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ABSTRACT

Comprehending natural language instructions is a charming property for 3D in-
door scene synthesis systems. Existing methods directly model object joint dis-
tributions and express object relations implicitly within a scene, thereby hinder-
ing the controllability of generation. We introduce INSTRUCTSCENE, a novel
generative framework that integrates a semantic graph prior and a layout de-
coder to improve controllability and fidelity for 3D scene synthesis. The pro-
posed semantic graph prior jointly learns scene appearances and layout distribu-
tions, exhibiting versatility across various downstream tasks in a zero-shot man-
ner. To facilitate the benchmarking for text-driven 3D scene synthesis, we curate
a high-quality dataset of scene-instruction pairs with large language and multi-
modal models. Extensive experimental results reveal that the proposed method
surpasses existing state-of-the-art approaches by a large margin. Thorough ab-
lation studies confirm the efficacy of crucial design components. Project page:
https://chenguolin.github.io/projects/InstructScene.

1 INTRODUCTION

Automatically synthesizing controllable and realistic 3D indoor scenes has been a persistent chal-
lenge for computer vision and graphics (Merrell et al., 2011; Fisher et al., 2015; Qi et al., 2018;
Wang et al., 2018; Ritchie et al., 2019; Zhang et al., 2020; Yang et al., 2021b;a; Höllein et al., 2023;
Song et al., 2023; Cohen-Bar et al., 2023; Lin et al., 2023; Feng et al., 2023; Patil et al., 2023).
An ideal indoor scene synthesis system should fulfill at least three objectives: (1) comprehending
instructions in natural languages, thus providing an intuitive and user-friendly interface; (2) design-
ing object compositions that exhibit aesthetic appeal and thematic harmony; (3) placing objects in
appropriate positions and orientations adhering to their functions and regular arrangements.

Natural instructions for interior design often rely on abstract object relationships, posing significant
challenges for recent advancements in 3D scene synthesis (Wang et al., 2021; Paschalidou et al.,
2021; Liu et al., 2023a; Tang et al., 2023) due to the implicit modeling of relationships through indi-
vidual object attributes. Other studies (Luo et al., 2020; Dhamo et al., 2021; Zhai et al., 2023) utilize
relation graphs to provide explicit control over object interactions, which are however too compli-
cated and fussy for human users to specify. Moreover, previous works primarily represent objects
by only categories (Luo et al., 2020; Paschalidou et al., 2021) or low-dimensional features (Wang
et al., 2019; Tang et al., 2023) which lack visual appearance details, resulting in style inconsistency
and constraining customization options in scene synthesis.

To address these issues, we present INSTRUCTSCENE, a novel generative framework for 3D in-
door scene synthesis with natural language instructions. The overview of the proposed method is
illustrated in Figure 1. INSTRUCTSCENE comprises two parts: a semantic graph prior and a lay-
out decoder. In the first stage, it takes instructions about partial interior arrangement and object
appearances, and learns the conditional distribution of semantic graphs for holistic scenes. In the
second stage, harnessing the well-structured and informative graph latents, the layout decoder can
easily embody scenes that exhibit semantic consistency while closely adhering to the provided in-
structions. With the learned semantic graph prior, INSTRUCTSCENE also achieves a wide range of
instruction-driven generative tasks in a zero-shot manner.

∗Corresponding author.
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Figure 1: Method overview. (1) INSTRUCTSCENE first designs a holistic semantic graph based on
user instruction. Within this graph, each node is an object endowed with semantic features and each
edge represents a spatial relationship between objects. (2) It proceeds to place objects in a scene by
decoding precise 7 degrees-of-freedom attributes for each object from the informative graph prior.

Specific conditional diffusion models are devised for both parts of INSTRUCTSCENE. Benefitting
from the two-stage scheme, it can separately handle discrete and continuous attributes of indoor
scenes, drastically reducing the burden of network optimization. To enhance the capability of aes-
thetic design, INSTRUCTSCENE also leverages object geometrics and appearances by quantizing
semantic features from a multimodal-aligned model (Radford et al., 2021; Liu et al., 2023b).

To fit practical scenarios and promote the benchmarking of instruction-drive scene synthesis, we
curate a high-quality dataset containing paired scenes and instructions with the help of large lan-
guage and multimodal models (Li et al., 2022; Ouyang et al., 2022; OpenAI, 2023). Comprehensive
quantitative evaluations reveal that INSTRUCTSCENE surpasses previous state-of-the-art methods by
a large margin in terms of both generation controllability and fidelity. Each essential component of
our method is carefully verified through ablation studies.

Our contributions can be summarized as follows:

• We present an instruction-driven generative framework that integrates a semantic graph
prior and a layout decoder to improve the controllability and fidelity for 3D scene synthesis.

• The proposed general semantic graph prior jointly models appearance and layout distribu-
tions, facilitating various downstream applications in a zero-shot manner.

• We curate a high-quality dataset to promote the benchmarking of instruction-driven 3D
scene synthesis, and quantitative experiments demonstrate that the proposed method sig-
nificantly outperforms existing state-of-the-art techniques.

2 RELATED WORK

Graph-driven 3D Scene Synthesis Graphs have been used to guide complex scene synthesis in
the form of scene hierarchies (Li et al., 2019; Gao et al., 2023), parse trees (Purkait et al., 2020),
scene graphs (Zhou et al., 2019a; Para et al., 2021), etc. Wang et al. (2019) utilize an image-based
module and condition its outputs on the edges of a relation graph within each non-differentiable
step. They also adopt an autoregressive model (Li et al., 2018) to generate relation graphs, which
are however unconditional and with limited object attributes. Other works (Luo et al., 2020; Dhamo
et al., 2021; Zhai et al., 2023) adopt conditional VAEs (Kingma & Welling, 2014; Sohn et al., 2015)
with graph convolutional networks (Johnson et al., 2018) to generate layouts. While offering high
controllability, these methods demand the specification of elaborate graph conditions, which are
notably more intricate than those driven by natural languages.

Language-driven 3D Scene Synthesis Early studies on language-driven scene synthesis are con-
ducted through procedural modeling, resulting in a semi-automatic process (Chang et al., 2014;
2015a; 2017; Ma et al., 2018). With the advent of attention mechanisms (Vaswani et al., 2017),
recent approaches (Wang et al., 2021; Paschalidou et al., 2021; Liu et al., 2023a; Tang et al., 2023)
can implicitly acquire object relations by self-attention and condition scene synthesis with texts
by cross-attention. However, text prompts in these works tend to be relatively simple, containing
only object categories or lacking layout descriptions, limiting the expressiveness and customization.
Implicit relation modeling also significantly hinders their controllability.
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Generative Models for Graphs There have been lots of endeavors on generative models for undi-
rected graphs, molecules and scene graphs by autoregressive models (You et al., 2018; Garg et al.,
2021), VAEs (Simonovsky & Komodakis, 2018; Verma et al., 2022), GANs (De Cao & Kipf, 2018;
Martinkus et al., 2022) and diffusion models (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2023;
Kong et al., 2023). Longland et al. (2022) and Lo et al. (2023) employ VAE and GAN respectively
for text-driven undirected simple graph generation without any semantics. In contrast, we present a
pioneering effort to generate holistic semantic graphs with expressive instructions.

3 PRELIMINARY: DIFFUSION MODELS

Diffusion generative models (Sohl-Dickstein et al., 2015) consist of a non-parametric forward pro-
cess and a learnable reverse process. The forward process progressively corrupts a data point
from q(x0) to a sequence of increasingly noisy latent variables: q(x1:T |x0) =

∏T
t=1 q(xt|xt−1).

A neural network is trained to reverse the process by denoising them iteratively: pψ(x0:T |c) =

p(xT )
∏T
t=1 pψ(xt−1|xt, c), where c is an optional condition to guide the reverse process as needed.

These two processes are supposed to admit p(xT ) ≈ q(xT |x0) for a sufficiently large T . The gen-
erative model is optimized by minimizing a variational upper bound on Eq(x0) [− log pψ(x0)]:

Lvb := Eq(x0)[ DKL[q(xT |x0)∥p(xT )]︸ ︷︷ ︸
LT

+

T∑
t=2

Lt−1 −Eq(x1|x0)[log pψ(x0|x1, c)]︸ ︷︷ ︸
L0

], (1)

where Lt−1 := DKL[q(xt−1|xt,x0)∥pψ(xt−1|xt, c)] and LT is constant during training so can be
ignored. DKL[·∥·] indicates the KL divergence between two distributions.

4 METHOD

4.1 PROBLEM STATEMENT

Denote S := {S1, . . . ,SM} as a collection of indoor scenes. Each scene Si is composed of multiple
objects Oi := {oij}

Ni
j=1 with distinct attributes oij := {cij , tij , sij , rij , f ij}, including category cij ∈

{1, ...,Kc}, where Kc is the number of object classes in S, location tij ∈ R3, axis-aligned size
sij ∈ R3, orientation rij ∈ R and semantic feature f ij ∈ Rd, where d is the dimension of the feature
vector. To set up a 3D scene, one can generate each 3D object or retrieve it from a database by c and
f . They are then resized and transformed to the same scene coordinate by corresponding t, s and
r. To simplify the process, we opt to retrieve 3D objects from a high-quality dataset, and leave the
generative models of each object conditioned on c and f for future work.

Given instructions y, our goal is to learn the conditional scene distribution q(S|y). Rather than direct
modeling (Paschalidou et al., 2021; Tang et al., 2023), we employ well-structured and informative
graphs to serve as general and semantic latents. Each graph Gi contains a node set Vi := {vij}

Ni
j=1

and a directed edge set Ei := {eijk|vij ,vik ∈ Vi}. A node vij functions as a high-level representation
of an object oij , and a directed edge eijk explicitly conveys the relations between objects.

To this end, we propose a generative framework, INSTRUCTSCENE, that consists of two compo-
nents: (1) semantic graph prior pϕ(G|y) (Sec. 4.2) that jointly models high-level object and re-
lation distributions conditioned on y; (2) layout decoder pθ(S|G) (Sec. 4.3) that produces precise
layout configurations with semantic graphs. Since G is deterministic by corresponding S, the two
networks together yield an instruction-driven generative model for 3D indoor scenes:

pϕ,θ(S|y) = pϕ,θ(S,G|y) = pϕ(G|y)pθ(S|G). (2)

4.2 SEMANTIC GRAPH PRIOR

The spatial relations are defined based on distances and relative orientations, such as “left”, “closely
in front of”, “above” and “too far away (none)”. Details about the definitions are provided in Ap-
pendeix A.1. Layout configurations including t, s and r can be derived from spatial relations, so
we leave them to the decoder pθ(S|G). Denote v := {c, f} and e ∈ {1, . . . ,Ke}, where Ke is the
number of relation classes.
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Figure 2: Semantic Graph Prior. (a) Feature Quantization. Semantic features for 3D objects are
extracted from a frozen multimodal-aligned point cloud encoder and then quantized by codebook
entries. (b) Discrete Semantic Graph Diffusion. Three categorical variables in G0 are indepen-
dently diffused; Empty states are not depicted for concision; A graph Transformer with a frozen text
encoder learns the semantic graph prior by iteratively denoising corrupted graphs.

4.2.1 FEATURE QUANTIZATION

High-dimensional features, such as those with d = 1280 in OpenCLIP ViT-bigG/14 (Liu et al.,
2023b), are too complicated to model. We circumvent this drawback by introducing a vector-
quantized variational autoencoder for feature vectors, coined as fVQ-VAE. The intuition behind
it is that there are general intrinsic characteristics shared among objects, encompassing attributes
like colors, materials and basic geometric shapes. Indexing semantic features from a codebook
could dramatically reduce the cost of operating in a continuous space.

Formally, fVQ-VAE contains a pair of encoder E and decoder D, along with a codebook Z ∈
RKf×dZ , where Kf and dZ are its size and dimension respectively. To concurrently capture object
visual appearances and geometric shapes, we employ a multimodal-aligned point cloud encoder,
OpenShape (Liu et al., 2023b), to extract object semantic features. The diagram for fVQ-VAE is
presented in Figure 2(a). It is trained to maximize the evidence lower bound (ELBO) for log p(f):

Ez∼pE(z|f) [log pD(f |z)− βDKL(pE(z|f)∥p(z)] , (3)

where z ∈ Rnf×dZ consists of nf vectors indexed by a sequence of scalars f := [fm]
nf

m=1, where
each scalar fm ∈ {1, . . . ,Kf}. Since the quantization operation is non-differentiable, gumbel-
softmax relaxation (Jang et al., 2016; Ramesh et al., 2021) is adopted to optimize the ELBO.

4.2.2 DISCRETE SEMANTIC GRAPH DIFFUSION

After the feature quantization, all attributes in a semantic graph are categorical, Gi := (Ci,Fi, Ei),
where Ci := {1, . . . ,Kc}Ni , Ei := {1, . . . ,Ke}Ni×Ni and Fi := {1, . . . ,Kf}Ni×nf . While it is
possible to embed discrete variables in continuous spaces using one-hot encodings, it diminishes
the sparsity inherent in the original data and imposes a substantial burden on network optimization.
Instead, we propose to model the semantic graph prior through discrete diffusion models.

For a scalar discrete random variable with K categories x ∈ {1, . . . ,K}, diffusion noise is defined
by a series of transition matrices Q ∈ RK×K . The forward process at timestep t is expressed as
q(xt|xt−1) := x⊤

t Qtxt−1, where xt ∈ RK is the column one-hot encoding for xt and [Qt]mn :=
q(xt = m|xt−1 = n) is the probability that xt−1 transits to the category m from n. The probabilistic
distribution of xt can be directly derived from x0: q(xt|x0) := x⊤

t Q̄tx0, where Q̄t := Qt · · ·Q1.

Instead of commonly used Gaussian or uniform transitions for graph generation (Niu et al., 2020;
Hoogeboom et al., 2021; Jo et al., 2022; Vignac et al., 2023), we propose to diffuse semantic graphs
by independently masking graph attributes (i.e., object class c, quantized feature indices f and re-
lation e) by introducing an absorbing state [MASK] (Austin et al., 2021; Gu et al., 2022) to each
uniform transition matrix. For object class c, its transition matrix is defined as:

QC
t :=


αc
t + βc

t βc
t · · · βc

t 0
βc
t αc

t + βc
t · · · βc

t 0
...

...
. . . βc

t 0
βc
t βc

t βc
t αc

t + βc
t 0

γc
t γc

t γc
t γc

t 1

 , (4)

4



Published as a conference paper at ICLR 2024

by which ct has a probability of γct to be masked, a probability of αct to maintain the same, leaving a
chance of 1− γct − αct for uniform sampling. [MASK] will always stay in its own state. Transition
matrices for f and e, denoted as QF

t and QE
t respectively, exhibit analogous structures. Schedules

of (αt, βt, γt) are designed to admit that the initial states for semantic graphs are all masked.

Since the number of objects varies across different scenes, semantic graphs are padded by empty
states to maintain a consistent number of N objects. One-hot encodings for scalar variables c, f
and e in a scene are denoted as C ∈ RN×(Kc+2), F ∈ RN×nf×(Kf+2) and E ∈ RN×N×(Ke+2)

respectively. Here “+2” accounts for the two extra states (i.e., empty state and mask state) for each
variable. A one-hot encoded semantic graph G0 := (C0,F0,E0) at timestep t is formulated as

q(Gt|G0) = (Q̄C
t C0, Q̄

F
tF0, Q̄

E
t E0). (5)

The process for learning the graph prior is illustrated in Figure 2(b). The independent diffusion with
mask states offers two significant advantages:

• Perturbed states for one variable (e.g., C) could be recovered by incorporating information
from uncorrupted portions of the other variables (e.g., F and E), compelling the semantic
graph prior to learning from the interactions among different scene attributes.

• The introduction of mask states facilitates the distinction between corrupted states and
clean ones, thus simplifying the denoising task.

These benefits are critical especially for intricate semantic graphs and diverse downstream generative
tasks, compared with simple graph generative tasks (Niu et al., 2020; Jo et al., 2022; Vignac et al.,
2023). Ablation study on the choice of Q is provided in Sec. 5.5.2.

Output of the graph prior network is re-parameterized to produce the clean scene graphs Ĝ0, which
is then diffused to get the predicted posterior for computing the variational bound in Equation 1:
pϕ(Gt−1|Gt,y) ∝

∑
Ĝ0

q(Gt−1|Gt, Ĝ0)pϕ(Ĝ0|Gt,y). Training objective for pϕ is a weighted
summation of variational bounds for three random variables conditioned on y:

LG|y
vb := LC|y

vb + λf · LF|y
vb + λe · LE|y

vb , (6)

where λe, λf ∈ R+ are hyperparameters to adjust the relative importance of three components in
the semantic graph.

4.3 3D LAYOUT DECODER

Instantiating 3D scenes becomes easy with semantic graph prior. Denote layout configurations of Si
as {lij}

Ni
j=1 , where lij := oij−vij = {tij , sij , rij}. SO(2) rotation is parameterize by [cos(r), sin(r)]⊤

to continuously represent r (Zhou et al., 2019b). Consequently, the layout of Si can be expressed as
2D matrices Li ∈ RNi×8. Note that S = (L,G), so generating indoor scenes pθ(S|G) is equivalent
to learning the conditional distributions of layout configurations pθ(L|G).
A diffusion model with variance-preserving Gaussian kernels (Ho et al., 2020; Song et al., 2020)
is adopted to learn pθ(L|G). Its forward process is q(Lt|L0) := N (Lt;

√
ᾱtL0, (1 − ᾱt)I). The

reverse process is modeled as pθ(Lt−1|Lt,G) := N (Lt−1;µθ(Lt, t,G);Σθ(Lt, t,G)). Following
Ho et al. (2020), the variational bound in Equation 1 for the decoder pθ(L|G) is reweighted and
simplified:

Lsimple := EL0,t,ϵ

[
∥ϵ− ϵθ(Lt, t,G)∥2

]
= EL0,t,ϵ

[
∥ϵ− ϵθ(

√
ᾱtL0 +

√
1− ᾱtϵ, t,G)∥2

]
,

(7)

where t is sampled from a uniform distribution U(1, T ) and ϵ is sampled from a standard normal
distribution N (0, I). Diagram of the layout decoder is depicted in Figure 3(a). Intuitively, the
network is trained to predict noise ϵ in the corrupted data Lt.

4.4 MODEL ARCHITECTURE

We use the general-purpose Transformer (Vaswani et al., 2017) for all models across tasks.
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Figure 3: (a) 3D Layout Decoder. Gaussian noises are sampled to attach at every node of semantic
graphs; A graph Transformer processes these graphs iteratively to remove noises and generate layout
configurations. (b) Graph Transformer. A graph Transformer consists of a stack of M blocks,
each comprising graph attention, MLP and optional cross-attention modules; AdaLN and multi-
head scheme are not depicted for concision.

Vanilla Transformer As illustrated in Figure 2(a), nf learnable tokens are employed with a stack
of cross-attentions to extract information from object features f in the encoder E in fVQ-VAE.
Regarding the decoder D, nf vectors retrieved from the codebook Z are fed to another Transformer,
and an average pooling on the top of it is applied to aggregate information.

Graph Transformer The prior and decoder share the same model architecture as shown in Fig-
ure 3(b). Since relation ejk can be determined by ekj , only the upper triangular part of the re-
lation matrix is necessary. Object categories and features together form input tokens for Trans-
formers. Message passing on graphs is operated via node self-attention and node-edge fusion with
FiLM (Perez et al., 2018), which linearly modulates edge embeddings and node attention matrices
before softmax (Dwivedi & Bresson, 2021; Vignac et al., 2023). Timestep for diffusion t is injected
by AdaLN (Ba et al., 2016; Dhariwal & Nichol, 2021). In the prior pϕ(G|y), instructions are embed-
ded by a frozen text encoder and consistently influence network outputs by cross-attention mecha-
nisms. Layout decoder pθ(S|G) is conditioned on semantic graphs by appending sampled Gaussian
noises on node embeddings, which are then iteratively denoised to produce layout attributes.

Permutation Non-invariance Although G should ideally remain invariant to node permutations,
invariant diffusion models could encounter learning challenges for multi-mode modeling. Thus,
each node feature is added with positional encodings (Vaswani et al., 2017; Tang et al., 2023; Lei
et al., 2023) before the permutation-equivariant Transformer. Exchangeability for graph prior distri-
butions is strived by random permutation augmentation during the training process. Ablation on the
permutation non-invariance is provided in Sec. 5.5.2.

5 EXPERIMENTS

5.1 SCENE-INSTRUCTION PAIR DATASET

All experiments are conducted on 3D-FRONT (Fu et al., 2021a), a professionally designed collection
of synthetic indoor scenes. However, it does not contain any descriptions of room layouts or object
appearances. To construct a high-quality scene-instruction paired dataset, we initially extract view-
dependent spatial relations with predefined rules. The dataset is further enhanced by captioning
objects with BLIP (Li et al., 2022). To ensure the accuracy of descriptions, the generated captions
are filtered by ChatGPT (Ouyang et al., 2022; OpenAI, 2023) with object ground-truth categories.
The final instructions are derived from randomly selected relation triplets. Details on dataset curation
can be found in Appendix A.

5.2 EXPERIMENTAL SETTINGS

Baselines We compare our method with two state-of-the-art approaches for 3D scene generative
tasks: (1) ATISS (Paschalidou et al., 2021), a Transformer-based auto-regressive network that re-
gards scenes as sets of unordered objects, and generates objects and their attributes sequentially.
(2) DiffuScene (Tang et al., 2023), a diffusion model with Gaussian kernels that treats object at-
tributes in one scene as a 2D matrix after padding them to a fixed size. Both of these methods can
be conditioned on text prompts by cross-attention with a pretrained text encoder. Our preliminary
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Table 1: Quantitive evaluations for instruction-driven synthesis by ATISS (Paschalidou et al., 2021),
DiffuScene (Tang et al., 2023) and our method on three room types. Higher iRecall, lower FID,
FIDCLIP and KID indicate better synthesis quality. For SCA, a score closer to 50% is better. Standard
deviation values are provided as subscripts.

Instruction-driven Synthesis ↑ iRecall% ↓ FID ↓ FIDCLIP ↓ KID×1e-3 SCA%

Bedroom
ATISS 48.13±2.50 119.73±1.55 6.95±0.06 0.39±0.02 59.17±1.39

DiffuScene 56.43±2.07 123.09±0.79 7.13±0.16 0.39±0.01 60.49±2.96

Ours 73.64±1.37 114.78±1.19 6.65±0.18 0.32±0.03 56.02±1.43

Living room
ATISS 29.50±3.67 117.67±2.32 6.08±0.13 17.60±2.65 69.38±3.38

DiffuScene 31.15±2.49 122.20±1.09 6.10±0.11 16.49±1.24 72.92±1.29

Ours 56.81±2.85 110.39±0.78 5.37±0.07 8.16±0.56 65.42±2.52

Dining room
ATISS 37.58±1.99 137.10±0.34 8.49±0.23 23.60±2.52 67.61±3.23

DiffuScene 37.87±2.76 145.48±1.36 8.63±0.31 24.08±1.90 70.57±2.14

Ours 61.23±1.67 129.76±1.61 7.67±0.18 13.24±1.79 64.20±1.90

experiments suggest that both baselines encounter difficulties in modeling high-dimensional seman-
tic feature distributions, consequently impacting their performance in generating other attributes.
Therefore, we augment them to generate quantized features. Further implementation details about
baselines and our method are provided in Appendix B.1 and B.2.

Evaluation Metrics To assess the controllability of layouts, we use a metric named “instruction
recall” (iRecall), which quantifies the proportion of the required triplets “(subject, relation, object)”
occurring in synthesized scenes to all provided in instructions. It is a stringent metric that takes into
account all three elements in a layout relation simultaneously. Following previous works (Paschali-
dou et al., 2021; Liu et al., 2023a; Tang et al., 2023), we also report Fréchet Inception Distance
(FID) (Heusel et al., 2017), FIDCLIP (Kynkäänniemi et al., 2022), which computes FID scores by
CLIP features (Radford et al., 2021), Kernel Inception Distance (KID) (Bińkowski et al., 2018),
scene classification accuracy (SCA). These metrics evaluate the overall quality of synthesized scenes
and rely on rendered images. We use Blender (Community, 2018) to produce high-quality images
for both synthesized and real scenes. For more details on evaluation, please refer to Appendix B.3.

5.3 INSTRUCTION-DRIVEN SCENE SYNTHESIS

Table 1 presents the quantitive evaluations for synthesizing 3D scenes with instructions. We report
the average scores of five runs with different random seeds. As demonstrated, even with the en-
hancement of quantized semantic features, two baseline methods continue to demonstrate inferior
performance compared to ours. ATISS outperforms DiffuScene in terms of generation fidelity, ow-
ing to its capacity to model in discrete spaces. DiffuScene shows better controllability to ATISS
because it affords global visibility of samples during generation. Our proposed INSTRUCTSCENE
exhibits the best of both worlds. Remarkably, we achieve a substantial advancement in controllabil-
ity, measured in iRecall, for scene generative models, surpassing current state-of-the-art approaches
by about 15%∼25% across various room types, all while maintaining high fidelity. It is noteworthy
that INSTRUCTSCENE excels in handling more complex scenes, such as living and dining rooms,
which typically comprise an average of 20 objects, in contrast to bedrooms, which have only 8 ob-
jects on average, revealing the benefits of modeling intricate 3D scenes associated with the semantic
graph prior. Qualitative visualizations are provided in Appendix C.1.

5.4 ZERO-SHOT APPLICATIONS

Thanks to the discrete design and mask modeling, the learned semantic graph prior is capable of
diverse downstream tasks without any fine-tuning. We investigate four zero-shot tasks, including
stylization, re-arrangement, completion, and unconditional generation. The first three tasks can be
regarded as conditional synthesis guided by both instructions and partial scene attributes.

Stylization and re-arrangement task can be formulated as pϕ(f |c, t, s, r,y) and pϕ,θ(t, s, r|c, f ,y)
respectively. In the completion task, we intend to add new objects {oik} to a partial scene Si with
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Table 2: Quantitive evaluations for zero-shot generative applications on three room types. “Uncond.”
stands for unconditional scene synthesis.

Zero-shot
Applications

Stylization Re-arrangement Completion Uncond.

↑ ∆×1e−3 ↓ FID ↑ iRecall% ↓ FID ↑ iRecall% ↓ FID ↓ FID

Bedroom
ATISS 3.44 123.91 61.22 107.67 64.90 89.77 134.51
DiffuScene 1.08 127.35 68.57 106.15 48.57 96.28 135.46
Ours 6.34 122.73 79.59 105.27 69.80 82.98 124.97

Living room
ATISS -3.57 110.85 31.97 117.97 43.20 106.48 129.23
DiffuScene -2.69 112.80 41.50 115.30 19.73 95.94 129.75
Ours 0.28 109.39 56.12 106.85 46.94 92.52 117.62

Dining room
ATISS -1.11 131.14 36.06 134.54 57.99 122.44 147.52
DiffuScene -2.98 135.20 46.84 133.73 32.34 115.08 150.81
Ours 1.69 128.78 62.08 125.07 60.59 107.86 137.52

instructions. By filling the partial scene attributes with [MASK] tokens, we treat them as intermedi-
ate states during discrete graph denoising, allowing for a straightforward adaptation of the learned
semantic graph prior to these tasks in a zero-shot manner. Unconditional synthesis is implemented
by simply setting text features as zeros. To assess controllability in the stylization task, we define
∆ := 1

N

∑N
i=1 CosSim(fi,d

style
i ) − CosSim(fi,d

class
i ), where dstyle

i represents the CLIP text fea-
ture of object class name with the desired style, and dclass

i is the CLIP text feature with only class
information. CosSim(·, ·) calculates the cosine similarity between two vectors.

Evaluations on zero-shot applications are reported in Table 2. Our method consistently outperforms
two strong baselines in both controllability and fidelity. While ATISS, as an auto-regressive model,
is a natural fit for the completion task, its unidirectional dependency chain limits its effectiveness
for tasks requiring global scene modeling, such as re-arrangement. DiffuScene can adapt to these
tasks by replacing the known parts with the noised corresponding scene attributes during sampling,
similar to image in-painting (Meng et al., 2021; Nichol et al., 2022). However, the known attributes
are greatly corrupted in the early steps, which could misguide the denoising direction, and therefore
necessitate fine-tuning. Additionally, DiffuScene also faces challenges in searching for semantic
features in a continuous space for stylization. In contrast, INSTRUCTSCENE globally models scene
attributes and treats partial scene attributes as intermediate discrete states during training. These
designs effectively eliminate the training-test gap, rendering it highly versatile for a wide range of
downstream tasks. Visualizations of zero-shot applications are available in Appendix C.2.

5.5 ABLATION STUDIES

5.5.1 CONFIGURATIONS FOR DIFFUSION MODELS

Diffusion Timesteps Although containing two diffusion models, our method could achieve bet-
ter efficiency by reducing the steps of reverse processes without a noticeable decline in perfor-
mance. This stems from the fact that each stage in INSTRUCTSCENE tackles an easier denoising task
compared to the single-stage DiffuScene. Following the original setting of Tang et al. (2023), the
timestep value (T ) for DiffuScene is set to 1000. While for INSTRUCTSCENE, we find T =100 and
10 is sufficient for pϕ(G|y) and pθ(S|G) respectively. Evaluation results with different timesteps
are presented in Figure 4(a), with values averaged on three room types. The plotted timesteps for
our method are “100+1000”, “100+400”, “100+100”, “100+10”, “50+10” and “25+10”, where the
first number represents T for the prior and the latter is for the decoder.

Classifier-Free Guidance Classifier-free guidance (CFG) (Ho & Salimans, 2021) is a widely used
technique to trade off controllability with diversity. We do not adopt it in previous experiments for
a fair comparison, as the sequential attribute decoding hinders ATISS from realizing the benefits
offered by CFG. To assess its effectiveness for diffusion models, we randomly remove instruction
conditions on 20% of samples during training, inducing an unconditional generation. At inference,
CFG is implemented by adjusting conditional log-likelihoods away from unconditional counterparts:

p̃ϕ(Ĝ0|Gt,y) := (1 + s) · pϕ(Ĝ0|Gt,y)− s · pϕ(Ĝ0|Gt), (8)
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Figure 4: Ablation studies on configurations for diffusion models, including diffusion timesteps and
classifier-free guidance scales.

Table 3: Ablation studies on different strategies to learn semantic graph prior pϕ(G|y). “Perm.
Invar.” means permutation-invariant graph modeling.

Graph Prior Ours Gaussian Joint Mask Uniform Perm. Invar.

↑ iRecall% 73.64±1.37 34.18±2.53 34.21±2.79 69.22±3.25 70.49±2.50

↓ FID 114.78±1.19 128.98±0.97 130.86±2.76 139.61±1.06 116.53±1.35

↓ FIDCLIP 6.65±0.18 7.30±0.03 7.59±0.17 8.82±0.24 6.69±0.16

↓ KID×1e-3 0.32±0.03 2.63±0.73 4.82±1.69 10.55±1.19 0.37±0.02

SCA% 56.02±0.91 57.10±3.22 60.37±3.13 76.79±3.14 58.64±1.33

where s is a hyperparameter to control the scale of CFG. Performance for diffusion-based models
with different CFG scales are plotted in Figure 4(b), where values are averaged over three room
types. Within an appropriate range of scales, CFG can effectively enhance the controllability for
instructive-driven 3D scene synthesis, while large scales can lead to a performance decline. Though
DiffuScene also benefits from CFG, our method still significantly outperforms it in both metrics.

5.5.2 LEARNING SEMANTIC GRAPH PRIOR

We explore different strategies to learn the proposed semantic graph prior. All experiments are
conducted on the bedroom dataset. Quantitative results are presented in Table 3.

Transition Matrices for Learning Graph Prior We investigate the effects of different transition
matrices for learning the proposed semantic graph prior, including: (1) Embed all categorical vari-
ables into their one-hot encodings and diffuse them by Gaussian kernels, which is similar to Niu
et al. (2020) and Jo et al. (2022); (2) Jointly masking F and E along with nodes C in a graph, so
only the attributes of other objects can be utilized for recovery; (3) Adopt uniform transition matri-
ces without mask states, which is similar to Vignac et al. (2023). Evaluations on both controllability
and fidelity reveal the advantages of our independent mask strategy.

Permutation Non-invariance Unlike previous studies on graph generation (Niu et al., 2020; Jo
et al., 2022; Vignac et al., 2023), we depart from the convention of permutation-invariant modeling
to ease the learning process of semantic graph prior. We strive to preserve exchangeable graph
distributions by randomly shuffling object orders during training. Performance for invariant graph
prior is provided in the last column of Table 3. Its performance declines due to the unnecessary
imposition of invariance in scene synthesis.

6 CONCLUSION

By integrating a semantic graph prior and a layout decoder, we propose a novel generative frame-
work, INSTRUCTSCENE, that significantly improves the controllability and fidelity of 3D indoor
scene synthesis, providing a user-friendly interface through instructions in natural languages. Bene-
fits from the design of semantic graph prior, our method can also apply to diverse applications with-
out any fine-tuning. The controllability and versatility positions INSTRUCTSCENE as a promising
tool. We hope this work could help in practical scenarios, such as facilitating interior design, deliv-
ering immersive metaverse experiences, simulations for embodied agents, developing cutting-edge
VR/AR applications, etc. We discuss the limitations of our method and future work in Appendix D.
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ETHICS STATEMENT

Several large pretrained models are incorporated in this work, including OpenShape (Liu et al.,
2023b) for object semantic feature extraction, CLIP (Radford et al., 2021) for text feature extraction,
BLIP (Li et al., 2022) for object captioning and ChatGPT (Ouyang et al., 2022; OpenAI, 2023) for
caption refinement. Most of these models are trained on large-scale datasets collected from the web,
lacking rigorous content filtering, thereby potentially encompassing harmful material. We curate the
dataset and train our method based on these models, thus may inherit these imperfections. Given
that our generative framework is trained only on indoor scene datasets, it exhibits less probability of
propagating negative consequences compared to the synthesis and editing methods on human faces
and natural images. Nevertheless, we will still explicitly specify permissible applications of our
system through appropriate licensing to mitigate potential adverse societal impacts.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our method, we include the details of dataset processing in Appen-
dex A, including the rule-based spatial relation definitions (A.1) and the used prompt and hyper-
parameters for ChatGPT to refine object descriptions (A.2). Implementation details are also pro-
vided in Appdex B, including baseline reproductions (B.1), model hyperparameter disclosure (B.2)
and evaluation metric computations (B.3). Our instruction-scene pair dataset and code for both
training and evaluation can be found in https://chenguolin.github.io/projects/
InstructScene.
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A DATASET PREPARATION

Following previous works (Paschalidou et al., 2021; Tang et al., 2023; Liu et al., 2023a), we use
three types of indoor rooms in 3D-FRONT (Fu et al., 2021a) and preprocess the dataset by filtering
some problematic samples, resulting in 4041 bedrooms, 813 living rooms and 900 dining rooms.
The number of objects Ni in the valid bedrooms is between 3 and 12 with 21 object categories, i.e.,
Kc = 21. While for living and dining rooms, Ni varies from 3 to 21 and Kc = 24. We use the same
data split for training and evaluation as ATISS (Paschalidou et al., 2021).

The original 3D-FRONT dataset does not contain any descriptions of room layout or object appear-
ance details. In order to advance research in the field of text-conditional indoor scene generation, we
carefully curate a high-quality dataset with paired scenes and instructions for interior design through
a multi-step process:

1. Spatial Relation Extraction: View-dependent spatial relations are initially extracted from
the 3D-FRONT dataset using predefined rules similar to Johnson et al. (2018) and Luo et al.
(2020), which are listed in Appendix A.1.

2. Object Captioning: We further enhance the dataset by providing captions to objects using
BLIP (Li et al., 2022), a powerful model pretrained for vision-language understanding,
given furniture 2D thumbnail images from the original dataset (Fu et al., 2021b).

3. Caption Refinement: As generated captions may not always be accurate, we filter them
with corresponding ground-truth categories using ChatGPT (Ouyang et al., 2022; Ope-
nAI, 2023), a large language model fine-tuned for instruction-based tasks. This results in
accurate and expressive descriptions of each object in the scene. The prompt and hyperpa-
rameters for ChatGPT to filter captions are provided in Appendix A.2.

4. Instruction Generation: The final instructions for scene synthesis are derived from 1 ∼ 2
randomly selected “(subject, relation, object)” triplets obtained during the first extraction
process. Verbs and conjunctions within sentences are also randomly picked to maintain
diversity and fluency.

To facilitate future research and replication, the processing scripts and the processed dataset can be
found in https://chenguolin.github.io/projects/InstructScene.

A.1 RELATION DEFINATIONS

We define 11 relationships in a 3D space as listed in Table 4. Assume X and Y span the ground
plane, and Z is the vertical axis. We use Center to represent the coordinates of a 3D bounding
box’s center. Height is the Z-axis size of a bounding box. Relative orientation is computed as
θso := atan2(Ys − Yo, Xs − Xo), where s and o respectively refer to “subject” and “object” in
a relationship. d(s, o) is the ground distance between s and o. Inside(s, o) indicates whether the
subject center is inside the ground bounding box of the object.

A.2 CAPTION REFINEMENT BY CHATGPT

The generated object captions from BLIP are refined by ChatGPT (gpt-3.5-turbo). Our prompt
to ChatGPT is provided in Table 5. We set the hyperparameter temperature and top p for text
generation to 0.2 and 0.1 respectively, encouraging more deterministic and focused outputs.

B IMPLEMENTAION DETAILS

B.1 BASELINE DETAILS

We choose two prominent methods for comparison: (1) ATISS (Paschalidou et al., 2021)1, an au-
toregressive model that sequentially generates unordered object sets; (2) DiffuScene (Tang et al.,
2023)2, a Gaussian diffusion model that treats scene attributes as continuous 2D matrices.

1https://github.com/nv-tlabs/ATISS
2https://github.com/tangjiapeng/DiffuScene
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Table 4: Rules to determine the spatial relationships between objects.

Relationship Rule

Left of (θso ≥ 3π
4 or θso < − 3π

4 ) and 1 < d(s, o) ≤ 3

Right of −π
4 ≤ θso <

π
4 and 1 < d(s, o) ≤ 3

In front of π
4 ≤ θso <

3π
4 and 1 < d(s, o) ≤ 3

Behind − 3π
4 ≤ θso < −π

4 and 1 < d(s, o) ≤ 3

Closely left of (θso ≥ 3π
4 or θso < − 3π

4 ) and d(s, o) ≤ 1

Closely right of −π
4 ≤ θso <

π
4 and d(s, o) ≤ 1

Closely in front of π
4 ≤ θso <

3π
4 and d(s, o) ≤ 1

Closely bebind − 3π
4 ≤ θso < −π

4 and d(s, o) ≤ 1

Above (CenterZs
− CenterZo

) > (Heights + Heighto)/2

and (Inside(s, o) or Inside(o, s))
Below (CenterZo − CenterZs) > (Heights + Heighto)/2

and (Inside(s, o) or Inside(o, s))
None d(s, o) > 3

Table 5: Prompt for ChatGPT to refine raw object descriptions.

Given a description of furniture from a captioning model and its ground-truth category, please combine their
information and generate a new short description in one line. The provided category must be the descriptive
subject of the new description. The new description should be as short and concise as possible, encoded in
ASCII. Do not describe the background and counting numbers. Do not describe size like ‘small’, ‘large’,
etc. Do not include descriptions like ‘a 3D model’, ‘a 3D image’, ‘a 3D printed’, etc. Descriptions such as
color, shape and material are very important, you should include them. If the old description is already good
enough, you can just copy it. If the old description is meaningless, you can just only include the category.
For example: Given ‘a 3D image of a brown sofa with four wooden legs’ and ‘multi-seat sofa’, you should
return: a brown multi-seat sofa with wooden legs. Given ‘a pendant lamp with six hanging balls on the white
background’ and ‘pendant lamp’, you should return: a pendant lamp with hanging balls. Given ‘a black
and brown chair with a floral pattern’ and ‘armchair’, you should return: a black and brown floral armchair.
The above examples indicate that you should delete the redundant words in the old description, such as
‘3D image’, ‘four’, ‘six’ and ‘white background’, and you must include the category name as the subject
in the new description. The old descriptions is ‘{BLIP caption}’, its category is ‘{ground-truth
category}’, the new descriptions should be:

We re-implement and augment these methods based on their official GitHub repositories to support
instruction-driven scene synthesis and quantized semantic feature generation. In the case of ATISS,
we replace the [START] token, which originally is the room mask feature, with a learnable token,
as we condition scene synthesis on instruction prompts rather than room masks. The augmented
ATISS predicts quantized feature indices after class label sampling, and they are subsequently uti-
lized to predict the remaining scene attributes. Instead, quantized features are one-hot encoded in
DiffuScene, allowing them to be diffused and denoised in a continuous space alongside other at-
tributes.

To maintain a fair comparison, we use the same experimental settings across all methods, including
network architectures, training hyperparameters, object retrieval procedures, rendering schemes, etc.

B.2 MODEL DETAILS

We use 5-layer and 8-head Transformers with 512 attention dimensions and a dropout rate of 0.1
for all generative models in this work. They are trained by the AdamW optimizer (Loshchilov &
Hutter, 2018) for 500,000 iterations with a batch size of 128, a learning rate of 1e-4, and a
weight decay of 0.02. Exponentially moving average (EMA) technique (Polyak & Juditsky, 1992;
Ho et al., 2020) with a decay factor of 0.9999 is utilized in the model parameters.
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We adopt OpenShape pointbert-vitg14-rgb (Liu et al., 2023b)3 to extract 3D object seman-
tic features f ∈ R1280. It is a recently introduced 3D RGB point cloud encoder that aligns with the
pretrained CLIP ViT-bigG/14 multi-modal features (Cherti et al., 2023), enabling the simultane-
ous representation of visual appearances and geometric shapes. The codebook Z has a size of 64
and a dimension of 512. We use 4 ordered indices to quantize OpenShape features. fVQ-VAE is
trained on over 4,000 3D objects found in the filtered 3D-FRONT scenes (Fu et al., 2021a;b). We
use the frozen text encoder in CLIP ViT-B/32 (Radford et al., 2021)4 to extract instruction fea-
tures for all experiments. Regarding the loss weights λf and λe in Equation 6, we do not tune and
simply fix them as 1 and 10 respectively to ensure that the three terms in the loss are of comparable
numerical magnitudes.

Code for both training and evaluation can be found in https://chenguolin.github.io/
projects/InstructScene.

B.3 EVALUATION DETAILS

Blender Rendering After retrieving objects from a 3D database (Fu et al., 2021b), we use
Blender (Community, 2018) with the CYCLES engine to render high-quality images for 3D scenes.
Our rendering script is adapted from the one available at https://github.com/allenai/
objaverse-rendering/blob/main/scripts/blender_script.py. The images for
evaluation are rendered from a top-down perspective in 256×256 resolutions. We maintain a camera
distance of 1.2, a filter width of 0.1, and use the RGB color mode. Other hyperparameters are set
in accordance with the referenced script. Sizes of floor plans are adapted across scenes to include all
objects, and their textures are fixed to ensure the choice does not introduce any bias in evaluations.

Computation of Metrics FID, FIDCLIP and KID scores are computed by the clean-fid li-
brary (Parmar et al., 2022)5. Lower scores derived from these metrics indicate a higher degree of
similarity between the learned distributions and real ones. Following Paschalidou et al. (2021), we
fine-tuned an AlexNet (Krizhevsky et al., 2012) that had been pretrained on ImageNet to classify
the rendered images of synthesized scenes as well as those of ground-truth scenes. The scene clas-
sification accuracy (SCA) that approaches 50% signifies better generation performance.

C ADDITIONAL RESULTS

C.1 INSTRUCTION-DRIVEN SCENE SYNTHESIS

We present visualizations of instruction-driven synthesized bedrooms, living rooms, and dining
rooms in Figure 5, 6 and 7. Besides the quantitative evaluations shown in Table 1, these qualitative
visualizations also evident the superiority of our method over previous state-of-the-art approaches
in terms of adherence to instructions and generative quality.

C.2 ZERO-SHOT APPLICATIONS

We present visualizations illustrating various zero-shot instruction-driven applications, including
stylization, re-arrangement, completion, and unconditional 3D scene synthesis in Figure 8, 9, 10 and
11 respectively. We find that the autoregressive model ATISS tends to generate redundant objects,
resulting in chaotic synthesized scenes. DiffuScene encounters challenges in accurately modeling
object semantic features, often yielding objects that lack coherence in terms of style or pairing,
thereby diminishing the aesthetic appeal of the synthesized scenes. Moreover, both of these baseline
models frequently struggle to follow the provided instructions during conditional generation. In
contrast, our approach demonstrates a notable capability to generate highly realistic 3D scenes that
concurrently adhere to the provided instructions.

3https://github.com/Colin97/OpenShape_code
4https://github.com/openai/clip
5https://github.com/GaParmar/clean-fid
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C.3 FEATURE RECOVERY

We conduct two additional experiments to further validate our method: (1) masking the semantic fea-
ture of one object and utilizing a pretrained semantic graph prior for recovery: pϕ(fi|f/i, c, t, s, r);
(2) masking semantic features of all objects except one and again using the pretrained semantic
graph prior for recovery: pϕ(f/i|fi, c, t, s, r). f/i means semantic features of all objects except the
i-th one. Instructions for both experiments are set to none. Visualization results are presented in
Figure 12 and 13 respectively.

These results indicate the diversity of our method and highlight that semantic graph prior could ef-
fectively capture stylistic information and object co-occurrences from the training data. Our method
trends to generate style consistent and thematic harmonious scenes, e.g., chairs and nightstands in a
suit, and matched color palettes and cohesive artistic style.

C.4 DIVERSITY

We provide examples of a diverse set of scenes generated from a single prompt and the same seman-
tic graph in Figure 14 and 15 respectively, showcasing the diversity of our generative method.

C.5 INSTRUCTSCENE WITHOUT SEMANTIC FEATURES

We observed a significant decline in the appearance controllability and style consistency of generated
scenes when semantic features were omitted. We include these degraded visualization results in
Figure 16 and 17.

It arises from the fact that, without semantic features, the generative models solely focus on mod-
eling the distributions of layout attributes, i.e., categories, translations, rotations, and scales. This
exclusion of semantic features results in generated objects whose occurrences and combinations lack
awareness of object style and appearance, which are crucial elements in scene design.

C.6 RUNTIME COMPARISON

In the default settings (T = 100 + 10), our method takes about 12 seconds to generate a batch of
128 living rooms by our method on a single A40 GPU. In comparison, ATISS (Paschalidou et al.,
2021) takes 3 seconds, and DiffuScene (Tang et al., 2023) requires 22 seconds.

It’s noteworthy that our method can be significantly accelerated by reducing the number of diffusion
time steps. For instance, setting T = 20 + 5 reduces the runtime to 3 seconds without a noticeable
decline in performance. The impact of diffusion time steps is investigated in Sec. 5.5.1. We believe
with more advanced diffusion techniques, diffusion models can be more effective and efficient than
autoregressive models, especially for complex scenes.

D LIMITATIONS AND FUTURE WORK

Although our method significantly enhances the controllability and fidelity of 3D indoor scene syn-
thesis, it still has some limitations. First, despite our best efforts to ensure the accuracy of the pro-
posed instruct-scene pair dataset, 3D-FRONT contains problematic object arrangements and mis-
classifications even after filtering, as discussed in previous works (Paschalidou et al., 2021; Tang
et al., 2023). Our learned prior may consequently inherit these erroneous cases. Meanwhile, the
scale of the current 3D scene dataset remains small, with only hundreds of scenes, in contrast to
3D object datasets containing thousands or even millions of samples (Chang et al., 2015b; Deitke
et al., 2023). A promising avenue for future research is to expand the scale of the 3D scene dataset
or leverage large-scale and well-annotated datasets for 3D objects to establish a new benchmark for
3D scene synthesis. In this work, we only focus on indoor scene synthesis. However, the proposed
semantic graph prior, which encapsulates high-level object interactions within a scene, also offers
the potential for modeling more intricate outdoor scenes. Furthermore, achieving a fully genera-
tive synthesis pipeline is feasible by substituting the object retrieval step with 3D object generative
models conditioned on categories and semantic features provided by our graph prior. Lastly, in
light of the rapid development of large language models (LLMs), the integration of an LLM into our
instruction-driven pipeline holds significant promise for further enhancing generation controllability.
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E DISCUSSION ON DATASET

While the curated instructions in our proposed dataset are derived from predefined rules, we believe
that our model exhibits generalizability to a broader range of instructions. For example, in the
stylization task, we utilize instructions in different sentence patterns with training, such as “Let the
room be wooden style” and “Make objects in the room black”, as illustrated in Figure 8. We also
experiment with instructions containing vague location words, like “Put a chair next to a double
bed”, wherein our method generates corresponding objects in all possible spatial relations (e.g.,
“left”, “right”, “front”, and “behind”).

Nevertheless, INSTRUCTSCENE still faces limitations in comprehending complex text instructions
and abstract concepts that do not occur in the curated instructions. For instance, (1) handling in-
structions with more required triplets, like 4 or 5, poses a challenge. (2) Additionally, identifying
the same object within one instruction, such as ”Put a table left to a sofa. Then add a chair to the
table mentioned before” is also a difficult task. (3) Furthermore, it struggles with abstract concepts
such as artistic style, occupants, and functionalities that do not occur in the curated instructions.
These limitations are attributed to the CLIP text encoder, which is contrastively trained with image
features and tends to capture global semantic information in sentences. Given the rapid develop-
ment of large language models, we believe the integration of LLMs into the proposed pipeline is a
promising research topic.

A viable approach to improve the quality of current instructions involves employing LLMs to refine
entire sentences in the proposed dataset or using crowdsourcing to make the dataset curation pipeline
semi-supervised. We hope the proposed dataset and creation pipeline could serve as a good starting
point for creating high-quality instruction datasets.
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Add a corner side table with a 
round top to the left of a black 
and silver pendant lamp with 
lights.

Add a grey stool with black legs
behind a wooden bookshelf 
with shelves. Set up a bookshelf
left of a black and white double 
bed.

Add a black and grey double 
bed in front of a black wardrobe 
with hanging clothes. Add a 
black pendant lamp with a 
handle in front of a wardrobe.

Add a double bed left of a gray 
nightstand with drawers. Place 
a gray nightstand with drawers
to the right of a gray wardrobe 
with shelves and drawers.

Add a wooden wardrobe with 
drawers behind a brown and 
black double bed. Additionally, 
install a pendant lamp in front 
of a wooden wardrobe with 
drawers.

Arrange a green and gray 
double bed below a pendant 
lamp.

(a) Instructions (b) ATISS (c) DiffuScene (d) Ours

Figure 5: Visualizations for instruction-drive synthesized 3D bedrooms by ATISS (Paschalidou
et al., 2021), DiffuScene (Tang et al., 2023) and our method.
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Place a dining table to the right 
of a coffee table. Put a black 
dining chair with a black frame
right of a coffee table.

Set up a floral multi-seat sofa
left of a coffee table.

Put a pendant lamp with white 
shades above a wooden coffee 
table with carved legs.

Set up a brown dining table 
with metal legs left of a lounge 
chair. Then, set up a red 
pendant lamp with a handle
behind a black bookshelf with 
shelves and a drawer.

Add a blue dining table with a 
wooden top behind a blue plaid 
upholstered dining chair. Place a 
metal corner side table to the 
left of a blue multi-seat sofa.

Put a black and white marble 
coffee table right of a multi-seat 
sofa with pillows.

(a) Instructions (b) ATISS (c) DiffuScene (d) Ours

Figure 6: Visualizations for instruction-drive synthesized 3D living rooms by ATISS (Paschalidou
et al., 2021), DiffuScene (Tang et al., 2023) and our method.
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Place a dining chair closely in 
front of a dining table. Put a 
dining table below a pendant 
lamp.

Place a burgundy dining chair to 
the close right of a dining table. 

Position a brown dining table 
with metal legs closely behind a 
grey fabric dining chair. 
Additionally, arrange a triangle 
coffee table to the left of a black 
multi-seat sofa with pillows.

Set up a dining table closely 
right of a wooden dining chair.

Place a dining table in front of a 
silver wine cabinet with a black 
door. Then, arrange a metal 
pendant lamp with a hanging 
rod to the left of a multi-seat 
sofa.

Arrange a brass pendant lamp 
with glass balls closely left of a 
black leather dining chair.

(a) Instructions (b) ATISS (c) DiffuScene (d) Ours

Figure 7: Visualizations for instruction-drive synthesized 3D dining rooms by ATISS (Paschalidou
et al., 2021), DiffuScene (Tang et al., 2023) and our method.
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Make the room brown style.

Make the room style brown.

Make the room style black.

Make the room brown.

Let objects be in white style.

Let the room be wooden style.

Make the room black.

Make objects in the room black.

(a) Instructions (b) Original Scenes (c) ATISS (d) DiffuScene (e) Ours

Figure 8: Visualizations for instruction-drive 3D scenes stylization by ATISS (Paschalidou et al.,
2021), DiffuScene (Tang et al., 2023) and our method.
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Place a blue wardrobe left of a 
blue double bed.

Put a black desk with drawers in 
front of a double bed.

Set up a grey multi-seat sofa 
with pillows behind a black 
pendant lamp with six pots. Next, 
arrange a grey dining chair to 
the right of a multi-seat sofa.

Position a patterned dining 
chair right of a multi-seat sofa 
with pillows. Additionally, put a 
black TV stand in front of a 
multi-seat sofa with pillows.

Put a green multi-seat sofa to 
the left of a wooden coffee 
table with carved legs. And put 
an armchair behind a wooden 
coffee table with carved legs.

Position a multi-seat sofa left of 
a dining table with a wooden 
top. Then, arrange a modern 
pendant lamp with a metal ball
in front of a brown and grey TV 
stand.

Arrange a white dining table to 
the right of a black console 
table.

Arrange a dark brown dining 
table with a wooden top in front 
of a pendant lamp with two 
shades. Put a black armchair 
with a frame behind a brown 
loveseat sofa.

(a) Instructions (b) Messy Scenes (c) ATISS (d) DiffuScene (e) Ours

Figure 9: Visualizations for instruction-drive 3D scenes re-arrangement by ATISS (Paschalidou
et al., 2021), DiffuScene (Tang et al., 2023) and our method.
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Add a wooden wardrobe with 
drawers behind a brown and 
black double bed. Additionally, 
install a pendant lamp in front 
of a wooden wardrobe with 
drawers.

Position a black and white 
circular pendant lamp behind a 
black and silver nightstand with 
a drawer.

Place a wardrobe behind a 
wooden dining chair.

Set up a TV stand in front of a 
brown loveseat sofa with a 
wooden frame.

Position a blue armchair left of 
a multi-seat sofa. Then, Put a 
silver coffee table left of a 
multi-seat sofa.

Put a wooden dining table
below a pendent lamp.

Put a black multi-seat sofa with 
pillows to the right of a black 
plastic dining table.

Set up a black pendant lamp 
with glass shades above a black 
dining table with a black top.

(a) Instructions (b) Partial Scenes (c) ATISS (d) DiffuScene (e) Ours

Figure 10: Visualizations for instruction-drive 3D scenes completion by ATISS (Paschalidou et al.,
2021), DiffuScene (Tang et al., 2023) and our method.
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(a) ATISS (b) DiffuScene (c) Ours

Figure 11: Visualizations for unconditional 3D scenes stylization by ATISS (Paschalidou et al.,
2021), DiffuScene (Tang et al., 2023) and our method.
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(a) Original Scenes (b) Ours (seed: 0) (c) Ours (seed: 1)

Figure 12: Generating the semantic feature of one object without instructions pϕ(fi|f/i, c, t, s, r).
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(a) Original Scenes (b) Ours (seed: 0) (c) Ours (seed: 1)

Figure 13: Generating semantic features of all objects in a scene except one without instructions
pϕ(f/i|fi, c, t, s, r).
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(a) Put a dressing table with a mirror to the left of a double bed.

(b) Add a lounge chair in front of a multi-seat sofa.

Figure 14: Examples of a diverse set of scenes generated from a single prompt.

(a) Semantic Graph 1.

(b) Semantic Graph 2.

Figure 15: Examples of a diverse set of scenes generated from the same semantic graph.
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Add a corner side table with a 
round top to the left of a black 
and silver pendant lamp with 
lights.

Place an L-shaped sofa behind a 
black marble desk. Then, 
position a lounge chair to the 
right of a black marble desk.

Put a TV stand in front of a grey 
sofa. Finally, add a green 
upholstered dining chair to the 
left of a grey TV stand.

(a) Instructions (b) Ours w/o semantic features (c) Ours

Figure 16: Instruction-driven scene synthesis results of INSTRUCTSCENE and its degraded version,
which is not encoded with semantic features.
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Figure 17: Unconditional scene synthesis results of a degraded version of INSTRUCTSCENE, which
is not encoded with semantic features.
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