

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE CURIOUS CASE OF IN-TRAINING COMPRESSION OF STATE SPACE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

State Space Models (SSMs), developed to tackle long sequence modeling tasks efficiently, offer both parallelizable training and fast inference. At their core are recurrent dynamical systems that maintain a hidden state, with update costs scaling with the state dimension. A key design challenge is striking the right balance between maximizing expressivity and limiting this computational burden. Control theory, and more specifically Hankel singular value analysis, provides a potent framework for the measure of energy for each state, as well as the balanced truncation of the original system down to a smaller representation with performance guarantees. Leveraging the eigenvalue stability properties of Hankel matrices, we apply this lens to SSMs *during training*, where only dimensions of high influence are identified and preserved. Our approach, COMPRESSM, applies to Linear Time-Invariant SSMs such as Linear Recurrent Units, but is also extendable to selective models. Experiments show that in-training reduction significantly accelerates optimization while preserving expressivity, with compressed models retaining task-critical structure lost by models trained directly at smaller dimension. In other words, SSMs that begin large and shrink during training achieve computational efficiency while maintaining higher performance.

1 INTRODUCTION

State Space Models (SSMs) (Gu et al., 2021; Hasani et al., 2022; Smith et al., 2022; Orvieto et al., 2023; Rusch & Rus, 2025) have recently emerged as a powerful alternative to established sequence models such as Recurrent Neural Networks (RNNs) and Transformers. They combine the parallelizable training efficiency of scaled dot-product attention (Vaswani, 2017) with the computational and memory advantages of RNNs, enabling strong performance across large-scale language, vision, and audio modeling tasks (Gu & Dao, 2024; Goel et al., 2022; Nguyen et al., 2022).

Despite their efficient structure and recent progress in hardware-aware implementations, current SSMs remain computationally intensive. While both memory and runtime scale with sequence length, the size of the SSM state further amplifies these costs. Reducing the state dimension therefore provides an effective strategy to simultaneously reduce memory usage and runtime. This can be achieved by leveraging techniques from structured compression. However, most existing approaches are commonly applied post-training: a large model is trained to completion and only compressed afterwards. Popular examples include knowledge distillation (Hinton et al., 2015), post-training quantization (Jacob et al., 2018), low-rank factorization (Hu et al., 2022), and structured pruning (Li et al., 2016). All of these methods typically require the costly upfront training of a large network.

In this article, we address the issue of costly pre-training by introducing COMPRESSM, a principled in-training compression technique that effectively reduces the dimension of the SSM while largely preserving the expressive power of uncompressed models. We motivate our approach by the control-theoretic origins of SSMs (Kalman, 1960). In particular, we draw on balanced truncation (Antoulas, 2005), a classical Model Order Reduction (MOR) technique that approximates a high-dimensional state space system with a low-dimensional one while retaining its essential input–output behavior. Observing that the dominant Hankel Singular Values (HSVs) of an SSM are rank-preserving during training, we propose truncating dimensions associated with small Hankel singular values once they fall below a predefined relative threshold.

054
055 **Main contributions.** In the subsequent sections, we will demonstrate the following features of
056 COMPRESSM:

057 • We rigorously justify the validity of our in-training compression approach by establishing
058 means to identify and track the HSVs of an SSM during training, and showing that dom-
059 inant singular values are rank-preserving. Thus, SSM dimensions associated with small
060 HSVs can be safely truncated.

061 • We show that COMPRESSM is broadly applicable, including to SSMs with structured state
062 matrices such as diagonal matrices, with simple extensions to Linear Time-Varying systems
063 discussed.

064 • We provide an extensive empirical evaluation demonstrating that COMPRESSM largely
065 preserves the expressive power of uncompressed models.

066 • COMPRESSM significantly accelerates training, while achieving similar or higher accuracy
067 than larger uncompressed models by truncating large portions of the state early in training.

069 2 MATHEMATICAL PRELIMINARIES

071 2.1 DISCRETE LINEAR TIME INVARIANT SYSTEMS

073 Let \mathcal{G} be a discrete *Linear Time-Invariant (LTI)* system described by state equations:

075
$$\begin{aligned} \mathbf{h}(k+1) &= \mathbf{A} \mathbf{h}(k) + \mathbf{B} \mathbf{x}(k), & \mathbf{h}(0) &= \mathbf{h}_0 \\ 076 \mathbf{y}(k) &= \mathbf{C} \mathbf{h}(k) + \mathbf{D} \mathbf{x}(k), \end{aligned} \tag{1}$$

077 where $\mathbf{h} \in \mathbb{R}^n$ is the state, $\mathbf{x} \in \mathbb{R}^p$ the input, and $\mathbf{y} \in \mathbb{R}^q$ the output, with $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$,
078 $\mathbf{C} \in \mathbb{R}^{q \times n}$, and $\mathbf{D} \in \mathbb{R}^{q \times p}$.

080 A more general class of systems are *Linear Time-Varying (LTV)*, where the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$
081 are functions of time. Such systems become relevant in the context of *selective SSMs*, where the
082 system matrices depend on the input. For now, we restrict to the LTI case as the base framework.
083 The LTV case is discussed in Appendix E.1.

084 The LTI framework provides a tractable and well-understood setting in which powerful tools such
085 as Gramians and balanced truncation can be developed. Before introducing these concepts, we
086 formalize the standard assumptions of stability, controllability, and observability, which ensure that
087 the system is both well-posed and non-degenerate. For precise definitions of terms and a detailed
088 background presentation we refer the reader to chapters 4, 5, and 6 of Chen (1999).

089 **Assumption 2.1.** *The system is stable, i.e all the eigenvalues of \mathbf{A} are of amplitude less than 1.*

090 **Assumption 2.2.** *The pair (\mathbf{A}, \mathbf{B}) is controllable, i.e., the state \mathbf{h} can be steered from any initial
091 state to any final state in finite time.*

092 **Assumption 2.3.** *The pair (\mathbf{A}, \mathbf{C}) is observable, i.e., observing the output \mathbf{y} and the input \mathbf{x} of the
093 system for some finite time suffices to determine the initial state \mathbf{h}_0 .*

095 2.1.1 CONTROLLABILITY AND OBSERVABILITY GRAMIANS

097 The concepts of controllability and observability can be captured quantitatively by matrix-valued
098 energy measures called Gramians. These respectively encode how easily internal states can be
099 excited by inputs or observed from outputs.

100 Under assumptions 2.1 and 2.2, there exist a unique symmetric positive definite solution $\mathbf{P} \in \mathbb{R}^{n \times n}$
101 to the discrete Lyapunov equation:

103
$$\mathbf{A} \mathbf{P} \mathbf{A}^T - \mathbf{P} + \mathbf{B} \mathbf{B}^T = 0, \quad \mathbf{P} = \sum_{i=0}^{\infty} \mathbf{A}^i \mathbf{B} \mathbf{B}^T (\mathbf{A}^T)^i \tag{2}$$

106 \mathbf{P} is known as the *discrete controllability Gramian*. It intuitively captures how much energy from
107 the input can reach each state dimension over time. Large entries indicate states that are easily
influenced by inputs.

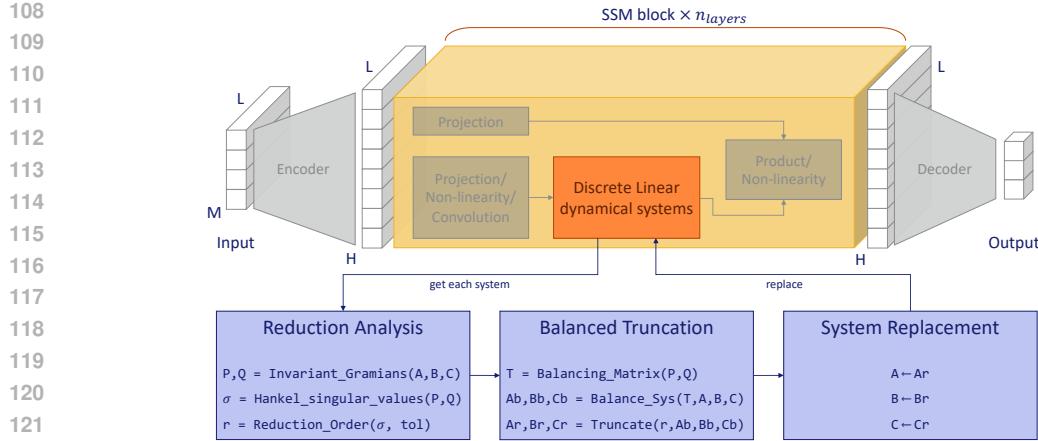


Figure 1: Overview of the proposed balanced truncation pipeline. The method applies at the level of the discrete linear dynamical systems inside SSM layers, independently of surrounding design choices such as projections, non-linearities, convolutions, or skip connections. Each dynamical system is isolated, balanced via its controllability and observability Gramians, and truncated according to Hankel singular values before being reinserted into the model.

Under assumptions 2.1 and 2.3, there exist a unique symmetric positive definite solution $\mathbf{Q} \in \mathbb{R}^{n \times n}$ to the discrete Lyapunov equation:

$$\mathbf{A}^T \mathbf{Q} \mathbf{A} - \mathbf{Q} + \mathbf{C}^T \mathbf{C} = 0, \quad \mathbf{Q} = \sum_{i=0}^{\infty} (\mathbf{A}^T)^i \mathbf{C}^T \mathbf{C} \mathbf{A}^i \quad (3)$$

\mathbf{Q} is known as the *discrete observability Gramian*. It similarly measures how much each state contributes to the outputs over time. Large entries correspond to state directions that are easily observed through the outputs.

2.1.2 BALANCED REALIZATIONS

The notions of controllability and observability are key for establishing a diagonal balanced realization, in which the system is transformed so that both Gramians are equal and diagonal. This provides a natural coordinate system where each state dimension has a well-defined "importance."

Definition 2.4 (State Space Realization). A discrete-time linear system \mathcal{G} is fully characterized by its input–output map

$$\mathcal{G} : \{\mathbf{x}(k)\}_{k \geq 0} \mapsto \{\mathbf{y}(k)\}_{k \geq 0}.$$

A realization of \mathcal{G} is any quadruple of matrices $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ and state $\mathbf{h}(k) \in \mathbb{R}^n$ that realizes this input–output map via the dynamics given by Equation 1. Many different realizations can realize the same map. In particular, if $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ is a realization, then so is $(\mathbf{T}^{-1} \mathbf{A} \mathbf{T}, \mathbf{T}^{-1} \mathbf{B}, \mathbf{C} \mathbf{T}, \mathbf{D})$ for any invertible $\mathbf{T} \in \mathbb{R}^{n \times n}$.

Definition 2.5 (Minimal/Balanced realizations). A realization is called *minimal* if it is both controllable and observable. The corresponding state dimension n is called the *order* of the realization.

A realization is said to be *balanced* if $\mathbf{P} = \mathbf{Q}$. In this case we denote the common matrix by \mathbf{W} , and refer to it simply as *the Gramian* of the balanced system.

Theorem 2.6 (Antoulas (2005)). Any stable, minimal discrete LTI system admits a balanced realization, in which the controllability and observability Gramians coincide as $\mathbf{W} = \text{diag}(\boldsymbol{\sigma}) = \text{diag}(\sigma_1, \dots, \sigma_n)$, with $\sigma_1 \geq \dots \geq \sigma_n > 0$ called "Hankel singular values" (HSV). This diagonal balanced realization can be explicitly constructed.

The HSVs $\boldsymbol{\sigma}$ can also be computed in decreasing order from non-balanced realizations via:

$$\boldsymbol{\sigma} = \text{sort}_{\downarrow}(\sqrt{\text{spec}(\mathbf{PQ})}). \quad (4)$$

162 The HSVs quantify the joint controllability and observability of each state. Large values indicate
 163 state directions that both strongly affect the output and are strongly influenced by the input, while
 164 small values correspond to weakly contributing states.

166 **2.1.3 BALANCED TRUNCATION**
 167

168 Balanced truncation is a MOR scheme leveraging the ordering of Hankel singular values to obtain a
 169 lower-dimensional approximation of the system, while guaranteeing stability and error bounds.

170 Consider a stable minimal balanced realization $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ of \mathcal{G} with Gramian
 171 $\mathbf{W} = \text{diag}(\boldsymbol{\sigma}) = \text{diag}(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2)$ where $\boldsymbol{\Sigma}_1$ is diagonal of size r and $\boldsymbol{\Sigma}_2$ of size $n - r$, with
 172 the smallest entry in $\boldsymbol{\Sigma}_1$ larger than the largest in $\boldsymbol{\Sigma}_2$. The state space matrices can be rewritten as:
 173

$$174 \quad \mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix}, \quad \mathbf{C} = [\mathbf{C}_1 \quad \mathbf{C}_2], \quad (5)$$

175 with $\mathbf{A}_{1,1} \in \mathbb{R}^{r \times r}$, $\mathbf{B}_1 \in \mathbb{R}^{r \times p}$, and $\mathbf{C}_1 \in \mathbb{R}^{q \times r}$.

176 It is well established that the reduced system $\hat{\mathcal{G}}$ defined by $\mathbf{A}_{1,1}, \mathbf{B}_1, \mathbf{C}_1, \mathbf{D}$ is stable and
 177

$$178 \quad \|\mathcal{G} - \hat{\mathcal{G}}\|_\infty \leq 2 \sum_{i=r+1}^n \sigma_i. \quad (6)$$

180 Balanced truncation thus provides a principled way to reduce model order while controlling the
 181 approximation error in terms of discarded Hankel singular values. This makes it a central tool for
 182 simplifying state space models while preserving their dominant dynamics.

183 **2.2 SPECTRAL STABILITY OF HERMITIAN MATRICES**
 184

185 In practice, training SSMs with gradient descent modifies the learned state matrices incrementally.
 186 Understanding how the downstream Hankel singular values shift under such perturbations is there-
 187 fore critical to establish in-training reduction protocols. For Hermitian matrices, Weyl's theorem
 188 provides a powerful tool.

189 Let \mathbf{W} and \mathbf{W}' be Hermitian matrices of size n (*i.e.* symmetric for real-valued matrices), and let
 190 $\delta\mathbf{W} = \mathbf{W}' - \mathbf{W}$. Also, $\forall i \in [1, \dots, n]$, let $\sigma_i(\mathbf{W})$ represent the i -th largest eigenvalue of \mathbf{W} .
 191 The ordering $\sigma_1(\mathbf{W}) \geq \dots \geq \sigma_n(\mathbf{W})$ can always be established as the eigenvalues of Hermitian
 192 matrices are guaranteed to be real.

193 **Theorem 2.7** (Weyl (1912)). $\forall i \in [1, \dots, n]$, $\sigma_i(\mathbf{W})$ is Lipschitz-continuous on the space of Her-
 194 mitian matrices with operator norm:

$$195 \quad |\sigma_i(\mathbf{W}') - \sigma_i(\mathbf{W})| \leq \max_{i=1, \dots, n} (|\sigma_i(\delta\mathbf{W})|) = \max(|\sigma_1(\delta\mathbf{W})|, |\sigma_n(\delta\mathbf{W})|). \quad (7)$$

196 In other words, each of the eigenvalues of \mathbf{W} can at most fluctuate by the largest absolute eigenvalue
 197 of the perturbation $\delta\mathbf{W}$, providing a bound on spectral variations under Hermitian perturbations.
 198 This bound will turn out to be crucial for our in-training reduction scheme (see Section 3.3).

200 **3 THE PROPOSED IN-TRAINING REDUCTION SCHEME**
 201

202 Our general pipeline (illustrated in Figure 1) is designed to be applicable to all types of SSMs as it
 203 surgically acts on the dynamical systems within SSM layers of models regardless of the choice of
 204 projections, non-linear activations, convolutions, skip connection, etc.

205 To achieve significant gains in training time, we aim to reduce the model's hidden state dimension
 206 where possible early on in training. Typically, we attempt to reduce SSM state dimensions at snap-
 207 shots of the model obtained at fixed intervals at early stages of training (*e.g.* during learning rate
 208 warm-up). Section 3.3 provides justification for the validity of this approach.

216 3.1 COMPRESSM: THE ALGORITHM
217

218 At a given training step, we proceed per block. For an input feature vector sequence $\mathbf{x} \in \mathbb{R}^{H \times L}$,
219 where H is the inner dimension and L the sequence length, common SSM blocks contain either a
220 single Multi-Input Multi-Output (MIMO) system that transforms the sequence $\mathbf{x} \in \mathbb{R}^{H \times L}$ to $\mathbf{y} \in$
221 $\mathbb{R}^{H \times L}$, or H independent per-channel Single-Input Single-Output (SISO) systems that transform
222 $\mathbf{x}^i \in \mathbb{R}^{1 \times L}$ to $\mathbf{y}^i \in \mathbb{R}^{1 \times L}$, for $i \in 1, \dots, H$. In the latter case, we proceed per channel.

223 For a given block (and possibly a given channel index), the reduction algorithm works as follows:
224

- 225 1. Extract the discrete linear system matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$ from the model weights. We denote
226 by n the current order (rank) of the system.
- 227 2. Solve Equation 2 and Equation 3 (using Equation 14 if \mathbf{A} is diagonal, as is the case for
228 many modern SSMs) to obtain the Gramians \mathbf{P} and \mathbf{Q} respectively.
- 229 3. Compute the Hankel singular values σ via Equation 4.
- 230 4. Find the smallest rank r such that the top- r singular values account for a predetermined
231 threshold $\tau \in [0, 1]$ of the total energy,

$$232 \quad r = \min \left\{ k \in \{1, \dots, n\} : \sum_{i=1}^k \sigma_i \geq \tau \sum_{i=1}^n \sigma_i \right\}, \quad (8)$$

- 235 5. If the rank is smaller than a given fraction of the initial state dimension (i.e. the reduction is
236 large enough to warrant the trouble), compute the balancing transformation matrix \mathbf{T} from
237 Theorem 2.6. Otherwise, leave the system unchanged.

- 238 6. Transform the original system to its diagonal balanced realization,

$$239 \quad (\mathbf{A}_b, \mathbf{B}_b, \mathbf{C}_b) = (\mathbf{T}^{-1} \mathbf{A} \mathbf{T}, \mathbf{T}^{-1} \mathbf{B}, \mathbf{C} \mathbf{T}) \quad (9)$$

- 241 7. Truncate the balanced system down to rank r (with a slight abuse of tensor slicing notation),

$$242 \quad (\mathbf{A}_r, \mathbf{B}_r, \mathbf{C}_r) = (\mathbf{A}_b[:, :r], \mathbf{B}_b[:, :r], \mathbf{C}_b[:, :r]) \quad (10)$$

- 243 8. Replace the model weights for the dynamical system matrices. Based on the architecture
244 this might require diagonalizing the truncated system to ensure computational consistency.

$$245 \quad (\mathbf{A}, \mathbf{B}, \mathbf{C}) \leftarrow (\mathbf{A}_r, \mathbf{B}_r, \mathbf{C}_r) \quad (11)$$

247 Note that the above algorithm can not deliver improved small models if there is no clear correlation
248 between state dimension and model performance. [Furthermore, there should be sufficient training
249 in-between successive reduction steps for the model to recover from pruning.](#) The fact that COMPRESSM
250 applies an *in-training* compression scheme enables a significant increase in performance
251 per training time. Indeed, we validate the speedup experimentally in Section 4.2, [and provide an
252 in-depth complexity and time reduction analysis in Section D of the Appendix.](#)

253
254 3.2 PRAGMATIC VARIANT
255

257 In ablations presented in Appendix C, we observe that training can sustain successive moderate balanced
258 truncations without divergence from the large-model upper-bound performance, until impactful
259 HSVs are removed. This observation motivates a slight tweak to the COMPRESSM algorithm.
260 Although one does not have access to the upper bound trained at the large dimension throughout, we
261 can track the validation metric during training and assume that, as long as no drop in performance
262 occurs, the reduction does not cause any noticeable global performance drop.

263 In practice, the procedure is implemented with a simple safeguard. At each *fixed-fraction* reduction
264 step (10% per reduction is reasonable), we first save the current (pre-reduction) checkpoint. We
265 then apply truncation, train the model for a very small number of steps, and evaluate it on the
266 validation set. If validation performance continues to improve, we proceed to the next reduction. If
267 performance degrades, we discard the reduced version and revert to the previously saved checkpoint,
268 after which no further reductions are applied.

269 This protocol ensures that model quality always remains close to that of the unreduced baseline,
without the need to explicitly tune the number of reductions or a fixed tolerance level.

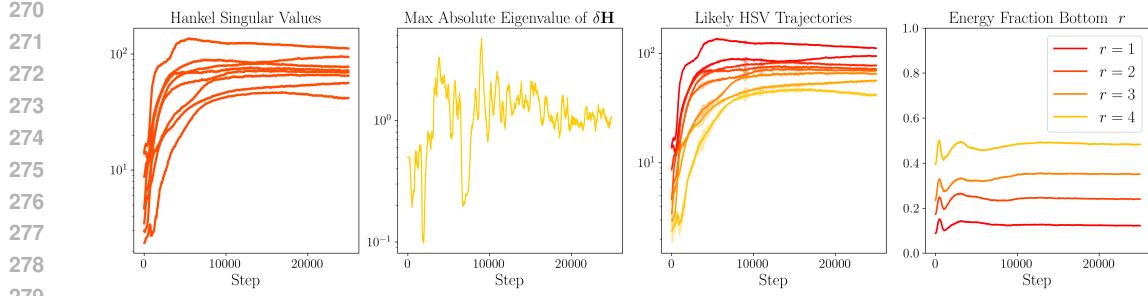


Figure 2: In-training per-step analysis of Hankel singular value dynamics for a single LRU block with state dimension of 8 on the sMNIST dataset for the first 25k steps. The leftmost plot shows the raw HSVs (as a set). The middle-left plot depicts the maximum absolute eigenvalue of $\delta\mathbf{H}$ as described in Section 3.3. The middle-right plot overlays the maximum variation bound as an error margin around each HSV, with each shade now representing a highly probable path for a specific state dimension obtained by step by step linear sum assignment solving. The rightmost plot shows the relative contribution of the bottom r HSVs to the total energy.

3.3 IN-TRAINING REDUCTION

The validity of our proposed in-training truncation relies on several non-trivial properties, which we first motivate intuitively before formalizing. First, the method requires tracking how the relative importance of individual states evolves with training. Second, even if we can measure importance continuously, training dynamics may render initially insignificant dimensions crucial at later stages. Early truncation of such dimensions would therefore be undesirable. Consequently, it is necessary that the relative ordering of importance remains approximately stable, at least for the dimensions with low initial contribution. Finally, since our balanced truncation approach relies on the energy contribution of each dimension relative to the total system energy, it is desirable that the cumulative importance of the bottom- r dimensions does not increase substantially during training. Otherwise, dimensions could converge to a regime of near-equal importance, making early truncation unjustified even if the ordering is preserved.

To leverage Hankel singular value analysis during training, we must first establish a protocol for tracking individual state importance as the system evolves under gradient updates. This existence of such a protocol is non-trivial and its development is central to this work.

Indeed, between gradient steps, model weights are updated according to the negative gradient of the loss with respect to the parameters. At the SSM level, this translates into the state matrices being incrementally updated such that a discrete system described by $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ becomes a *different* dynamical system $(\mathbf{A}', \mathbf{B}', \mathbf{C}')$, where

$$\mathbf{A}' = \mathbf{A} + \delta\mathbf{A}, \quad \mathbf{B}' = \mathbf{B} + \delta\mathbf{B}, \quad \mathbf{C}' = \mathbf{C} + \delta\mathbf{C}. \quad (12)$$

The omission of \mathbf{D} is deliberate for both notational simplicity, but also since it is often fixed as a skip layer and not learned. Throughout this section, we adopt the convention that plain symbols denote pre-update quantities, while primed symbols denote their post-update counterparts.

Now, using the expressions of the controllability and observability Gramians given respectively by Equation 2 and Equation 3, one can see that both Gramians are continuous with respect to the gradient perturbation to the system matrices thus we can also consider,

$$\mathbf{P}' = \mathbf{P} + \delta\mathbf{P}, \quad \mathbf{Q}' = \mathbf{Q} + \delta\mathbf{Q}, \quad (13)$$

where $\delta\mathbf{P}$ is some continuous function of $(\delta\mathbf{A}, \delta\mathbf{B})$, and similarly $\delta\mathbf{Q}$ of $(\delta\mathbf{A}, \delta\mathbf{C})$.

Also recall that the Hankel singular values can be obtained as the square root of the eigenvalues of $\mathbf{P}\mathbf{Q}$ (Equation 4). Generally, $\mathbf{P}\mathbf{Q}$ need not be symmetric, but we use this form for computational efficiency. Noticing that $\mathbf{P}\mathbf{Q}$ is similar to the symmetric positive definite matrix $\mathbf{P}^{1/2}\mathbf{Q}\mathbf{P}^{1/2}$, we let $\mathbf{H} = \sqrt{\mathbf{P}^{1/2}\mathbf{Q}\mathbf{P}^{1/2}}$. The matrix \mathbf{H} 's eigenvalues are exactly the Hankel singular values. In addition, by composition, \mathbf{H} is continuous with respect to the perturbations to the system, so we write $\mathbf{H}' = \mathbf{H} + \delta\mathbf{H}$ with $\delta\mathbf{H}$ a continuous function of $(\delta\mathbf{A}, \delta\mathbf{B}, \delta\mathbf{C})$.

324 **Lemma 3.1** (Continuity of Hankel singular values under training updates). *By application of Weyl’s*
 325 *Theorem 2.7 to the matrix \mathbf{H} and its perturbation \mathbf{H}' , between gradient steps, each Hankel singular*
 326 *value can at most change by the largest absolute eigenvalue of $\delta\mathbf{H} = \mathbf{H}' - \mathbf{H}$.*

328 While the previous argument establishes that Hankel singular values evolve continuously with
 329 gradient updates, the remaining conditions—stability of relative ordering and low contribution of the
 330 bottom- r dimensions—cannot be guaranteed theoretically. However, empirical evidence strongly
 331 suggests that standard training dynamics are favorable in practice.

332 We examine the case of a single LRU block trained on the [sMNIST](#) dataset with state dimension of 8
 333 for visual clarity in Figure 2 (and provide plots for larger models and datasets in Appendix B.2). To
 334 keep track of the state dimension to HSV value correspondence, we overlay the maximum absolute
 335 eigenvalue of $\delta\mathbf{H}$, on top of each HSV. Empirically, this allows us to robustly identify probable
 336 HSV trajectories as the continuity bound is consistently small enough to ensure each eigenvalue
 337 is clearly isolated, with minimal bound overlaps and rare gradual HSV relative order crossings
 338 occurring (prediction of evolution established via linear sum assignment solution in such cases).
 339 Furthermore, the cumulative contribution of the bottom- r HSVs stabilizes rapidly. Indeed, after a
 340 small initial number of steps, we observe that both the ordering of singular values remains constant,
 341 and dimensions of low importance seldom gain substantial relative energy during training.

342 In sum, these observations provide empirical justification for early in-training truncation: dimensions
 343 identified as negligible at early stages typically remain so throughout training. Consequently,
 344 truncation decisions made during training rarely conflict with the final importance ranking, making
 345 our approach both effective and robust in practice.

347 4 EXPERIMENTS

349 4.1 EXPERIMENTAL SETUP

351 In order to empirically validate in-training balanced truncation, we train a linear recurrent unit
 352 (LRU) (Orvieto et al., 2023) on datasets of different complexity, ranging from [sMNIST](#) to tasks
 353 from the long range arena (LRA) (Tay et al., 2020).

354 We use the same training pipeline as Rusch & Rus (2025); Walker et al. (2025), accounting for
 355 additional quirks of LRU training like a learning rate factor for the sequence mixing layer. The LRA
 356 dataloaders are borrowed from Smith et al. (2022), the hyperparameters largely taken from (Orvieto
 357 et al., 2023, Table 10). We summarize them in Table 3.

359 Reduction starts from the full model order reported in column 4 of Table 3. For all datasets but
 360 IMDB and [sMNIST](#), we attempt four equidistant reduction steps during the warm-up period of the
 361 learning rate, which equals 10% of the total steps. Doing so ensures maximal speed up potential for
 362 the subsequent 90% of training, while also staying robust to large early training .

363 As [sMNIST](#) is trained without learning rate decay, we attempt truncation during all of training. For
 364 IMDB, we include a waiting stage and attempt reduction inside a smaller time window. The details
 365 can be found in Appendix A.3. Generally, reductions are only executed if the reduced dimension is
 366 less than 95% of the current state dimension.

367 The baselines we compare against are non-reduced models trained all along with each block initialized
 368 at the average final order of the compressed ones to allow for a fair comparison. To increase
 369 our baseline statistics and further establish correlations between state dimension and model perfor-
 370 mance, we train further models with different state dimensions.

372 4.2 EMPIRICAL RESULTS

374 We repeat all experiments using five different random seeds and report mean top-3 as well as top-1
 375 performance. Table 1 contains the top-3 results. The top-1 results can be found in the appendix
 376 (Table 4). The state dimensions reported for multi-block models are the averages of the SSM orders
 377 per-block. It is accompanied by Figure 4, which presents the performance visually and contains
 further non-reduced benchmark models.

378
379 Table 1: Average final state dimension (mean \pm std) and Top-3 runs mean performance with/without
380 reduction for LRU under different tolerances τ .

381 Dataset	382 Metric	$383 \tau = 1.5 \cdot 10^{-1}$	$384 \tau = 1 \cdot 10^{-1}$	$385 \tau = 7 \cdot 10^{-2}$	$386 \tau = 5 \cdot 10^{-2}$	$387 \tau = 3 \cdot 10^{-2}$	$388 \tau = 2 \cdot 10^{-2}$	$389 \tau = 0$
390 CIFAR10	State dim	$391 57.4 \pm 1.5$	$392 92.6 \pm 4.2$	$393 126.0 \pm 4.0$	$394 160.8 \pm 5.4$	$395 213.6 \pm 6.1$	$396 327.2 \pm 16.0$	$397 384$
	COMPRESSM	$398 84.4 \pm 0.2$	$399 85.7 \pm 0.1$	$400 86.0 \pm 0.1$	$401 85.8 \pm 0.1$	$402 86.0 \pm 0.2$	$403 86.1 \pm 0.2$	$404 -$
	Baseline	$405 78.2 \pm 0.7$	$406 81.8 \pm 0.3$	$407 83.7 \pm 0.2$	$408 84.2 \pm 0.5$	$409 84.9 \pm 0.0$	$410 86.0 \pm 0.1$	$411 86.5 \pm 0.3$
412 ListOps	State dim	$413 56.8 \pm 3.4$	$414 81.8 \pm 4.9$	$415 109.8 \pm 3.9$	$416 135.4 \pm 6.8$	$417 167.6 \pm 5.7$	$418 213.8 \pm 28.0$	$419 256$
	COMPRESSM	$420 48.3 \pm 0.7$	$421 51.8 \pm 0.9$	$422 48.2 \pm 1.1$	$423 47.5 \pm 1.6$	$424 49.2 \pm 0.3$	$425 47.1 \pm 1.4$	$426 -$
	Baseline	$427 43.4 \pm 0.4$	$428 46.3 \pm 0.5$	$429 49.4 \pm 1.8$	$430 49.2 \pm 0.7$	$431 48.2 \pm 2.1$	$432 47.6 \pm 1.7$	$433 49.7 \pm 0.8$
434 AAN	State dim	$435 53.6 \pm 1.9$	$436 84.4 \pm 1.4$	$437 111.0 \pm 2.0$	$438 136.6 \pm 2.9$	$439 170.0 \pm 2.4$	$440 203.2 \pm 13.7$	$441 256$
	COMPRESSM	$442 87.2 \pm 0.3$	$443 87.5 \pm 0.1$	$444 87.4 \pm 0.3$	$445 87.2 \pm 0.0$	$446 87.6 \pm 0.3$	$447 87.9 \pm 0.2$	$448 -$
	Baseline	$449 87.5 \pm 0.3$	$450 87.9 \pm 0.3$	$451 87.8 \pm 0.2$	$452 87.8 \pm 0.5$	$453 87.3 \pm 0.4$	$454 87.4 \pm 0.5$	$455 87.3 \pm 0.3$
456 IMDB	State dim	$457 95.0 \pm 2.3$	$458 119.6 \pm 2.2$	$459 136.8 \pm 1.9$	$460 150.4 \pm 1.2$	$461 165.0 \pm 1.3$	$462 192.0 \pm 0.0$	$463 192.0$
	COMPRESSM	$464 82.2 \pm 0.2$	$465 82.8 \pm 0.1$	$466 83.7 \pm 0.4$	$467 83.8 \pm 0.3$	$468 84.1 \pm 0.4$	$469 84.4 \pm 0.2$	$470 -$
	Baseline	$471 82.7 \pm 0.1$	$472 83.5 \pm 0.1$	$473 83.7 \pm 0.0$	$474 84.0 \pm 0.4$	$475 84.3 \pm 0.0$	$476 84.5 \pm 0.1$	$477 84.7 \pm 0.1$
478 Pathfinder	State dim	$479 34.6 \pm 1.9$	$480 51.2 \pm 1.7$	$481 65.6 \pm 2.3$	$482 81.2 \pm 1.6$	$483 105.0 \pm 2.1$	$484 129.8 \pm 5.2$	$485 256$
	COMPRESSM	$486 96.6 \pm 1.3$	$487 97.9 \pm 0.1$	$488 97.6 \pm 0.5$	$489 97.8 \pm 0.4$	$490 98.0 \pm 0.0$	$491 98.0 \pm 0.1$	$492 -$
	Baseline	$493 97.3 \pm 0.2$	$494 97.9 \pm 0.1$	$495 98.0 \pm 0.1$	$496 98.1 \pm 0.0$	$497 98.2 \pm 0.0$	$498 98.1 \pm 0.1$	$499 98.3 \pm 0.1$
		$500 \tau = 4 \cdot 10^{-2}$	$501 \tau = 2 \cdot 10^{-2}$	$502 \tau = 1 \cdot 10^{-2}$	$503 \tau = 5 \cdot 10^{-3}$	$504 \tau = 2 \cdot 10^{-3}$	$505 \tau = 1 \cdot 10^{-3}$	$506 \tau = 0$
507 sMNIST	State dim	$508 12.7 \pm 3.0$	$509 27.6 \pm 1.8$	$510 46.8 \pm 3.2$	$511 76.3 \pm 7.5$	$512 148.1 \pm 9.8$	$513 191.4 \pm 4.7$	$514 256$
	COMPRESSM	$515 95.9 \pm 0.2$	$516 96.9 \pm 0.0$	$517 96.9 \pm 0.1$	$518 96.9 \pm 0.1$	$519 97.0 \pm 0.1$	$520 97.2 \pm 0.3$	$521 -$
	Baseline	$522 92.6 \pm 0.5$	$523 96.0 \pm 0.2$	$524 95.9 \pm 0.1$	$525 96.4 \pm 0.2$	$526 97.3 \pm 0.2$	$527 97.3 \pm 0.1$	$528 97.3 \pm 0.1$

397 For some datasets, for example AAN or Pathfinder, our baseline experiments reveal a small correlation
398 between state dimension and model performance, given the other model parameters taken
399 from Orvieto et al. (2023) (see entries 3 and 5 in Table 1 or figures 4c and 4e). On these datasets,
400 COMPRESSM can not deliver better performance for small models.

401 However, on datasets where state dimension does correlate with model performance, COMPRESSM
402 improves small model performance. On CIFAR10, for example, model performance almost stays
403 constant as a function of reduction tolerance (and thus for different state dimensions), while the
404 non-compressed counterparts exhibit a approximately 10% performance drop (see entry 1 in Table 1
405 or Figure 3a). The sMNIST results paint a similar picture (entry 5 in Table 1 or Figure 4a).

406 Similarly, on ListOps, the performance of non-compressed models drops significantly for state dimensions
407 smaller than 120 (see Figure 4f). While the compressed models perform on par with their
408 uncompressed counterparts for larger state dimensions, smaller models outperform the baseline.

409 On Pathfinder, we can observe a similar trend (Figure 4e), where the unreduced model performance
410 does not show a strong correlation with the state dimension. Just for the smallest state dimension,
411 the unreduced model performs sees a small drop in performance and is outperformed by the top-1
412 reduced model.

413 The IMDB results reveal the importance of the prerequisites mentioned in Section 3.1 (see Figure
414 4d). Even after significantly reducing the parameters and increasing the droprate (see Appendix A), the unreduced only learn for roughly 8k steps before overfitting. However, in order
415 to do in-training balanced truncation, the actual training phase needs to be long enough to allow for
416 a couple of reduction steps with a large enough spacing so that the model can follow the training
417 dynamics for a while without being pruned. Indeed, for non-aggressive pruning (that is, pruning
418 with small tolerance τ), the top reduced models often outperform the baseline.

419 As mentioned previously, an advantage of COMPRESSM is that it comes with a training speedup;
420 as the state dimensions get pruned, training speeds up. Indeed, Figure 3b demonstrates this effect
421 on CIFAR10. COMPRESSM at dimension 92 preserves nearly full baseline accuracy (85.7% vs.
422 86.5%) and achieves a 1.5 \times speedup. By comparison, training directly at dimension 92 is only
423 marginally faster (1.6 \times speedup) yet markedly worse, reaching just 81.8% accuracy. A detailed
424 breakdown of in-training speedup gains is provided in Appendix D.

425 4.3 COMPARISON TO OTHER MODEL ORDER REDUCTION TECHNIQUES

426 We compare CompreSSM to other model order reduction approaches, namely reduction with Hankel
427 Nuclear Norm (HNN) regularization (Forgione et al., 2024; Schwerdtner et al., 2025), as well as

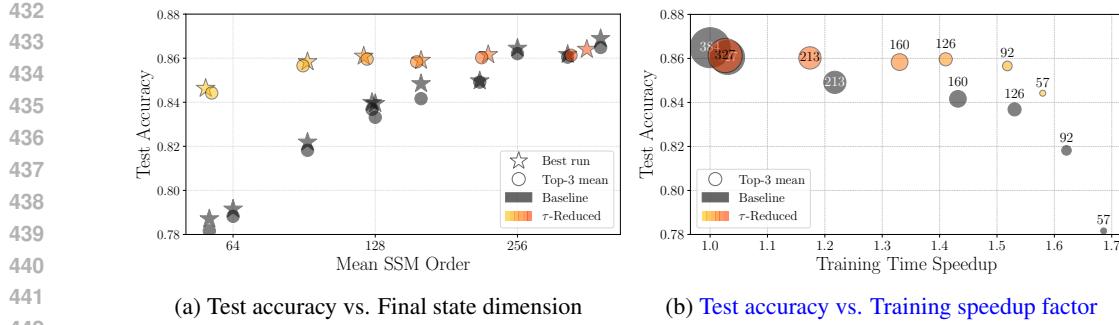


Figure 3: Subfigure (a) shows the performance of different models trained on CIFAR10 as a function of the state dimension. Grey data indicates non-reduced models, and the shades of orange correspond to reduced models, with tolerance decreasing with redness. The circles represents the top-3 mean, while the star corresponds to the top-1 model. Subfigure (b) shows top-3 performance as a function of training speedup with respect to the original large model training without reductions ($n = 384$ baseline). Marker diameter is proportional to the final model order (also annotated) and in-between models are omitted for visual decluttering.

Knowledge Distillation (KD) (Hinton et al., 2015). The approaches are described in Appendix F, with implementation details provided as well. Results of the experiments are summarized in Table 2.

The former experiment reveals three clear findings: (i) HNN regularization is computationally expensive, slowing training by an order of magnitude at least due to repeated Gramian-eigenvalue evaluations (at every single gradient step); (ii) HNN-constrained models underperform unconstrained baselines even before reduction; and (iii) when targeting small final dimensions, COMPRESSM achieves higher accuracy while being over dramatically faster.

On the other hand, knowledge distillation performs on par with COMPRESSM as long as the teacher has a similar state dimension as the student. However, as the model is further compressed, KD’s performance drops significantly, while COMPRESSM is able to maintain performance. KD furthermore requires training the large teacher model to completion before training a smaller student model, as well as doing a forward pass through the teacher even when training the student. This can be substantially slower than COMPRESSM.

Table 2: MOR techniques on sMNIST and CIFAR10. Top-3 mean test accuracies (%) and training speedup factors are reported. HNN Regularization is evaluated on sMNIST, and Knowledge Distillation is evaluated on CIFAR10. n represents models’ final order (rounded).

	Method	Metric	$n = 13$	$n = 28$	$n = 47$	$n = 76$	$n = 148$	$n = 191$	$n = 256$
sMNIST	Baseline	Acc. (%)	92.6	96.0	95.9	96.4	97.3	97.3	97.3
	Baseline	Speed \times	3.1	2.8	2.7	2.4	2.0	1.7	1.0
	COMPRESSM	Acc. (%)	95.9	96.9	96.9	96.9	97.0	97.2	–
CIFAR10	COMPRESSM	Speed \times	2.8	2.6	2.5	2.3	1.9	1.6	–
	HNN Reg.	Acc. (%)	91.7	95.8	95.8	95.8	95.8	95.8	95.9
	HNN Reg.	Speed \times	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	Method	Metric	$n = 57$	$n = 93$	$n = 126$	$n = 161$	$n = 214$	$n = 327$	$n = 384$
CIFAR10	Baseline	Acc. (%)	78.2	81.8	83.7	84.2	84.9	86.0	86.5
	Baseline	Speed \times	1.69	1.62	1.53	1.43	1.22	1.03	1.00
	COMPRESSM	Acc. (%)	84.4	85.7	86.0	85.8	86.0	86.1	–
KD	KD	Acc. (%)	79.4	83.5	84.4	85.3	86.0	87.0	–
	KD	Speed \times	0.55	0.52	0.61	0.51	0.49	0.45	–

486 5 RELATED WORK
487488
489 **Model compression techniques in machine learning.** The question of model compression has
490 received considerable attention in the literature (Deng et al., 2020; Zhu et al., 2024), leveraging
491 various techniques (and mixtures thereof) such as pruning (Han et al., 2015; Frantar & Alistarh,
492 2023), which removes redundant parameters to reduce network size; quantization (Xiao et al., 2022;
493 Gholami et al., 2021), which compresses models by lowering numerical precision; low-rank factor-
494 ization (Lin et al., 2024), which exploits structure in weight matrices to reduce dimensionality; and
495 knowledge distillation (Hinton et al., 2015; Gou et al., 2020), where a smaller model learns to mimic
496 a larger one.
497498 **In-training vs. post-training paradigms.** Techniques such as quantization-aware training (Choi
499 et al., 2018; Zhang et al., 2018), and dynamic pruning (Hoefer et al., 2021; Wimmer et al., 2022)
500 perform in-training compression during the optimization process. In contrast, most methods like
501 Deep Compression (Han et al., 2015) follow a post-training paradigm, applying pruning or quanti-
502 zation after convergence and relying on retraining or fine-tuning to recover accuracy.
503504 **Compression in SSMs.** Work on compressing SSMs has primarily explored quantization. Post-
505 training quantization has been applied to stabilize SSM inference under 8-bit constraints (Abreu
506 et al., 2024; Chiang et al., 2024), while quantization-aware training has been used to maintain ac-
507 curacy below 8 bits (Zhao et al., 2025) and to improve robustness for deployment on specialized or
508 analog hardware (Siegel et al., 2024; 2025).
509510 By contrast, control-theoretic MOR approaches have been applied to diagonal S4 layers, but only
511 as a post-hoc step to initialize retraining (Ezoe & Sato, 2024). Elsewhere, regularizers based on
512 the Hankel nuclear norm or modal ℓ_1 have been shown to encourage parsimonious state represen-
513 tations during training, though without explicit **intermediate** truncation events, and with a price to
514 pay in terms of **both per step compute time as well as** optimal performance (Forgione et al., 2024;
515 Schwerdtner et al., 2025). Finally, \mathcal{H}_2 -optimal reductions have been proposed as a competitor to
516 balanced truncation in offline SSM MOR settings (Sakamoto & Sato, 2025). **This approach is com-
517 putationally expensive, requiring gradient on a complex optimization problem, without the solution**
518 **guaranteeing stability of the reduced order system.**
519520 Although not a compression approach, the authors in Yu et al. (2024) approach the problem of
521 Hankel singular value efficiency from the perspective of SSM initialization, providing an approach
522 to avoid fast decaying singular values.
523524 To the best of our knowledge, our contribution is the first to propose a principled *in-training* model
525 order reduction method applicable to a broad spectrum of SSMs.
526527 6 CONCLUSION
528529 In conclusion, we proposed a novel framework for principled compression of SSMs during train-
530 ing called COMPRESSM. Drawing on classical control theory, we base our approach on balanced
531 truncation. In particular, we show that Hankel singular values (HSVs), the corner stone of balanced
532 truncation, preserve the rank of their dominant dimensions during training, which allows for safely
533 truncating dimensions associated with smaller HSVs.
534535 We test COMPRESSM by training LRUs on a range of tasks of varying complexity. Provided there
536 is a correlation between state dimension and model performance as well as enough training steps
537 in between two reduction steps, we verify empirically that compressed models outperform their
538 uncompressed counterparts while delivering better performance per unit of training time.
539540 Finally, we provide an outlook on how to do in-training balanced truncation for linear time-varying
541 systems. In this selective case, we propose averaging the dynamics over the input space and apply-
542 ing the reduction scheme to this time-independent system. For future work, we would like to ex-
543 tend COMPRESSM to linear self-attention models, e.g., Gated Linear Attention (Yang et al., 2023),
544 Mamba2 (Dao & Gu, 2024), and Gated DeltaNet (Yang et al., 2024), which is another class of
545 models based on linear time-varying systems.
546

540 REPRODUCIBILITY STATEMENT
541542 We provide an anonymized supplementary code package that implements COMPRESSM for the
543 LRU architecture with configuration runs used to produce the results in this paper. A public reposi-
544 tory with identical code will be made public after review.
545546 USE OF LARGE LANGUAGE MODELS (LLMs)
547548 No original methods, model designs, or ideas originate from the use of LLMs. They have been put
549 to use for LaTeX formatting, grammar and syntax and coding assistance only. The authors are the
550 sole responsible parties for the contents of the work. LLMs are not eligible for authorship.
551552 REFERENCES
553554 Steven Abreu, Jens Egholm Pedersen, Kade Heckel, and Alessandro Pierro. Q-S5: Towards Quan-
555 tized State Space Models, 2024.557 Athanasios C. Antoulas. *Approximation of Large-Scale Dynamical Systems*, chapter 7. Balancing
558 and Balanced Approximations, pp. 207–247. SIAM Advances in Design and Control, 2005. doi:
559 10.1137/1.9780898718713.ch7. URL <https://epubs.siam.org/doi/abs/10.1137/1.9780898718713.ch7>.561 Chi-Tsong Chen. *Linear System Theory and Design*. Oxford University Press, 3 edition,
562 1999. ISBN 978-0-19-511777-6. URL <https://app.knovel.com/mlink/pdf/id:kt008LOK0F/linear-system-theory/frontmatter>.564 Hung-Yueh Chiang, Chi-Chih Chang, N. Frumkin, Kai-Chiang Wu, and Diana Marculescu.
565 Quamba: a Post-Training Quantization Recipe for Selective State Space Models, 2024.567 Jungwook Choi, Zhuo Wang, Swagath Venkataramani, P. Chuang, Vijayalakshmi Srinivasan, and
568 K. Gopalakrishnan. PACT: Parameterized Clipping Activation for Quantized Neural Networks,
569 2018.570 Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
571 through Structured State SpaceDuality. *arXiv preprint arXiv:2405.21060*, 2024.573 Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
574 bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
575 jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and
576 Caglar Gulcehre. Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient
577 Language Models, 2024. URL <https://arxiv.org/abs/2402.19427>.578 By Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model Compression and Hardware
579 Acceleration for Neural Networks: A Comprehensive Survey, 2020.581 Haruka Ezoe and Kazuhiro Sato. Model Compression Method for S4 With Diagonal State Space
582 Layers Using Balanced Truncation, 2024.583 Marco Forgione, Manas Mejari, and Dario Piga. Model Order Reduction of Deep Structured
584 State-Space Models: a System-Theoretic Approach, 2024. URL <https://arxiv.org/abs/2403.14833>.586 Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models can be Accurately Pruned
588 in One-Shot, 2023.589 A. Gholami, Sehoon Kim, Zhen Dong, Z. Yao, Michael W. Mahoney, and K. Keutzer. A Survey of
590 Quantization Methods for Efficient Neural Network Inference, 2021.592 Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It's Raw! audio Generation with
593 State-Space Models. In *International Conference on Machine Learning*, pp. 7616–7633. PMLR,
2022.

594 Jianping Gou, B. Yu, S. Maybank, and D. Tao. Knowledge Distillation: a Survey, 2020.
 595

596 Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces,
 597 2024. URL <https://arxiv.org/abs/2312.00752>.

598 Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with Structured
 599 State Spaces. *arXiv preprint arXiv:2111.00396*, 2021.
 600

601 Song Han, Huizi Mao, and W. Dally. Deep Compression: Compressing Deep Neural Networks with
 602 Pruning, Trained Quantization and Huffman Coding, 2015.

603 Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
 604 Daniela Rus. Liquid Structural State-Space Models. *arXiv preprint arXiv:2209.12951*, 2022.
 605

606 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. *arXiv
 607 preprint arXiv:1503.02531*, 2015.

608 T. Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in Deep
 609 Learning: Pruning and growth for Efficient Inference and Training in Neural Networks, 2021.
 610

611 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 612 Weizhu Chen, et al. LoRA: Low-Rank Adaptation of Large Language Models. *ICLR*, 1(2):3,
 613 2022.

614 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 615 Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for
 616 Efficient Integer-Arithmetic-Only Inference. In *Proceedings of the IEEE conference on computer
 617 vision and pattern recognition*, pp. 2704–2713, 2018.

618 Rudolph Emil Kalman. A new Approach to Linear Filtering and Prediction Problems, 1960.

619 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 620 RNNs: Fast Autoregressive Transformers with Linear Attention. In Hal Daumé III and Aarti
 621 Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume
 622 119 of *Proceedings of Machine Learning Research*, pp. 5156–5165. PMLR, 13–18 Jul 2020.
 623 URL <https://proceedings.mlr.press/v119/katharopoulos20a.html>.

624 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
 625 Efficient Convnets. *arXiv preprint arXiv:1608.08710*, 2016.

626 Chi-Heng Lin, Shangqian Gao, J. Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia Jin, and
 627 Yen-Chang Hsu. MoDeGPT: Modular Decomposition for Large Language Model Compression,
 628 2024.

629 Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
 630 Christopher Ré. S4nd: Modeling Images and Videos as Multidimensional Signals with State
 631 Spaces. *Advances in neural information processing systems*, 35:2846–2861, 2022.

632 Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
 633 canu, and Soham De. Resurrecting Recurrent Neural Networks for Long Sequences. In *Interna-
 634 tional Conference on Machine Learning*, pp. 26670–26698. PMLR, 2023.

635 T Konstantin Rusch and Daniela Rus. Oscillatory State-Space Models. In *International Conference
 636 on Learning Representations*, 2025.

637 Hiroki Sakamoto and Kazuhiro Sato. Compression Method for Deep Diagonal State-Space Model
 638 Based on H2 Optimal Reduction, 2025.

639 Paul Schwerdtner, Jules Berman, and Benjamin Peherstorfer. Hankel Singular Value Regulariza-
 640 tion for Highly Compressible State Space Models, 2025. URL <https://arxiv.org/abs/2510.22951>.

641 Sebastian Siegel, Ming-Jay Yang, and John Paul Strachan. IMSSA: Deploying Modern State-Space
 642 Models on Memristive In-Memory Compute Hardware, 2024.

648 Sebastian Siegel, Ming-Jay Yang, Younes Bouhadjar, Maxime Fabre, Emre Neftci, and John Paul
 649 Strachan. QS4D: Quantization-Aware Training for Efficient Hardware Deployment of Structured
 650 State-Space Sequential Models, 2025.

651

652 Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified State Space Layers for
 653 Sequence Modeling. *arXiv preprint arXiv:2208.04933*, 2022.

654

655 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
 656 Liu Yang, Sebastian Ruder, and Donald Metzler. Long-Range Arena: A Benchmark for Efficient
 657 Transformers. *arXiv preprint arXiv:2011.04006*, 2020.

658

659 Inar Timiryasov and Jean-Loup Tastet. Baby Llama: Knowledge Distillation from an Ensemble
 660 of Teachers Trained on a Small Dataset with no Performance Penalty, 2023. URL <https://arxiv.org/abs/2308.02019>.

661

662 A Vaswani. Attention Is All You Need. *Advances in Neural Information Processing Systems*, 2017.

663

664 Benjamin Walker, Lingyi Yang, Nicola Muca Cirone, Christopher Salvi, and Terry Lyons. Structured
 665 Linear CDEs: Maximally Expressive and Parallel-in-Time Sequence Models, May 2025. URL
<https://arxiv.org/abs/2505.17761>.

666

667 Hermann Von Weyl. Das Asymptotische Verteilungsgesetz der Eigenwerte Linearer Partieller Dif-
 668 fferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). *Math-
 669 ematische Annalen*, 71:441–479, 1912. URL <https://api.semanticscholar.org/CorpusID:120278241>.

670

671 Paul Wimmer, Jens Mehnert, and A. Condurache. Dimensionality Reduced Training by Pruning and
 672 Freezing Parts of a Deep Neural Network: a Survey, 2022.

673

674 Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. SmoothQuant: Accurate
 675 and Efficient Post-Training Quantization for Large Language Models, 2022.

676

677 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Attention
 678 Transformers with Hardware-Efficient Training. *arXiv preprint arXiv:2312.06635*, 2023.

679

680 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated Delta Networks: Improving Mamba2 with
 681 Delta Rule. *arXiv preprint arXiv:2412.06464*, 2024.

682

683 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing Linear Trans-
 684 formers with the Delta Rule over Sequence Length, 2025. URL <https://arxiv.org/abs/2406.06484>.

685

686 Annan Yu, Michael W. Mahoney, and N. Benjamin Erichson. Hope for a robust parameterization of
 687 long-memory state space models, 2024. URL <https://arxiv.org/abs/2405.13975>.

688

689 Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and G. Hua. LQ-Nets: Learned Quantization for
 690 Highly Accurate and Compact Deep Neural Networks, 2018.

691

692 Leo Zhao, Tristan Torchet, M. Payvand, Laura Kriener, and Filippo Moro. Quantizing Small-Scale
 693 State-Space Models for Edge AI, 2025.

694

695 Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A Survey on Model Compression
 696 for Large Language Models. *Transactions of the Association for Computational Linguistics*, 12:
 697 1556–1577, 11 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00704. URL https://doi.org/10.1162/tacl_a_00704.

698

699

700

701

702 **A IMPLEMENTATION DETAILS**
703704 **A.1 SOLVING THE LYAPUNOV EQUATIONS FOR DIAGONAL SSMs**
705706 For SSMs with diagonal state transition matrix $\mathbf{A} = \text{diag}(\lambda_1, \dots, \lambda_n)$, which covers a lot of SSMs
707 used today such as LRU (Orvieto et al., 2023) and S5 (Smith et al., 2022), Equation 2 and Equation 3
708 admit a simple, entry-wise closed-form solution:

709
$$710 \mathbf{P}_{ij} = \frac{(\mathbf{B}\mathbf{B}^\top)_{ij}}{1 - \lambda_i \lambda_j}, \quad \mathbf{Q}_{ij} = \frac{(\mathbf{C}^\top \mathbf{C})_{ij}}{1 - \lambda_i \lambda_j} \quad \forall 1 \leq i, j \leq n \quad (14)$$

711

712 In the non-diagonal case, one can either solve the Lyapunov equations by vectorization or use the
713 argument put forward by Orvieto et al. (2023) and realize that every state transition matrix $\mathbf{A} \in \mathbb{R}^{n,n}$
714 can be diagonalized over \mathbb{C} up to a small perturbation.
715716 **A.2 HYPERPARAMETER SELECTION**
717718 The hyperparameters we used can be found in Table 3. For all but one LRA tasks we use the same
719 ones as reported by (Orvieto et al., 2023, Table 10). The exception is IMDB, which we observed to
720 overfit massively with the given hyperparameters. We mitigate this issue by increasing dropout and
721 reducing the total number of layers.
722723 Table 3: Hyperparameters for LRU experiments. h refers to the dimension of the hidden state, n
724 to the state space dimension, B to the batch size and α_{LR} to the learning rate factor applied to the
725 sequence mixer (Orvieto et al., 2023).
726

727 Task	Depth	h	n	Steps	B	α_{LR}	Weight Decay	Dropout
729 sMNIST	1	8	256	200k	50	-	-	0.1
730 CIFAR10	6	512	384	180k	50	0.25	0.05	0.1
731 ListOps	6	128	256	80k	32	0.5	0.05	0.0
732 IMDB	1	256	192	50k	32	0.1	0.05	0.1
733 AAN	6	128	256	100k	64	0.5	0.05	0.1
734 Pathfinder	6	192	256	500k	64	0.25	0.05	0.0

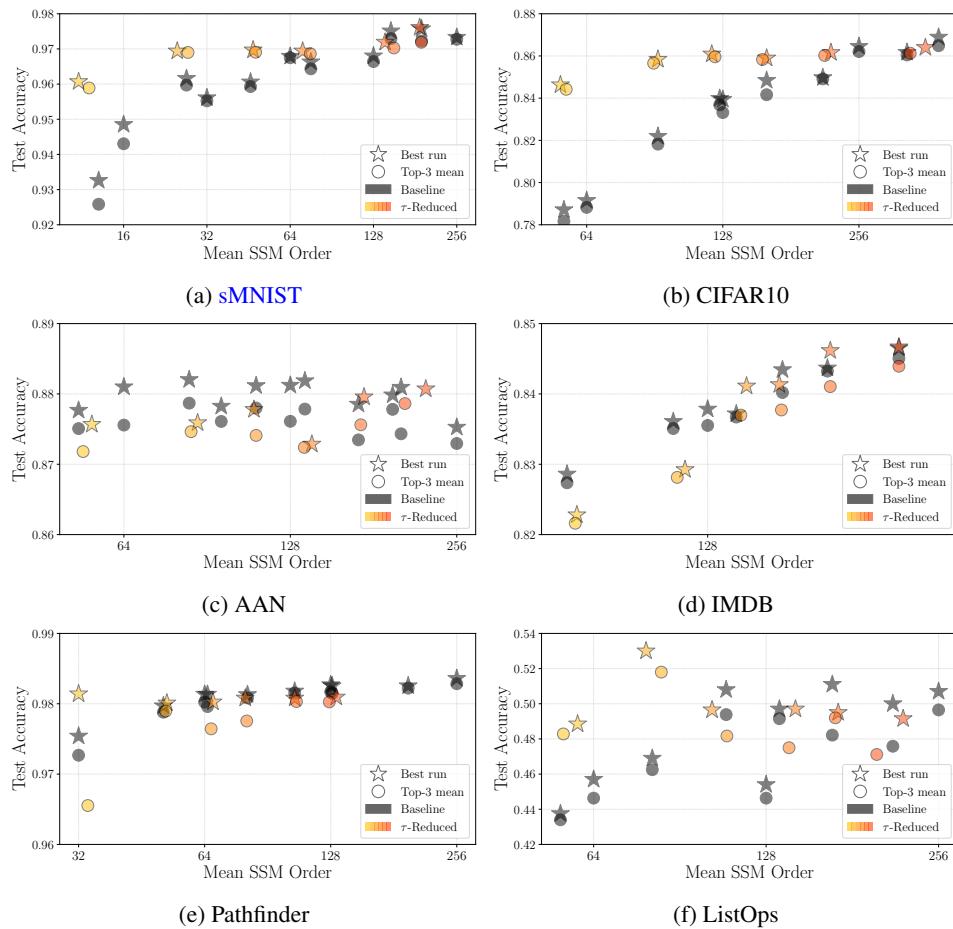
735 On LRA tasks, the learning rate is warmed up from 10^{-7} to 10^{-3} for 10% of the total steps, before
736 it is cosine-decayed back to 10^{-7} . For **sMNIST**, the learning rate is fixed at $4 \cdot 10^{-4}$ for the entirety
737 of training.
738739 **A.3 REDUCTION DETAILS**
740741 We find that LRU overfits on IMDB, even after reducing the number of parameters by 6 and doubling
742 the dropout rate compared to Orvieto et al. (2023). Training LRU on this dataset, we furthermore
743 observe an initial training period in which the loss plateaus. Just on IMDB, we thus wait for an
744 initial 1k steps before doing the balanced truncation. Instead of doing 4 reduction steps until the end
745 of warmup, we also just do 2 until 3k steps in order to avoid entering the overfitting regime.
746747
748
749
750
751
752
753
754
755

756 **B ADDITIONAL NUMERICAL RESULTS**
757

759 This appendix expands upon the empirical findings presented in the main paper by providing a
 760 more complete set of numerical results and supporting analyses. We aim to complete the view
 761 of how COMPRESSM behaves, and to substantiate the assumptions underlying our in-training
 762 reduction framework. We first report extended performance curves and dimension statistics across all
 763 benchmarks, followed by additional evaluations of the dynamical behavior of Hankel singular values
 764 throughout training. Together, these results offer a holistic understanding of the stability, robustness,
 765 and practical effectiveness of the proposed method.

766 **B.1 PERFORMANCE**
767

768 In Figure 4 we provide the state dimension vs test performance plots for all datasets. These follow
 769 the same conventions and experimental setup as those described in the main text for Subfigure (a).
 770 The baselines again correspond to models that are trained from scratch at the with the mean of the
 771 reduced dimensions reached at the various tolerance levels. Time gain plots are not provided, but
 772 similar gains are observed across all experiments, with an in depth discussion and analysis on the
 773 subject provided in Section D of this appendix.



805 Figure 4: Test performance vs. final state dimension for all our experiments. Stars correspond to
 806 best performance, circles to the mean of the top-3 runs. Grey shapes correspond to non-reduced
 807 models, and the shades of orange to reduced models, with tolerance decreasing with redness.
 808
 809

810
811
812
813 Table 4: Final state dimension (mean \pm std) and MAX performance with/without reduction for LRU
814 under different tolerances τ .
815

Dataset	Metric	$\tau = 1.5 \cdot 10^{-1}$	$\tau = 1 \cdot 10^{-1}$	$\tau = 7 \cdot 10^{-2}$	$\tau = 5 \cdot 10^{-2}$	$\tau = 3 \cdot 10^{-2}$	$\tau = 2 \cdot 10^{-2}$	$\tau = 0$
CIFAR10	State dim	57.4 ± 1.5	92.6 ± 4.2	126.0 ± 4.0	160.8 ± 5.4	213.6 ± 6.1	327.2 ± 16.0	384
	COMPRESSM	84.6	85.8	86.1	85.9	86.2	86.4	-
	Baseline	78.7	82.2	84.0	84.8	85.0	86.2	86.9
ListOps	State dim	56.8 ± 3.4	81.8 ± 4.9	109.8 ± 3.9	135.4 ± 6.8	167.6 ± 5.7	213.8 ± 28.0	256.0 ± 0.0
	COMPRESSM	48.9	53.0	49.7	49.7	49.5	49.2	-
	Baseline	43.8	46.9	50.8	49.7	51.1	50.0	50.7
AAN	State dim	53.6 ± 1.9	84.4 ± 1.4	111.0 ± 2.0	136.6 ± 2.9	170.0 ± 2.4	203.2 ± 13.7	256
	COMPRESSM	87.6	87.6	87.8	87.3	88.0	88.1	-
	Baseline	87.8	88.2	88.1	88.2	87.9	88.1	87.5
IMDB	State dim	95.0 ± 2.3	119.6 ± 2.2	136.8 ± 1.9	150.4 ± 1.2	165.0 ± 1.3	192.0 ± 0.0	192
	COMPRESSM	82.3	82.9	84.1	84.1	84.6	84.7	-
	Baseline	82.9	83.6	83.7	84.3	84.4	84.7	84.7
Pathfinder	State dim	34.6 ± 1.9	51.2 ± 1.7	65.6 ± 2.3	81.2 ± 1.6	105.0 ± 2.1	129.8 ± 5.2	256
	COMPRESSM	98.1	98.0	98.0	98.1	98.1	98.1	-
	Baseline	97.5	98.0	98.1	98.1	98.2	98.3	98.4
		$\tau = 3 \cdot 10^{-2}$	$\tau = 2 \cdot 10^{-2}$	$\tau = 1 \cdot 10^{-2}$	$\tau = 5 \cdot 10^{-3}$	$\tau = 2 \cdot 10^{-3}$	$\tau = 1 \cdot 10^{-3}$	$\tau = 0$
sMNIST	Dim (\pm std)	12.7 ± 3.0	27.6 ± 1.8	46.8 ± 3.2	76.3 ± 7.5	148.1 ± 9.8	191.4 ± 4.7	256
	COMPRESSM	96.1	96.9	97.0	96.9	97.2	97.6	-
	Baseline	93.3	96.2	96.1	96.6	97.5	97.6	97.3

827
828
829 B.2 EMPIRICAL IN-TRAINING HANKEL STABILITY830
831 A central assumption underlying our reduction procedure is that the Hankel singular values (HSVs)
832 of a learned SSM evolve smoothly during training and, after an initial transient, maintain a stable
833 relative ordering. This stability is what enables us to reliably identify and truncate low-energy modes
834 without waiting for the model to fully converge. In this section, we provide additional empirical
835 evidence supporting this assumption across a wide range of datasets, model sizes, and architectural
836 configurations.837
838 Across all experiments—spanning sMNIST, IMDB, CIFAR10, and ListOps—we consistently ob-
839 serve the same qualitative behavior. Immediately after initialization, the HSV spectrum typically
840 undergoes a brief reshaping phase in which the dominant modes separate from the rest. After this
841 point (usually within the first few thousand training steps), the spectrum stabilizes and the relative
842 ordering of HSVs becomes highly consistent. Larger modes drift slowly but retain their rank order,
843 while smaller modes flatten and remain several orders of magnitude below the truncation threshold.
844 This separation persists throughout training, even for deeper models and larger state dimensions.845
846 These observations directly support the assumptions used in our analysis in the main text. First,
847 they validate the claim that the HSV spectrum is well-behaved and exhibits only mild temporal vari-
848 ability once early training transients dissipate. Second, they confirm that the lower-energy portion
849 of the spectrum remains largely inactive and can be removed with negligible impact on validation
850 performance. Finally, they highlight that the qualitative structure of the HSVs is robust across tasks
851 and model scales, lending practical reliability to in-training reductions.852
853 Figures 21, 22, 23, and 24 illustrate these trends for representative runs across datasets. In each plot,
854 we visualize the evolution of HSVs over the course of training, sampled at intervals on the order
855 of thousands of steps. Because these intervals are much larger than the per-step analysis used in
856 the main text, the exact perturbation continuity bounds become too noisy to compute meaningfully;
857 nevertheless, we apply linear-sum-assignment tracking to produce a consistent alignment of HSV
858 indices over time. In all cases, the dominant HSVs quickly settle into stable trajectories, while
859 smaller HSVs decay toward near-zero values and form a clear truncation region. This structure
860 justifies the design of our reduction heuristics and further demonstrates that the behavior exploited by
861 COMPRESSM is intrinsic to training dynamics rather than specific to a single dataset or architecture.862
863

864

865

866

C COMPRESSM ABLATIONS

867

In this section we present and discuss three ablations that justify the design choices adopted in COMPRESSM: first we illustrate the importance of the control theoretic approach of selecting the smallest HSVs for reduction as the actual capacity of recovery of models is limited, second, we look at the effect of increasing the number of reduction steps between the same initial and final state dimension, and last but not least, we evaluate the effect of performing reductions at different phases of training.

874

All ablations in this section are performed on the sMNIST dataset, with a single block LRU. The initial dimension considered is 256 and the final reduced model dimension is hardcoded to reach 32. The baselines that serve as references consist, like in the main text, in training the model without reduction with state dimensions 256 and 32. Similarly, results are obtained by averaging over ten random seeds.

879

880

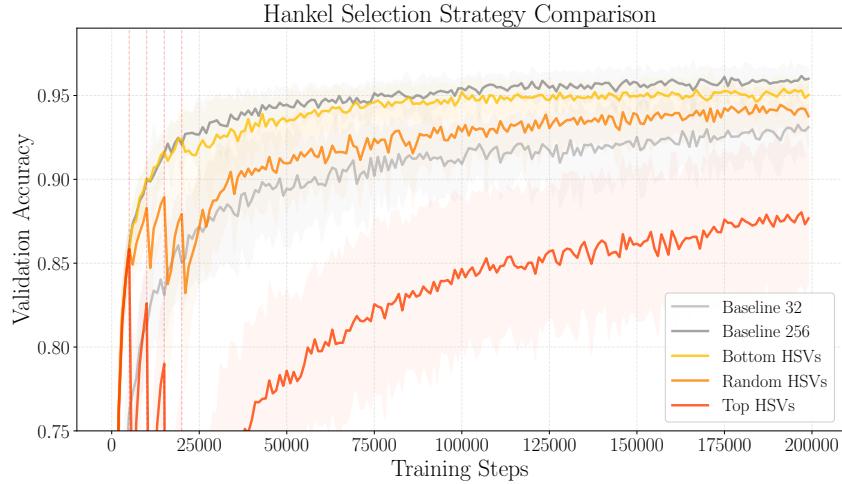
C.1 BALANCED TRUNCATION SANITY CHECK

881

The experimental setup consists in running COMPRESSM training with 4 equally spaced reductions (at the 5, 10, 15, 20k steps, total training for 200k steps). Each reduction keeps the same fraction $\rho = 0.595$ of the model, such that $256 \times \rho^4 = 32$. The ablation consists only in changing the selection scheme of the HSVs during reduction. We examine three variants: the correct balanced truncation approach removing the bottom HSVs, a random selection of HSVs to remove, and an adversarial example removing the top HSVs at each reduction step.

889

890



891

892

Figure 5: Validation accuracy evolution during sMNIST training with three HSV selection schemes. Each setup is averaged over ten seeds and the shaded regions around curves represent the standard deviation. The gray curves represent the non-reduced baselines with state dimension fixed to 32 and 256 (lighter and darker respectively). The yellow curve shows the correct reduction removing the bottom HSVs, the orange curve removes HSVs uniformly randomly, and the red curve removes the top HSVs. Dotted vertical lines show the steps at which reductions are performed.

893

894

895

Figure 5 shows the average model accuracy on the validation dataset during training, and Figure 6 depicts the HSVs evolution for a single seed across the three reduction schemes. Removing the top HSVs clearly incurs catastrophic performance damage, that is not recoverable even with 90% of subsequent training. One can see that these drops in performance are present yet less pronounced when removing random HSVs. In this case, the original gains gathered from training at larger state dimension are not completely lost, as the network is somewhat able to recover to perform slightly better than the baseline trained with dimension 32 from the start. In the case of proper bottom

HSV truncation, there are no notable drops in performance in comparison to the 256 baseline, apart from a small departure at the final reduction step. The performance observations are also backed up by the HSVs evolution in each case. Indeed, we observe that the correct balanced truncation maintains a majority concentration of large HSVs throughout training, all within a single order of magnitude, maximizing the per dimension contribution. Random truncation leads to a sparser spread of HSVs with many small surviving HSVs trailing an order of magnitude or two behind the leading dimensions. Expressivity is most diluted in the adversarial case, where removing the top values leads to dynamics with only a small proportion of HSVs carrying training while the largest bulk remains several orders of magnitude behind.

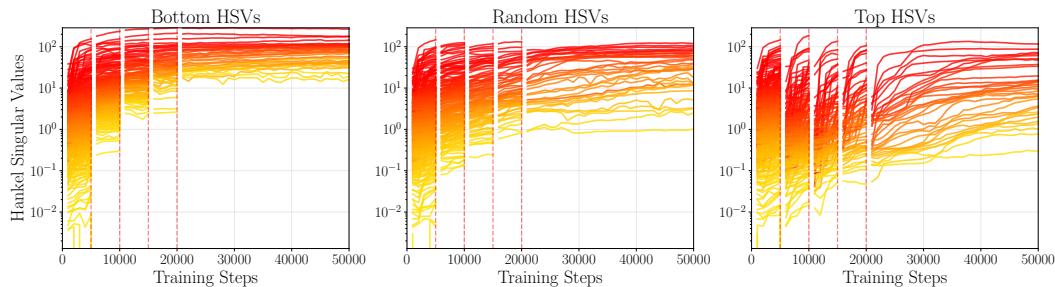


Figure 6: HSV evolution of a single seed for the three truncation schemes. From left to right we have the proper bottom HSV truncation, uniform random selection, and finally the adversarial top HSV truncation. Shades of red to yellow track the probable HSV trajectories between reductions. Dotted vertical lines show the steps at which reductions are performed. Note that all three plots share the same y axis limits for better HSV spread visualization. We show only the first 50k steps for better visualization of the HSV dynamics as the values evolve little for the subsequent portion of training.

The first conclusion from this ablation is that the COMPRESSM approach is sane, not only from a static dynamical system’s perspective which is an established theoretic result, but crucially in the context of SSM training. Indeed, this shows that correct balanced truncation is indispensable as models are not able to recover from improper reductions. The argument for HSV continuity during training made in Section 3.3 provides the theoretical backing for this observation, as we establish that prominent as well as weaker HSVs maintain their relative ordering to a large extent. Hence, the argument holds both ways, small HSVs can be reduced without hindering long term training performance, but also, large HSVs cannot be removed without incurring performance losses, even with sustained post-reduction training.

C.2 NUMBER OF REDUCTIONS

The experimental setup consists in running COMPRESSM training with R equally spaced reductions occurring during the first 10% of training (total training for 200k steps), where we consider $R \in \{1, 2, 4, 8, 16\}$. Each individual reduction keeps the same fraction ρ_R of the model, such that $256 \times \rho^R = 32$. The ablation studies the effect of smoother or more abrupt reductions on HSV evolution and performance.

Figure 7 shows the average model accuracy on the validation dataset during training, and Figure 8 depicts the HSVs evolution for a single seed across only the first four variants for clarity of presentation (1, 2, 4, and 8 reductions). The effect of increasing the number of reduction to go from an initial large state to the same final dimension seems to provide some performance improvement although marginal. The yellow curve for the most incremental reductions is the only one not to suffer a small drop in performance at the shared final reduction step of 20k steps. Intriguingly, the runs with 8 reductions do suffer a non-negligible drop yet are able to recover. Overall, the evidence suggests there might be a slight performance advantage in phasing out the reductions instead of clumping larger reductions into fewer occurrences. The compromise is to be found between performance gain and compute time. This is formalized and quantified in Section D. The evolution of HSVs in each case corroborates the observation of minimal effect of R on the overall training procedure. Indeed,

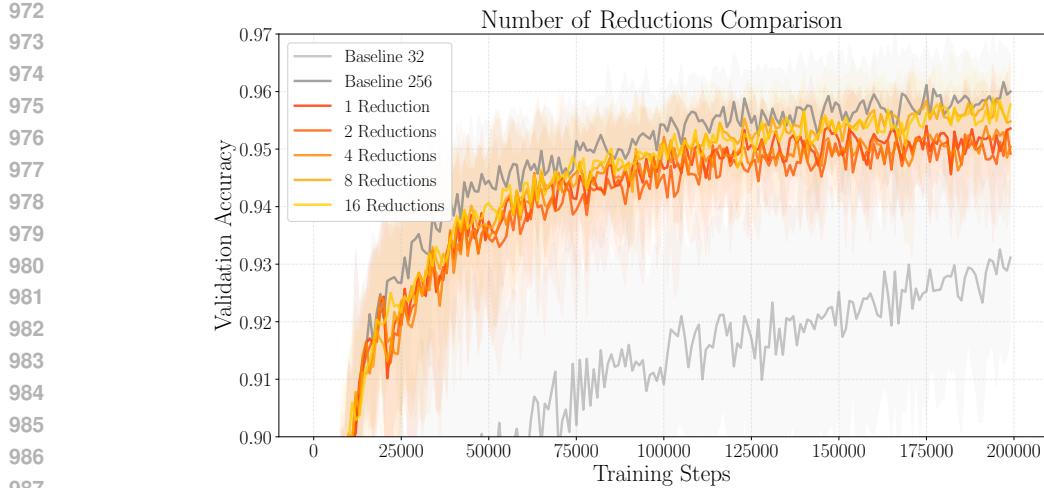


Figure 7: Validation accuracy evolution during sMNIST training with five increasing number of reductions between 256 and 32 (shades from red for $R = 1$ to yellow for $R = 16$). Each setup is averaged over ten seeds and the shaded regions around curves represent the standard deviation. The gray curves represent the non-reduced baselines with state dimension fixed to 32 and 256 (lighter and darker respectively).

993
 994
 995
 996

it is hard to discern any differences between the post-reduction HSVs in all cases considered, as all values seem to share similar distributions and populate the same order of magnitude.

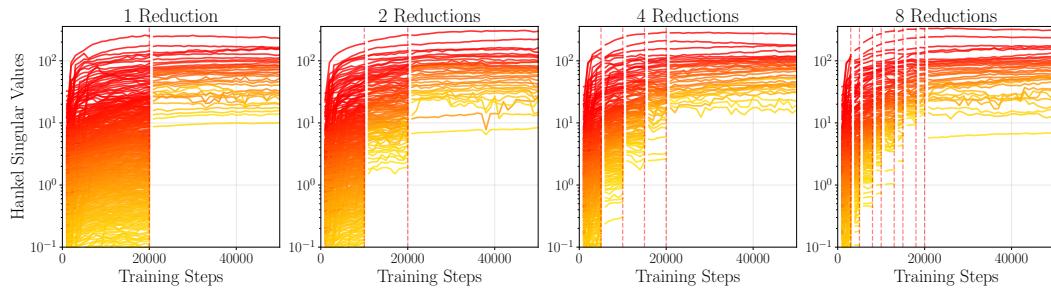


Figure 8: HSV evolution of a single seed for 1, 2, 4, and 8 reduction steps (from left to right). Shaded of red to yellow track the probable HSV trajectories. Dotted vertical lines show the steps at which reductions are performed. Note that all four plots share the same y axis limits for better HSV spread visualization. We show only the first 50k steps for better visualization of the HSV dynamics as the values evolve little for the subsequent portion of training. We omit the 16 reductions for readability.

1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020

This experiment sheds some light on the dependency of training dynamics on incremental reductions. Again, the HSV continuity analysis of Section 3.3 in the main text allows us to understand that whether we remove all the bottom HSVs at once or phase them out more progressively, the global ordering and evolution of HSVs is little affected. The subsequent post-training HSVs appear to behave very similarly. Incremental reductions might offer small performance benefits as other layers of the network as well as the optimizer state are less perturbed. Based on the model architecture, overhead costs of reduction, and performance optimality constraints, a suitable balance can be found for the frequency of reductions.

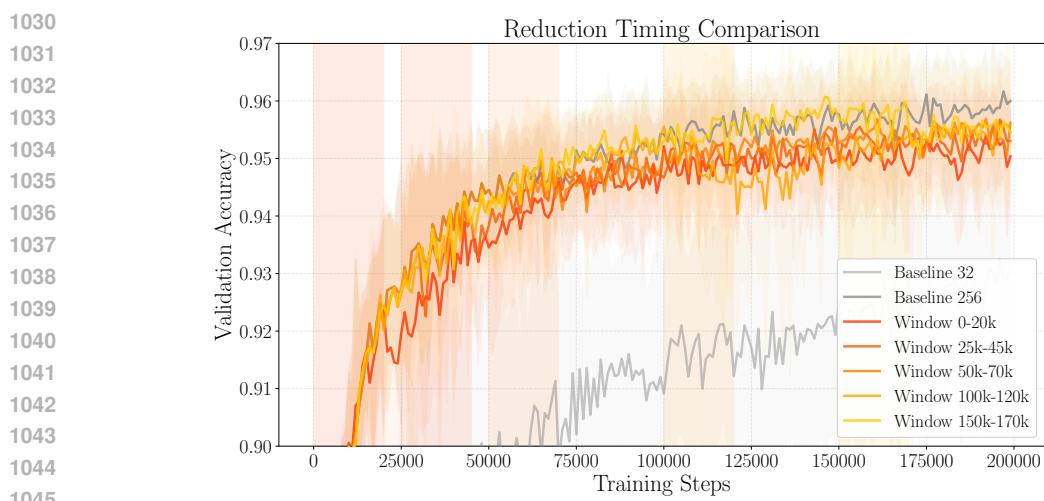
1021
 1022

C.3 REDUCTION WINDOW

1023
 1024
 1025

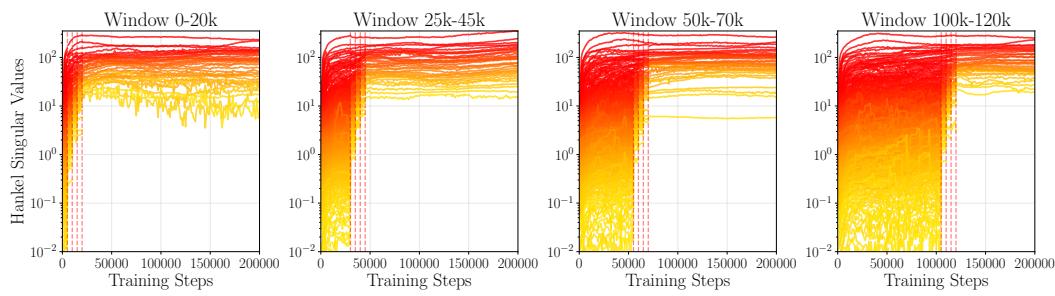
The experimental setup consists in running COMPRESSM training with 4 equally spaced reductions at intervals of 5k steps, yet sliding the window during which the reductions are performed. Each

1026 reduction keeps the same fraction $\rho = 0.595$ of the model, such that $256 \times \rho^4 = 32$. We examine
 1027 5 windows: the scheme used in the main text applying reduction in the 0-20k window, then 25-45k,
 1028 50-70k, 100-120k and 150-170k step windows.
 1029



1046 Figure 9: Validation accuracy evolution during sMNIST training with five increasingly late reduction
 1047 windows (shades from red for 0-20k steps to yellow for 150-170k steps). Each setup is averaged over
 1048 ten seeds and the shaded regions around curves represent the standard deviation. The vertical shaded
 1049 regions delimit each reduction window with the corresponding color. The gray curves represent the
 1050 non-reduced baselines with state dimension fixed to 32 and 256 (lighter and darker respectively).

1051
 1052 Figure 9 shows the average model accuracy on the validation dataset during training, and Figure 10
 1053 depicts the HSVs evolution for a single seed across only the first four variants for clarity of presenta-
 1054 tion (0-20k, 25-45k, 50-70k, 100-150k steps). Here also, there appears to be no conclusive evidence
 1055 that early reductions lead to a larger drop in performance than later ones. Indeed, although the red
 1056 curve (corresponding to reduction in the 0-20k window) appears to be slightly noisier than others, es-
 1057 pecially toward the end of training, its best performance validation accuracy does not underperform
 1058 among the other reduced models. In fact, all reduced models reach practically the same maximum
 1059 in the 170-200k end of training regime. This once more confirms that HSVs appear to behave in a
 1060 continuous and relative rank preserving fashion, and largely justifies early reductions which lead to
 1061 considerable training time gains as discussed and quantified in Section D. The noisiness observed
 1062 in the performance curve for the earliest reduction is somewhat reproduced in the HSVs evolution
 1063 plots, with a handful of the smallest values proving to be relatively erratic. However, the larger pic-
 1064 ture stays consistent with the observation that values maintain a similar spread and lie in the same
 1065 order of magnitude regardless of reduction timing.



1076 Figure 10: HSV evolution of a single seed for reductions within the 0-20k, 25-45k, 50-70k, 100-
 1077 150k step windows (from left to right). Shades of red to yellow track the probable HSV trajectories.
 1078 Dotted vertical lines show the steps at which reductions are performed. Note that all four plots share
 1079 the same y axis limits for better HSV spread visualization. We omit the 150-170k steps window for
 readability.

1080 Taken together, these results indicate that the precise timing of reductions has minimal impact on
1081 the final performance of the model. Even when reductions are performed very early—well before
1082 the model has partially converged—the HSV spectrum rapidly re-stabilizes, and the final validation
1083 accuracy matches that of runs where reductions occur much later. This aligns with our discussion
1084 in Section 3.3, where we showed that HSVs tend to evolve smoothly and preserve their relative
1085 ordering across training. Since delaying reductions does not offer any measurable performance
1086 benefit, applying them early remains the more effective choice in practice, as it preserves accuracy
1087 while providing substantially greater training-time savings.

1088
1089

1090 C.4 PRAGMATIC COMPRESSM. 1091

1092 Furthermore, we observe that reasonable balanced truncation practically does not hinder the upper
1093 bound performance, until it does. This observation can be used to slightly tweak the COMPRESSM
1094 algorithm. Although one does not have access to the upper bound trained with the large dimension
1095 all along, we can keep track of the validation metric during training and assume that while there
1096 are no drops in performance, reduction will incur no noticeable global performance penalties. In
1097 practice, the procedure is implemented with a simple safeguard. At each fixed fraction reduction
1098 step, we first save the current (pre-reduction) checkpoint. We then apply the reduction, train the
1099 model for a small number of steps, and evaluate it on the validation set. If validation performance
1100 continues to improve, we proceed to the next reduction. If performance degrades, we discard the
1101 reduced version and revert to the previously saved checkpoint, after which no further reductions are
1102 applied. This protocol ensures that model quality always remains close to that of the unreduced
1103 baseline without the need to explicitly predefine the number of reductions and a tolerance level in
1104 the absolute.

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134

1135

1136

1137

D TRAINING COMPLEXITY, SCALABILITY AND TIMING ANALYSIS

1138

1139 This section provides a detailed analysis of the computational costs involved in COMPRESSM, in-
 1140 cluding both empirical timing results and a formal model of the wall-clock speedup achieved through
 1141 in-training reductions. Beyond timing, we also include a study of the computational complexity of
 1142 the key operations involved in the reduction pipeline and discuss pragmatic implementation con-
 1143 siderations, such as GPU/CPU placement and library-level optimizations. Together, these analyses
 1144 give a complete picture of where the dominant costs arise, which components scale favorably with
 1145 reductions, and how to optimize end-to-end performance in practical implementations.

1146

1147

D.1 IN-TRAINING SPEEDUP ANALYSIS

1148

1149 We train a single-block LRU model on the sMNIST dataset with an initial state dimension of $n =$
 1150 256 and a batch size of 50, such that at every 5000 gradient steps we artificially reduce the state
 1151 dimension by removing 8 states. We record the wall-clock time of various operations during training
 1152 on a single NVIDIA RTX 6000 GPU, broken down as follows:

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1. **Gradient Steps:** Mean time spent on each gradient update during training,
2. **Inference:** Time spent on evaluation, divided into pure inference time and dataloading overhead,
3. **Model Reduction Pipeline:** Time spent on Hankel singular value (HSV) computation, model balanced truncation with diagonalization and replacement, and optimizer reinitialization.

Figure 11 summarizes the evolution of these components as the model is progressively reduced.

In plot (a), the average gradient-step duration decreases sharply with the state dimension, dropping by nearly a factor of three between $n = 256$ and $n = 8$. This confirms that the computational cost of training scales strongly with the state size, and that the benefits of dimensionality reduction manifest immediately within the training loop.

Plot (b) separates evaluation time into dataloading and inference components. Dataloading remains effectively constant across dimensions, as expected, while inference time exhibits a moderate reduction but at a slower rate than the gradient updates. This highlights that the primary performance gains of model reduction occur *in-training*, rather than in post-training inference.

Plot (c) details the components of the model-reduction pipeline: computation of Hankel singular values, generation of the reduced model through balanced truncation and diagonalization, and optimizer reinitialization. We observe that HSV computation dominates the total reduction time but decreases only slightly as the models shrink. Because dense matrix operations become unstable on the GPU for dimensions above roughly 200, HSV computations are performed on the CPU, introducing a constant overhead for transferring layers between devices. Consequently, the total reduction time does not scale down proportionally with the state dimension. Subsequent operations, including truncation, diagonalization, and parameter replacement, decrease substantially with model size, while optimizer reinitialization adds a small, constant overhead. It is important to note that a fixed JIT recompilation overhead of approximately 5 seconds is incurred at every reduction step, as new model shapes trigger re-compilation of the training graph—an overhead that dominates all other reduction costs and thus motivates minimizing the number of reductions performed.

Finally, plot (d) compares the relative time budgets for 5000 training steps across reduction stages. The breakdown clearly shows that the dominant gains arise within the gradient-step portion, which accounts for most of the overall runtime improvement—approximately $\times 2$ at $n = 128$ and $\times 3$ at $n = 8$. In contrast, dataloading and pure inference times show only marginal improvement, while the reduction overhead remains nearly constant, dominated by CPU-bound operations. These results illustrate where computational savings are primarily achieved and where residual overheads remain—demonstrating that in-training reductions yield the most substantial efficiency gains by directly accelerating the optimization loop.

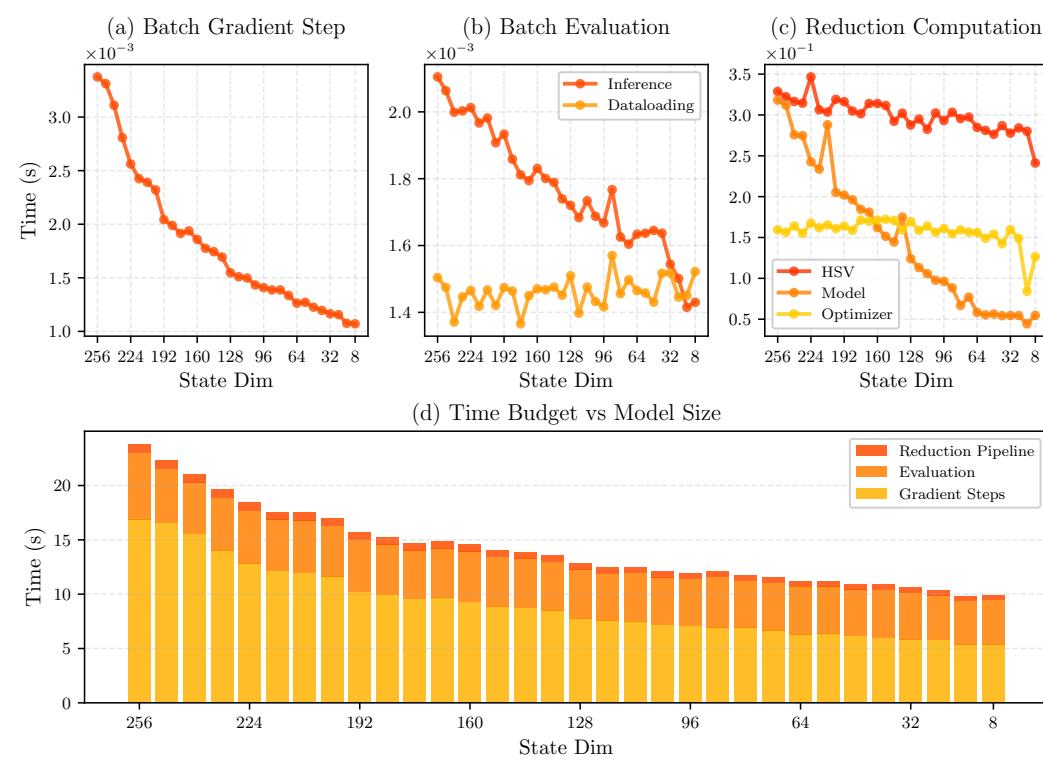


Figure 11: Timing analysis of in-training reductions. (a) Batch-gradient time decreases sharply with state dimension. (b) Evaluation time decomposed into dataloading (constant) and inference (moderately improved). (c) Breakdown of reduction-related computation (HSV, model truncation/diagonalization, optimizer reset). (d) Relative time budgets over 5000 steps, showing that most gains arise from faster gradient updates, while evaluation and reduction overheads remain comparatively small.

D.1.1 QUANTIFYING IN-TRAINING COMPRESSION SPEEDUP

We now formalize the wall-clock speedup obtained when performing in-training model reductions. Let s denote the number of gradient steps in an epoch and E denote the total number of training epochs. Suppose we perform R reductions at the ends of selected epochs. Let n_0 be the initial state dimension and denote by n_k the state dimension *while training* in the k -th reduction phase (so n_R is the final dimension). Let E_k be the number of epochs run while the model has state dimension n_k , with $\sum_{k=0}^R E_k = E$. Define the following per-dimension timing functions:

- $t_{\text{train}}(n)$ — time per gradient step at state dimension n ,
- $t_{\text{eval}}(n)$ — time per epoch for evaluation at state dimension n ,
- $t_{\text{analysis}}(n)$ — time to run the reduction analysis (HSV computation, truncation/diagonalization, parameter replacement),
- t_{jit} — fixed JIT recompilation overhead per reduction.

Total wall-clock time without reductions:

$$T_{\text{base}} = E(s t_{\text{train}}(n_0) + t_{\text{eval}}(n_0)).$$

Total wall-clock time with reductions:

$$T_{\text{red}} = \sum_{k=0}^R E_k (s t_{\text{train}}(n_k) + t_{\text{eval}}(n_k)) + \sum_{i=1}^R (t_{\text{analysis}}(n_{i-1}) + t_{\text{jit}}).$$

1242 **Speedup:**

1243
$$S = \frac{T_{\text{base}}}{T_{\text{red}}}.$$

1244
1245
1246 **Reduction speedup prediction example** We instantiate the above formulas for the setup used in
1247 the experiments:

1248
$$s = 5000, \quad E = 40, \quad R = 4.$$

1249 Reductions occur at the ends of the first four epochs:

1250
$$E_0 = 1, E_1 = 1, E_2 = 1, E_3 = 1, E_4 = 36.$$

1251 State dimensions shrink from 256 to 96 via four reductions:

1252
$$n_k = [256, 216, 176, 136, 96].$$

1253
1254 Measured timings (from Fig. 11):

n	256	216	176	136	96
$t_{\text{train}}(n)$ (s)	3.4×10^{-3}	2.4×10^{-3}	1.9×10^{-3}	1.6×10^{-3}	1.4×10^{-3}
$t_{\text{eval}}(n)$ (s)	3.6×10^{-3}	3.4×10^{-3}	3.3×10^{-3}	3.2×10^{-3}	3.1×10^{-3}
$t_{\text{analysis}}(n)$ (s)	0.80	0.68	0.64	0.60	0.55

1255
1256 We time the JIT recompilation overhead cost as

1257
$$t_{\text{jit}} \sim 5.0 \text{ s.}$$

1258 **Baseline (no reductions).**

1259
$$T_{\text{base}} = 40(5000 \cdot 3.4 \times 10^{-3} + 3.6 \times 10^{-3}) = 680.1 \text{ s.}$$

1260 **With reductions.** Training+evaluation only subtotal :

1261
$$T_{\text{red}(tr+ev)} = 298.6 \text{ s.}$$

1262 Reduction overheads:

1263
$$T_{\text{red}(ov)} = (0.80 + 0.68 + 0.64 + 0.60) + 4 \cdot 5.0 = 22.72 \text{ s.}$$

1264 Total:

1265
$$T_{\text{red}} = 321.3 \text{ s.}$$

1266 **Speedup:**

1267
$$S = \frac{680.1}{321.3} \approx 2.1.$$

1268 **Interpretation.** Under the empirically measured per-dimension timings from the experiments, per-
1269 forming four aggressive early reductions that bring the state dimension from 256 down to 96 yields
1270 an overall wall-clock speedup of approximately $2.1 \times$ for the full 40-epoch run. The calculation
1271 highlights the tension between per-step savings (which rapidly accumulate when many subsequent
1272 steps are executed at small n) and fixed reduction costs (CPU-bound analysis and JIT recompilation),
1273 illustrating how early reductions provide the most substantial gains while still incurring predictable
1274 overheads.

1275

1276

1277

1278

1279

D.2 REDUCTION PIPELINE COMPLEXITY

1280 In this subsection we study the complexity of one application of the reduction pipeline (see Sec-
1281 tion 3.1).1282 Step 2: For diagonal transition matrix \mathbf{A} , as is the case for LRU, Equation 14 says that

1283
$$\mathbf{P}_{ij} = \frac{(\mathbf{B}\mathbf{B}^{\top})_{ij}}{1 - \lambda_i \lambda_j}, \quad \mathbf{Q}_{ij} = \frac{(\mathbf{C}^{\top}\mathbf{C})_{ij}}{1 - \lambda_i \lambda_j} \quad \forall 1 \leq i, j \leq n. \quad (15)$$

1296 For $\mathbf{B} \in \mathbb{R}^{n \times p}$, computing $\mathbf{B}\mathbf{B}^\top$ takes $\mathcal{O}(n^2p)$ FLOPS. Similarly, computing $\mathbf{C}^\top\mathbf{C}$ for $\mathbf{C} \in \mathbb{R}^{q \times n}$ takes $\mathcal{O}(n^2q)$ FLOPS. Thus, computing the Gramians \mathbf{P} and \mathbf{Q} requires $\mathcal{O}(n^2p + 3n^2)$ and $\mathcal{O}(n^2q + 3n^2)$ FLOPS, respectively.

1299 Step 3: Computing the HSV form the spectrum of $\mathbf{P}\mathbf{Q}$ requires computing the SVD of the product
1300 of the gramians, which requires $\mathcal{O}(n^3)$ FLOPS.
1301

1302 Step 4: finding the smallest rank r that maintains at least τ of the total energy requires computing
1303 the cumulative sum of the HSV, which is $\mathcal{O}(n)$ FLOPS.

1304 Step 6: Transforming the system

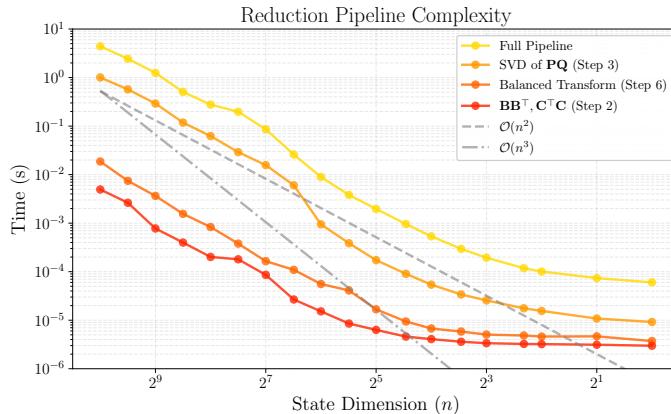
$$(A_b, B_b, C_b) = (T^{-1}AT, T^{-1}B, CT) \quad (16)$$

1307 to its balanced truncation costs $\mathcal{O}(n^3)$.
1308

1309 Thus, the total cost of balanced truncation is $\mathcal{O}(n^3 + n^2q + n^2p)$. Importantly, for LTI systems, the
1310 cost of balanced truncation is independent of the length of the input sequence.

1311 To empirically validate these theoretical complexity bounds, we benchmark the key operations in
1312 the reduction pipeline for state dimensions ranging from $n = 1024$ to $n = 1$. Figure 12 shows the
1313 timing results for each dimension. The Gramian computation (Step 2) exhibits clear $\mathcal{O}(n^2)$ scaling,
1314 while the HSV computation via SVD (Step 3) and the balanced transformation (Step 6) both display
1315 $\mathcal{O}(n^3)$ behavior, consistent with our analysis. The full pipeline is dominated by the cubic operations,
1316 as expected from the total complexity of $\mathcal{O}(n^3 + n^2q)$.

1317 Importantly, these benchmarks confirm that the reduction overhead remains modest even for large
1318 state dimensions. For example, at $n = 128$, the full reduction pipeline completes in under 0.1
1319 seconds, while at $n = 512$, it requires approximately 3 seconds. This overhead is negligible com-
1320 pared to the cumulative training time saved through in-training reduction, as demonstrated above in
1321 Section D.1, where models achieve significant speedups despite periodic reduction steps.



1336 Figure 12: Empirical scaling of reduction pipeline operations. The Gramian computation (Step 2)
1337 is in red, the balanced transformation (Step 6) in dark orange, the HSV computation via SVD of
1338 $\mathbf{P}\mathbf{Q}$ (Step 3) in bright orange and the full reduction pipeline in yellow. Gray reference lines show
1339 theoretical $\mathcal{O}(n^2)$ and $\mathcal{O}(n^3)$ scaling for asymptotic behavior comparison.
1340

1341
1342
1343
1344
1345
1346
1347
1348
1349

1350

1351

1352

1353

E SELECTIVE SSMs, SISO SYSTEMS AND MAMBA

1354

1355 In this section, we examine how COMPRESSM can be adapted to the broader landscape of selective
 1356 state-space models, where the system dynamics depend explicitly on the input. We first outline
 1357 practical strategies for handling such LTV/LPV architectures, emphasizing the computational chal-
 1358 lenges that arise when the system matrices vary with the signal. We then clarify the key distinction
 1359 between per-channel SISO formulations and fully coupled MIMO state-space models, as this struc-
 1360 tural choice fundamentally shapes how state dimension influences model capacity and, consequently,
 1361 how effective any reduction method can be. Finally, we present an in-depth case study on Mamba,
 1362 demonstrating both the viability of our reduction framework in this selective, SISO setting and the
 1363 specific limitations that emerge—highlighting where COMPRESSM succeeds, where the underlying
 1364 architecture constrains performance gains, and how these insights point toward future extensions to
 1365 richer MIMO-based designs.

1366

E.1 SELECTIVE SSMs HANDLING

1367

1368 Let \mathcal{G} be a discrete *Linear Time-Varying (LTV)* system described by state equations:

1369

$$\begin{aligned} \mathbf{h}(k+1) &= \mathbf{A}_k \mathbf{h}(k) + \mathbf{B}_k \mathbf{x}(k), & \mathbf{h}(0) &= \mathbf{h}_0 \\ \mathbf{y}(k) &= \mathbf{C}_k \mathbf{h}(k) + \mathbf{D}_k \mathbf{x}(k), \end{aligned} \quad (17)$$

1370

1371 where the state matrices also depend on time.

1372

1373 Selective SSMs are built with dynamical systems that fall under a special case of LTV systems, the
 1374 linear parameter varying (LPV) framework, with the parameter being the layer input. Such systems
 1375 are also referred to as Linear Input Varying (LIV) and their general case state equations are given
 1376 by,

1377

$$\mathbf{h}(k+1) = \mathbf{A}(\mathbf{x}(k)) \mathbf{h}(k) + \mathbf{B}(\mathbf{x}(k)) \mathbf{x}(k), \quad \mathbf{h}(0) = \mathbf{h}_0 \quad (18)$$

1378

$$\mathbf{y}(k) = \mathbf{C}(\mathbf{x}(k)) \mathbf{h}(k) + \mathbf{D}(\mathbf{x}(k)) \mathbf{x}(k), \quad (19)$$

1379

1380

1381 For these systems, the controllability and observability Gramians are no longer stationary. In par-
 1382 ticular, for each possible input $\mathbf{x} \in \mathcal{X}$, one would in principle need to solve a set of Lyapunov
 1383 inequalities of the form

1384

$$\mathbf{A}(\mathbf{x}) \mathbf{P}(\mathbf{x}) \mathbf{A}^T(\mathbf{x}) - \mathbf{P}(\mathbf{x}) + \mathbf{B}(\mathbf{x}) \mathbf{B}^T(\mathbf{x}) \leq 0, \quad (20)$$

1385

$$\mathbf{A}^T(\mathbf{x}) \mathbf{Q}(\mathbf{x}) \mathbf{A}(\mathbf{x}) - \mathbf{Q}(\mathbf{x}) + \mathbf{C}^T(\mathbf{x}) \mathbf{C}(\mathbf{x}) \leq 0, \quad (21)$$

1386

1387 so that the Gramians \mathbf{P} and \mathbf{Q} are input-dependent.

1388

1389 In practice, solving for fully input-dependent Gramians and applying the subsequent per input reduc-
 1390 tion is clearly neither computationally tractable nor practical. A common simplification is to seek
 1391 input-invariant Gramians \mathbf{P}, \mathbf{Q} that satisfy the inequalities for all $\mathbf{x} \in \mathcal{X}$; this reduces the problem
 1392 to an LTI-like Lyapunov condition over all inputs, which can still be expensive for high-dimensional
 1393 \mathcal{X} , when such a solution even exists. In practice this is still too constraining.

1394

1395 A cheaper alternative is simply averaging the dynamics over the input space:

1396

1397

$$\bar{\mathbf{A}} = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{A}(\mathbf{x}), \quad \bar{\mathbf{B}} = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{B}(\mathbf{x}), \quad \bar{\mathbf{C}} = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{C}(\mathbf{x}), \quad (22)$$

1398

1399

1400 The caveat is that the mean system may not be stable, controllable, or observable; one may therefore
 1401 need to regularize the mean matrices to satisfy these assumptions before applying a single global
 1402 reduction based on the LTI approach. We study the case of Mamba (Gu & Dao, 2024) and provide a
 1403 practical implementation as well as results in Section E.3 (with the caveat discussed in the following
 1404 section E.2).

1405

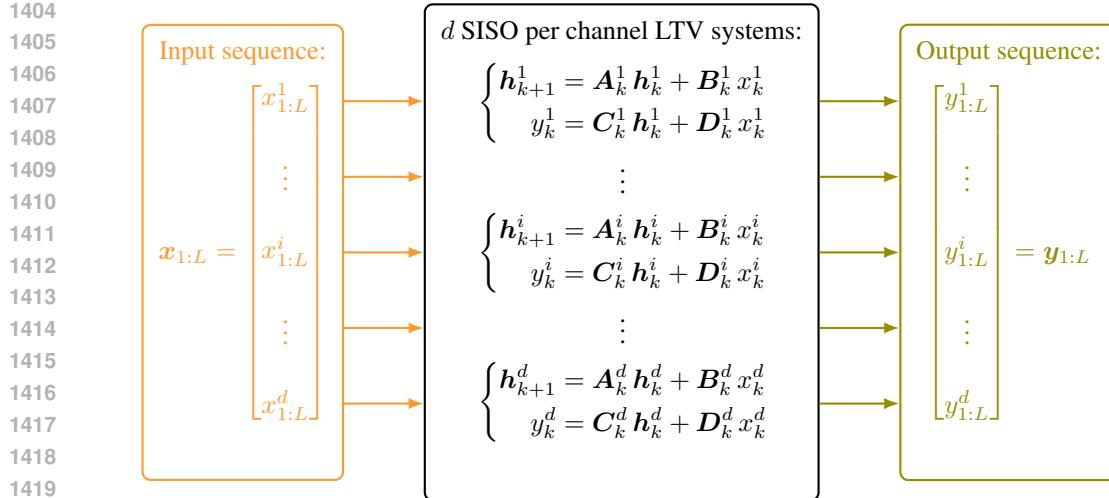


Figure 13: SISO state-space system applied independently to each input channel, with separate latent states per channel.

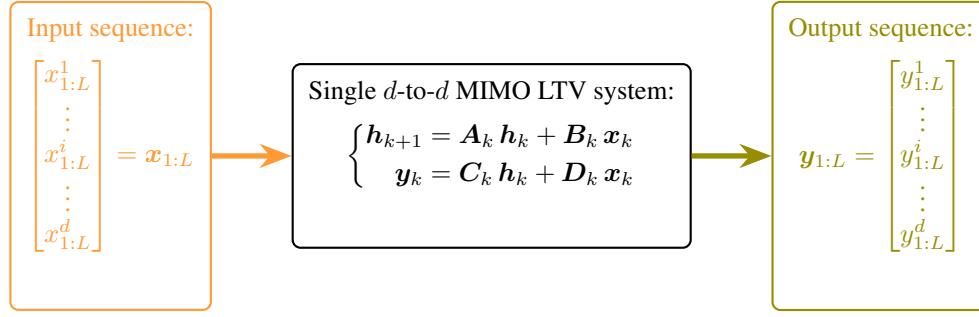


Figure 14: MIMO state-space system where a single latent state evolves jointly for all input channels and produces all outputs.

E.2 STATES IN MIMO vs SISO SYSTEMS

Sequence models based on state-space layers can differ in how their hidden state is used to map inputs to outputs. Indeed, some models employ a *multi-input multi-output* (MIMO) approach while others use a per channel *single-input single-output* (SISO) state-space structure.

In a MIMO linear dynamical system, a state vector of dimension n governs the evolution of an entire d -dimensional feature vector. The state therefore directly mediates interactions among all channels, and its expressive capacity contributes jointly to all output degrees of freedom. State size n thus acts as a meaningful global capacity measure: increasing n expands the shared dynamical subspace available to all features.

By contrast, many popular state-space architectures—including several LTI models (e.g., S4 (Gu et al., 2021), S5 (Smith et al., 2022)) and LTV models (e.g., Mamba (Gu & Dao, 2024), Liquid-S4 (Hasani et al., 2022) variants)—adopt a SISO formulation. In these designs, each feature channel is processed by an independent 1D state-space system, so the latent state predicts the evolution of a *single* input-output mapping rather than the entire feature vector. We provide visualizations of these differences in approach in figures 13 and 14. While per-channel SISO formulations scale efficiently due to parallelization, their per-channel factorization dilutes the expressive advantage normally associated with larger state dimensions. We observe that for LRA experiments, the state dimension hyperparameter does not seem to be a main performance driver (more on this in Section E.3). Future work will extend implementation to experiments where such

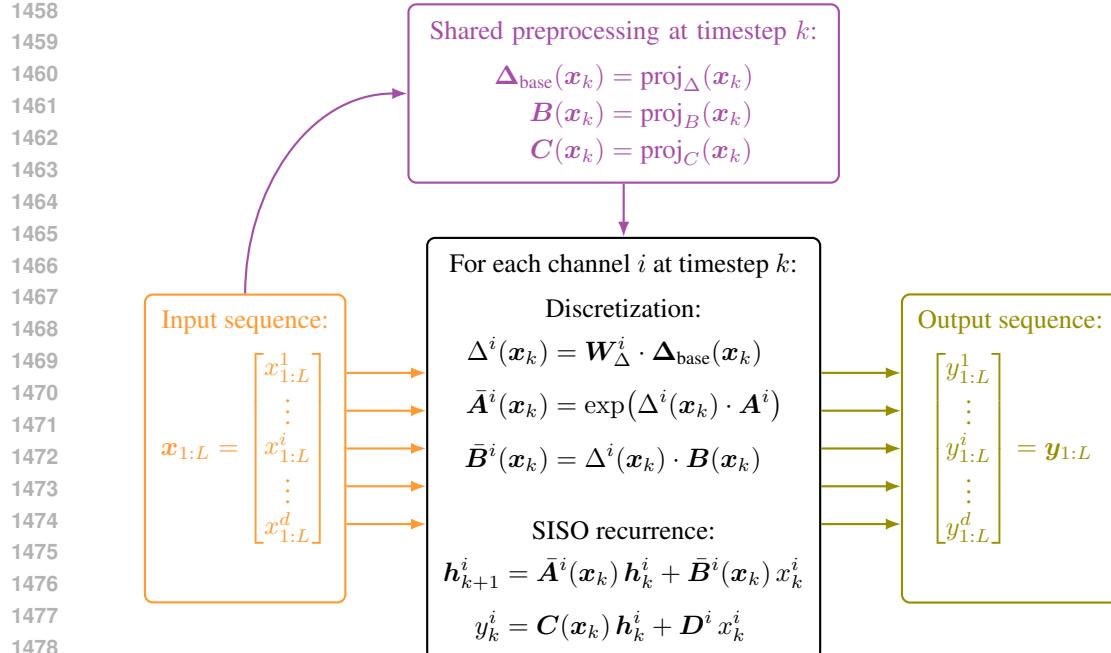


Figure 15: Vanilla S6 computation flow

models do benefit from larger states (language tasks are perhaps more suited).

Not all LTV architectures are limited to SISO formulations. Several state-of-the-art designs, such as Griffin (De et al., 2024), employ MIMO state transitions, while others —building on linear attention models (Katharopoulos et al., 2020)— like DeltaNet (Yang et al., 2025) use matrix-valued dynamical updates. We consider extending our reduction framework to such systems an exciting direction for future work.

E.3 MAMBA CASE STUDY

In this section, we take a deep dive into applying COMPRESSM to Mamba. Our goals are threefold: (i) to demonstrate the feasibility of selective system handling, (ii) to show that the framework’s ideas extend cleanly to more intricate initializations such as Mamba’s S6 layer, and (iii) to better understand the limitations and structural constraints that arise.

E.3.1 MAMBA INITIALIZATION AND COMPUTATIONAL GRAPH

Reasoning about balanced truncation for Mamba is nontrivial because the per-channel SISO discrete LTV systems are coupled through shared projections and the input-dependent discretization. We begin by breaking down the computations inside the selective recurrent layer (S6), as illustrated by the diagram in Figure 15.

Initialization and shared structure. Mamba instantiates d_{inner} single-input single-output (SISO) channels that all depend on a single sequence of projected features. At timestep k , the shared preprocessing block produces matrices $\Delta_{\text{base}}(\mathbf{x}_k)$, $\mathbf{B}(\mathbf{x}_k)$, and $\mathbf{C}(\mathbf{x}_k)$ that are reused by every channel. Each channel i owns a diagonal continuous-time drift matrix \mathbf{A}^i and scales the shared discretization through a learned vector \mathbf{W}_Δ^i , yielding $\Delta^i(\mathbf{x}_k) = \mathbf{W}_\Delta^i \Delta_{\text{base}}(\mathbf{x}_k)$. The lifted discrete parameters are

$$\bar{\mathbf{A}}^i(\mathbf{x}_k) = \exp(\Delta^i(\mathbf{x}_k) \mathbf{A}^i), \quad \bar{\mathbf{B}}^i(\mathbf{x}_k) = \Delta^i(\mathbf{x}_k) \mathbf{B}(\mathbf{x}_k), \quad \bar{\mathbf{C}}^i(\mathbf{x}_k) = \mathbf{C}(\mathbf{x}_k).$$

1512 The recurrence evolves according to
 1513

$$1514 \quad \mathbf{h}_{k+1}^i = \bar{\mathbf{A}}^i(\mathbf{x}_k) \mathbf{h}_k^i + \bar{\mathbf{B}}^i(\mathbf{x}_k) x_k^i, \\ 1515 \quad y_k^i = \bar{\mathbf{C}}^i(\mathbf{x}_k) \mathbf{h}_k^i + \mathbf{D}^i x_k^i.$$

1517 Although channels are nominally independent, they all consume the same $\mathbf{B}(\mathbf{x}_k)$ and $\mathbf{C}(\mathbf{x}_k)$, which
 1518 couple their effective dynamics through the shared projections. This coupling is central to the diffi-
 1519 culty of applying balanced truncation.
 1520

1521 Why balanced truncation is challenging.

1522 Classical balanced truncation assumes a time-invariant LTI system with fixed $(\mathbf{A}, \mathbf{B}, \mathbf{C})$. Mamba
 1523 violates these assumptions in several ways:

- 1524 (i) $\bar{\mathbf{A}}^i(\mathbf{x}_k)$, $\bar{\mathbf{B}}^i(\mathbf{x}_k)$, and $\bar{\mathbf{C}}^i(\mathbf{x}_k)$ vary with inputs at every timestep, making the controllability
 1525 and observability Gramians state-dependent;
- 1526 (ii) $\mathbf{B}(\mathbf{x}_k)$ and $\mathbf{C}(\mathbf{x}_k)$ are shared across channels, so balancing each channel independently
 1527 would break the shared projections shown in the first figure;
- 1528 (iii) the selective-scan CUDA kernels rely on hard-coded loop bounds tied to the *full* state di-
 1529 mension, meaning that even if the desired reduced rank were known, the runtime cost would
 1530 not change unless the kernels become rank-aware.

1532 These factors make a naive application of balanced truncation both mathematically awkward and
 1533 computationally inefficient.
 1534

1535 1536 E.3.2 PRACTICAL REDUCTION WORKFLOW

1537 To enable COMPRESSM with Mamba, we opt for a pragmatic implementation that relies on the
 1538 recipe described and illustrated in Figure 16.
 1540

1541 **Mean LTI surrogates.** During calibration, each channel i accumulates running averages over
 1542 inputs $\bar{\mathbf{B}}^i$, $\bar{\mathbf{C}}$, and $\bar{\Delta}^i$. These define a stationary proxy

$$1543 \quad (\tilde{\mathbf{A}}^i, \tilde{\mathbf{B}}^i, \tilde{\mathbf{C}}),$$

1545 which approximates the expected discrete dynamics of channel i . This surrogate temporarily de-
 1546 couples the channels, enabling per-channel Gramian computation without destroying the shared
 1547 projection structure.
 1548

1549 **Per-channel balancing and rank selection.** From each surrogate we form controllability and
 1550 observability Gramians \mathbf{P}^i and \mathbf{Q}^i . Their product yields the Hankel singular values \mathbf{g}^i , which
 1551 determine the retained dimensionality \mathbf{r}^i . We compute the balancing transform \mathbf{T}^i and its inverse
 1552 $(\mathbf{T}^i)^{-1}$ that simultaneously diagonalize the Gramians \mathbf{P}^i and \mathbf{Q}^i .

1553 Applying $(\mathbf{T}^i)^{-1} \tilde{\mathbf{A}}^i \mathbf{T}^i$ and truncating to the first \mathbf{r}^i rows/columns produces $\mathbf{A}_{\text{red}}^i$. Similarly,

$$1554 \quad \mathbf{B}_{\text{red}}^i = (\mathbf{T}^i)^{-1} \tilde{\mathbf{B}}^i [: \mathbf{r}^i], \quad \mathbf{C}_{\text{red}}^i = \tilde{\mathbf{C}} \mathbf{T}^i [:, : \mathbf{r}^i].$$

1557 A key implementation detail is that we *store both* \mathbf{T}^i and $(\mathbf{T}^i)^{-1}$. This allows us to reapply the same
 1559 rotation-and-truncation to fresh on-the-fly projections $\mathbf{B}(\mathbf{x}_k)$ and $\mathbf{C}(\mathbf{x}_k)$ at runtime. These cached
 1560 transforms anchor the reduced subspace consistently across all timesteps.
 1561

1562 **Runtime reuse of the stored transforms.** At execution time, Mamba still produces $\mathbf{B}(\mathbf{x}_k)$ and
 1563 $\mathbf{C}(\mathbf{x}_k)$ at every timestep. For each channel i , we retrieve the cached \mathbf{T}^i and $(\mathbf{T}^i)^{-1}$ and compute

$$1564 \quad \bar{\mathbf{B}}^i(\mathbf{x}_k) = (\mathbf{T}^i)^{-1} \mathbf{B}(\mathbf{x}_k), \quad \bar{\mathbf{C}}^i(\mathbf{x}_k) = \mathbf{C}(\mathbf{x}_k) \mathbf{T}^i.$$

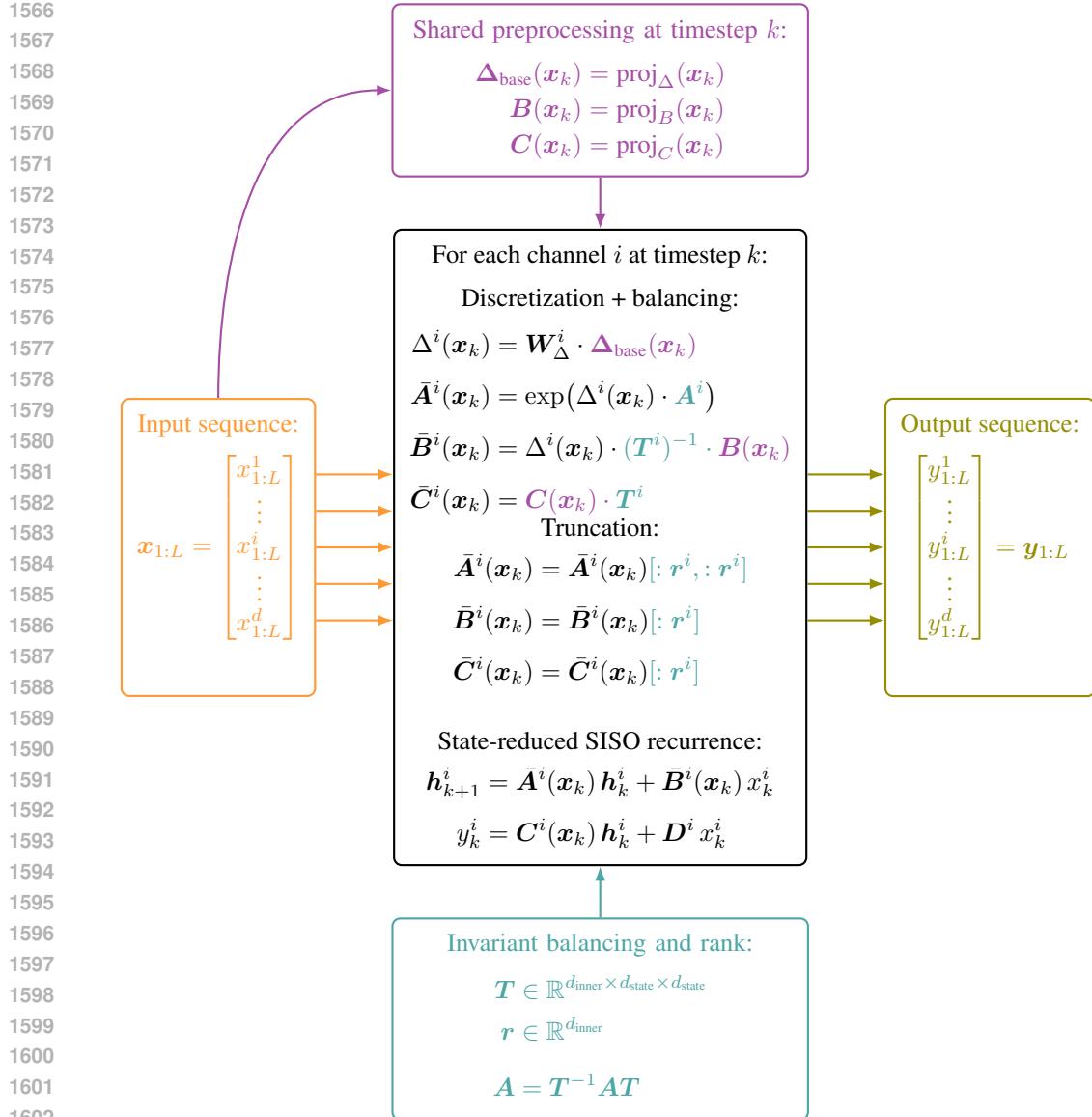
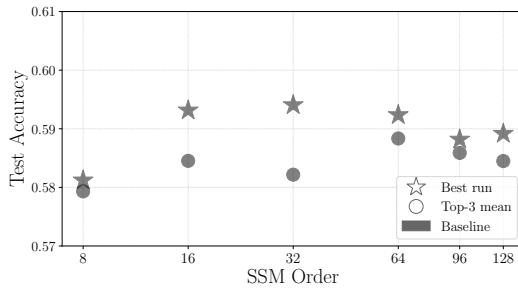


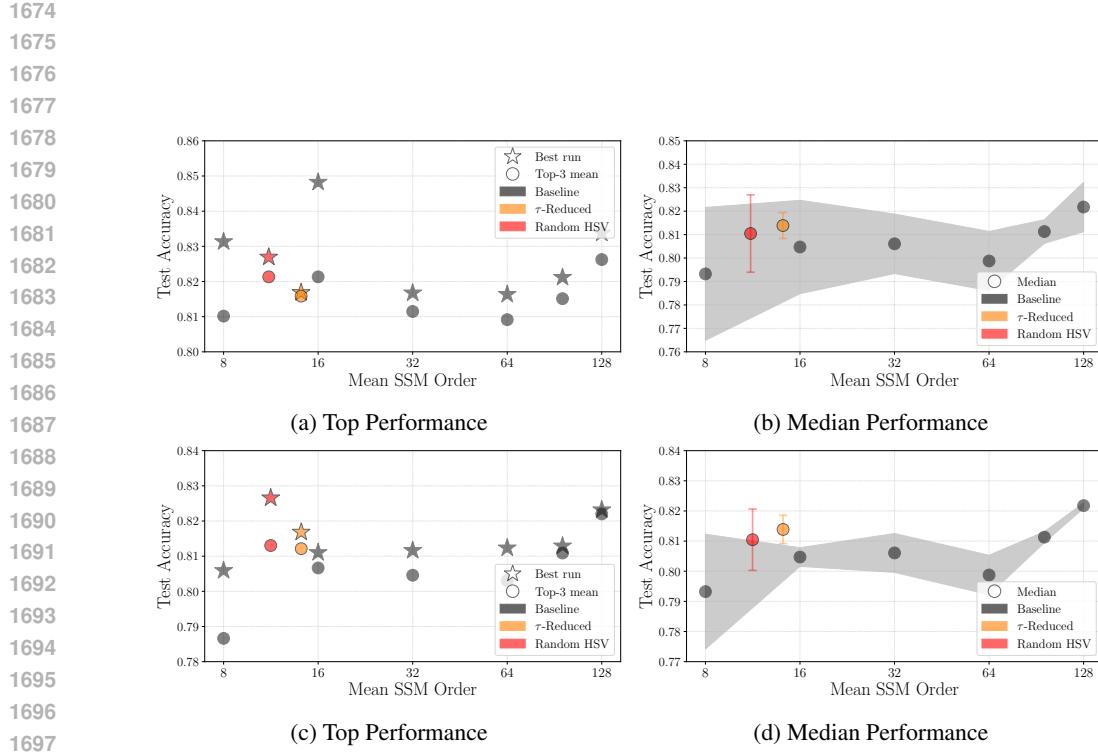
Figure 16: CompreSSM S6 computation flow

We then keep only the first r^i coordinates before feeding the selective recurrence. The vector of ranks $\mathbf{r} = (r^1, \dots, r^{d_{\text{inner}}})$ is passed to the selective-scan CUDA kernels, which terminate their inner loops at r^i for channel i . This eliminates all work on pruned coordinates and makes the runtime cost proportional to the reduced dimension.

Because the transforms are stored persistently and applied to both $\mathbf{B}(\mathbf{x}_k)$ and $\mathbf{C}(\mathbf{x}_k)$, every timestep is automatically consistent with the balanced dynamics of \mathbf{A}^i . Meanwhile, the kernels never expand computation beyond the retained modes. These mechanisms—depicted in Figure 16—preserve Mamba’s expressive shared projections while enabling efficient selective reductions.

Overall, the workflow turns the highly coupled Mamba initialization into a collection of tractable mean systems, applies balanced truncation per channel, and enforces those ranks consistently throughout training and inference. Crucially, this is achieved without ever baking static reduced weights into the model: the reduction lives in the transforms and their runtime application, not in frozen parameter tensors.

1620
1621 E.3.3 EXPERIMENTAL EVALUATION:
1622
1623
1624
1625
1626
1627
1628
1629
1630
16311632 Figure 17: Performance of Mamba on CIFAR on five different random seeds. Grey markers corre-
1633 spond to non-reduced models. Stars correspond to best runs, circles to the top-3 mean.
16341635 We train Mamba on IMDB to showcase CompreSSM for LTV systems (see Section E.1). The results
1636 can be found in Figure 18.
16371638 Figure 18a shows there is only a weak correlation between performance and state dimension in this
1639 setup, which we believe is due to the single-input-single-output (SISO) nature of Mamba. This
1640 observation is confirmed on CIFAR, performance is stable for state dimensions ranging from 128 to
1641 8. Nevertheless, larger state-size does seem to help stabilize training, as indicated in Figure 18b.
16421643 Because of this weak correlation, we only evaluate CompreSSM on IMDB to confirm the in-training
1644 speedup also holds for LTV systems.
16451646 We test the performance of CompreSSM in this setting by compressing with $\tau = 0.001$. This means
1647 the model retains at least 99.99% of its energy at every reduction step. The final model has an
1648 average state dimension of ~ 12 , starting from 128. This shows that the HSV spectrum is very
1649 tail-heavy, with most energy in just a hand full of dimensions. This explains why random dropping
1650 of HSV (the red markers in Figure 18) performs competitively with balanced truncation (the orange
1651 markers), though at a higher variance.
16521653 Even though the correlation between state dimension and performance is not very strong, Com-
1654 preSSM yields competitive performance on Mamba, at a lower variance. Especially when account-
1655 ing for outliers. However, we believe the approach for LTI systems should be refined in later works
1656 to account for heavy-tailed distributions of HSV.
16571658 Beyond maintaining competitive performance, our implementation achieves significant training time
1659 speedups for LTV systems. Figure 19 demonstrates that a model initialized with state dimension 128
1660 and progressively reduced to ~ 14 using $\tau = 0.001$ trains in approximately the same time as a model
1661 that starts and remains at dimension 16. This represents a substantial speedup of $\sim 4\times$ compared
1662 to the full 128-dimensional baseline. These speedups are even more impressive than those reached
1663 with LRU, though that can be down to multiple factors as the codebases use different libraries (we
1664 run LRU in JAX and Mamba in PyTorch).
1665
1666
1667
1668
1669
1670
1671
1672
1673



1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 18: **Performance of Mamba on IMDB on five random seeds.** Grey markers correspond to non-reduced models, orange is a model reduced using $\tau = 0.001$. Red corresponds to random dropping of HSV. Plots on the left column show top-3 and top-1 performance (circle and star), plots in the right column mean performance. The first row considers all five random seeds, while the second row drops the best and the worst run.

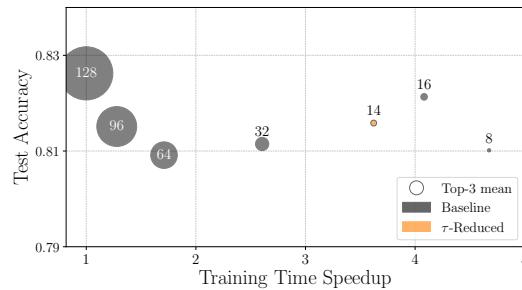


Figure 19: **Training time speedup for Mamba on IMDB.** The orange marker shows the CompreSSM-reduced model ($\tau = 0.001$, starting from dimension 128 and reducing to ~ 14). The gray markers represent the baseline runs. Data point size is proportional to final state dimension.

1728

1729

1730

1731

F COMPRESSM VERSUS OTHER COMPRESSION TECHNIQUES

1732

1733

1734

1735

1736

1737

1738

1739

In this section we pit COMPRESSM against other popular compression techniques. For SSMs, the paradigm of HSV nuclear norm regularization has established itself recently as an promising avenue. We discuss its shortcomings and make a case for the superiority of our framework both in terms of performance as well as training time. Similar arguments are also made about the student-teacher distillation paradigm. We remind the reader who might have ventured thus far that the main appeal of COMPRESSM is that it does not require training the full capacity model to completion before applying any reduction scheme, a point we hope to make a crystal clear case for in the experiments below.

1740

1741

1742

F.1 HANKEL NUCLEAR NORM REGULARIZATION

1743

1744

1745

1746

1747

1748

We investigate the differences in approach between COMPRESSM and spectral regularization techniques presented in the works of Forgione et al. (2024) which attempt both Hankel nuclear norm and modal ℓ_1 regularization on the LRU model, and the contribution of Schwerdtner et al. (2025) which performs Hankel nuclear norm regularization on MIMO SSMs parametrized via scaled rotation matrices.

1749

1750

1751

We shall discuss Hankel norm regularization only as ℓ_1 regularization, although extremely cheap to compute, does not have any proper theoretical links to input-output mapping behavior apart from intuition on the frequency of dynamics as discussed in Forgione et al. (2024).

1752

1753

1754

F.1.1 DIFFERENTIABLE HANKEL NUCLEAR NORM REGULARIZATION

1755

1756

1757

1758

We regularize the LTI dynamics inside each SSM layer by penalizing the nuclear norm of the product of the controllability and observability Gramians, \mathbf{P}_θ and \mathbf{Q}_θ . This encourages the system to have rapidly decaying Hankel singular values, promoting low effective state dimension.

1759

1760

For a diagonal state-transition matrix $\mathbf{A}_\theta = \text{diag}(\lambda_\theta)$, the Gramians admit closed-form solutions. The discrete-time controllability and observability Lyapunov equations,

$$\mathbf{A}_\theta \mathbf{P}_\theta \mathbf{A}_\theta^T - \mathbf{P}_\theta + \mathbf{B}_\theta \mathbf{B}_\theta^T = 0, \quad (23)$$

$$\mathbf{A}_\theta^T \mathbf{Q}_\theta \mathbf{A}_\theta - \mathbf{Q}_\theta + \mathbf{C}_\theta^T \mathbf{C}_\theta = 0, \quad (24)$$

have elementwise solutions

$$(\mathbf{P}_\theta)_{ij} = \frac{(\mathbf{B}_\theta \mathbf{B}_\theta^T)_{ij}}{1 - \lambda_{\theta,i} \lambda_{\theta,j}}, \quad (25)$$

$$(\mathbf{Q}_\theta)_{ij} = \frac{(\mathbf{C}_\theta^T \mathbf{C}_\theta)_{ij}}{1 - \lambda_{\theta,i} \lambda_{\theta,j}}. \quad (26)$$

The Hankel singular values follow the same definition as in the main text (Eq. 4):

$$\sigma(\theta) = \text{sort}_\downarrow \left(\sqrt{\text{spec}(\mathbf{P}_\theta \mathbf{Q}_\theta)} \right), \quad (27)$$

and we denote the k -th one by $\sigma_k(\theta)$.

The nuclear norm penalty is therefore

$$\|\mathbf{P}_\theta \mathbf{Q}_\theta\|_* = \sum_{k=1}^n \sigma_k(\theta). \quad (28)$$

Differentiability. All operations needed to compute $\sigma_k(\theta)$ are differentiable:

1782 1. The SSM parameters $(A_\theta, B_\theta, C_\theta)$ are differentiable by design.
 1783 2. The diagonal Lyapunov solutions involve only multiplication and division.
 1784 3. The eigenvalues of $P_\theta Q_\theta$ are differentiable almost everywhere.
 1785 4. The square root and summation operations preserve differentiability.
 1786

1788 Thus the regularized objective,

1790
$$\mathcal{L}_{\text{reg}}(\theta) = \alpha \mathcal{L}_{\text{task}}(\theta) + \beta \sum_{l=1}^L \sum_{k=1}^{n_l} \sigma_{l,k}(\theta), \quad (29)$$

1792 is fully compatible with automatic differentiation.

1794 Backpropagation through the entire computation,

1796
$$\theta \mapsto (\lambda, B, C) \mapsto (P_\theta, Q_\theta) \mapsto P_\theta Q_\theta \mapsto \sigma(\theta),$$

1798 is supported natively in JAX.

1800 **Numerical Stability.** During training we apply the following stabilizations:

1802 • Add a small diagonal shift ϵI to P_θ and Q_θ .
 1803 • Clamp eigenvalues of $P_\theta Q_\theta$ to be non-negative before applying $\sqrt{\cdot}$.
 1804 • Clip denominators $1 - \lambda_i \lambda_j$ to avoid division near zero.

1809 F.1.2 PERFORMANCE AND COMPUTATIONAL COST

1810 We use the sMNIST dataset with a single LRU block trained with an initial state dimension of 256 as
 1811 our experimental setup. For ten different initial seeds, we train the model to completion (200k) with
 1812 Hankel nuclear norm regularization as discussed in Section F.1.1 with $\alpha = 1, \beta = 0.1$ in Equation 29
 1813 (following values used in Forgiore et al. (2024)), then reduce it to the values obtained for various
 1814 tolerance levels with COMPRESSM presented in the main text in Table 1. More precisely, we apply
 1815 balanced truncation down to state dimension 191, 148, 76, 47, 28, and 13, and evaluate the test
 1816 performance of the reduced models. Table 5 provides the test performance and mean batch gradient
 1817 step speed with respect to training at state dimension 256 *without* any regularization terms.

1818 The results highlight three central limitations of relying on Hankel Nuclear Norm (HNN) regulari-
 1819 zation for producing compact state-space models:

1822 1. **HNN regularization is computationally prohibitive.** Training must occur at the full state
 1823 dimension with the regularizer applied at every step. Because evaluating the Hankel nuclear
 1824 norm requires computing the eigenvalues of $P_\theta Q_\theta$ at each gradient update, training is
 1825 roughly $16\times$ slower than unconstrained optimization in our experiments.

1826 2. **HNN-regularized models exhibit constrained performance.** The regularization forces
 1827 rapidly decaying Hankel singular values, which reduces effective model capacity and leads
 1828 to measurable accuracy degradation compared to unconstrained training—consistent with
 1829 findings in Forgiore et al. (2024). Even before any reduction, the HNN-trained model fails
 1830 to reach baseline accuracy.

1831 3. **HNN is dramatically less efficient than COMPRESSM for obtaining low-dimensional
 1832 models.** For example, achieving a final dimension of 28 yields 96.9% accuracy with COM-
 1833 PRESSM versus only 95.8% when training the full 256-dimensional model with HNN and
 1834 reducing afterward. Moreover, COMPRESSM reaches this result with a $46\times$ effective speed
 1835 advantage, since reductions are performed early and training proceeds at much smaller state
 sizes.

1836
 1837 Table 5: Top-3 mean sMNIST test performance (accuracy %) and batch gradient step speedup for
 1838 different final state dimensions (rounded mean for COMPRESSM) with ten different random seeds.
 1839 Results compare COMPRESSM, Baseline, and Hankel Nuclear Norm (HNN) regularization.

Method	Metric	Final State Dimension						
		13	28	47	76	148	191	256
Baseline	Accuracy (%)	92.6	96.0	95.9	96.4	97.3	97.3	97.3
	Speed \times	3.1	2.8	2.7	2.4	2.0	1.7	1.0
COMPRESSM	Accuracy (%)	95.9	96.9	96.9	96.9	97.0	97.2	-
	Speed \times	2.8	2.6	2.5	2.3	1.9	1.6	-
HNN Regularization	Accuracy (%)	91.7	95.8	95.8	95.8	95.8	95.8	95.9
	Speed \times	0.06	0.06	0.06	0.06	0.06	0.06	0.06

1850
 1851 Taken together, these points show that while HNN-regularized models are compressible, the combi-
 1852 nation of high computational cost and constrained accuracy makes them impractical for achieving
 1853 high-performance low-dimensional SSMs. In contrast, COMPRESSM provides a more effective and
 1854 scalable alternative, combining strong accuracy, efficient training, and substantial compression.

1855 F.2 KNOWLEDGE DISTILLATION

1856 We furthermore compare CompreSSM to knowledge distillation Hinton et al. (2015) on CIFAR10,
 1857 where the teacher has a state dimension of 384 and the students have the same state dimension as
 1858 the final, in-training compressed models (see Table 6).

1859 The effective knowledge distillation loss for classification \mathcal{L} is a superposition of the cross-entropy
 1860 loss between the student and the targets and the Kulback-Leibler divergence between the teacher
 1861 and the student with temperature scaling:

$$1862 \mathcal{L} = (1 - \alpha)\mathcal{H}(y, \sigma(z_s)) + \alpha T^2 D_{KL}(\sigma(z_t/T) \parallel \sigma(z_s/T))$$

1863 \mathcal{H} denotes the standard cross-entropy loss, y represents the ground truth labels, z_s and z_t are the
 1864 logits of the student and teacher respectively, $\sigma(\cdot)$ is the softmax function, T is the temperature
 1865 parameter, and α is the balancing weight. We use the standard parameters $T = 2$ and $\alpha = 0.5$
 1866 (Timiryasov & Tastet, 2023).

1867 Our experiments reveal that knowledge distillation performs better the closer the state dimension of
 1868 the student is to the one of the teacher. Distilled models perform roughly on par with CompreSSM
 1869 if the state dimension of the student is similar to the one of the teacher. However, our in-training
 1870 reduced models are able to maintain superior performance also for heavily reduced models, while
 1871 knowledge distillation suffers from a clear drop-off.

1872 We furthermore evaluate the total time it takes to obtain the final, distilled model. Knowledge
 1873 distillation not only requires first training a high-dimensional teacher, but also doing a forward pass
 1874 through the teacher while training the student to obtain the logits (see Figure 20). Consequently,
 1875 even after the teacher has been trained to completion, the training speedup small students models
 1876 have compared to larger ones is mitigated.

1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

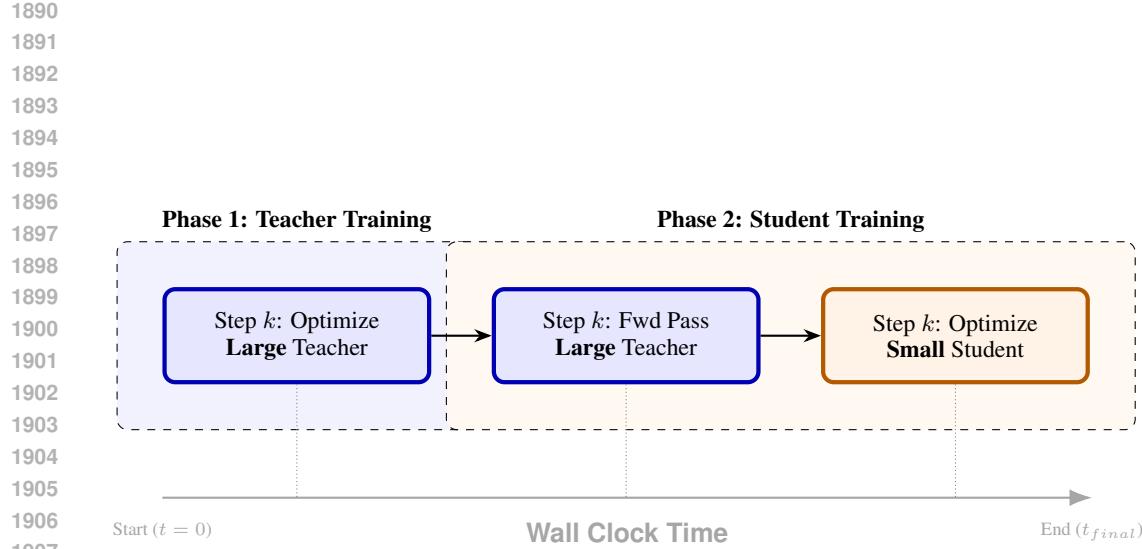


Figure 20: Wall clock time for training a student from a teacher via knowledge distillation. In the first phase, one trains a large teacher. In the second phase, its knowledge is distilled to a smaller student. Every forward step in the second phase requires a pass through both the student and the teacher.

Table 6: Top-3 mean CIFAR10 test performance (accuracy %) and batch gradient step speedup for different final state dimensions (rounded mean for COMPRESSM) with ten different random seeds. Results compare COMPRESSM, Baseline, and Knowledge Distillation.

Method	Metric	Final State Dimension						
		57	93	126	161	214	327	384
Baseline	Accuracy (%)	78.2	81.8	83.7	84.2	84.9	86.0	86.5
	Speed \times	1.69	1.62	1.53	1.43	1.22	1.03	1.0
COMPRESSM	Accuracy (%)	84.4	85.7	86.0	85.8	86.0	86.1	–
	Speed \times	1.58	1.52	1.41	1.33	1.17	1.03	–
Knowledge Distillation	Accuracy (%)	79.4	83.5	84.4	85.3	86.0	87.0	–
	Speed \times	0.55	0.52	0.61	0.51	0.49	0.45	–

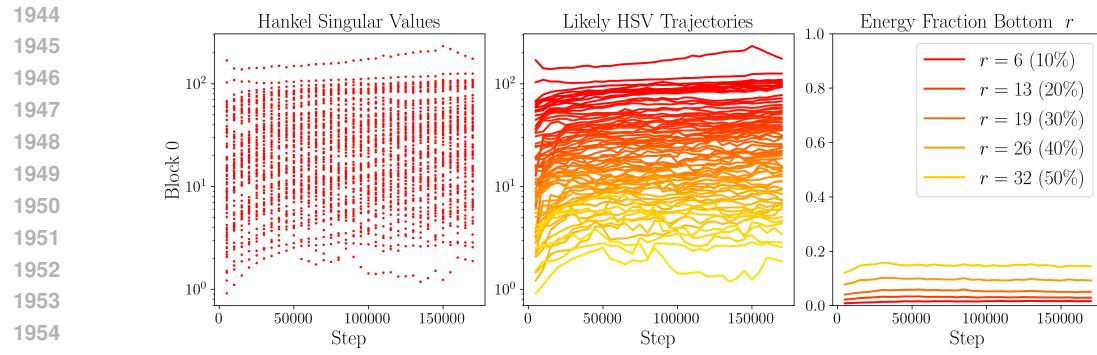


Figure 21: Single LRU block with state dimension of 64 on the sMNIST dataset.

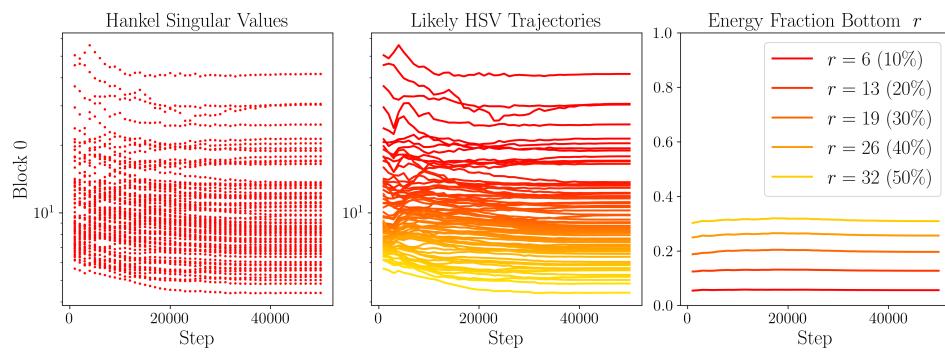


Figure 22: Single LRU block with state dimension of 64 on the IMDB dataset.

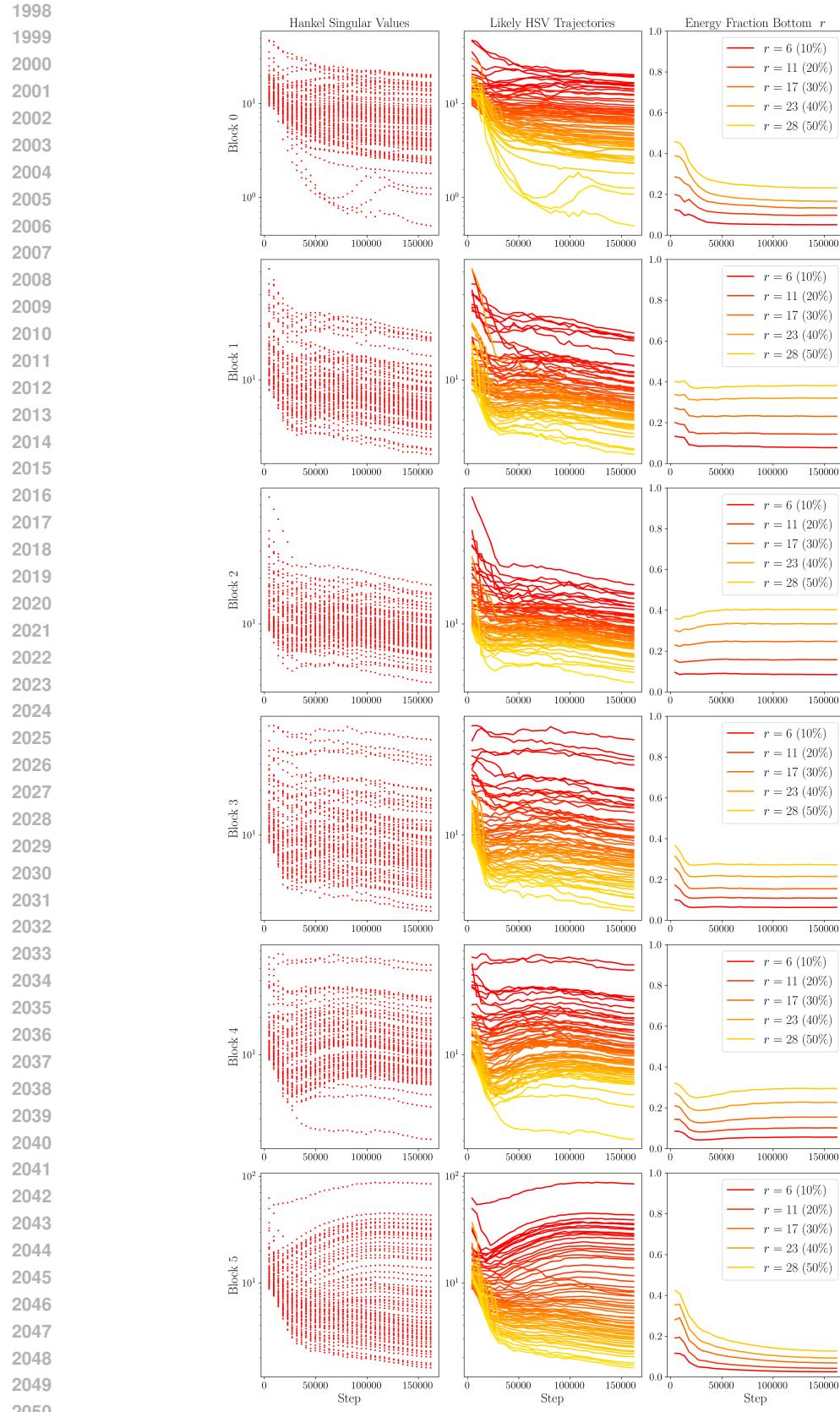


Figure 23: Six LRU blocks with state dimension of 57 on the CIFAR10 dataset.

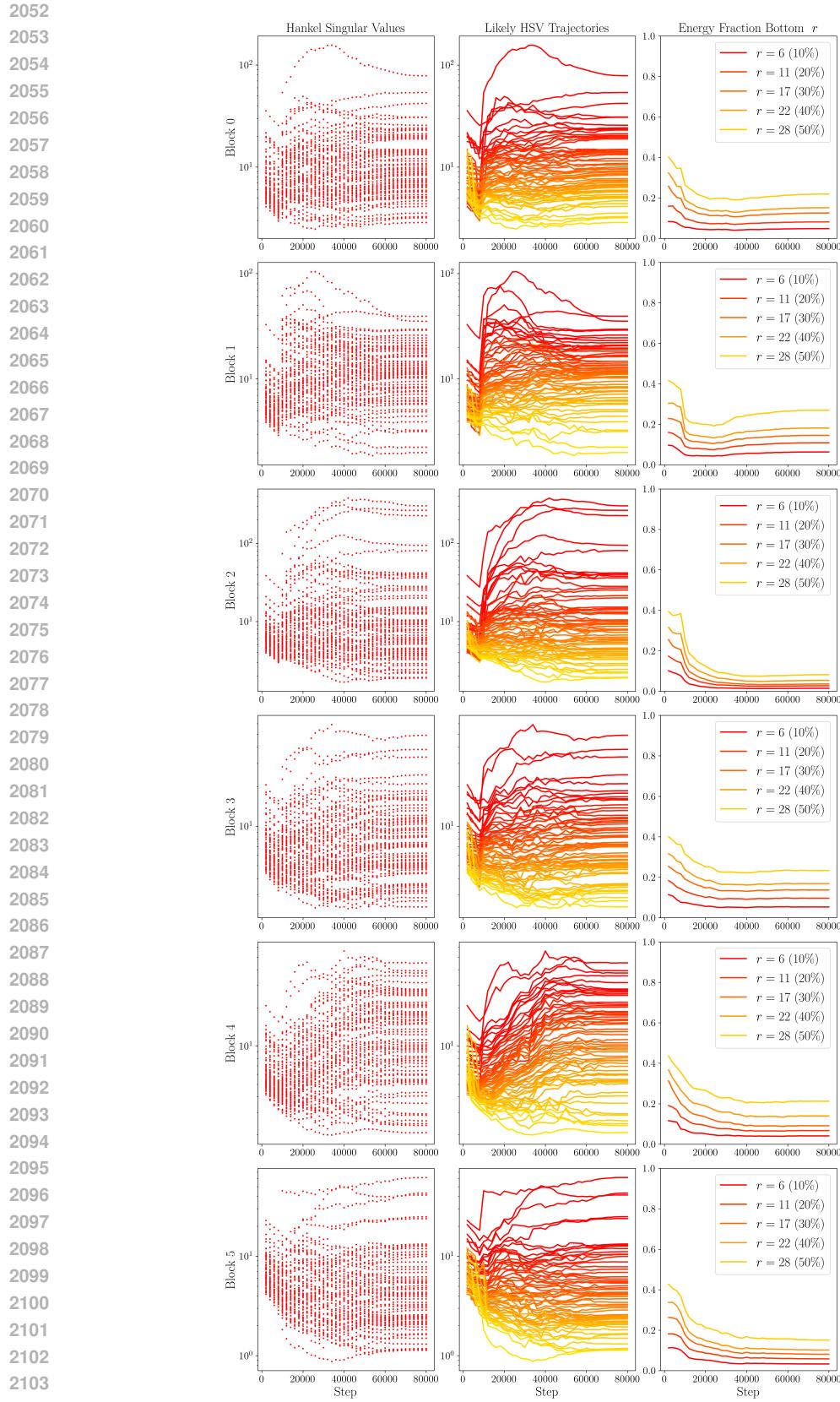


Figure 24: Six LRU blocks with state dimension of 56 on the ListOps dataset.