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Abstract

The bandit problem with graph feedback, proposed in [Mannor and Shamir,
NeurIPS 2011], is modeled by a directed graph G = (V,E) where V is the
collection of bandit arms, and once an arm is triggered, all its incident arms are
observed. A fundamental question is how the structure of the graph affects the
min-max regret. We propose the notions of the fractional weak domination number
δ∗ and the k-packing independence number capturing upper bound and lower
bound for the regret respectively. We show that the two notions are inherently
connected via aligning them with the linear program of the weakly dominating
set and its dual — the fractional vertex packing set respectively. Based on this
connection, we utilize the strong duality theorem to prove a general regret upper
bound O

(
(δ∗ log |V |)

1
3 T

2
3

)
and a lower bound Ω

(
(δ∗/α)

1
3 T

2
3

)
where α is the

integrality gap of the dual linear program. Therefore, our bounds are tight up to
a (log |V |)

1
3 factor on graphs with bounded integrality gap for the vertex packing

problem including trees and graphs with bounded degree. Moreover, we show that
for several special families of graphs, we can get rid of the (log |V |)

1
3 factor and

establish optimal regret.

1 Introduction

The multi-armed bandit is an extensively studied problem in reinforcement learning. Imagining a
player facing an n-armed bandit, each time the player pulls one of the n arms and incurs a loss. At
the end of each round, the player receives some feedback and tries to make a better choice in the next
round. The expected regret is defined by the difference between the player’s cumulative losses and
cumulative losses of the single best arm during T rounds. In this article, we assume the loss at each
round is given in an adversarial fashion. This is called the adversarial bandit in the literature. The
difficulty of the adversarial bandit problem is usually measured by the min-max regret which is the
expected regret of the best strategy against the worst possible loss sequence.

Player’s strategy depends on how the feedback is given at each round. One simple type of feedback is
called full feedback where the player can observe all arm’s losses after playing an arm. An important
problem studied in this model is online learning with experts [14, 17]. Another extreme, introduced
in [8], is the vanilla bandit feedback where the player can only observe the loss of the arm he/she just
pulled. Optimal bounds for the regret, either in n or in T , are known for both types of feedback.

The work of [24] initialized the study on the generalization of the above two extremes, that is, the
feedback consists of the losses of a collection of arms. This type of feedback can be naturally
described by a feedback graph G where the vertex set is [n] and a directed edge (i, j) means pulling
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the arm i can observe the loss of arm j. Therefore, the “full feedback” means that G is a clique with
self-loops, and the “vanilla bandit feedback” means that G consists of n disjoint self-loops.

A natural yet challenging question is how the graph structure affects the min-max regret. The work
of [1] systematically investigated the question and proved tight regret bounds in terms of the time
horizon T . They show that, if the graph is “strongly observable”, the regret is Θ(T

1
2 ); if the graph

is “weakly observable”, the regret is Θ(T
2
3 ); and if the graph is “non-observable”, the regret is

Θ(T ). Here the notions of “strongly observable”, “weakly observable” and “non-observable” roughly
indicate the connectivity of the feedback graph and will be formally defined in Section 2. However,
unlike the case of “full feedback” or “vanilla bandit feedback”, the dependency of the regret on n, or
more generally on the structure of the graph, is still not well understood. For example, for “weakly
observable” graphs, an upper bound and a lower bound of the regret in terms of the weak domination
number δ(G) were proved in [1], but a large gap exists between the two. This suggests that the weak
domination number might not be the correct parameter to characterize the regret.

We make progress on this problem for “weakly observable” graphs. This family of graphs is general
enough to encode almost all feedback patterns of bandits. We introduce the notions of the fractional
weak domination number δ∗(G), the k-packing independence number and provide evidence to show
that they are the correct graph parameters. The two parameters are closely related and help us
to improve the upper bound and lower bound respectively. As the name indicated, δ∗(G) is the
fractional version of δ(G), namely the optimum of the linear relaxation of the integer program for the
weakly dominating set. We observe that this graph parameter has already been used in an algorithm
for “strongly observable” graphs in [3], where it functioned differently. In the following, when the
algorithm is clear from the context, we use R(G,T ) to denote the regret of the algorithm on the
instance G in T rounds. Our main algorithmic result is:

Theorem 1. There exists an algorithm such that for any weakly observable graph, any time horizon
T ≥ n3 log(n)/δ∗2(G), its regret satisfies R(G,T ) = O

(
(δ∗(G) log n)

1
3 T

2
3

)
.

Note that the regret of the algorithm in [1] satisfies R(G,T ) = O
(

(δ(G) log n)
1
3 T

2
3

)
. The frac-

tional weak domination number δ∗ is always no larger than δ, and the gaps between the two can be as
large as Θ(log n). We will give an explicit example in Section 4.3 in which the gap matters and our
algorithm is optimal. Theorem 1 can be seamlessly extended to more general time-varying graphs
and probabilistic graphs. The formal definitions of these models are in Appendix E.

On the other hand, we investigate graph structures that can be used to fool algorithms. We say a set S
of vertices is a k-packing independent set if S is an independent set and any vertex has at most k
out-neighbors in S. We prove the following lower bound:

Theorem 2. Let G = (V,E) be a directed graph. If G contains a k-packing independent set S with
|S| ≥ 2, then for any randomized algorithm and any time horizon T , there exists a sequence of loss

functions such that the expected regret is Ω

(
max

{
|S|
k , log |S|

} 1
3 · T 2

3

)
.

For every k ∈ N, we use ζk, the k-packing independence number, to denote the size of the maximum
k-packing independent set. To prove Theorem 2, we reduce the problem of minimizing regret to
statistical hypothesis testing for which powerful tools from information theory can help.

We can use Theorem 2 to strengthen lower bounds in [1]. Besides, we show that large δ∗ usually
implies large ζ1 via studying the linear programming dual of fractional weakly dominating sets
and applying a novel rounding procedure. This is also one of our main technical contributions.
Combinatorially, the dual linear program is to find the maximum fractional vertex packing set in the
graph. Specifically, we can establish lower bounds in terms of δ∗ by applying Theorem 2:

Theorem 3. If G is weakly observable, then for any algorithm and any sufficiently large time horizon

T ∈ N, there exists a sequence of loss functions such that R(G,T ) = Ω

((
δ∗

α

)1/3

· T 2
3

)
, where α

is the integrality gap of the linear program for vertex packing.

Clearly the exact lower bound is determined by the integrality gap of a certain linear program. In
general graphs, we have a universal upper bound α = O (n/δ∗). For concrete instances, we can
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obtain clearer and tighter bounds on α. For example, the linear program has a constant integrality
gap α on graphs of bounded degree.
Corollary 4. Let ∆ ∈ N be a constant and G∆ be the family of graphs with maximum in-degree ∆.
Then for every weakly observable G = (V,E) ∈ G∆, any algorithm and any sufficiently large time
horizon T ∈ N, there exists a sequence of loss functions such that R(G,T ) = Ω((δ∗)

1
3 · T 2

3 ).

We also show that for 1-degenerate directed graphs (formally defined in Section 2.1), the integrality
gap is 1. This family of graphs includes trees and directed cycles. As a consequence, we have
Corollary 5. Let G be a 1-degenerate weakly observable graph. Then for any algorithm and
any sufficiently large time horizon T ∈ N, there exists a sequence of loss functions such that
R(G,T ) = Ω((δ∗)

1
3 · T 2

3 ).

Comparison of previous results and our results

In Table 1, we compare our new upper bounds, lower bounds and their gap with previous best results.

Table 1: A comparison of results

Graph Type Previous best results [1] This work

Min-max regret Gap Min-max regret Gap

General graphs
O
(

(δ log n)
1
3 · T 2

3

)
Ω
(

max
{

( δ
log2 n

)
1
3 , 1
}
· T 2

3

) See discussion
below

O
(

(δ∗ log n)
1
3 · T 2

3

)
Ω
(

max
{

( δ
∗

α )
1
3 , 1
}
· T 2

3

) See discussion
below

for δ = log2 n: Ω
(
T

2
3

)
O (log n)

for δ = log2 n:
Ω
(

log log n · T 2
3

)
O
(

logn
log logn

)
Trees /

Bounded in-degree Same as general graphs O (log n)
O
(
(δ∗ log n)1/3 · T 2/3

)
Ω
(
(δ∗)1/3 · T 2/3

) O
(

(log n)
1/3
)

Complete
bipartite graphs

O
(
(log n)1/3 · T 2/3

)
Ω
(
T 2/3

) O
(

(log n)
1
3

)
Θ
(
(log n)1/3 · T 2/3

)
O (1)

Orthogonal
relation on Fk2

O
(
(log n)2/3 · T 2/3

)
Ω
(
T 2/3

) O
(

(log n)
2
3

)
Θ
(
(log n)1/3 · T 2/3

)
O (1)

Discussion. In general, our upper bound is never worse than the previous one since δ∗ ≤ δ. Our
lower bound is not directly comparable to the previously known lower bound as they are stated
in terms of different parameters. In fact, we can not find an instance such that our lower bound
Ω(max{1, (δ∗/α)1/3}) is worse than the previous lower bound Ω(max{1, (δ/(log n)2)1/3}) and
there are instances on which our bound outperforms. The two key quantities, namely the integrality
gap δ

δ∗ of the primal linear programming and the integrality gap α of the dual linear programming,
seem to be correlated in a graph. The relation between the two bounds is worth further investigation.

Related work

The multi-armed bandit problem originated from the sequential decision making under uncertainty
studied in [34, 6] and the adversarial bandit is a natural variant introduced by [7]. The work of [24]
introduced the graph feedback model with a self-loop on each vertex in order to interpolate between
the full feedback and bandit feedback settings. This model has been extensively studied in the work
of [24, 4, 20, 3]. The work of [1] removed the self-loop assumption and considered generalized
constrained graphs. They gave a full characterization of the mini-max regret in terms of the time
horizon T . In contrast to fixed graph feedback, recent work of [20, 15, 2, 32] considered the time-
varying graphs. Another line of recent work in [22, 23, 3] is to study random graphs, or the graphs
with probabilistic feedback.

Most algorithms for adversarial bandits are derived from the EXP3 algorithm, e.g. [9, 29]. However,
even for the vanilla multi-armed bandit problem, a direct application of EXP3 can only get an
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upper bound of O
(√
n log n · T

)
[9], which is suboptimal. In fact, the EXP3 is a special case of

online stochastic mirror descent (OSMD) algorithm when using negentropy function as the potential
function. OSMD was developed by [26] and [27] for online optimization. By choosing a more
sophisticated potential function, namely the 1/2-Tsallis entropy function [33], OSMD can achieve
the tight bound Θ

(√
nT
)

[35].

The idea of using domination number or related parameters to study the feedback graph appeared many
times in literature, e.g. [1, 12, 13, 4, 3]. The work of [3] used the idea of the fractional dominating
set to study the high-probability regret bound for the strongly observable graph. Other similar
works [23, 32, 13] mainly focused on stochastic settings. The follow-up works related to the weakly
observable graph mainly considered harder settings including the time-varying graphs [2, 15, 3],
bounded-memory adversaries [19] and the feedback graphs with switching costs [30, 5]. The recent
work of [21] considered the bound with respect to cumulative losses of the best arm. To the best of
our knowledge, there is no further development on the min-max regret since the work of [1].

2 Preliminaries

In this section, we formally describe the problem setting of bandits with graph feedback and introduce
notations, definitions and propositions that will be used later.

Let n ∈ N. We will use [n] to denote the set {1, 2, . . . , n}. Let x ∈ Rn be an n-dimensional vector.
For every i ∈ [n], we use x(i) to denote the value on the ith-coordinate. We use {e1, . . . , en} to

denote the standard basis of Rn. That is, ei ∈ Rn is the vector such that ei(j) =

{
1, if j = i

0, if j 6= i
for

every j ∈ [n]. For every n ∈ N, we define ∆n ,
{
x ∈ Rn≥0 :

∑n
i=1 x(i) = 1

}
as the n-dimensional

probability simplex. Clearly ∆n is convex and every x ∈ ∆n can be viewed as a distribution on [n].
Throughout the article, sometimes we will view a function ` : [n]→ R equivalently as a vector in
Rn, depending on which form is more convenient in the context. With this in mind, we have the inner
product 〈`,x〉 ,

∑
i∈[n] `(i) · x(i) for every x ∈ Rn.

2.1 Graphs

In this article, we use G = (V,E) to denote a directed graph with possible self-loops but no multiple
edges. Therefore each (u, v) ∈ E indicates a directed edge from u to v in G. If we say a graph
G = (V,E) is undirected, we view each undirected edge {u, v} ∈ E as two directed edges (u, v)
and (v, u). In the following, we assume |V | ≥ 2 unless otherwise specified. For any S ⊆ V , G[S] is
the subgraph of G induced by S. For every v ∈ V , we define Nin(v) = {u ∈ V : (u, v) ∈ E} and
Nout(v) = {u ∈ V : (v, u) ∈ E} as the set of in-neighbors and out-neighbors of v respectively. We
also call |Nin(v)| and |Nout(v)| the in-degree and out-degree of v respectively. A set S ⊆ V is an
independent set if there is no u, v ∈ S such that (u, v) ∈ E. Note that we do not consider an isolated
vertex with a self-loop as an independent set.

A vertex v ∈ V is strongly observable if (v, v) ∈ E or ∀u ∈ V \ v, (u, v) ∈ E. A vertex v ∈ V is
non-observable if Nin(v) = ∅. A directed graph G is called strongly observable if each vertex of G
is strongly observable. It is called non-observable if it contains at least one non-observable vertex.
The graph is called weakly observable if it is neither strong observable nor non-observable.

We say a directed graph G is 1-degenerate if one can iteratively apply the following two operations
in arbitrary orders on G to get an empty graph: • Pick a vertex with in-degree one and remove the
in-edge; • Pick a vertex with in-degree zero and out-degree at most one, and remove both the vertex
and the out-edge. Typical 1-degenerate graphs include trees (directed or undirected) and directed
cycles.

Let U = {i ∈ V : i /∈ Nin(i)} denote the set of vertices without self-loops. Consider the following
linear program defined on G. We will call the linear program (P).

minimize
∑
i∈V

xi; subject to
∑

i∈Nin(j)

xi ≥ 1, ∀j ∈ U ; 0 ≤ xi ≤ 1, ∀i ∈ V . (P)
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We use δ∗(G) to denote the optimum of the above linear program. We call δ∗(G) the fractional weak
domination number of G. The dual of the linear program is

maximize
∑
j∈U

yj subject to
∑

j∈Nout(i)∩U

yj ≤ 1, ∀i ∈ V ; 0 ≤ yj ≤ 1, ∀j ∈ U . (D)

We call this linear program (D). We use ζ∗(G) to denote the optimum of the dual. We call ζ∗(G)
the fractional vertex packing number of G. Then it follows from the strong duality theorem (see
e.g. [11]) of linear programs that δ∗(G) = ζ∗(G).

We remark that in [1], the weakly (integral) dominating set was defined to dominate all “weakly
observable vertices” instead of “vertices without self-loops”. These two definitions are all equivalent
for all results in this article. See Appendix A for more explanations on this.

2.2 Bandits

Let G = (V,E) be a directed graph where V = [n] is the collection of bandit arms. Let T ∈ N
be the time horizon which is known beforehand. The bandit problem is an online-decision game
running for T rounds. The player designs an algorithm A with the following behavior in each round
t of the game: • The algorithm A chooses an arm At ∈ [n]; • An adversary privately provides
a loss function `t : N → [0, 1] and A pays a loss `t(At); • The algorithm receives feedback
{`t(j) : j ∈ Nout(At)}.
The expected regret of the algorithm A against a specific loss sequence `∗ = {`1, . . . , `T } is defined
byR(G,T,A, `∗) = E

[∑T
t=1 `t(At)

]
−mina∈[n]

∑T
t=1 `t(a). Note that we look at the expectation

of the algorithm since A might be randomized and it is not hard to see that randomization is necessary
to guarantee o(T ) regret due to the adversarial nature of the loss sequence. The purpose of the problem
is to design an algorithm performing well against the worst loss sequence, namely determining the
min-max regret R(G,T ) , infA sup`∗ R(G,T,A, `∗).

There is another model called stochastic bandits in which the loss function at each round is not
adversarially chosen but sampled from a fixed distribution. It is clear that this model is not harder than
the one introduced above in the sense that any algorithm performing well in the adversarial setting
also performs well in the stochastic setting. Therefore, we will construct instances of stochastic
bandits to derive lower bounds in Section 4.

2.3 Optimization

Our upper bound is obtained via the online mirror descent algorithm. In this section, we collect a
minimal set of terminologies to understand the algorithm. More details about the approach and its
application to online decision-making can be found in e.g. [28].

Let C ⊆ Rn. We use int(C) to denote the interior C. For a convex function Ψ : Rd → R ∪ {∞},
dom(Ψ) , {x : Ψ(x) <∞} is the domain of Ψ. Assume Ψ is differentiable in its domain. For every
x,y ∈ dom (Ψ), BΨ(x,y) , Ψ(x) − Ψ(y) − 〈x − y,∇Ψ(y)〉 ≥ 0 is the Bregman divergence
between x and y with respect to the convex function Ψ. The diameter of C with respect to Ψ is
DΨ(C) , supx,y∈C{Ψ(x)−Ψ(y)}. Let A ∈ Rn×n be a semi-definite positive matrix and x ∈ Rn

be a vector. We define ‖x‖A ,
√
xTAx as the norm of x with respect to A.

3 The algorithm

In this section, we design an algorithm to achieve the upper bound in Theorem 1. The proof is in
Appendix B.

3.1 Online stochastic mirror descent (OSMD)

Our algorithm is based on the Online Stochastic Mirror Descent framework that has been widely
used for bandit problems in various settings. Assuming the set of arms is [n], possibly with many
additional structures, a typical OSMD algorithm usually consists of following steps:
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• Pick some initial distribution X1 over all n arms.
• For each round t = 1, 2, . . . , T : – Tweak Xt according to the problem structure to get

a distribution X̃t over n arms. – The adversary chooses some (unknown) loss vector
`t : [n] → [0, 1] with the knowledge of all previous information including X̃t. The
algorithm then picks an arm At ∼ X̃t and pays a loss `t(At). After this, the algorithm
observes some (partial) information Φt about `t. – Construct an estimator ˆ̀

t of `t using
collected information Φt, At and X̃t. – Compute an updated distribution Xt+1 from Xt

using mirror descent with a pre-specified potential function Ψ and the estimated “gradient”
ˆ̀
t.

Although the framework of OSMD is standard, there are several key ingredients left for the algorithm
designer to specify: • How to construct the distribution X̃t fromXt? • How to construct the estimator
ˆ̀
t? • How to pick the potential function Ψ? In general, filling these blanks heavily relies on the

problem structure and sometimes requires ingenious construction to achieve low regret. We will first
describe our algorithm and then explain our choices in Section 3.2.

3.2 The algorithm for bandits with graph feedback

Let G = (V,E) be the input directed graph with V = [n]. A few offline preprocessing steps are
required before the online part of the algorithm. We first solve the linear program (P) to get an
optimal solution {x∗i }i∈[n]. Recall δ∗(G) =

∑
i∈[n] x

∗
i is the fractional weak domination number

of G. Define a distribution u ∈ ∆n by normalizing {x∗i }i∈[n], i.e., we let u(i) =
x∗i∑

j∈[n] x
∗
j

for all

i ∈ [n]. The distribution u will be the exploration distribution whose function will be explained

later. Define parameters γ =
(
δ∗(G) logn

T

)1/3

, η = γ2

δ∗(G) where γ is the exploration rate and
η is the step size in the mirror descent. Finally, we let the potential function Ψ : Rn≥0 → R be
x ∈ Rn≥0 7→

∑n
i=1 x(i) logx(i) with the convention that 0 · log 0 = 0. When restricted to ∆n, Ψ(x)

is the negative entropy of the distribution x.

Algorithm 1: Online Stochastic Mirror Descent with Exploration
begin

X1 ← arg min
a∈∆n

Ψ(a);

for t = 1, 2, . . . , T do
X̃t ← (1− γ) ·Xt + γ · u;
/* use u to explore with rate γ. */

Play At ∼ X̃t and observe `t(j) for all j ∈ Nout(At);
/* If j 6∈ Nout(At), the value of `t(j) is unset. */

∀j ∈ [n] : ˆ̀
t(j)← 1[j∈Nout(At)]∑

i∈Nin(j) X̃t(i)
· `t(j);

/* For j 6∈ Nout(At), ˆ̀
t(j) = 0. */

Xt+1 ← arg min
x∈∆n

η〈x, ˆ̀
t〉+BΨ(x,Xt);

/* The update rule of mirror descent w.r.t. Ψ. */
end

end

Clearly our algorithm implements OSMD framework by specializing the three ingredients mentioned
in Section 3.1. •We choose X̃t = (1 − γ) ·Xt + γ · u. This means that our algorithm basically
follows Xt but with a certain probability γ to explore the arms according to u. The reason for doing
this is to guarantee that each arm has some not-so-small chance to be observed. It will be clear from
the analysis of OSMD that the performance of the algorithm depends on the variance of ˆ̀

t, and a
lower bound for each X̃t(i) implies an upper bound on the variance. On the other hand, we cannot
choose γ too large since it is Xt who contains information on which arm is good, and our probability
to follow Xt is 1− γ. Therefore, our choice of γ is optimized with respect to the trade-off between
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the two effects. The Exp3.G algorithm in [1] used a uniform distribution over the weakly dominating
set as an exploration probability instead of u, which is the only difference between the two algorithms
and leads to different graph parameters in regret bounds. Moreover, our exploration probability can
be efficiently computed by solving the linear program P while it is NP-hard to determine theirs.
• Our estimator ˆ̀

t is a simple unbiased estimator for `t, namely E
[
ˆ̀
t

]
= `t. • The potential function

we used is the negative entropy function.

4 Lower bounds

In this section, we prove several lower bounds for the regret in terms of different graph parameters.
All the lower bounds obtained in this section are based on a meta lower bound (Theorem 2) via the
notion of k-packing independent set.
Definition 6. Let G(V,E) be a directed graph and k ∈ N. A set S ⊆ V is a k-packing independent
set of G if (1) S is an independent set; (2) For any v ∈ V , it holds that |Nout(v) ∩ S| ≤ k.

Intuitively, if a graph contains a large k-packing independent set S, then one can construct a hard
instance as follows: • All arms in V − S are bad, say with loss 1; • All arms in S have loss Ber

(
1
2

)
except a special one with loss Ber

(
1
2 − ε

)
. Then any algorithm with low regret must successfully

identify the special arm from S without observing arms in S much (since each observation of arms
in S comes from pulling V − S, which costs a penalty at least 1

2 in the regret), and we can tweak
the parameters to make this impossible. A similar idea already appeared in [1]. However, we will
formally identify the problem of minimizing regret on this family of instances with the problem

of best arm identification. Therefore, stronger lower bounds Ω

(
max

{
|S|
k , log |S|

} 1
3 · T 2

3

)
in

Theorem 2 can be obtained using tools from information theory.
Remark. If the maximum independent set of the graphG is of size one andG is “weakly observable”,
then it has been shown in [1] that R(G,T ) = Ω

(
T

2
3

)
for any algorithm. If the graph has no

independent set, which means each vertex contains a self-loop, then the graph is “strongly observable”
and its regret can be O(T

1
2 ). In particular, the problem of vanilla n-armed bandits falls into this

case.

We delay the proof of Theorem 2 to Appendix D and discuss some of its consequences in the
remaining of this section. We recover and strengthen the lower bound based on the (integral)
domination number of [1] in Section 4.1. Then we prove Theorem 3 in Section 4.2 and discuss some
of its useful corollaries. Finally, we discuss in Section 4.3 when our lower bounds are optimal.

Our main technical contribution here is that we relate δ∗ to the lower bound as well. This is achieved
via applying the strong duality theorem of linear programming and using a new rounding method to
construct hard instances from fractional solutions of the dual linear programming. This approach
towards the lower bounds is much cleaner and in many cases stronger than previous ones in [1]. To
the best of our knowledge, the method is new to the community of bandits algorithms

4.1 Lower bound via the (Integral) weak domination number

We first use Theorem 2 to recover and strengthen lower bounds in [1]. Let G = (V,E) be a directed
graph and U ⊆ V be the set of vertices without self-loops.

The weakly dominating set of U is a set S ⊆ V such that for every u ∈ U , there exists some v ∈ S
with (v, u) ∈ E. The weak domination number, denoted by δ(G), is the size of the minimum weakly
dominating set of U . In fact, δ(G) is the optimum of the integral restriction of the linear program (P)
in Section 2.1:

minimize
∑
i∈V

xi; subject to
∑

i∈Nin(j)

xi ≥ 1, ∀j ∈ U ; xi ∈ {0, 1} , ∀i ∈ V . (P′)

The following structural lemma was proved in [1]

Lemma 7. The graph G contains a (log n)-packing independent set S of size at least δ(G)
50 logn .
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Applying Lemma 7 to Theorem 2, we obtain

Theorem 8. If G is weakly observable, then for any algorithm and any sufficiently large
time horizon T ∈ N, there exists a sequence of loss functions such that R(G,T ) =

Ω

(
max

{
δ(G)
log2 n

, log
(
δ(G)
logn

)}1/3

· T 2/3

)
.

Note that the bound in [1] is R(G,T ) = Ω

(
max

{
δ(G)
log2 n

, 1
}1/3

· T 2/3

)
. Theorem 8 outperforms

when ω(log n) < δ(G) < o(log2 n · log log n).

4.2 Lower bound via the linear program dual

In this section, we use Theorem 2 to derive lower bounds in terms of δ∗(G). Recall the linear
program (D) in Section 2.1 whose optimum is ζ∗(G) = δ∗(G) by the strong duality theorem of
linear programming. Consider its integral restriction (D′):

maximize
∑
j∈U

yj subject to
∑

j∈Nout(i)∩U

yj ≤ 1, ∀i ∈ V ; yj ∈ {0, 1} , ∀j ∈ U . (D′)

For every feasible solution {ŷj}j∈U of (D′), the set S , {j ∈ U : ŷj = 1} is called a vertex packing
set on U . It enjoys the property that for every i ∈ V , |Nout(i) ∩ S| ≤ 1.

Let ζ(G) be the optimum of (D′), namely the size of the maximum vertex packing set on U . Let
α , ζ∗(G)

ζ(G) be the integrality gap of (D). In the following, we will write δ∗, δ, ζ∗, ζ instead of
δ∗(G), δ(G), ζ∗(G), ζ(G) respectively if the graph G is clear from the context.

We can use a greedy algorithm to find an 1-packing independent set of size at least |S|3 in S and then
Theorem 3 follows from Theorem 2. Theorem 3 is less informative if we do not know how large the
integrality gap α is. On the other hand, the integrality gap of linear programs for packing programs
has been well-studied in the literature of approximation algorithms. The following bound due to [31]
is tight for general graphs.

Lemma 9 ([31]). For any directed graph G, the integrality gap α = O (n/δ∗).

Corollary 10. If G is weakly observable, then for any algorithm and any sufficiently large time

horizon T ∈ N, there exists a sequence of loss functions such thatR(G,T ) = Ω

((
δ∗2

n

) 1
3 · T 2

3

)
.

The bound for the integrality gap in Lemma 9 holds for any graphs. It can be greatly improved for
special graphs.

An interesting family of graphs with small α is those bounded degree graphs. If the in-degree of
every vertex in U is bounded, we have the following bound for the integrality gap:

Lemma 11 ([10]). If the in-degree of every vertex in U is bounded by a constant ∆, then the
integrality gap α ≤ 8∆.

Corollary 12. Let ∆ ∈ N be a constant and G∆ be the family of graphs with maximum in-degree ∆.
Then for every weakly observable G = (V,E) ∈ G∆, any algorithm and any sufficiently large time
horizon T ∈ N, there exists a sequence of loss functions such that R(G,T ) = Ω((δ∗)

1
3 · T 2

3 ).

Next, we show the integrality gap of another broad family of graphs, the 1-degenerate graphs, is
1. The family of 1-degenerate graphs was defined in Section 2.1. Graphs including trees (both
directed and undirected), directed cycles belong to this family. The proof of the following lemma is
in Appendix C.2.

Lemma 13. For any 1-degenerate directed graph, the integrality gap α = 1.

Corollary 14. Let G be a 1-degenerate weakly observable graph. Then for any algorithm and
any sufficiently large time horizon T ∈ N, there exists a sequence of loss functions such that
R(G,T ) = Ω((δ∗)

1
3 · T 2

3 ).
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We obtained in Theorem 1 that R(G,T ) = O
(

(δ∗ log n)
1
3 T

2
3

)
, and therefore our lower bound is

tight up to a factor of (log n)
1
3 on 1-degenerate graphs and graphs of bounded degree.

4.3 Instances with optimal regret

In this section, we will examine several families of graphs in which the optimal regret bound can be
obtained using tools developed in this article.

4.3.1 Complete bipartite graphs

Let G = (V1 ∪ V2, E) be an undirected complete bipartite graph with n = |V1|+ |V2|. Clearly δ∗ =

δ = 2. Therefore both our Theorem 1 and the algorithm in [1] satisfyR(G,T ) = O
(

(log n)
1
3 · T 2

3

)
.

Assuming without loss of generality that |V1| ≥ |V2|, then V1 is a |V1|-packing independent set
of size at least n

2 . Therefore it follows from Theorem 2 that any algorithm satisfies R(G,T ) =

Ω
(

(log n)
1
3 · T 2

3

)
. Note that the lower bound in [1] is Ω

(
T

2
3

)
for this instance.

4.3.2 Orthogonal relation on Fk2
Our algorithm outperforms the one in [1] when δ∗ � δ. Let us now construct a family of graphs
where δ

δ∗ = Ω (log n).

Let F2 be the finite field with two elements and k ∈ N be sufficiently large. The vertex set of the
undirected graph G = (V1 ∪ V2, E) consists of two disjoint parts V1 and V2 where V1 and V2 are
both isomorphic to Fk2 \ {0}. Therefore we can write V1 = {xα}α∈Fk

2\{0}
and V2 = {yβ}β∈Fk

2\{0}
.

The set of edges E is as follows: • E is the edge set such that G[V1] is a clique and G[V2] is an
independent set; • For every xα ∈ V1 and yβ ∈ V2, {xα, yβ} ∈ E iff 〈α, β〉 =

∑k
i=1 α(i) ·β(i) = 1,

where all multiplications and summations are in F2.

We will show that the upper bound and the lower bound of the regret for this instance proved
in [1] based on δ is O

(
(log n)

2
3 · T 2

3

)
and Ω

(
T

2
3

)
respectively. However, we achieve the optimal

Θ
(

(log n)
1
3 · T 2

3

)
regret. Thus we conclude that both our new upper bound and lower bound are

crucial for the optimal regret on this family of instances. The details can be found in Appendix C.3

5 Conclusion

In this article, we introduced the notions of fractional weak domination number and k-packing
independence number respectively to prove new upper bounds and lower bounds for the regret
of bandits with graph feedback. Our results implied optimal regret on several families of graphs.
Although there are still some gaps in general, we believe that these two notions are the correct graph
parameters to characterize the complexity of the problem. We now list a few interesting problems
worth future investigation.

• Let G be an n-vertex undirected cycle. What is the regret on this instance? Theorem 1 im-
plies an upper bound O

(
(n log n)

1
3T

2
3

)
and Theorem 2 implies a lower bound Ω

(
n

1
3T

2
3

)
.

• The lower bound Ω

((
δ∗

α

) 1
3 · T 2

3

)
in Theorem 3 for general graphs is not satisfactory. The

lower bound is proved via the construction of a 1-packing independent set. This construction
did not release the full power of Theorem 2 as the lower bound in the theorem applies for
any k-packing independent set. It is still possible to construct larger k-packing independent
sets via rounding the linear program D to some “less integral” solution.

• Is Theorem 2 tight? In fact, the bound for BESTARMID, which is constructed to prove
Theorem 2 in the full version of the paper, is tight since matching upper bound exists.
Therefore, one needs new constructions of hard instances to improve Theorem 2, if possible.
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