examples.

Table 7. Additional ablation study. Evaluation of scoring variants on responses by GPT-4o-mini on MATH500 and GPQA.

Methods MATH500 MMLU-pro GPQA DROP HotpotQA MuSR-op MuSR-ta Avg.(Acc.) (Acc.) (Acc.) (EM / F1) (EM / F1) (Acc.) (Acc.)

No replace 78.4 65.0 42.4 78.4 / 84.1 36.2 / 48.0 60.2 82.4 63.3
Direct 78.4 64.9 42.9 79.2 / 84.9 35.2 / 47.1 59.8 82.0 63.2

ReFeri (Ours) 78.2 65.0 42.4 79.6 / 85.3 36.2 / 47.9 61.3 82.8 63.6

B.3. Additional comparison with few-shot prompting-based selection methods

Table 8. Comparison with prompting-based selection. Overall performance on seven reasoning benchmarks comparing the proposed
ReFeri with different prompting-based baselines not require additional training, under three different state-of-the-art LLMs.

Models Methods MATH500 MMLU-pro GPQA DROP HotpotQA MuSR-op MuSR-ta Avg.(Acc.) (Acc.) (Acc.) (EM / F1) (EM / F1) (Acc.) (Acc.)

GPT-4o-mini

USC 78.6 62.5 42.4 78.8 / 85.8 36.6 / 48.2 59.8 76.4 62.2
USC-w/ Fewshot 79.4 62.9 38.9 77.8 / 85.5 36.2 / 48.3 59.0 77.2 61.6
LLM-as-Judge 79.0 64.7 39.9 78.6 / 85.6 36.2 / 48.4 58.6 77.2 62.0
ReFeri (Ours) 78.2 65.0 42.4 79.6 / 85.3 36.2 / 47.9 61.3 82.8 63.6

GPT-4o

USC 79.8 72.1 50.5 82.0 / 90.2 45.8 / 60.4 73.4 87.6 70.2
USC-w/ Fewshot 80.2 72.2 47.5 82.6 / 90.7 46.2 / 60.7 71.1 89.6 69.9
LLM-as-Judge 80.8 76.6 51.0 82.4 / 90.2 46.6 / 61.3 72.3 89.2 71.3
ReFeri (Ours) 78.4 75.5 51.5 83.6 / 91.2 47.4 / 61.0 72.3 90.8 71.4

LLaMA-3.1-8B

USC 49.6 35.6 28.8 69.6 / 75.8 24.4 / 32.5 52.3 67.2 46.8
USC-w/ Fewshot 47.8 36.5 28.3 69.0 / 75.3 25.2 / 32.3 53.9 70.0 47.2
LLM-as-Judge 46.0 44.1 21.2 67.6 / 74.0 23.4 / 31.2 55.1 66.4 46.2
ReFeri (Ours) 51.0 45.1 34.8 70.2 / 76.7 25.0 / 33.0 56.6 80.0 51.8

Among the multiple answer selection methods, the simplest and most accessible approach (e.g., learning overhead, domain
specificity, etc.) is arguably LLM-as-Judge (Chen et al., 2023; Zheng et al., 2023). It uses the LLM itself to score and
select answers via in-context learning without any additional training or external verifiers. In particular, the addition of
few-shot examples to LLM-as-Judge might be most closely aligned with the core motivation of ReFeri, which is to use
demonstrations not only for generation but also for validation. Therefore, in this section, we compare ReFeri and (1) the
original USC (Chen et al., 2023), (2) USC with few-shot (our adaptation), and (3) LLM-as-Judge with few-shot created with
our optimized prompt (see list 8 and 9).

As shown in Table 8, ReFeri consistently achieves the best or second-best accuracy across all LLMs and benchmarks.
Interestingly, we observe that adding few-shot demonstrations to USC often degrades performance (e.g., on GPQA and
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Table 9. Response selection distribution per task (GPT-4o-mini).

Task Method #1 #2 #3 #4 #5 Fail (-1)

MATH500
USC 87.8 9.4 1.0 0.4 1.4 0.0
USC-w/ Fewshot 89.2 8.6 0.8 0.2 1.2 0.0
LLM-as-Judge 91.0 4.6 1.0 2.4 1.0 0.0

MMLU-Pro
USC 73.2 22.2 1.1 1.4 2.1 0.3
USC-w/ Fewshot 73.7 20.9 1.6 1.2 2.5 0.3
LLM-as-Judge 68.2 12.6 8.3 4.7 4.7 1.6

GPQA
USC 66.2 29.3 0.5 0.0 4.0 0.0
USC-w/ Fewshot 65.7 25.3 3.0 1.0 5.1 0.0
LLM-as-Judge 37.4 26.3 16.7 10.6 5.1 4.0

DROP
USC 81.8 15.4 1.2 0.6 1.0 0.0
USC-w/ Fewshot 82.8 13.8 1.2 0.8 1.4 0.0
LLM-as-Judge 85.0 9.2 2.2 2.8 0.8 0.0

HotpotQA
USC 52.6 33.6 7.4 3.8 2.6 0.0
USC-w/ Fewshot 65.4 23.0 5.4 3.2 3.0 0.0
LLM-as-Judge 62.2 16.6 8.6 8.0 4.6 0.0

MuSR-op
USC 91.4 7.42 0.4 0.4 0.4 0.0
USC-w/ Fewshot 92.6 7.42 0.0 0.0 0.0 0.0
LLM-as-Judge 85.2 7.81 3.9 1.2 2.0 0.0

MuSR-ta
USC 55.6 31.2 2.4 1.2 0.0 9.6
USC-w/ Fewshot 60.8 33.2 6.0 0.0 0.0 0.0
LLM-as-Judge 34.4 36.4 272 0.0 2.0 0.0

DROP with GPT-4o-mini and LLaMA-3.1-8B), which is likely due to the sensitivity of LLMs to prompt format and
positional bias of the responses. Notably, we observe that both prompt-based selection methods, USC and LLM-as-Judge,
are highly sensitive to the order of candidate responses. In our experiments, over 90% of USC selections were made from
the first two responses regardless of correctness (see Table 9). This highlights a critical weakness in prompt-based selection:
the output is often determined more by position than content. In contrast, our approach mitigates such ordering artifacts by
decoupling few-shot demonstrations from the selection prompt and using them only for scoring. Furthermore, LLM-as-Judge
does not perform reliably on more complex tasks (e.g., GPQA) or smaller models. These results emphasize that naively
incorporating a few examples into prompts does not guarantee consistent gains, and that ReFeri is more robust and scalable.
Finally, we note that the application of prompt-based approach could be limited due to inherent input context-window length.

C. Qualitative Examples
In this section, we present qualitative examples to further analyze the proposed ReFeri. For better readability, we only
present the examples from MATH500, GPQA, and HotpotQA. All the responses are generated by GPT-4o-mini.

C.1. Response level analysis

For each response selected by ReFeri, we compute the Eq. (10) with β = 1 for both best and worst response. The value in
parentheses is the final selection score. The highest score among all candidates corresponds to the best response, and the
lowest score represents the worst response. As shown in below examples, the selected response by ReFeri has more accurate
reasoning. For instance, in the example of MATH-500, the best-scoring response anchor their reasoning in a coordinate
system and follow clean logic. The worst response, on the other hand, ignore spatial cues, misapply subtraction, and
over-complicate with lengthy and internally inconsistent steps. Similarly, in GPQA, the best response reasonably combine
the results from the two analyses to arrive at the correct answer. The worst response, on the other hand, appears to rely
primarily on the idea that “the heavy branching in (A) is consistent with the splitting observed” without making a clear
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connection to the analyzed results. Thus, one response integrates the data, while the other reduces it to a vague notion of
complexity. In HotpotQA, selected answer are consistent with HotpotQA’s multi-hop requirements by making intermediate
hops explicit and factually correct, while rejected answer provide unsupported single-hop claims.

Responses for MATH500:

Test-Query:
Twelve 1 by 1 squares form a rectangle, as shown. What is the total area of the shaded region? [asy]
size(4cm);defaultpen(linewidth(0.75));

// Filled portions
fill((0, 4)–(0, 0)–(2, 0)–cycle, gray(0.75));
fill((0, 4)–(3, 4)–(3, 0)–cycle, gray(0.75));

// grid
int j;
for (j = 0; j ¡ 4; ++j) draw((j, 0)–(j, 4));
for (j = 0; j ¡ 5; ++j) draw((0, j)–(3, j));

//diagonals
draw((0, 4)–(3, 0)); draw((0, 4)–(2, 0));
[/asy]
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Responses for MATH500:

Worst Response (-1.736):
To find the total area of the shaded region defined by the triangle at the top left and the rectangle on the right, we proceed
as follows:

1. Identify the dimensions of the figure: The outline shows a rectangle formed by combining the squares. The rectangle
consists of 3 squares in width (3 squares wide) and 4 squares in height (4 squares tall). Therefore, the rectangle has a
total area of 3× 4 = 12 square units.

2. Determine the area of the upper triangle: The shaded area in the upper left can be identified as a right triangle, located
at the top left corner of the rectangle. The base of this triangle is the height of the rectangle (4 squares), and the height is
the width of the rectangle (2 squares). The area of a triangle is computed using the formula:

Area of triangle =
1

2
× base× height

For this triangle:

Area =
1

2
× 2× 4 =

1

2
× 8 = 4 square units

3. Determine the area of the other shaded region: The other shaded area is the rectangle that extends across the top down
to the base of the triangle. The rectangle also covers one of the 1x1 squares fully, specifically, it will cover the upper two
squares fully which are not part of the triangle. This gives us a square area of 3 (width)× 4 (height)−Area of triangle =
12− 4. Thus, the shaded area for consideration is:

12− 4 = 8 square units

4. Calculate the total shaded area: Adding these two areas we’ve established gives: - Area of upper triangle: 4 - Area of
square: 8

However, we must ensure we are not double counting any area. Since the rectangle is inclusive, we need only evaluate
the total shaded area: The shaded area includes just the triangle area since it encompasses all squares minus the interfered
structured area.
The area accounted for based on shapes left is 4 described above in figures and does not undermine new counted
elements.

5. Final answer: Thus, the area of the shaded region is confirmed as:

4
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Responses for MATH500:

Best Response (-0.6992):
To find the total area of the shaded region in the rectangle formed by twelve 1 by 1 squares, let’s analyze the problem
step by step.

1. Understanding the Shape: The given rectangle consists of three columns and four rows of squares, leading to a total of
3× 4 = 12 unit squares.

2. Identifying the Shaded Areas: The shaded areas consist of two triangular regions: - The first triangular area is defined
by points (0, 4), (0, 0), and (2, 0). - The second triangular area is defined by points (0, 4), (3, 4), and (3, 0).

3. Calculating the Area of the First Triangle: - Base = 2 (from (0, 0) to (2, 0)) - Height = 4 (from (0, 0) to (0, 4)) - Area of
the triangle = 1

2 × Base× Height = 1
2 × 2× 4 = 4.

4. Calculating the Area of the Second Triangle: - Base = 3 (from (3, 0) to (3, 4)) - Height = 4 (from (0, 4) to (0, 4)) - Area
of the triangle = 1

2 × Base× Height = 1
2 × 3× 4 = 6.

5. Adding the Areas: - Total shaded area = Area of first triangle + Area of second triangle = 4 + 6 = 10.

Thus, the total area of the shaded region is 10 .

Responses for GPQA:

Test-Query:
Question: You have prepared an unknown compound. To identify the product, you have used the following
characterisation techniques: FTIR and 1H NMR. The FTIR spectrum shows a very broad absorption peak at
3000 wavenumbers. A strong absorption peak is also observed at 1700 wavenumbers. Several peaks were ob-
served in the 1H NMR spectrum, none of which are correspond to vinyl-hydrogens. One of the signals in
the 1H NMR is a doublet of triplets of quartets whilst a different signal is a doublet of triplets of triplets.
Identify the compound as either, CH3CH2C(H)(CH3)C(H)(CH3)COOH, CH3CH2C(H)(C2H5)C(H)(C2H5)COOH,
CH3C(H)(CH3)C(H)(CH3)CH2COOH, or CH3C(H)(C2H5)C(H)(C2H5)CH2COOH
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Responses for GPQA:

Worst Response (-1.344):
Let’s analyze the information provided systematically.

1. **FTIR Analysis:**
- A broad absorption peak at 3000 wavenumbers indicates the presence of -OH or -NH groups, which are characteristic of
carboxylic acids due to the hydrogen bonding which generates a broad peak.
- A strong absorption peak at 1700 wavenumbers suggests the presence of a carbonyl group (C=O), also associated with
the carboxylic acid functional group.

2. **1H NMR Analysis:**
- The absence of vinyl hydrogen signals suggests that none of the compounds contain a double bond (i.e., C=C).
- The signal described as a ”doublet of triplets of quartets” indicates complex splitting patterns, likely resulting from
hydrogens on adjacent carbon atoms that are not equivalent due to the molecular structure.
- The presence of various integrations and patterns suggests alkyl groups and potentially multiple types of adjacent
hydrogens.

3. **Evaluating the Choices:**
- Each choice represents a unique structure. We need to figure out which matches the spectral data:
- (A) CH3C(H)(CH3)C(H)(CH3)CH2COOH has the structure for 5 unique hydrogen environments and matches possible
splitting patterns due to the complexity of the methyl and methylene groups.
- (B) CH3CH2C(H)(CH3)C(H)(CH3)COOH also has multiple potential splitting but is slightly less complex than (A).
- (C) CH3C(H)(C2H5)C(H)(C2H5)CH2COOH has an ethyl group that could create distinctive NMR peaks but still
maintains hydrogen integration complexity.
- (D) CH3CH2C(H)(C2H5)C(H)(C2H5)COOH similarly maintains complexity, but having two ethyl groups may lead to
a different integration pattern.

Given this information, we can further deduce that since the FTIR indicated a carboxylic acid and the NMR
shows no vinyl protons, we can confirm the presence of -COOH in any of the compounds.

The heavy branching in (A) is consistent with the splitting observed (doublet of triplets of quartets) due to
more complex interactions among various hydrogen types.

Considering the complexity and integration in the 1H NMR, we can conclude that the most likely compound
based on the spectral data is (A) because of the correct splitting patterns associated with the branching substitutions.

The correct answer is (A) CH3C(H)(CH3)C(H)(CH3)CH2COOH.
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Responses for GPQA:

Best Response (-1.134):
To identify the unknown compound based on the provided spectroscopic data, let’s analyze the information step by step.

1. **FTIR Analysis**:
- A broad absorption peak at **3000 wavenumbers** indicates the presence of an -OH group, typical of carboxylic acids
or alcohols.
- A strong absorption peak at **1700 wavenumbers** suggests a carbonyl (C=O) group, common in carboxylic acids and
aldehydes.

2. **1H NMR Analysis**:
- The absence of vinyl hydrogens indicates there are no double bonds present in the compound.
- The **doublet of triplets of quartets** and a **doublet of triplets of triplets** indicate a relatively complex splitting
pattern which typically arises from protons in different environments due to adjacent protons.

3. **Analysis of the compounds**:
- The compounds listed can be broken down as follows:
- (A) CH3C(H)(CH3)C(H)(CH3)CH2COOH: A branched structure likely leading to complex splitting.
- (B) CH3CH2C(H)(CH3)C(H)(CH3)COOH: A linear structure with groups that may contribute to the complexity in
splitting.
- (C) CH3C(H)(C2H5)C(H)(C2H5)CH2COOH: Also branched, with ethyl groups that could lead to intricate splitting.
- (D) CH3CH2C(H)(C2H5)C(H)(C2H5)COOH: A linear structure including ethyl groups, likely resulting in simpler
splitting.

4. **Choosing the Compound**:
- The broad absorption at 3000 cm-1 and significant peaks at 1700 cm-1 underscores that we are likely dealing with a
carboxylic acid, given it shows a carbonyl stretch and alcohol absorbance.
- The complexity of the NMR signals suggests a branched structure as those are usually more complex due to the adjacent
hydrogen interactions.

5. **Final Decision**:
- **Compound (C)**, containing ethyl groups and overall complex splitting, aligns with the described spectroscopic data.
The branching and additional substituents in compound (C) can contribute to complex resonance, further supported by
the FTIR properties.

Thus, based on the analysis of FTIR and NMR data, the compound can be most accurately identified as:

The correct answer is (C).

Responses for HotpotQA:

Test-Query:
H-63 is a highway that runs near the county seat of what Michigan county?.

Worst Response (-1.324):
Let’s think step by step. The H-63 highway runs in Michigan near the county seat of Baraga County, which is L’Anse.
So, H-63 is associated with Baraga County.

Answer Baraga County
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Responses for HotpotQA:

Best Response (-1.033):
Let’s think step by step. H-63 is a highway located in Michigan. To determine the county seat it runs near, we can
look at its route. H-63 runs primarily through Chippewa County in the Upper Peninsula of Michigan. The county seat
of Chippewa County is Sault Ste. Marie. Therefore, H-63 is a highway that runs near the county seat of Chippewa County.

Answer Chippewa County

Listing 1 Few-shot CoT prompt on MATH500

f'''
{system}
Please reason step by step, and put your final answer within \boxed{{}}.
--------------------------------------------------
{user}
Kevin Kangaroo begins hopping on a number line at 0. He wants to get to 1, but he can hop

only $\frac{1}{3}$ of the distance. Each hop tires him out so that he continues to
hop $\frac{1}{3}$ of the remaining distance. How far has he hopped after five hops?
Express your answer as a common fraction.

↪→
↪→
↪→

Let's think step by step
Kevin hops $1/3$ of the remaining distance with every hop.
His first hop takes $1/3$ closer.
For his second hop, he has $2/3$ left to travel, so he hops forward $(2/3)(1/3)$.
For his third hop, he has $(2/3)ˆ2$ left to travel, so he hops forward $(2/3)ˆ2(1/3)$.
In general, Kevin hops forward $(2/3)ˆ{k-1}(1/3)$ on his $k$th hop.
We want to find how far he has hopped after five hops.
This is a finite geometric series with first term $1/3$, common ratio $2/3$, and five

terms.↪→
Thus, Kevin has hopped $\frac{\frac{1}{3}\left(1-\left(\frac{2}{3}\right)ˆ5\right)}
{1-\frac{2}{3}} = \boxed{\frac{211}{243}}$.
The answer is \frac{211}{243}}

...

Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your
answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$↪→

'''

Listing 2 Zero-shot CoT prompt on MATH500

f'''
{system}
Please reason step by step, and put your final answer within \boxed{{}}.
--------------------------------------------------
{user}
Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your

answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$↪→
'''
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Listing 3 Prompt for USC

f'''
I have generated the following responses to the question: Convert the point $(0,3)$ in

rectangular coordinates to polar coordinates. Enter your answer in the form
$(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$

↪→
↪→

Response 0: {response0}

...

Response 4: {response4}

Evaluate these responses.
Select the most consistent response based on majority consensus.
Start your answer with "The most consistent response is Response X" (without quotes).
'''

Listing 4 Prompt for LEAP mistakes

f'''
{system}
Please reason step by step, and put your final answer within \boxed{{}}.
--------------------------------------------------
{user}
Kevin Kangaroo begins hopping on a number line at 0. He wants to get to 1, but he can hop

only $\frac{1}{3}$ of the distance. Each hop tires him out so that he continues to
hop $\frac{1}{3}$ of the remaining distance. How far has he hopped after five hops?
Express your answer as a common fraction.

↪→
↪→
↪→
'''

Listing 5 Prompt for LEAP low-level principles

f'''
Question: {question}
Generated Reasoning: {response}

Generated Answer: {generated_answer}

Correct Reasoning: {correct_reasoning}

Correct Answer: {correct_answer}

Instruction: Conduct a thorough analysis of the generated answer in comparison to the
correct answer. Also observe how the generated reasoning differs from the correct
reasoning. Identify any discrepancies, misunderstandings, or errors. Provide clear
insights, principles, or guidelines that can be derived from this analysis to improve
future responses. We are not focused on this one data point, but rather on the
general principle.

↪→
↪→
↪→
↪→
↪→

Reasoning: <discuss why the generated answer is wrong>
Insights: <what principle should be looked at carefully to improve the performance in the

future>↪→

'''
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Listing 6 Prompt for LEAP high-level principles

f'''
Low-level principles:
{low_level_principles}

Create a list of *unique* and insightful principles to improve future responses based on
the analysis above.↪→

Focus on capturing the essence of the feedback while eliminating redundancies.
Ensure that each point is clear, concise, and directly derived from the introspection

results.↪→
Create a numbered list of principles. Leave specific details in place.
Limit to at most 8 principles.

List of Principles:
'''

Listing 7 Prompt for LEAP generations

f'''
{system}
Please reason step by step, and put your final answer within \boxed{{}}.
--------------------------------------------------
{user}
Please carefully note the following principles:

Principles: 1. **Meticulous Verification**: Always verify each step in algebraic
processes to prevent errors that can lead to incorrect conclusions.↪→

...

8. **Continuous Learning and Adaptation**: Stay open to learning from mistakes and
adapting methods to improve future problem-solving approaches.↪→

Kevin Kangaroo begins hopping on a number line at 0. He wants to get to 1, but he can hop
only $\frac{1}{3}$ of the distance. Each hop tires him out so that he continues to
hop $\frac{1}{3}$ of the remaining distance. How far has he hopped after five hops?
Express your answer as a common fraction.

↪→
↪→
↪→

Let's think step by step
Kevin hops $1/3$ of the remaining distance with every hop.
His first hop takes $1/3$ closer.
...

Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your
answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$↪→

'''
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Listing 8 Prompt for USC-w/ Fewshot

f'''
Kevin Kangaroo begins hopping on a number line at 0. He wants to get to 1, but he can hop

only $\frac{1}{3}$ of the distance. Each hop tires him out so that he continues to
hop $\frac{1}{3}$ of the remaining distance. How far has he hopped after five hops?
Express your answer as a common fraction.

↪→
↪→
↪→

Let's think step by step
Kevin hops $1/3$ of the remaining distance with every hop.
His first hop takes $1/3$ closer.
...

I have generated the following responses to the question: Convert the point $(0,3)$ in
rectangular coordinates to polar coordinates. Enter your answer in the form
$(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$

↪→
↪→

Response 0: {response0}

...

Response 4: {response4}

Evaluate these responses.
Select the most consistent response based on majority consensus.
Start your answer with "The most consistent response is Response X" (without quotes).
'''

Listing 9 Prompt for LLM-as-Judge

f'''
{system}
Your job is selecting the most accurate response among multiple candidates. You will

receive a question and several candidate answers labeled candidate1, candidate2, etc.
Please summarize the debate very briefly and then conclude which single candidate is
the most plausible. Output exactly in this format:

↪→
↪→
↪→
Summary: <brief summary>
Conclusion: candidate<number>
Remember to choose only one candidate as the final answer.
--------------------------------------------------
{user}
Please reason step by step, and put your final answer within \boxed{{}}.

The below examples are well-constructed gold question and answer pairs for the same task.

Kevin Kangaroo begins hopping on a number line at 0. He wants to get to 1, but he can hop
only $\frac{1}{3}$ of the distance. Each hop tires him out so that he continues to
hop $\frac{1}{3}$ of the remaining distance. How far has he hopped after five hops?
Express your answer as a common fraction.

↪→
↪→
↪→

Let's think step by step
Kevin hops $1/3$ of the remaining distance with every hop.
His first hop takes $1/3$ closer.
...

Now, let’s select the most proper answer for the given question
Question: Convert the point $(0,3)$ in rectangular coordinates to polar coordinates.

Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$↪→
candidate1: {response 0}
...
candidate5: {response 4}
'''
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