
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE CURIOUS CASE OF IN-TRAINING COMPRESSION
OF STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

State Space Models (SSMs), developed to tackle long sequence modeling tasks
efficiently, offer both parallelizable training and fast inference. At their core are
recurrent dynamical systems that maintain a hidden state, with update costs scal-
ing with the state dimension. A key design challenge is striking the right balance
between maximizing expressivity and limiting this computational burden. Control
theory, and more specifically Hankel singular value analysis, provides a potent
framework for the measure of energy for each state, as well as the balanced trun-
cation of the original system down to a smaller representation with performance
guarantees. Leveraging the eigenvalue stability properties of Hankel matrices, we
apply this lens to SSMs during training, where only dimensions of high influ-
ence are identified and preserved. Our approach applies to Linear Time-Invariant
SSMs such as Linear Recurrent Units, but is also extendable to selective models.
Experiments show that in-training reduction significantly accelerates optimiza-
tion while preserving expressivity, with compressed models retaining task-critical
structure lost by models trained directly at smaller dimension. In other words,
SSMs that begin large and shrink during training achieve computational efficiency
while maintaining higher performance.

1 INTRODUCTION

State Space Models (SSMs) Gu et al. (2021); Hasani et al. (2022); Smith et al. (2022); Orvieto et al.
(2023); Rusch & Rus (2025) have recently emerged as a powerful alternative to established sequence
models such as Recurrent Neural Networks (RNNs) and Transformers. They combine the paralleliz-
able training efficiency of scaled dot-product attention Vaswani (2017) with the computational and
memory advantages of RNNs, enabling strong performance across large-scale language, vision, and
audio modeling tasks Gu & Dao (2024); Goel et al. (2022); Nguyen et al. (2022).

Despite their efficient structure and recent progress in hardware-aware implementations, current
SSMs remain computationally-intensive. While both memory and runtime scale with sequence
length, the size of the SSM state further amplifies these costs. Reducing the state dimension there-
fore provides an effective strategy to simultaneously reduce memory usage and runtime. This can be
achieved by leveraging techniques from structured compression. However, most existing approaches
are commonly applied post-training: a large model is trained to completion and only compressed
afterwards. Popular examples include knowledge distillation Hinton et al. (2015), post-training
quantization Jacob et al. (2018), low-rank factorization Hu et al. (2022), and structured pruning Li
et al. (2016). All of these methods typically require the costly upfront training of a large network.

In this article, we address the issue of costly pre-training by introducing CompreSSM, a principled
in-training compression technique that effectively reduces the dimension of the SSM while largely
preserving the expressive power of uncompressed models. We motivate our approach by the control-
theoretic origins of SSMs Kalman (1960). In particular, we draw on balanced truncation Antoulas
(2005), a classical Model Order Reduction (MOR) technique that approximates a high-dimensional
state space system with a low-dimensional one while retaining its essential input–output behavior.
Observing that the dominant Hankel Singular Values (HSVs) of an SSM are rank-preserving during
training, we propose truncating dimensions associated with small Hankel singular values once they
fall below a predefined relative threshold.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Main contributions. In the subsequent sections, we will demonstrate the following features of
CompreSSM:

• We rigorously justify the validity of our in-training compression approach by establishing
means to identify and track the HSVs of an SSM during training, and showing that dom-
inant singular values are rank-preserving. Thus, SSM dimensions associated with small
HSVs can be safely truncated.

• We show that CompreSSM is broadly applicable, including to SSMs with structured state
matrices such as diagonal matrices, with simple extensions to Linear Time-Varying systems
discussed.

• We provide an extensive empirical evaluation demonstrating that CompreSSM largely pre-
serves the expressive power of uncompressed models.

• CompreSSM significantly accelerates training, while achieving similar or higher accuracy
than larger uncompressed models by truncating large portions of the state early in training.

2 MATHEMATICAL PRELIMINARIES

2.1 DISCRETE LINEAR TIME INVARIANT SYSTEMS

Let G be a discrete Linear Time-Invariant (LTI) system described by state equations:

h(k + 1) = Ah(k) +Bx(k) , h(0) = h0

y(k) = C h(k) +Dx(k),
(1)

where h ∈ Rn is the state, x ∈ Rp the input, and y ∈ Rq the output, with A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rq×n, and D ∈ Rq×p.

A more general class of systems are Linear Time-Varying (LTV), where the matrices A,B,C,D
are functions of time. Such systems become relevant in the context of selective SSMs, where the
system matrices depend on the input. For now, we restrict to the LTI case as the base framework.
The LTV case is discussed in Appendix A.2.

The LTI framework provides a tractable and well-understood setting in which powerful tools such
as Gramians and balanced truncation can be developed. Before introducing these concepts, we
formalize the standard assumptions of stability, controllability, and observability, which ensure that
the system is both well-posed and non-degenerate. For precise definitions of terms and a detailed
background presentation we refer the reader to chapters 4, 5, and 6 of Chen (1999).
Assumption 2.1. The system is stable, i.e all the eigenvalues of A are of amplitude less than 1.

Assumption 2.2. The pair (A,B) is controllable, i.e., the state h can be be steered from any initial
state to any final state in finite time.

Assumption 2.3. The pair (A,C) is observable, i.e., observing the output y and the input x of the
system for some finite time suffices to determine the initial state h0.

2.1.1 CONTROLLABILITY AND OBSERVABILITY GRAMIANS

The concepts of controllability and observability can be captured quantitatively by matrix-valued
energy measures called Gramians. These respectively encode how easily internal states can be
excited by inputs or observed from outputs.

Under assumptions 2.1 and 2.2, there exist a unique symmetric positive definite solution P ∈ Rn×n

to the discrete Lyapunov equation:

APAT − P +BBT = 0, P =

∞∑
i=0

AiBBT(AT)i (2)

P is known as the discrete controllability Gramian. It intuitively captures how much energy from
the input can reach each state dimension over time. Large entries indicate states that are easily
influenced by inputs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Encoder

SSM block × 𝑛!"#$%&

Decoder

Input

L

M

H

L

H

L

Output

Projection/
Non-linearity/
Convolution

Projection

Discrete Linear
dynamical systems

Product/
Non-linearity

Reduction Analysis

P,Q = Invariant_Gramians(A,B,C)

𝜎 = Hankel_singular_values(P,Q)

r = Reduction_Order(𝜎, tol)

replace

Balanced Truncation

T = Balancing_Matrix(P,Q)

Ab,Bb,Cb = Balance_Sys(T,A,B,C)

Ar,Br,Cr = Truncate(r,Ab,Bb,Cb)

System Replacement

A ⃪ Ar

B ⃪ Br

C ⃪ Cr

get each system

Figure 1: Overview of the proposed balanced truncation pipeline. The method applies at the level
of the discrete linear dynamical systems inside SSM layers, independently of surrounding design
choices such as projections, non-linearities, convolutions, or skip connections. Each dynamical sys-
tem is isolated, balanced via its controllability and observability Gramians, and truncated according
to Hankel singular values before being reinserted into the model.

Under assumptions 2.1 and 2.3, there exist a unique symmetric positive definite solution Q ∈ Rn×n

to the discrete Lyapunov equation:

ATQA−Q+CTC = 0, Q =

∞∑
i=0

(AT)iCTCAi (3)

Q is known as the discrete observability Gramian. It similarly measures how much each state
contributes to the outputs over time. Large entries correspond to state directions that are easily
observed through the outputs.

2.1.2 BALANCED REALIZATIONS

The notions of controllability and observability come together in the concept of a diagonal balanced
realization, in which the system is transformed so that both Gramians are equal and diagonal. This
provides a natural coordinate system where each state dimension has a well-defined ”importance.”

Definition 2.4 (State Space Realization). A discrete-time linear system G is fully characterized by
its input–output map

G : {x(k)}k≥0 7→ {y(k)}k≥0.

A realization of G is any quadruple of matrices (A,B,C,D) and state h(k) ∈ Rn that realizes this
input–output map via the dynamics given by Equation 1. Many different realizations can realize the
same map. In particular, if (A,B,C,D) is a realization, then so is (T−1AT ,T−1B,CT ,D) for
any invertible T ∈ Rn×n.

Definition 2.5 (Minimal/Balanced realizations). A realization is called minimal if it is both control-
lable and observable. The corresponding state dimension n is called the order of the realization.

A realization is said to be balanced if P = Q. In this case we denote the common matrix by W ,
and refer to it simply as the Gramian of the balanced system.

Theorem 2.6 (Antoulas (2005)). Any stable, minimal discrete LTI system admits a bal-
anced realization, in which the controllability and observability Gramians coincide as
W = diag(σ) = diag(σ1, . . . , σn), with σ1 ≥ · · · ≥ σn > 0 called “Hankel singular values“
(HSV). This diagonal balanced realization can be explicitly constructed .

The HSVs σ can also be computed in decreasing order from non-balanced realizations via:

σ = sort↓
(√

spec(PQ)
)
. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The HSVs quantify the joint controllability and observability of each state. Large values indicate
state directions that both strongly affect the output and are strongly influenced by the input, while
small values correspond to weakly contributing states.

2.1.3 BALANCED TRUNCATION

Balanced truncation is a MOR scheme leveraging the ordering of Hankel singular values to obtain a
lower-dimensional approximation of the system, while guaranteeing stability and error bounds.

Consider a stable minimal balanced realization (A,B,C,D) of G with Gramian
W = diag(σ) = diag(Σ1,Σ2) where Σ1 is diagonal of size r and Σ2 of size n − r, with
the smallest entry in Σ1 larger than the largest in Σ2. The state space matrices can be rewritten as:

A =

[
A1,1 A1,2

A2,1 A2,2

]
, B =

[
B1

B2

]
, C = [C1 C2] , (5)

with A1,1 ∈ Rr×r, B1 ∈ Rr×p, and C1 ∈ Rq×r.

It is well established that the reduced system Ĝ defined by A1,1,B1,C1,D is stable and

||G − Ĝ||∞ ≤ 2

n∑
i=r+1

σi. (6)

Balanced truncation thus provides a principled way to reduce model order while controlling the
approximation error in terms of discarded Hankel singular values. This makes it a central tool for
simplifying state space models while preserving their dominant dynamics.

2.2 SPECTRAL STABILITY OF HERMITIAN MATRICES

In practice, training SSMs with gradient descent modifies the learned state matrices incrementally.
Understanding how the downstream Hankel singular values shift under such perturbations is there-
fore critical to establish in-training reduction protocols. For Hermitian matrices, Weyl’s theorem
provides a powerful tool.

Let W and W ′ be Hermitian matrices of size n (i.e. symmetric for real-valued matrices), and let
δW = W ′ −W . Also, ∀i ∈ [1, · · · , n], let λi(W) represent the i-th largest eigenvalue of W .
The ordering λ1(W) ≥ · · · ≥ λn(W) can always be established as the eigenvalues of Hermitian
matrices are guaranteed to be real.

Theorem 2.7 (Weyl (1912)). ∀i ∈ [1, · · · , n], λi(W) is Lipschitz-continuous on the space of Her-
mitian matrices with operator norm:

|λi(W
′)− λi(W)| ≤ max

i=1,··· ,n
(|λi(δW)|) = max(|λ1(δW)|, |λn(δW)|). (7)

In other words, each of the eigenvalues of W can at most fluctuate by the largest absolute eigenvalue
of the perturbation δW , providing a bound on spectral variations under Hermitian perturbations.
This bound will turn out to be crucial for our in-training reduction scheme (see Section 3.2).

3 THE PROPOSED IN-TRAINING REDUCTION SCHEME

Our general pipeline (illustrated in Figure 1) is designed to be applicable to all types of SSMs as it
surgically acts on the dynamical systems within SSM layers of models regardless of the choice of
projections, non-linear activations, convolutions, skip connection, etc.

To achieve significant gains in training time, we aim to reduce the model’s hidden state dimension
where possible early on in training. Typically, we attempt to reduce SSM state dimensions at snap-
shots of the model obtained at fixed intervals at early stages of training (e.g. during learning rate
warm-up). Section 3.2 provides justification for the validity of this approach.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 COMPRESSM: THE ALGORITHM

At an given training step, we proceed per block. For an input feature vector sequence x ∈ RH×L,
where H is the inner dimension and L the sequence length, common SSM blocks contain either a
single Multi-Input Multi-Output (MIMO) system that transforms the sequence x ∈ RH×L to y ∈
RH×L, or H independent per-channel Single-Input Single-Output (SISO) systems that transform
xi ∈ R1×L to yi ∈ R1×L, for i ∈ 1, · · · ,H . In the latter case, we proceed per channel.

For a given block (and possibly a given channel index), the reduction algorithm works as follows:

1. Extract the discrete linear system matrices A,B,C from the model weights. We denote
by n the current order (rank) of the system.

2. Solve Equation 2 and Equation 3 (using Equation 14 if A is diagonal, as is the case for
many modern SSMs) to obtain the Gramians P and Q respectively.

3. Compute the Hankel singular values σ via Equation 4.
4. Find the smallest rank r such that the top-r singular values account for a predetermined

threshold τ ∈ [0, 1] of the total energy,

r = min
{
k ∈ {1, · · · , n} :

k∑
i=1

σi ≥ τ

n∑
i=1

σi

}
, (8)

5. If the rank is smaller than a given fraction of the initial state dimension (i.e. the reduction is
large enough to warrant the trouble), compute the balancing transformation matrix T from
Theorem 2.6. Otherwise, leave the system unchanged.

6. Transform the original system to its diagonal balanced realization,

(Ab,Bb,Cb) = (T−1AT ,T−1B,CT) (9)

7. Truncate the balanced system down to rank r (with a slight abuse of tensor slicing notation),

(Ar,Br,Cr) = (Ab[: r, : r],Bb[: r, :],Cb[:, : r]) (10)

8. Replace the model weights for the dynamical system matrices. Based on the architecture
this might require diagonalizing the truncated system to ensure computational consistency.

(A,B,C)← (Ar,Br,Cr) (11)

Note that the above algorithm can not deliver improved small models if there is no clear correlation
between state dimension and model performance. There furthermore should be enough time in
between successive reduction steps for the model to recover from pruning. For more details, we
refer the reader to Section 4.2.

The fact that CompreSSM applies an in-training compression scheme enables a significant increase
in performance per training time. Indeed, we validate the speedup experimentally in Section 4.2.

3.2 IN-TRAINING REDUCTION

The validity of our proposed in-training truncation relies on several non-trivial properties, which
we first motivate intuitively before formalizing. First, the method requires tracking how the relative
importance of individual states evolves with training. Second, even if we can measure importance
continuously, training dynamics may render initially insignificant dimensions crucial at later stages.
Early truncation of such dimensions would therefore be undesirable. Consequently, it is necessary
that the relative ordering of importance remains approximately stable, at least for the dimensions
with low initial contribution. Finally, since our balanced truncation approach relies on the energy
contribution of each dimension relative to the total system energy, it is desirable that the cumulative
importance of the bottom-r dimensions does not increase substantially during training. Otherwise,
dimensions could converge to a regime of near-equal importance, making early truncation unjustified
even if the ordering is preserved.

To leverage Hankel singular value analysis during training, we must first establish a protocol for
tracking individual state importance as the system evolves under gradient updates. This existence of
such a protocol is non-trivial and its development is central to this work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: In-training per-step analysis of Hankel singular value dynamics for a single LRU block
with state dimension of 8 on the MNIST dataset for the first 25k steps. The leftmost plot shows
the raw HSVs (as a set). The middle-left plot depicts the maximum absolute eigenvalue of δH as
described in Section 3.2. The middle-right plot overlays the maximum variation bound as an error
margin around each HSV, with each shade now representing a highly probable path for a specific
state dimension obtained by step by step linear sum assignment solving. The rightmost plot shows
the relative contribution of the bottom r HSVs to the total energy.

Indeed, between gradient steps, model weights are updated according to the negative gradient of
the loss with respect to the parameters. At the SSM level, this translates into the state matrices
being incrementally updated such that a discrete system described by (A,B,C) becomes a different
dynamical system (A′,B′,C ′), where

A′ = A+ δA, B′ = B + δB, C ′ = C + δC. (12)

The omission of D is deliberate for both notational simplicity, but also since it is often fixed as a
skip layer and not learned. Throughout this section, we adopt the convention that plain symbols
denote pre-update quantities, while primed symbols denote their post-update counterparts.

Now, using the expressions of the controllability and observability Gramians given respectively by
Equation 2 and Equation 3, one can see that both Gramians are continuous with respect to the
gradient perturbation to the system matrices thus we can also consider,

P ′ = P + δP , Q′ = Q+ δQ, (13)

where δP is some continuous function of (δA, δB), and similarly δQ of (δA, δC).

Also recall that the Hankel singular values can be obtained as the square root of the eigenvalues of
PQ (Equation 4). Generally, PQ need not be symmetric, but we use this form for computational
efficiency. Noticing that PQ is similar to the symmetric positive definite matrix P 1/2QP 1/2, we
let H =

√
P 1/2QP 1/2. The matrix H’s eigenvalues are exactly the Hankel singular values. In

addition, by composition, H is continuous with respect to the perturbations to the system, so we
write H ′ = H + δH with δH a continuous function of (δA, δB, δC).
Lemma 3.1 (Continuity of Hankel singular values under training updates). By application of Weyl’s
Theorem 2.7 to the matrix H and its perturbation H ′, between gradient steps, each Hankel singular
value can at most change by the largest absolute eigenvalue of δH = H ′ −H .

While the previous argument establishes that Hankel singular values evolve continuously with gra-
dient updates, the remaining conditions—stability of relative ordering and low contribution of the
bottom-r dimensions—cannot be guaranteed theoretically. However, empirical evidence strongly
suggests that standard training dynamics are favorable in practice.

We examine the case of a single LRU block trained on the MNIST dataset with state dimension of 8
for visual clarity in Figure 2 (and provide plots for larger models and datasets in Appendix C.2). To
keep track of the state dimension to HSV value correspondence, we overlay the maximum absolute
eigenvalue of δH , on top of each HSV. Empirically, this allows us to robustly identify probable
HSV trajectories as the continuity bound is consistently small enough to ensure each eigenvalue
is clearly isolated, with minimal bound overlaps and rare gradual HSV relative order crossings
occurring (prediction of evolution established via linear sum assignment solution in such cases).
Furthermore, the cumulative contribution of the bottom-r HSVs stabilizes rapidly. Indeed, after a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

small initial number of steps, we observe that both the ordering of singular values remains constant,
and dimensions of low importance seldom gain substantial relative energy during training.

In sum, these observations provide empirical justification for early in-training truncation: dimen-
sions identified as negligible at early stages typically remain so throughout training. Consequently,
truncation decisions made during training rarely conflict with the final importance ranking, making
our approach both effective and robust in practice.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In order to empirically validate in-training balanced truncation, we train a linear recurrent unit
(LRU) Orvieto et al. (2023) on datasets of different complexity, ranging from MNIST to tasks from
the long range arena (LRA) Tay et al. (2020).

We use the same training pipeline as Rusch & Rus (2025); Walker et al. (2025), accounting for
additional quirks of LRU training like a learning rate factor for the sequence mixing layer. The LRA
dataloaders are borrowed from Smith et al. (2022), the hyperparameters largely taken from (Orvieto
et al., 2023, Table 10). We summarize them in Table 2.

Reduction starts from the full model order reported in column 4 of Table 2. For all datasets but
IMDB and MNIST, we attempt four equidistant reduction steps during the warm-up period of the
learning rate, which equals 10% of the total steps. Doing so ensures maximal speed up potential for
the subsequent 90% of training, while also staying robust to large early training .

As MNIST is trained without learning rate decay, we attempt truncation during all of training. For
IMDB, we include a waiting stage and attempt reduction inside a smaller time window. The details
can be found in Appendix B.1. Generally, reductions are only executed if the reduced dimension is
less than 95% of the current state dimension.

We train non-reduced models with each block initialized at the average final order of the compressed
ones to allow for a fair comparison. To increase our baseline statistics and further establish correla-
tions between state dimension and model performance, we train further models with different state
dimensions.

4.2 EMPIRICAL RESULTS

We repeat all experiments using five different random seeds and report mean top-3 as well as top-1
performance. Table 1 contains the top-3 results. The top-1 results can be found in the appendix
(Table 3). The state dimensions reported for multi-block models are the averages of the SSM orders
per-block. It is accompanied by Figure 4, which presents the performance visually and contains
further non-reduced benchmark models.

For some datasets, for example AAN or Pathfinder, our baseline experiments reveal a small cor-
relation between state dimension and model performance, given the other model parameters taken
from Orvieto et al. (2023) (see entries 3 and 5 in Table 1 or figures 4c and 4e). On these datasets,
CompreSSM can not deliver better performance for small models.

However, on datasets where state dimension does clearly correlate with model performance,
CompreSSM improves small model performance. On CIFAR10, for example, compressed model
performance almost stays constant as a function of the reduction tolerance (and thus for different
state dimensions), while the non-compressed counterparts exhibit a approximately 10% performance
drop (see entry 1 in Table 1 or Figure 3a). The MNIST results paint a similar picture (entry 5 in
Table 1 or Figure 4a).

Similarly, on ListOps, the performance of non-compressed models drops significantly for state di-
mensions smaller than 120 (see Figure 4f). While the compressed models perform on par with their
uncompressed counterparts for larger state dimensions, smaller models outperform the baseline.

On Pathfinder, we can observe a similar trend (Figure 4e), where the unreduced model performance
does not show a strong correlation with the state dimension. Just for the smallest state dimension,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Average final state dimension (mean± std) and Top-3 runs mean performance with/without
reduction for LRU under different tolerances τ .

Dataset Metric τ = 1.5 · 10−1 τ = 1 · 10−1 τ = 7 · 10−2 τ = 5 · 10−2 τ = 3 · 10−2 τ = 2 · 10−2 τ = 0

CIFAR10
State dim 57.4± 1.5 92.6± 4.2 126.0± 4.0 160.8± 5.4 213.6± 6.1 327.2± 16.0 384
CompreSSM 84.4± 0.2 85.7± 0.1 86.0± 0.1 85.8± 0.1 86.0± 0.2 86.1± 0.2 -
Baseline 78.2± 0.7 81.8± 0.3 83.7± 0.2 84.2± 0.5 84.9± 0.0 86.0± 0.1 86.5± 0.3

ListOps
State dim 56.8± 3.4 81.8± 4.9 109.8± 3.9 135.4± 6.8 167.6± 5.7 213.8± 28.0 256
CompreSSM 48.3± 0.7 51.8± 0.9 48.2± 1.1 47.5± 1.6 49.2± 0.3 47.1± 1.4 -
Baseline 43.4± 0.4 46.3± 0.5 49.4± 1.8 49.2± 0.7 48.2± 2.1 47.6± 1.7 49.7± 0.8

AAN
State dim 53.6± 1.9 84.4± 1.4 111.0± 2.0 136.6± 2.9 170.0± 2.4 203.2± 13.7 256
CompreSSM 87.2± 0.3 87.5± 0.1 87.4± 0.3 87.2± 0.0 87.6± 0.3 87.9± 0.2 -
Baseline 87.5± 0.3 87.9± 0.3 87.8± 0.2 87.8± 0.5 87.3± 0.4 87.4± 0.5 87.3± 0.3

IMDB
State dim 95.0± 2.3 119.6± 2.2 136.8± 1.9 150.4± 1.2 165.0± 1.3 192.0± 0.0 192.0
CompreSSM 82.2± 0.2 82.8± 0.1 83.7± 0.4 83.8± 0.3 84.1± 0.4 84.4± 0.2 -
Baseline 82.7± 0.1 83.5± 0.1 83.7± 0.0 84.0± 0.4 84.3± 0.0 84.5± 0.1 84.7± 0.1

Pathfinder
State dim 34.6± 1.9 51.2± 1.7 65.6± 2.3 81.2± 1.6 105.0± 2.1 129.8± 5.2 256
CompreSSM 96.6± 1.3 97.9± 0.1 97.6± 0.5 97.8± 0.4 98.0± 0.0 98.0± 0.1 -
Baseline 97.3± 0.2 97.9± 0.1 98.0± 0.1 98.1± 0.0 98.2± 0.0 98.1± 0.1 98.3± 0.1

τ = 4·10−2 τ = 2·10−2 τ = 1·10−2 τ = 5·10−3 τ = 2·10−3 τ = 1·10−3 τ = 0

MNIST
State dim 12.7± 3.0 27.6± 1.8 46.8± 3.2 76.3± 7.5 148.1± 9.8 191.4± 4.7 256
CompreSSM 95.9± 0.2 96.9± 0.0 96.9± 0.1 96.9± 0.1 97.0± 0.1 97.2± 0.3 -
Baseline 92.6± 0.5 96.0± 0.2 95.9± 0.1 96.4± 0.2 97.3± 0.2 97.3± 0.1 97.3± 0.1

the unreduced model performs sees a small drop in performance and is outperformed by the top-1
reduced model.

The IMDB results reveal the importance of the prerequisites mentioned in Section 3.1 (see Fig-
ure 4d). Even after significantly reducing the parameters and increasing the droprate (see Ap-
pendix B), the unreduced only learn for roughly 8k steps before overfitting. However, in order
to do in-training balanced truncation, the actual training phase needs to be long enough to allow for
a couple of reduction steps with a large enough spacing so that the model can follow the training
dynamics for a while without being pruned. Indeed, for non-aggressive pruning (that is, pruning
with small tolerance τ), which requires less recovery time, the top reduced models often outperform
the baseline.

As mentioned previously, an advantage of CompreSSM is that it comes with a training speedup; as
the state dimensions get pruned, training speeds up. Indeed, Figure 3b demonstrates this effect on
CIFAR10. In the case of state dimension 57, CompreSSM provides a 7% increase in test accuracy
for just 4% more training time.

64 128 256

Mean SSM Order

0.78

0.80

0.82

0.84

0.86

0.88

T
es

t
A

cc
u

ra
cy

Best run

Top-3 mean

Baseline

τ -Reduced

(a) Test accuracy vs. Final state dimension

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Normalized Training Time

0.78

0.80

0.82

0.84

0.86

0.88

T
es

t
A

cc
u

ra
cy

57

92

126
160 213

327
384

327213
160126

92

57

Top-3 mean

Baseline

τ -Reduced

(b) Test accuracy vs. Training time

Figure 3: Subfigure (a) shows the performance of different models trained on CIFAR10 as a function
of the state dimension. Grey data indicates non-reduced models, and the shades of orange correspond
to reduced models, with tolerance decreasing with redness. The circles represents the top-3 mean,
while the star corresponds to the top-1 model. Subfigure (b) shows top-3 performance versus the
normalized average training time. Marker diameter is proportional to the final model order (also
annotated) and in-between models are omitted for visual decluttering.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Model compression techniques in machine learning. The question of model compression has
received considerable attention in the literature (Deng et al., 2020; Zhu et al., 2024), leveraging
various techniques (and mixtures thereof) such as pruning (Han et al., 2015; Frantar & Alistarh,
2023), which removes redundant parameters to reduce network size; quantization (Xiao et al., 2022;
Gholami et al., 2021), which compresses models by lowering numerical precision; low-rank factor-
ization (Lin et al., 2024), which exploits structure in weight matrices to reduce dimensionality; and
knowledge distillation (Hinton et al., 2015; Gou et al., 2020), where a smaller model learns to mimic
a larger one.

In-training vs. post-training paradigms. Techniques such as quantization-aware training (Choi
et al., 2018; Zhang et al., 2018), and dynamic pruning (Hoefler et al., 2021; Wimmer et al., 2022)
perform in-training compression during the optimization process. In contrast, most methods like
Deep Compression (Han et al., 2015) follow a post-training paradigm, applying pruning or quanti-
zation after convergence and relying on retraining or fine-tuning to recover accuracy.

Compression in SSMs. Work on compressing SSMs has primarily explored quantization. Post-
training quantization has been applied to stabilize SSM inference under 8-bit constraints (Abreu
et al., 2024; Chiang et al., 2024), while quantization-aware training has been used to maintain ac-
curacy below 8 bits (Zhao et al., 2025) and to improve robustness for deployment on specialized or
analog hardware (Siegel et al., 2024; 2025).

By contrast, control-theoretic MOR approaches have been applied to diagonal S4 layers, but only
as a post-hoc step to initialize retraining (Ezoe & Sato, 2024). Elsewhere, regularizers based on the
Hankel nuclear norm or modal ℓ1 have been shown to encourage parsimonious state representations
during training, though without explicit truncation events, and with a price to pay in terms of opti-
mal performance (Forgione et al., 2024). Finally, H2-optimal reductions have been proposed as a
competitor to balanced truncation in offline SSM MOR settings (Sakamoto & Sato, 2025).

To the best of our knowledge, our contribution is the first to propose a principled in-training model
order reduction method applicable to a broad spectrum of SSMs.

6 CONCLUSION

In conclusion, we proposed a novel framework for principled compression of SSMs during training
called CompreSSM. Drawing on classical control theory, we base our approach on balanced trun-
cation. In particular, we show that Hankel singular values (HSVs), the corner stone of balanced
truncation, preserve the rank of their dominant dimensions during training, which allows for safely
truncating dimensions associated with smaller HSVs.

We test CompreSSM by training LRUs on a range of tasks of varying complexity. Provided there
is a correlation between state dimension and model performance as well as enough training steps
in between two reduction steps, we verify empirically that compressed models outperform their
uncompressed counterparts while delivering better performance per unit of training time.

Finally, we provide an outlook on how to do in-training balanced truncation for linear time-varying
systems. In this selective case, we propose averaging the dynamics over the input space and ap-
plying the reduction scheme to this time-independent system. For future work, we would like to
extend CompreSSM to linear self-attention models, e.g., Gated Linear Attention Yang et al. (2023),
Mamba2 Dao & Gu (2024), and Gated DeltaNet Yang et al. (2024), which is another class of models
based on linear time-varying systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide an anonymized supplementary code package that implements CompreSSM for the LRU
architecture with configuration runs used to produce the results in this paper. A public repository
with identical code will be made public after review.

USE OF LARGE LANGUAGE MODELS (LLMS)

No original methods, model designs, or ideas originate from the use of LLMs. They have been put
to use for LaTeX formatting, grammar and syntax and coding assistance only. The authors are the
sole responsible parties for the contents of the work. LLMs are not eligible for authorship.

REFERENCES

Steven Abreu, Jens Egholm Pedersen, Kade Heckel, and Alessandro Pierro. Q-S5: Towards Quan-
tized State Space Models, 2024.

Athanasios C. Antoulas. Approximation of Large-Scale Dynamical Systems, chapter 7. Balancing
and Balanced Approximations, pp. 207–247. SIAM Advances in Design and Control, 2005. doi:
10.1137/1.9780898718713.ch7. URL https://epubs.siam.org/doi/abs/10.1137/
1.9780898718713.ch7.

Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, 3 edition,
1999. ISBN 978-0-19-511777-6. URL https://app.knovel.com/hotlink/pdf/id:
kt008LOK0F/linear-system-theory/frontmatter.

Hung-Yueh Chiang, Chi-Chih Chang, N. Frumkin, Kai-Chiang Wu, and Diana Marculescu.
Quamba: a Post-Training Quantization Recipe for Selective State Space Models, 2024.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, P. Chuang, Vijayalakshmi Srinivasan, and
K. Gopalakrishnan. PACT: Parameterized Clipping Activation for Quantized Neural Networks,
2018.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
through Structured State SpaceDuality. arXiv preprint arXiv:2405.21060, 2024.

By Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model Compression and Hardware
Acceleration for Neural Networks: A Comprehensive Survey, 2020.

Haruka Ezoe and Kazuhiro Sato. Model Compression Method for S4 With Diagonal State Space
Layers Using Balanced Truncation, 2024.

Marco Forgione, Manas Mejari, and Dario Piga. Model Order Reduction of Deep Structured
State-Space Models: a System-Theoretic Approach, 2024. URL https://arxiv.org/abs/
2403.14833.

Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models can be Accurately Pruned
in One-Shot, 2023.

A. Gholami, Sehoon Kim, Zhen Dong, Z. Yao, Michael W. Mahoney, and K. Keutzer. A Survey of
Quantization Methods for Efficient Neural Network Inference, 2021.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s Raw! audio Generation with
State-Space Models. In International Conference on Machine Learning, pp. 7616–7633. PMLR,
2022.

Jianping Gou, B. Yu, S. Maybank, and D. Tao. Knowledge Distillation: a Survey, 2020.

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces,
2024. URL https://arxiv.org/abs/2312.00752.

10

https://epubs.siam.org/doi/abs/10.1137/1.9780898718713.ch7
https://epubs.siam.org/doi/abs/10.1137/1.9780898718713.ch7
https://app.knovel.com/hotlink/pdf/id:kt008LOK0F/linear-system-theory/frontmatter
https://app.knovel.com/hotlink/pdf/id:kt008LOK0F/linear-system-theory/frontmatter
https://arxiv.org/abs/2403.14833
https://arxiv.org/abs/2403.14833
https://arxiv.org/abs/2312.00752

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with Structured
State Spaces. arXiv preprint arXiv:2111.00396, 2021.

Song Han, Huizi Mao, and W. Dally. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding, 2015.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid Structural State-Space Models. arXiv preprint arXiv:2209.12951, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531, 2015.

T. Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in Deep
Learning: Pruning and growth for Efficient Inference and Training in Neural Networks, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR, 1(2):3,
2022.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Rudolph Emil Kalman. A new Approach to Linear Filtering and Prediction Problems, 1960.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
Efficient Convnets. arXiv preprint arXiv:1608.08710, 2016.

Chi-Heng Lin, Shangqian Gao, J. Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia Jin, and
Yen-Chang Hsu. MoDeGPT: Modular Decomposition for Large Language Model Compression,
2024.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
Christopher Ré. S4nd: Modeling Images and Videos as Multidimensional Signals with State
Spaces. Advances in neural information processing systems, 35:2846–2861, 2022.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting Recurrent Neural Networks for Long Sequences. In Interna-
tional Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

T Konstantin Rusch and Daniela Rus. Oscillatory State-Space Models. In International Conference
on Learning Representations, 2025.

Hiroki Sakamoto and Kazuhiro Sato. Compression Method for Deep Diagonal State-Space Model
Based on H2 Optimal Reduction, 2025.

Sebastian Siegel, Ming-Jay Yang, and John Paul Strachan. IMSSA: Deploying Modern State-Space
Models on Memristive In-Memory Compute Hardware, 2024.

Sebastian Siegel, Ming-Jay Yang, Younes Bouhadjar, Maxime Fabre, Emre Neftci, and John Paul
Strachan. QS4D: Quantization-Aware Training for Efficient Hardware Deployment of Structured
State-Space Sequential Models, 2025.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified State Space Layers for
Sequence Modeling. arXiv preprint arXiv:2208.04933, 2022.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long-Range Arena: A Benchmark for Efficient
Transformers. arXiv preprint arXiv:2011.04006, 2020.

A Vaswani. Attention Is All You Need. Advances in Neural Information Processing Systems, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benjamin Walker, Lingyi Yang, Nicola Muca Cirone, Cristopher Salvi, and Terry Lyons. Structured
Linear CDEs: Maximally Expressive and Parallel-in-Time Sequence Models, May 2025. URL
https://arxiv.org/abs/2505.17761.

Hermann Von Weyl. Das Asymptotische Verteilungsgesetz der Eigenwerte Linearer Partieller Dif-
ferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math-
ematische Annalen, 71:441–479, 1912. URL https://api.semanticscholar.org/
CorpusID:120278241.

Paul Wimmer, Jens Mehnert, and A. Condurache. Dimensionality Reduced Training by Pruning and
Freezing Parts of a Deep Neural Network: a Survey, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. SmoothQuant: Accurate
and Efficient Post-Training Quantization for Large Language Models, 2022.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Attention
Transformers with Hardware-Efficient Training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated Delta Networks: Improving Mamba2 with
Delta Rule. arXiv preprint arXiv:2412.06464, 2024.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and G. Hua. LQ-Nets: Learned Quantization for
Highly Accurate and Compact Deep Neural Networks, 2018.

Leo Zhao, Tristan Torchet, M. Payvand, Laura Kriener, and Filippo Moro. Quantizing Small-Scale
State-Space Models for Edge AI, 2025.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A Survey on Model Compression
for Large Language Models. Transactions of the Association for Computational Linguistics, 12:
1556–1577, 11 2024. ISSN 2307-387X. doi: 10.1162/tacl a 00704. URL https://doi.
org/10.1162/tacl_a_00704.

12

https://arxiv.org/abs/2505.17761
https://api.semanticscholar.org/CorpusID:120278241
https://api.semanticscholar.org/CorpusID:120278241
https://doi.org/10.1162/tacl_a_00704
https://doi.org/10.1162/tacl_a_00704

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SOLVING THE LYAPUNOV EQUATIONS FOR DIAGONAL SSMS

For SSMs with diagonal state transition matrix A = diag(a1, . . . , an), which covers a lot of SSMs
used today such as LRU Orvieto et al. (2023) and S5 Smith et al. (2022), Equation 2 and Equation 3
admit a simple, entry-wise closed-form solution:

Pij =

(
BB⊤)

ij

1− aiaj
, Qij =

(
CC⊤)

ij

1− aiaj
∀1 ≤ i, j ≤ n (14)

In the non-diagonal case, one can either solve the Lyapunov equations by vectorization or use the
argument put forward by Orvieto et al. (2023) and realize that every state transition matrix A ∈ Rn,n

can be diagonalized over C up to a small perturbation.

A.2 SELECTIVE SSM CASE

Selective SSMs are built with dynamical systems that fall under the linear parameter varying (LPV)
framework, with the parameter being the layer input. Such systems are also referred to as Linear
Input Varying (LIV) and their general case state equations are given by,

h(k + 1) = A(x(k))h(k) +B(x(k))x(k) , h(0) = h0 (15)
y(k) = C(x(k))h(k) +D(x(k))x(k), (16)

For these systems, the controllability and observability Gramians are no longer stationary. In par-
ticular, for each possible input x ∈ X , one would in principle need to solve a set of Lyapunov
inequalities of the form

A(x)P (x)AT(x)− P (x) +B(x)BT(x) ≤ 0, (17)

AT(x)Q(x)A(x)−Q(x) +CT(x)C(x) ≤ 0, (18)

so that the Gramians P and Q are input-dependent.

In practice, solving for fully input-dependent Gramians and applying the subsequent per input reduc-
tion is clearly neither computationally tractable nor practical. A common simplification is to seek
input-invariant Gramians P ,Q that satisfy the inequalities for all x ∈ X ; this reduces the problem
to an LTI-like Lyapunov condition over all inputs, which can still be expensive for high-dimensional
X , when such a solution even exists. In practice this is still too constraining.

A cheaper alternative is simply averaging the dynamics over the input space:

Ā =
1

|X |
∑
x∈X

A(x), B̄ =
1

|X |
∑
x∈X

B(x), C̄ =
1

|X |
∑
x∈X

C(x), (19)

The caveat is that the mean system may not be stable, controllable, or observable; one may therefore
need to regularize the mean matrices to satisfy these assumptions before applying a single global
reduction based on the LTI approach.

B EXPERIMENTAL DETAILS

The hyperparameters we used can be found in Table 2. For all but one LRA tasks we use the same
ones as reported by (Orvieto et al., 2023, Table 10). The exception is IMDB, which we observed to
overfit massively with the given hyperparameters. We mitigate this issue by increasing dropout and
reducing the total number of layers.

On LRA tasks, the learning rate is warmed up from 10−7 to 10−3 for 10% of the total steps, before
it is cosine-decayed back to 10−7. For MNIST, the learning rate is fixed at 4 · 10−4 for the entirety
of training.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameters for LRU experiments. “h“ refers to the dimension of the hidden state, “n“
to the state space dimension, “Batch“ to the batch size and “LR Factor“ to the learning rate factor
applied to the sequence mixer Orvieto et al. (2023).

Task Depth h n Steps Batch LR Factor Weight Decay Dropout

MNIST 1 8 256 200k 50 - - 0.1
CIFAR10 6 512 384 180k 50 0.25 0.05 0.1
ListOps 6 128 256 80k 32 0.5 0.05 0.0
IMDB 1 256 192 50k 32 0.1 0.05 0.1
AAN 6 128 256 100k 64 0.5 0.05 0.1
Pathfinder 6 192 256 500k 64 0.25 0.05 0.0

B.1 REDUCTION DETAILS

We find that LRU overfits on IMDB, even after reducing the number of parameters by 6 and doubling
the dropout rate compared to Orvieto et al. (2023). Training LRU on this dataset, we furthermore
observe an initial training period in which the loss plateaus. Just on IMDB, we thus wait for an
initial 1k steps before doing the balanced truncation. Instead of doing 4 reduction steps until the
end of warmup, we also just do 2 until 3k steps in order to give the model time to recover before
entering the overfitting regime.

C ADDITIONAL RESULTS

C.1 PERFORMANCE

In Figure 4 we provide the state dimension vs test performance plots for all datasets.

Table 3: Final state dimension (mean± std) and MAX performance with/without reduction for LRU
under different tolerances τ .

Dataset Metric τ = 1.5 · 10−1 τ = 1 · 10−1 τ = 7 · 10−2 τ = 5 · 10−2 τ = 3 · 10−2 τ = 2 · 10−2 τ = 0

CIFAR10
State dim 57.4± 1.5 92.6± 4.2 126.0± 4.0 160.8± 5.4 213.6± 6.1 327.2± 16.0 384
CompreSSM 84.6 85.8 86.1 85.9 86.2 86.4 -
Baseline 78.7 82.2 84.0 84.8 85.0 86.2 86.9

ListOps
State dim 56.8± 3.4 81.8± 4.9 109.8± 3.9 135.4± 6.8 167.6± 5.7 213.8± 28.0 256.0± 0.0
CompreSSM 48.9 53.0 49.7 49.7 49.5 49.2 -
Baseline 43.8 46.9 50.8 49.7 51.1 50.0 50.7

AAN
State dim 53.6± 1.9 84.4± 1.4 111.0± 2.0 136.6± 2.9 170.0± 2.4 203.2± 13.7 256
CompreSSM 87.6 87.6 87.8 87.3 88.0 88.1 -
Baseline 87.8 88.2 88.1 88.2 87.9 88.1 87.5

IMDB
State dim 95.0± 2.3 119.6± 2.2 136.8± 1.9 150.4± 1.2 165.0± 1.3 192.0± 0.0 192
CompreSSM 82.3 82.9 84.1 84.1 84.6 84.7 -
Baseline 82.9 83.6 83.7 84.3 84.4 84.7 84.7

Pathfinder
State dim 34.6± 1.9 51.2± 1.7 65.6± 2.3 81.2± 1.6 105.0± 2.1 129.8± 5.2 256
CompreSSM 98.1 98.0 98.0 98.1 98.1 98.1 -
Baseline 97.5 98.0 98.1 98.1 98.2 98.3 98.4

τ = 3·10−2 τ = 2·10−2 τ = 1·10−2 τ = 5·10−3 τ = 2·10−3 τ = 1·10−3 τ = 0

MNIST
Dim (± std) 0.0± 0.0 27.6± 1.8 46.8± 3.2 76.3± 7.5 148.1± 9.8 191.4± 4.7 256
CompreSSM 0.0 96.2 97.0 96.9 97.2 97.6 -
Baseline 0.0 96.9 96.1 96.6 97.5 97.6 97.3

C.2 EMPIRICAL IN-TRAINING HANKEL STABILITY

In Figures 5, 6, 7, and 8, we provide additional empirical evidence showing the validity of assump-
tions made on the dynamics of HSVs during training for multiple experiments with various number
of layers and SSM state dimensions. The observations regarding a consistent ordering after a small
number of training steps, and contributions of smaller values hold in all cases. Note that, unlike
the analysis in the main text, which is established at each gradient step, we inspect HSVs at larger
intervals on the order of thousands of steps. This leads to the computation of the exact continuity

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

16 32 64 128 256

Mean SSM Order

0.92

0.93

0.94

0.95

0.96

0.97

0.98

T
es

t
A

cc
u

ra
cy

Best run

Top-3 mean

Baseline

τ -Reduced

(a) MNIST

64 128 256

Mean SSM Order

0.78

0.80

0.82

0.84

0.86

0.88

T
es

t
A

cc
u

ra
cy

Best run

Top-3 mean

Baseline

τ -Reduced

(b) CIFAR10

64 128 256

Mean SSM Order

0.86

0.87

0.88

0.89

T
es

t
A

cc
u

ra
cy

Best run

Top-3 mean

Baseline

τ -Reduced

(c) AAN

128

Mean SSM Order

0.82

0.83

0.84

0.85

T
es

t
A

cc
u

ra
cy

Best run

Top-3 mean

Baseline

τ -Reduced

(d) IMDB

32 64 128 256

Mean SSM Order

0.96

0.97

0.98

0.99

T
es

t
A

cc
u

ra
cy

Best run

Top-3 mean

Baseline

τ -Reduced

(e) Pathfinder

64 128 256

Mean SSM Order

0.42

0.44

0.46

0.48

0.50

0.52

0.54
T

es
t

A
cc

u
ra

cy

Best run

Top-3 mean

Baseline

τ -Reduced

(f) ListOps

Figure 4: Test performance vs. final state dimension for all our experiments. Stars correspond to
best performance, circles to the mean of the top-3 runs. Grey shapes correspond to non-reduced
models, and the shades of orange to reduced models, with tolerance decreasing with redness.

Figure 5: Single LRU block with state dimension of 64 on the MNIST dataset.

bounds becoming extremely noisy as perturbations grow. Nevertheless, we use linear sum assign-
ment tracking as our most likely guess of HSV evolution as before.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Single LRU block with state dimension of 64 on the IMDB dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Six LRU blocks with state dimension of 57 on the CIFAR10 dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Six LRU blocks with state dimension of 56 on the ListOps dataset.

18

	Introduction
	Mathematical Preliminaries
	Discrete Linear Time Invariant Systems
	Controllability and Observability Gramians
	Balanced Realizations
	Balanced Truncation

	Spectral stability of Hermitian matrices

	The Proposed In-Training Reduction Scheme
	CompreSSM: the algorithm
	In-Training Reduction

	Experiments
	Experimental Setup
	Empirical Results

	Related Work
	Conclusion
	Appendix
	Solving The Lyapunov Equations for Diagonal SSMs
	Selective SSM case

	Experimental Details
	Reduction Details

	Additional Results
	Performance
	Empirical in-training Hankel stability

