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Abstract: Large Language Models demonstrate exciting reasoning capabilities
that can be utilized in translating user instructions to robot actions in Human-
Robot collaboration context. Yet this approach is still prone to failure due to
ambiguities in user instruction or interpretation of these instructions in the process
of generating actions for a robot. In this extended abstract, we summarize recent
work on programming robots through natural language, identify a key research
gap, and propose directions for future work with the aim of resolving ambiguities
to robustly interpret and clarify natural language instructions.
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1 Introduction

Recent advancements in Large Language Models have opened the doors for robotics researchers to
bridge the gap between a user’s natural language instructions and the corresponding robot actions.
Even though LLMs have been shown to be very powerful in interpreting natural language instruc-
tions and translating them into robot actions [1, 2, 3], they are not well equipped to interpret the
ambiguities that are common to natural language descriptions of a task [4, 5, 6].

Suppose a user verbally requests for a robot to “help me with the dishes”. The user hasn’t specified
what kind of help they need: washing, drying, or putting away dishes. Without clarification, the
robot might not know how to assist effectively. Furthermore, people are unlikely to fully specify the
parameters of a task through natural language instructions due to their implicit goals for the robot’s
behavior or their belief about the robot’s capabilities [7, 8] . As a result, using LLMs to translate
natural language instructions into robot actions requires that we address several new research prob-
lems at the intersection of natural language processing, robotics, machine learning, and human-robot
interaction.

In this abstract, we present the problem of embodied ambiguity resolution and situate it within
current research on LLMs in robotics. We identify this gap in the literature, and propose directions
for addressing this problem via active learning.

2 Background

Large Language Models show impressive general reasoning capabilities [10] that are naturally rele-
vant to robotics applications. A common goal of using LLMs in robotics involves converting natural
language user instructions into robot action. In this section, we group these methods into three cate-
gories, also shown in Fig.1. Within each category, we further distinguish between two main methods
for generating prompts: Template-based methods require the LLM to provide the information miss-
ing from a pre-defined template. Free-form methods, in contrast, involve providing the LLM with a
set of instructions and allow it to generate free-form text or code as output.
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Figure 1: a) Code generation from work of Liang et al. [2]. User prompts the LLM with an in-
struction and LLM generates appropriate policy code that can be executed on the robot platform.
b) Planning from work by Singh et al. [9]. LLM generates a plan using abstract code that is not
executable but outlines the plan based on the user instruction. c) Feature extraction from work by
Yu et al. [3]. LLM generates necessary reward function features from user instructions and a motion
controller learns the control the robot based on this.

2.1 Robot Action Through Code Generation

LLMs are capable of directly writing code that corresponds to user instructions. This category of
work harnesses that capability to convert natural language instructions from users into generated
code blocks, which can be executed later on the intended robot platform. Within this category,
approaches differ in how they prompt the LLM for code generation.

In free-form generation, the LLM is left to generate code that are not expected to fit to certain
templates, they generate computer code in a natural language-like manner without rigid templates or
predefined structures. They might be prompted with rules but they are not required to manipulate the
input sequence to generate the output sequence.One example for this is work by Vemprala et al. [1]
where the LLM is given a highly descriptive function library that is written in python as a wrapper for
the underlying robot architecture. The LLM is prompted to assume an identity, such as an assistant
that should produce code directly for the specified robotics platform. This prompt also specifies a
function library in terms of their names, inputs, outputs and any special rules or considerations that
LLM must make while using them. After this setup, the LLM is able to generate code that can fulfill
user instructions.

Vemprala et al. [1] sends an initial prompt to the LLM that explains all the functions that it has access
to and also specifies some rules, such as always use SI units, only use the functions defined and
common python libraries.This prompt is sent at the initialization stage and gives the LLM necessary
context, such as telling LLM what kind of a robot it is writing code for, what is available in the
environment and what it is required of it. Later on when the user prompts the system such as ”put
the apple inside the bowl”, it generates Python code using the previously-specified API as well as
any common Python libraries (e.g. numpy, math, os, etc.).

In contrast to free-form generation, template-based generation approaches involve turning natural
language instructions from user to a template code block with hints and examples, then this is fed
to the LLM as the prompt. In the work of Liang et al. [2], an LLM is given API imports and few
examples as inputs and then restructures the example to generate new policy code for the robot.

One major benefit of this kind of code generation regardless of prompting method, is that the output
of the LLM can be directly used for execution of the robot action with minimal overhead for some
safety checks of the generated code. While these methods enable the generated output of LLM to be
directly used, the execution success of the output generated by LLM is highly dependent on the APIs
it is supplied. When the API requires numerical inputs or inputs that require reasoning about robot
states, this approach may result in robot actions that are incorrectly parameterized. Another draw-
back in these methods are the inability to resolve ambiguities in instruction or generation phases.
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When the user comes up with request such as ”Bring the coffee mug closer to me.” the system would
generate a code that would pick the mug and move it to position relative to the user by filling the
necessary API function calls but there is ambiguity here about how close or on which direction it
should be closer. As a result the system will move it to a distance and direction that might not be
what the user wanted.

2.2 Robot Action Through Planning

In order to avoid relying on carefully engineered APIs or having to generate API function parame-
ters, another category of work instead utilizes the general reasoning capabilities of LLMs to translate
natural language goals into a series of high-level steps.

Within the planning domain, free-form generation pertains to crafting a plan that doesn’t conform
to a predetermined template or output format. Instead, it may specify a particular output type, such
as pseudo-code or a step-by-step plan, but the structure of this output is open and largely depends
on the capabilities of the LLM. In the work of Ahn et al. [11], LLMs are paired with learned value
functions to predict affordances for each step of the plan generated by the LLM to introduce plans
grounded in the physical world. Each step of the plan in this context is a skill that is sampled by the
LLM based on the probability of it being applicable to the plan. This skill then gets evaluated by the
learned value function to generate the probability of executing that skill. This ensures the skills in
the plan are useful and executable. Zeng et al. [12] combine Visual Language Models (VLM) with
LLMs and language-conditioned robot policies to generate robot action. LLM in this work is acting
as planner based on the scene representation from the VLM. Silver et al. [13] tried using LLMs for
few shot planners for PDDL domains and showed that they were insufficient but can be used as a aid
to a heuristic-search planner. In the work by Huang et al. [14], LLMs are utilized to generate action
plans that are then executed using a closed-feedback loop based on collection of perception models.
This method also offers a way for the robot agent to query the user if the prompt is ambiguous about
the scene by using the scene descriptor.

Unlike free-form generation, template-based generation approaches in the planning domain involve
supplying the LLM with a predefined template that it can populate. This approach aims to facilitate
the transformation of the output into actionable steps more seamlessly.Huang et al. [15] established
the use of LLMs for generating mid-level action plans, and used this plan as an input for a masked
LLM to generate admissible actions from these plans. These actions are then appended to the initial
prompt and again used for generating further actions via step-by-step autoregressive generation. An-
other work that utilizes LLMs as planners but utilizes capabilities to generate code is by Singh et al.
[9], where the LLM is fed with a Python program header with imports, objects in the environment,
and an implementation of a function for an example task. Even though this work tries to generate
code via an LLM, the code is actually used as an abstraction for planning, an example of an output
generated by an LLM for a task such as ”sort fruits on the plate and bottles in the box” might include
function calls resembling grab and puton(’banana’, ’plate’). This function is highly abstract and
needs a concrete implementation for actual execution .Driess et al. [16] introduced PALM-E, a new
integrated model trained in conjunction with an LLM on multi-modal sentences that are made up of
visual, continuous state estimation and textual input. The output to any user instruction in robotics
domain is again a plan for the robot to execute. Another example of this group of work is given
by Mees et al. [17], where the LLM is used as a high-level planner for the affordance model that
guides the robot to the vicinity of the desired area and after that point a 7-DoF language-conditioned
visuomotor policy controls the robot action.

These methods offer a way to harness LLMs’ reasoning capabilities without having to create highly
specific and engineered APIs. In doing so, these methods create a need for a executor system
that will take the plan generated by the LLM and convert it into robot actions since their output
is more abstract and not directly executable. Just like code generation systems, planning systems
are also prone to the problem of not being able resolve ambiguities coming from instructions or
interpretations. An example instruction such as ”I have guests coming tidy up the house.” would
result in a plan like tidying the house starting from the living room and going through all rooms.
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This might end up being undesirable for the user because the user might had plans for having guests
outside or there might have been some room that was not required tidying. There might be detailed
set of expectations that the user had but the plan generated from LLM will attempt to resolve that
ambiguity by just relying on the information it has which is not complete.

2.3 Robot Action Through Feature Extraction

One way to use LLMs to generate robot actions is to use them as feature extractions to be used
in downstream models or paired with other methods, such as Model Predictive Control [3], to get
the actions. This pairing eliminates the need to create methods that translate LLM-generated plans
into robot actions, while still leveraging LLMs’ reasoning capability toward identifying important
features in a task.

In feature extraction approaches, free-form generation resembles approaches from the prior cate-
gories. In this process, the LLM identifies the essential feature from the user’s natural instruction
and presents it in multiple formats, including natural language, without adhering to a predetermined
format. Ding et al. [18] used LLMs to extract object symbolic and geometric spatial relationships
and used these in a downstream task and motion planner to generate robot actions. Chen et al. [19]
use LLM as both a feature extractor and planner in a navigation scenario. In this work the first LLM
is tasked with providing object proposals from users instruction and the second LLM is tasked with
coming up with a plan to be executed. Another work in the domain of navigation is by Shah et al.
[20], where the LLM is used extract landmarks from user instructions. Another work in LLMs as
feature extractors are done by Ren et al. [21] where LLM provides a detailed description of a given
feature for the given tool. This description is then used downstream to train an actor-critic model.

In contrast to free-form generation, template-based generation for feature extraction involves pro-
viding the LLM with a pre-established template that it can populate. The primary goal here is to
streamline the conversion of the generated output into a format that downstream models can readily
utilize. Lin et al. [22] used LLM to infer goal condition for planning as a set of predicates and then
also utilized LLM again but this time to infer a sequence of skills, after the set is evaluated and if not
feasible a greedy search is initiated by again utilizing LLM to generate top k skills and sample from
that based on score. Wu et al. [23] used LLMs summarizing capabilities to generate a preference
summary of the user for a room tidying task. They then used these summaries with the LLM to
come up with parts of a plan. Yu et al. [3] showed another way of using LLMs to extract features for
downstream training of a model. In their work there are two LLMs, first LLM generates a detailed
motion description from a given user instruction and the second LLM uses this motion description
to set the rewards of a motion controller such as MJPC.

Feature extraction methods aim to blend traditional models and techniques with LLMs to harness
the advantages of both. They create a seamless pipeline but require careful design to utilize LLMs
to their fullest without becoming excessively reliant on their outputs. It’s important to note that,
like other systems, they face challenges in resolving ambiguities. When the system encounter user
instruction such as ”Cut the vegetables for dinner.” the LLM will give a set of features related to
the task such as reward values for this task. It might give high reward for cutting all the vegetables
into cubes but user might have expected thin strips or might have had different expectations for each
vegetable.

2.4 Summary

We have summarized a wide variety of approaches for translating natural language commands into
robot actions, categorizing them based on what they produce from those commands. Within each
category, we have also outlined differences in how approaches prompt the LLM. Table 1 summa-
rizes these categories and prompt methods. Irrespective of how LLMs are utilized or prompted, all
existing approaches encounter difficulties when it comes to resolving ambiguities because they were
not originally designed for this purpose.
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Code Generation Planning Feature Extraction
Template-based [2] [15, 9, 17] [3, 23, 22]

Free-form [1] [11, 12, 13, 14] [18, 21, 19, 20]

Table 1: We categorize existing work on LLM-enabled action generation based on how they form
prompts and what they use LLMs to produce.

Despite the impressive number, variety, and quality of the work in this field, there are still unad-
dressed problems that are required to enable robust translation of natural language instructions into
robot actions using LLMs. In the next section we identify open problems in this field.

3 Research Gap: Embodied Ambiguity Resolution

A common shortcoming among all three categories of related work is their inability to introspect
when interpreting ambiguous natural-language instructions. Consider the example of a user request-
ing a robot to “help me with the dishes”. This instruction could reference widely-differing tasks such
as washing, drying, or putting away dishes. Furthermore, the user is likely referring to a particular
subset of objects with their command, rather than referencing all available dishes that the robot could
interact with. Finally, the robot may not know how to complete the requested task with a particular
object, such as drying a dish with an unusual geometry. This example illustrates how ambiguity
may appear in user instructions at several levels: goal specification, grounding object references,
and action parameterization. We refer to this challenge as embodied ambiguity resolution.

Ideally, a robot should attempt to identify and resolve these ambiguities before performing any ac-
tions. However, current work on LLM-enabled code generation will rely on assumptions of the
user’s intentions and produce actions accordingly. LLMs are designed to sample from their repre-
sentation space to generate a relevant output; they do not introspect, but rather, will generate output
even if it does not match the users wishes. In NLP research, this phenomenon is referred to as
hallucination, as presented in detail by Ji et al. [24]. Recent attempts to control these hallucina-
tions employ several methods such as ambiguity detection and asking clarification questions [5] or
directly altering the user prompt with methods such as chain-of-thought prompting [25].

Resolving ambiguities is essential for robots to exhibit robust and desirable behavior according
to natural language input. This requires that the system as a whole can perform introspection:
evaluating its distribution of potential outputs (rather than just the most-probable one), detect what
information it needs to disambiguate, and query the user in an effective manner. While there has
been work on verifying the factual accuracy of an LLM’s responses using web search [26], there
has been no such work on verifying the correctness of physical robot actions resulting from LLM-
generated code. We now identify three key research questions that must be addressed in order to
solve this challenge.

RQ1: How can the ambiguity be detected during the response-generation phase? One of the
primary challenges when implementing introspection in state-of-the-art language models like GPT-
4 [27] is the absence of direct access for API users to the raw token probabilities or a confidence
score. This limitation restricts users’ ability to fine-tune the generation process, which can be prob-
lematic. One potential work-around is to utilize models that offer more transparency in their prompt
embeddings and response-generation process (such as Llama2, CodeLlama, etc.), while maintain-
ing comparable generation capabilities. We anticipate that as more researchers begin to address this
issue, developers of such LLM models may consider providing users with increased control. Future
research should explore systematic methods for detecting ambiguities in language model genera-
tions, possibly by leveraging token-level probabilities, confidence scores, or even employing other
language models to assess and identify ambiguities.
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RQ2: How can we categorize the cause and effect of language ambiguities? Assuming we can
detect the ambiguity in the generation phase, this alone might not be enough to resolve it. The ambi-
guity may have been caused due to the user’s wording choice in their instructions, uncertainty over
the task requirements, a mismatch between objects referenced in the prompt and those actually in the
robot’s environment, or biases in the data used to train the LLM. Classifying the cause of ambiguity
can help in forming an effective strategy to resolve it. One potential method for classifying ambigu-
ities is to identify token-level ambiguities and map them to known challenges with LLM-produced
code. For example, identifying that the LLM has low confidence in providing a numerical parameter
for a function call it is writing that might be due to its lack of knowledge of numerical manipulation.
An example user instruction ”Fill this cup by pouring the coffee from the carafe inside the coffee
machine.” may have all the information necessary from the user, assuming LLM knows where the
coffee machine is and understands where the cup is from the users ”this cup” part of the instruction
by utilizing a perception API. There might still be an ambiguity due to the task which is pouring.
How to pour in terms of how to rotate the object and how high it should be is a difficult problem for
LLM since this is hard to encode in text.

RQ3: How can the system effectively query the user to gather more information that resolves
ambiguity? After detecting and categorizing ambiguities, a robot should be able to gather clar-
ifying information from the user. We anticipate that Active Learning methods may be applied to
this problem to formulate informative queries. However, a key challenge will involve grounding
the robot’s query in both language and action, as not all queries can be easily conveyed through
language. For example, it may be more effective for a robot to gesture to an object it has a question
about, rather than try to describe it through language. Generating such multi-modal queries will re-
quire a robot to optimize over several query formats in a manner similar to that posed by Fitzgerald
et al. [28].

4 Conclusion

In this paper, we have summarized recent work in the new and growing field of LLM-enabled action
generation for robots. We have identified an important gap in this research field: embodied ambiguity
resolution, which entails the problem of identifying and resolving ambiguity present in the user
instructions, robot environment, task constraints, and/or prior knowledge. Finally, we have proposed
a set of research questions to guide future research toward solving this challenge of creating LLM-
supported robots that are robust to naturally occurring ambiguities.
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