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ABSTRACT

State Space Models (SSMs), developed to tackle long sequence modeling tasks
efficiently, offer both parallelizable training and fast inference. At their core are
recurrent dynamical systems that maintain a hidden state, with update costs scal-
ing with the state dimension. A key design challenge is striking the right balance
between maximizing expressivity and limiting this computational burden. Control
theory, and more specifically Hankel singular value analysis, provides a potent
framework for the measure of energy for each state, as well as the balanced trun-
cation of the original system down to a smaller representation with performance
guarantees. Leveraging the eigenvalue stability properties of Hankel matrices, we
apply this lens to SSMs during training, where only dimensions of high influ-
ence are identified and preserved. Our approach applies to Linear Time-Invariant
SSMs such as Linear Recurrent Units, but is also extendable to selective models.
Experiments show that in-training reduction significantly accelerates optimiza-
tion while preserving expressivity, with compressed models retaining task-critical
structure lost by models trained directly at smaller dimension. In other words,
SSMs that begin large and shrink during training achieve computational efficiency
while maintaining higher performance.

1 INTRODUCTION

State Space Models (SSMs) Gu et al. (2021); Hasani et al. (2022); Smith et al. (2022); Orvieto et al.
(2023); Rusch & Rus (2025) have recently emerged as a powerful alternative to established sequence
models such as Recurrent Neural Networks (RNNs) and Transformers. They combine the paralleliz-
able training efficiency of scaled dot-product attention Vaswani (2017) with the computational and
memory advantages of RNNs, enabling strong performance across large-scale language, vision, and
audio modeling tasks Gu & Dao (2024); Goel et al. (2022); Nguyen et al. (2022).

Despite their efficient structure and recent progress in hardware-aware implementations, current
SSMs remain computationally-intensive. While both memory and runtime scale with sequence
length, the size of the SSM state further amplifies these costs. Reducing the state dimension there-
fore provides an effective strategy to simultaneously reduce memory usage and runtime. This can be
achieved by leveraging techniques from structured compression. However, most existing approaches
are commonly applied post-training: a large model is trained to completion and only compressed
afterwards. Popular examples include knowledge distillation Hinton et al. (2015), post-training
quantization Jacob et al. (2018), low-rank factorization Hu et al. (2022), and structured pruning Li
et al. (2016). All of these methods typically require the costly upfront training of a large network.

In this article, we address the issue of costly pre-training by introducing CompreSSM, a principled
in-training compression technique that effectively reduces the dimension of the SSM while largely
preserving the expressive power of uncompressed models. We motivate our approach by the control-
theoretic origins of SSMs Kalman (1960). In particular, we draw on balanced truncation Antoulas
(2005), a classical Model Order Reduction (MOR) technique that approximates a high-dimensional
state space system with a low-dimensional one while retaining its essential input–output behavior.
Observing that the dominant Hankel Singular Values (HSVs) of an SSM are rank-preserving during
training, we propose truncating dimensions associated with small Hankel singular values once they
fall below a predefined relative threshold.
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Main contributions. In the subsequent sections, we will demonstrate the following features of
CompreSSM:

• We rigorously justify the validity of our in-training compression approach by establishing
means to identify and track the HSVs of an SSM during training, and showing that dom-
inant singular values are rank-preserving. Thus, SSM dimensions associated with small
HSVs can be safely truncated.

• We show that CompreSSM is broadly applicable, including to SSMs with structured state
matrices such as diagonal matrices, with simple extensions to Linear Time-Varying systems
discussed.

• We provide an extensive empirical evaluation demonstrating that CompreSSM largely pre-
serves the expressive power of uncompressed models.

• CompreSSM significantly accelerates training, while achieving similar or higher accuracy
than larger uncompressed models by truncating large portions of the state early in training.

2 MATHEMATICAL PRELIMINARIES

2.1 DISCRETE LINEAR TIME INVARIANT SYSTEMS

Let G be a discrete Linear Time-Invariant (LTI) system described by state equations:

h(k + 1) = Ah(k) +Bx(k) , h(0) = h0

y(k) = C h(k) +Dx(k),
(1)

where h ∈ Rn is the state, x ∈ Rp the input, and y ∈ Rq the output, with A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rq×n, and D ∈ Rq×p.

A more general class of systems are Linear Time-Varying (LTV), where the matrices A,B,C,D
are functions of time. Such systems become relevant in the context of selective SSMs, where the
system matrices depend on the input. For now, we restrict to the LTI case as the base framework.
The LTV case is discussed in Appendix A.2.

The LTI framework provides a tractable and well-understood setting in which powerful tools such
as Gramians and balanced truncation can be developed. Before introducing these concepts, we
formalize the standard assumptions of stability, controllability, and observability, which ensure that
the system is both well-posed and non-degenerate. For precise definitions of terms and a detailed
background presentation we refer the reader to chapters 4, 5, and 6 of Chen (1999).
Assumption 2.1. The system is stable, i.e all the eigenvalues of A are of amplitude less than 1.

Assumption 2.2. The pair (A,B) is controllable, i.e., the state h can be be steered from any initial
state to any final state in finite time.

Assumption 2.3. The pair (A,C) is observable, i.e., observing the output y and the input x of the
system for some finite time suffices to determine the initial state h0.

2.1.1 CONTROLLABILITY AND OBSERVABILITY GRAMIANS

The concepts of controllability and observability can be captured quantitatively by matrix-valued
energy measures called Gramians. These respectively encode how easily internal states can be
excited by inputs or observed from outputs.

Under assumptions 2.1 and 2.2, there exist a unique symmetric positive definite solution P ∈ Rn×n

to the discrete Lyapunov equation:

APAT − P +BBT = 0, P =

∞∑
i=0

AiBBT(AT)i (2)

P is known as the discrete controllability Gramian. It intuitively captures how much energy from
the input can reach each state dimension over time. Large entries indicate states that are easily
influenced by inputs.
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Figure 1: Overview of the proposed balanced truncation pipeline. The method applies at the level
of the discrete linear dynamical systems inside SSM layers, independently of surrounding design
choices such as projections, non-linearities, convolutions, or skip connections. Each dynamical sys-
tem is isolated, balanced via its controllability and observability Gramians, and truncated according
to Hankel singular values before being reinserted into the model.

Under assumptions 2.1 and 2.3, there exist a unique symmetric positive definite solution Q ∈ Rn×n

to the discrete Lyapunov equation:

ATQA−Q+CTC = 0, Q =

∞∑
i=0

(AT)iCTCAi (3)

Q is known as the discrete observability Gramian. It similarly measures how much each state
contributes to the outputs over time. Large entries correspond to state directions that are easily
observed through the outputs.

2.1.2 BALANCED REALIZATIONS

The notions of controllability and observability come together in the concept of a diagonal balanced
realization, in which the system is transformed so that both Gramians are equal and diagonal. This
provides a natural coordinate system where each state dimension has a well-defined ”importance.”

Definition 2.4 (State Space Realization). A discrete-time linear system G is fully characterized by
its input–output map

G : {x(k)}k≥0 7→ {y(k)}k≥0.

A realization of G is any quadruple of matrices (A,B,C,D) and state h(k) ∈ Rn that realizes this
input–output map via the dynamics given by Equation 1. Many different realizations can realize the
same map. In particular, if (A,B,C,D) is a realization, then so is (T−1AT ,T−1B,CT ,D) for
any invertible T ∈ Rn×n.

Definition 2.5 (Minimal/Balanced realizations). A realization is called minimal if it is both control-
lable and observable. The corresponding state dimension n is called the order of the realization.

A realization is said to be balanced if P = Q. In this case we denote the common matrix by W ,
and refer to it simply as the Gramian of the balanced system.

Theorem 2.6 (Antoulas (2005)). Any stable, minimal discrete LTI system admits a bal-
anced realization, in which the controllability and observability Gramians coincide as
W = diag(σ) = diag(σ1, . . . , σn), with σ1 ≥ · · · ≥ σn > 0 called “Hankel singular values“
(HSV). This diagonal balanced realization can be explicitly constructed .

The HSVs σ can also be computed in decreasing order from non-balanced realizations via:

σ = sort↓
(√

spec(PQ)
)
. (4)
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The HSVs quantify the joint controllability and observability of each state. Large values indicate
state directions that both strongly affect the output and are strongly influenced by the input, while
small values correspond to weakly contributing states.

2.1.3 BALANCED TRUNCATION

Balanced truncation is a MOR scheme leveraging the ordering of Hankel singular values to obtain a
lower-dimensional approximation of the system, while guaranteeing stability and error bounds.

Consider a stable minimal balanced realization (A,B,C,D) of G with Gramian
W = diag(σ) = diag(Σ1,Σ2) where Σ1 is diagonal of size r and Σ2 of size n − r, with
the smallest entry in Σ1 larger than the largest in Σ2. The state space matrices can be rewritten as:

A =

[
A1,1 A1,2

A2,1 A2,2

]
, B =

[
B1

B2

]
, C = [C1 C2] , (5)

with A1,1 ∈ Rr×r, B1 ∈ Rr×p, and C1 ∈ Rq×r.

It is well established that the reduced system Ĝ defined by A1,1,B1,C1,D is stable and

||G − Ĝ||∞ ≤ 2

n∑
i=r+1

σi. (6)

Balanced truncation thus provides a principled way to reduce model order while controlling the
approximation error in terms of discarded Hankel singular values. This makes it a central tool for
simplifying state space models while preserving their dominant dynamics.

2.2 SPECTRAL STABILITY OF HERMITIAN MATRICES

In practice, training SSMs with gradient descent modifies the learned state matrices incrementally.
Understanding how the downstream Hankel singular values shift under such perturbations is there-
fore critical to establish in-training reduction protocols. For Hermitian matrices, Weyl’s theorem
provides a powerful tool.

Let W and W ′ be Hermitian matrices of size n (i.e. symmetric for real-valued matrices), and let
δW = W ′ −W . Also, ∀i ∈ [1, · · · , n], let λi(W ) represent the i-th largest eigenvalue of W .
The ordering λ1(W ) ≥ · · · ≥ λn(W ) can always be established as the eigenvalues of Hermitian
matrices are guaranteed to be real.

Theorem 2.7 (Weyl (1912)). ∀i ∈ [1, · · · , n], λi(W ) is Lipschitz-continuous on the space of Her-
mitian matrices with operator norm:

|λi(W
′)− λi(W )| ≤ max

i=1,··· ,n
(|λi(δW )|) = max(|λ1(δW )|, |λn(δW )|). (7)

In other words, each of the eigenvalues of W can at most fluctuate by the largest absolute eigenvalue
of the perturbation δW , providing a bound on spectral variations under Hermitian perturbations.
This bound will turn out to be crucial for our in-training reduction scheme (see Section 3.2).

3 THE PROPOSED IN-TRAINING REDUCTION SCHEME

Our general pipeline (illustrated in Figure 1) is designed to be applicable to all types of SSMs as it
surgically acts on the dynamical systems within SSM layers of models regardless of the choice of
projections, non-linear activations, convolutions, skip connection, etc.

To achieve significant gains in training time, we aim to reduce the model’s hidden state dimension
where possible early on in training. Typically, we attempt to reduce SSM state dimensions at snap-
shots of the model obtained at fixed intervals at early stages of training (e.g. during learning rate
warm-up). Section 3.2 provides justification for the validity of this approach.
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3.1 COMPRESSM: THE ALGORITHM

At an given training step, we proceed per block. For an input feature vector sequence x ∈ RH×L,
where H is the inner dimension and L the sequence length, common SSM blocks contain either a
single Multi-Input Multi-Output (MIMO) system that transforms the sequence x ∈ RH×L to y ∈
RH×L, or H independent per-channel Single-Input Single-Output (SISO) systems that transform
xi ∈ R1×L to yi ∈ R1×L, for i ∈ 1, · · · ,H . In the latter case, we proceed per channel.

For a given block (and possibly a given channel index), the reduction algorithm works as follows:

1. Extract the discrete linear system matrices A,B,C from the model weights. We denote
by n the current order (rank) of the system.

2. Solve Equation 2 and Equation 3 (using Equation 14 if A is diagonal, as is the case for
many modern SSMs) to obtain the Gramians P and Q respectively.

3. Compute the Hankel singular values σ via Equation 4.
4. Find the smallest rank r such that the top-r singular values account for a predetermined

threshold τ ∈ [0, 1] of the total energy,

r = min
{
k ∈ {1, · · · , n} :

k∑
i=1

σi ≥ τ

n∑
i=1

σi

}
, (8)

5. If the rank is smaller than a given fraction of the initial state dimension (i.e. the reduction is
large enough to warrant the trouble), compute the balancing transformation matrix T from
Theorem 2.6. Otherwise, leave the system unchanged.

6. Transform the original system to its diagonal balanced realization,

(Ab,Bb,Cb) = (T−1AT ,T−1B,CT ) (9)

7. Truncate the balanced system down to rank r (with a slight abuse of tensor slicing notation),

(Ar,Br,Cr) = (Ab[: r, : r],Bb[: r, :],Cb[:, : r]) (10)

8. Replace the model weights for the dynamical system matrices. Based on the architecture
this might require diagonalizing the truncated system to ensure computational consistency.

(A,B,C)← (Ar,Br,Cr) (11)

Note that the above algorithm can not deliver improved small models if there is no clear correlation
between state dimension and model performance. There furthermore should be enough time in
between successive reduction steps for the model to recover from pruning. For more details, we
refer the reader to Section 4.2.

The fact that CompreSSM applies an in-training compression scheme enables a significant increase
in performance per training time. Indeed, we validate the speedup experimentally in Section 4.2.

3.2 IN-TRAINING REDUCTION

The validity of our proposed in-training truncation relies on several non-trivial properties, which
we first motivate intuitively before formalizing. First, the method requires tracking how the relative
importance of individual states evolves with training. Second, even if we can measure importance
continuously, training dynamics may render initially insignificant dimensions crucial at later stages.
Early truncation of such dimensions would therefore be undesirable. Consequently, it is necessary
that the relative ordering of importance remains approximately stable, at least for the dimensions
with low initial contribution. Finally, since our balanced truncation approach relies on the energy
contribution of each dimension relative to the total system energy, it is desirable that the cumulative
importance of the bottom-r dimensions does not increase substantially during training. Otherwise,
dimensions could converge to a regime of near-equal importance, making early truncation unjustified
even if the ordering is preserved.

To leverage Hankel singular value analysis during training, we must first establish a protocol for
tracking individual state importance as the system evolves under gradient updates. This existence of
such a protocol is non-trivial and its development is central to this work.

5
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Figure 2: In-training per-step analysis of Hankel singular value dynamics for a single LRU block
with state dimension of 8 on the MNIST dataset for the first 25k steps. The leftmost plot shows
the raw HSVs (as a set). The middle-left plot depicts the maximum absolute eigenvalue of δH as
described in Section 3.2. The middle-right plot overlays the maximum variation bound as an error
margin around each HSV, with each shade now representing a highly probable path for a specific
state dimension obtained by step by step linear sum assignment solving. The rightmost plot shows
the relative contribution of the bottom r HSVs to the total energy.

Indeed, between gradient steps, model weights are updated according to the negative gradient of
the loss with respect to the parameters. At the SSM level, this translates into the state matrices
being incrementally updated such that a discrete system described by (A,B,C) becomes a different
dynamical system (A′,B′,C ′), where

A′ = A+ δA, B′ = B + δB, C ′ = C + δC. (12)

The omission of D is deliberate for both notational simplicity, but also since it is often fixed as a
skip layer and not learned. Throughout this section, we adopt the convention that plain symbols
denote pre-update quantities, while primed symbols denote their post-update counterparts.

Now, using the expressions of the controllability and observability Gramians given respectively by
Equation 2 and Equation 3, one can see that both Gramians are continuous with respect to the
gradient perturbation to the system matrices thus we can also consider,

P ′ = P + δP , Q′ = Q+ δQ, (13)

where δP is some continuous function of (δA, δB), and similarly δQ of (δA, δC).

Also recall that the Hankel singular values can be obtained as the square root of the eigenvalues of
PQ (Equation 4). Generally, PQ need not be symmetric, but we use this form for computational
efficiency. Noticing that PQ is similar to the symmetric positive definite matrix P 1/2QP 1/2, we
let H =

√
P 1/2QP 1/2. The matrix H’s eigenvalues are exactly the Hankel singular values. In

addition, by composition, H is continuous with respect to the perturbations to the system, so we
write H ′ = H + δH with δH a continuous function of (δA, δB, δC).
Lemma 3.1 (Continuity of Hankel singular values under training updates). By application of Weyl’s
Theorem 2.7 to the matrix H and its perturbation H ′, between gradient steps, each Hankel singular
value can at most change by the largest absolute eigenvalue of δH = H ′ −H .

While the previous argument establishes that Hankel singular values evolve continuously with gra-
dient updates, the remaining conditions—stability of relative ordering and low contribution of the
bottom-r dimensions—cannot be guaranteed theoretically. However, empirical evidence strongly
suggests that standard training dynamics are favorable in practice.

We examine the case of a single LRU block trained on the MNIST dataset with state dimension of 8
for visual clarity in Figure 2 (and provide plots for larger models and datasets in Appendix C.2). To
keep track of the state dimension to HSV value correspondence, we overlay the maximum absolute
eigenvalue of δH , on top of each HSV. Empirically, this allows us to robustly identify probable
HSV trajectories as the continuity bound is consistently small enough to ensure each eigenvalue
is clearly isolated, with minimal bound overlaps and rare gradual HSV relative order crossings
occurring (prediction of evolution established via linear sum assignment solution in such cases).
Furthermore, the cumulative contribution of the bottom-r HSVs stabilizes rapidly. Indeed, after a
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small initial number of steps, we observe that both the ordering of singular values remains constant,
and dimensions of low importance seldom gain substantial relative energy during training.

In sum, these observations provide empirical justification for early in-training truncation: dimen-
sions identified as negligible at early stages typically remain so throughout training. Consequently,
truncation decisions made during training rarely conflict with the final importance ranking, making
our approach both effective and robust in practice.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In order to empirically validate in-training balanced truncation, we train a linear recurrent unit
(LRU) Orvieto et al. (2023) on datasets of different complexity, ranging from MNIST to tasks from
the long range arena (LRA) Tay et al. (2020).

We use the same training pipeline as Rusch & Rus (2025); Walker et al. (2025), accounting for
additional quirks of LRU training like a learning rate factor for the sequence mixing layer. The LRA
dataloaders are borrowed from Smith et al. (2022), the hyperparameters largely taken from (Orvieto
et al., 2023, Table 10). We summarize them in Table 2.

Reduction starts from the full model order reported in column 4 of Table 2. For all datasets but
IMDB and MNIST, we attempt four equidistant reduction steps during the warm-up period of the
learning rate, which equals 10% of the total steps. Doing so ensures maximal speed up potential for
the subsequent 90% of training, while also staying robust to large early training .

As MNIST is trained without learning rate decay, we attempt truncation during all of training. For
IMDB, we include a waiting stage and attempt reduction inside a smaller time window. The details
can be found in Appendix B.1. Generally, reductions are only executed if the reduced dimension is
less than 95% of the current state dimension.

We train non-reduced models with each block initialized at the average final order of the compressed
ones to allow for a fair comparison. To increase our baseline statistics and further establish correla-
tions between state dimension and model performance, we train further models with different state
dimensions.

4.2 EMPIRICAL RESULTS

We repeat all experiments using five different random seeds and report mean top-3 as well as top-1
performance. Table 1 contains the top-3 results. The top-1 results can be found in the appendix
(Table 3). The state dimensions reported for multi-block models are the averages of the SSM orders
per-block. It is accompanied by Figure 4, which presents the performance visually and contains
further non-reduced benchmark models.

For some datasets, for example AAN or Pathfinder, our baseline experiments reveal a small cor-
relation between state dimension and model performance, given the other model parameters taken
from Orvieto et al. (2023) (see entries 3 and 5 in Table 1 or figures 4c and 4e). On these datasets,
CompreSSM can not deliver better performance for small models.

However, on datasets where state dimension does clearly correlate with model performance,
CompreSSM improves small model performance. On CIFAR10, for example, compressed model
performance almost stays constant as a function of the reduction tolerance (and thus for different
state dimensions), while the non-compressed counterparts exhibit a approximately 10% performance
drop (see entry 1 in Table 1 or Figure 3a). The MNIST results paint a similar picture (entry 5 in
Table 1 or Figure 4a).

Similarly, on ListOps, the performance of non-compressed models drops significantly for state di-
mensions smaller than 120 (see Figure 4f). While the compressed models perform on par with their
uncompressed counterparts for larger state dimensions, smaller models outperform the baseline.

On Pathfinder, we can observe a similar trend (Figure 4e), where the unreduced model performance
does not show a strong correlation with the state dimension. Just for the smallest state dimension,

7
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Table 1: Average final state dimension (mean± std) and Top-3 runs mean performance with/without
reduction for LRU under different tolerances τ .

Dataset Metric τ = 1.5 · 10−1 τ = 1 · 10−1 τ = 7 · 10−2 τ = 5 · 10−2 τ = 3 · 10−2 τ = 2 · 10−2 τ = 0

CIFAR10
State dim 57.4± 1.5 92.6± 4.2 126.0± 4.0 160.8± 5.4 213.6± 6.1 327.2± 16.0 384
CompreSSM 84.4± 0.2 85.7± 0.1 86.0± 0.1 85.8± 0.1 86.0± 0.2 86.1± 0.2 -
Baseline 78.2± 0.7 81.8± 0.3 83.7± 0.2 84.2± 0.5 84.9± 0.0 86.0± 0.1 86.5± 0.3

ListOps
State dim 56.8± 3.4 81.8± 4.9 109.8± 3.9 135.4± 6.8 167.6± 5.7 213.8± 28.0 256
CompreSSM 48.3± 0.7 51.8± 0.9 48.2± 1.1 47.5± 1.6 49.2± 0.3 47.1± 1.4 -
Baseline 43.4± 0.4 46.3± 0.5 49.4± 1.8 49.2± 0.7 48.2± 2.1 47.6± 1.7 49.7± 0.8

AAN
State dim 53.6± 1.9 84.4± 1.4 111.0± 2.0 136.6± 2.9 170.0± 2.4 203.2± 13.7 256
CompreSSM 87.2± 0.3 87.5± 0.1 87.4± 0.3 87.2± 0.0 87.6± 0.3 87.9± 0.2 -
Baseline 87.5± 0.3 87.9± 0.3 87.8± 0.2 87.8± 0.5 87.3± 0.4 87.4± 0.5 87.3± 0.3

IMDB
State dim 95.0± 2.3 119.6± 2.2 136.8± 1.9 150.4± 1.2 165.0± 1.3 192.0± 0.0 192.0
CompreSSM 82.2± 0.2 82.8± 0.1 83.7± 0.4 83.8± 0.3 84.1± 0.4 84.4± 0.2 -
Baseline 82.7± 0.1 83.5± 0.1 83.7± 0.0 84.0± 0.4 84.3± 0.0 84.5± 0.1 84.7± 0.1

Pathfinder
State dim 34.6± 1.9 51.2± 1.7 65.6± 2.3 81.2± 1.6 105.0± 2.1 129.8± 5.2 256
CompreSSM 96.6± 1.3 97.9± 0.1 97.6± 0.5 97.8± 0.4 98.0± 0.0 98.0± 0.1 -
Baseline 97.3± 0.2 97.9± 0.1 98.0± 0.1 98.1± 0.0 98.2± 0.0 98.1± 0.1 98.3± 0.1

τ = 4·10−2 τ = 2·10−2 τ = 1·10−2 τ = 5·10−3 τ = 2·10−3 τ = 1·10−3 τ = 0

MNIST
State dim 12.7± 3.0 27.6± 1.8 46.8± 3.2 76.3± 7.5 148.1± 9.8 191.4± 4.7 256
CompreSSM 95.9± 0.2 96.9± 0.0 96.9± 0.1 96.9± 0.1 97.0± 0.1 97.2± 0.3 -
Baseline 92.6± 0.5 96.0± 0.2 95.9± 0.1 96.4± 0.2 97.3± 0.2 97.3± 0.1 97.3± 0.1

the unreduced model performs sees a small drop in performance and is outperformed by the top-1
reduced model.

The IMDB results reveal the importance of the prerequisites mentioned in Section 3.1 (see Fig-
ure 4d). Even after significantly reducing the parameters and increasing the droprate (see Ap-
pendix B), the unreduced only learn for roughly 8k steps before overfitting. However, in order
to do in-training balanced truncation, the actual training phase needs to be long enough to allow for
a couple of reduction steps with a large enough spacing so that the model can follow the training
dynamics for a while without being pruned. Indeed, for non-aggressive pruning (that is, pruning
with small tolerance τ ), which requires less recovery time, the top reduced models often outperform
the baseline.

As mentioned previously, an advantage of CompreSSM is that it comes with a training speedup; as
the state dimensions get pruned, training speeds up. Indeed, Figure 3b demonstrates this effect on
CIFAR10. In the case of state dimension 57, CompreSSM provides a 7% increase in test accuracy
for just 4% more training time.
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Figure 3: Subfigure (a) shows the performance of different models trained on CIFAR10 as a function
of the state dimension. Grey data indicates non-reduced models, and the shades of orange correspond
to reduced models, with tolerance decreasing with redness. The circles represents the top-3 mean,
while the star corresponds to the top-1 model. Subfigure (b) shows top-3 performance versus the
normalized average training time. Marker diameter is proportional to the final model order (also
annotated) and in-between models are omitted for visual decluttering.
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5 RELATED WORK

Model compression techniques in machine learning. The question of model compression has
received considerable attention in the literature (Deng et al., 2020; Zhu et al., 2024), leveraging
various techniques (and mixtures thereof) such as pruning (Han et al., 2015; Frantar & Alistarh,
2023), which removes redundant parameters to reduce network size; quantization (Xiao et al., 2022;
Gholami et al., 2021), which compresses models by lowering numerical precision; low-rank factor-
ization (Lin et al., 2024), which exploits structure in weight matrices to reduce dimensionality; and
knowledge distillation (Hinton et al., 2015; Gou et al., 2020), where a smaller model learns to mimic
a larger one.

In-training vs. post-training paradigms. Techniques such as quantization-aware training (Choi
et al., 2018; Zhang et al., 2018), and dynamic pruning (Hoefler et al., 2021; Wimmer et al., 2022)
perform in-training compression during the optimization process. In contrast, most methods like
Deep Compression (Han et al., 2015) follow a post-training paradigm, applying pruning or quanti-
zation after convergence and relying on retraining or fine-tuning to recover accuracy.

Compression in SSMs. Work on compressing SSMs has primarily explored quantization. Post-
training quantization has been applied to stabilize SSM inference under 8-bit constraints (Abreu
et al., 2024; Chiang et al., 2024), while quantization-aware training has been used to maintain ac-
curacy below 8 bits (Zhao et al., 2025) and to improve robustness for deployment on specialized or
analog hardware (Siegel et al., 2024; 2025).

By contrast, control-theoretic MOR approaches have been applied to diagonal S4 layers, but only
as a post-hoc step to initialize retraining (Ezoe & Sato, 2024). Elsewhere, regularizers based on the
Hankel nuclear norm or modal ℓ1 have been shown to encourage parsimonious state representations
during training, though without explicit truncation events, and with a price to pay in terms of opti-
mal performance (Forgione et al., 2024). Finally, H2-optimal reductions have been proposed as a
competitor to balanced truncation in offline SSM MOR settings (Sakamoto & Sato, 2025).

To the best of our knowledge, our contribution is the first to propose a principled in-training model
order reduction method applicable to a broad spectrum of SSMs.

6 CONCLUSION

In conclusion, we proposed a novel framework for principled compression of SSMs during training
called CompreSSM. Drawing on classical control theory, we base our approach on balanced trun-
cation. In particular, we show that Hankel singular values (HSVs), the corner stone of balanced
truncation, preserve the rank of their dominant dimensions during training, which allows for safely
truncating dimensions associated with smaller HSVs.

We test CompreSSM by training LRUs on a range of tasks of varying complexity. Provided there
is a correlation between state dimension and model performance as well as enough training steps
in between two reduction steps, we verify empirically that compressed models outperform their
uncompressed counterparts while delivering better performance per unit of training time.

Finally, we provide an outlook on how to do in-training balanced truncation for linear time-varying
systems. In this selective case, we propose averaging the dynamics over the input space and ap-
plying the reduction scheme to this time-independent system. For future work, we would like to
extend CompreSSM to linear self-attention models, e.g., Gated Linear Attention Yang et al. (2023),
Mamba2 Dao & Gu (2024), and Gated DeltaNet Yang et al. (2024), which is another class of models
based on linear time-varying systems.
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REPRODUCIBILITY STATEMENT

We provide an anonymized supplementary code package that implements CompreSSM for the LRU
architecture with configuration runs used to produce the results in this paper. A public repository
with identical code will be made public after review.

USE OF LARGE LANGUAGE MODELS (LLMS)

No original methods, model designs, or ideas originate from the use of LLMs. They have been put
to use for LaTeX formatting, grammar and syntax and coding assistance only. The authors are the
sole responsible parties for the contents of the work. LLMs are not eligible for authorship.
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A APPENDIX

A.1 SOLVING THE LYAPUNOV EQUATIONS FOR DIAGONAL SSMS

For SSMs with diagonal state transition matrix A = diag(a1, . . . , an), which covers a lot of SSMs
used today such as LRU Orvieto et al. (2023) and S5 Smith et al. (2022), Equation 2 and Equation 3
admit a simple, entry-wise closed-form solution:

Pij =

(
BB⊤)

ij

1− aiaj
, Qij =

(
CC⊤)

ij

1− aiaj
∀1 ≤ i, j ≤ n (14)

In the non-diagonal case, one can either solve the Lyapunov equations by vectorization or use the
argument put forward by Orvieto et al. (2023) and realize that every state transition matrix A ∈ Rn,n

can be diagonalized over C up to a small perturbation.

A.2 SELECTIVE SSM CASE

Selective SSMs are built with dynamical systems that fall under the linear parameter varying (LPV)
framework, with the parameter being the layer input. Such systems are also referred to as Linear
Input Varying (LIV) and their general case state equations are given by,

h(k + 1) = A(x(k))h(k) +B(x(k))x(k) , h(0) = h0 (15)
y(k) = C(x(k))h(k) +D(x(k))x(k), (16)

For these systems, the controllability and observability Gramians are no longer stationary. In par-
ticular, for each possible input x ∈ X , one would in principle need to solve a set of Lyapunov
inequalities of the form

A(x)P (x)AT(x)− P (x) +B(x)BT(x) ≤ 0, (17)

AT(x)Q(x)A(x)−Q(x) +CT(x)C(x) ≤ 0, (18)

so that the Gramians P and Q are input-dependent.

In practice, solving for fully input-dependent Gramians and applying the subsequent per input reduc-
tion is clearly neither computationally tractable nor practical. A common simplification is to seek
input-invariant Gramians P ,Q that satisfy the inequalities for all x ∈ X ; this reduces the problem
to an LTI-like Lyapunov condition over all inputs, which can still be expensive for high-dimensional
X , when such a solution even exists. In practice this is still too constraining.

A cheaper alternative is simply averaging the dynamics over the input space:

Ā =
1

|X |
∑
x∈X

A(x), B̄ =
1

|X |
∑
x∈X

B(x), C̄ =
1

|X |
∑
x∈X

C(x), (19)

The caveat is that the mean system may not be stable, controllable, or observable; one may therefore
need to regularize the mean matrices to satisfy these assumptions before applying a single global
reduction based on the LTI approach.

B EXPERIMENTAL DETAILS

The hyperparameters we used can be found in Table 2. For all but one LRA tasks we use the same
ones as reported by (Orvieto et al., 2023, Table 10). The exception is IMDB, which we observed to
overfit massively with the given hyperparameters. We mitigate this issue by increasing dropout and
reducing the total number of layers.

On LRA tasks, the learning rate is warmed up from 10−7 to 10−3 for 10% of the total steps, before
it is cosine-decayed back to 10−7. For MNIST, the learning rate is fixed at 4 · 10−4 for the entirety
of training.
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Table 2: Hyperparameters for LRU experiments. “h“ refers to the dimension of the hidden state, “n“
to the state space dimension, “Batch“ to the batch size and “LR Factor“ to the learning rate factor
applied to the sequence mixer Orvieto et al. (2023).

Task Depth h n Steps Batch LR Factor Weight Decay Dropout

MNIST 1 8 256 200k 50 - - 0.1
CIFAR10 6 512 384 180k 50 0.25 0.05 0.1
ListOps 6 128 256 80k 32 0.5 0.05 0.0
IMDB 1 256 192 50k 32 0.1 0.05 0.1
AAN 6 128 256 100k 64 0.5 0.05 0.1
Pathfinder 6 192 256 500k 64 0.25 0.05 0.0

B.1 REDUCTION DETAILS

We find that LRU overfits on IMDB, even after reducing the number of parameters by 6 and doubling
the dropout rate compared to Orvieto et al. (2023). Training LRU on this dataset, we furthermore
observe an initial training period in which the loss plateaus. Just on IMDB, we thus wait for an
initial 1k steps before doing the balanced truncation. Instead of doing 4 reduction steps until the
end of warmup, we also just do 2 until 3k steps in order to give the model time to recover before
entering the overfitting regime.

C ADDITIONAL RESULTS

C.1 PERFORMANCE

In Figure 4 we provide the state dimension vs test performance plots for all datasets.

Table 3: Final state dimension (mean± std) and MAX performance with/without reduction for LRU
under different tolerances τ .

Dataset Metric τ = 1.5 · 10−1 τ = 1 · 10−1 τ = 7 · 10−2 τ = 5 · 10−2 τ = 3 · 10−2 τ = 2 · 10−2 τ = 0

CIFAR10
State dim 57.4± 1.5 92.6± 4.2 126.0± 4.0 160.8± 5.4 213.6± 6.1 327.2± 16.0 384
CompreSSM 84.6 85.8 86.1 85.9 86.2 86.4 -
Baseline 78.7 82.2 84.0 84.8 85.0 86.2 86.9

ListOps
State dim 56.8± 3.4 81.8± 4.9 109.8± 3.9 135.4± 6.8 167.6± 5.7 213.8± 28.0 256.0± 0.0
CompreSSM 48.9 53.0 49.7 49.7 49.5 49.2 -
Baseline 43.8 46.9 50.8 49.7 51.1 50.0 50.7

AAN
State dim 53.6± 1.9 84.4± 1.4 111.0± 2.0 136.6± 2.9 170.0± 2.4 203.2± 13.7 256
CompreSSM 87.6 87.6 87.8 87.3 88.0 88.1 -
Baseline 87.8 88.2 88.1 88.2 87.9 88.1 87.5

IMDB
State dim 95.0± 2.3 119.6± 2.2 136.8± 1.9 150.4± 1.2 165.0± 1.3 192.0± 0.0 192
CompreSSM 82.3 82.9 84.1 84.1 84.6 84.7 -
Baseline 82.9 83.6 83.7 84.3 84.4 84.7 84.7

Pathfinder
State dim 34.6± 1.9 51.2± 1.7 65.6± 2.3 81.2± 1.6 105.0± 2.1 129.8± 5.2 256
CompreSSM 98.1 98.0 98.0 98.1 98.1 98.1 -
Baseline 97.5 98.0 98.1 98.1 98.2 98.3 98.4

τ = 3·10−2 τ = 2·10−2 τ = 1·10−2 τ = 5·10−3 τ = 2·10−3 τ = 1·10−3 τ = 0

MNIST
Dim (± std) 0.0± 0.0 27.6± 1.8 46.8± 3.2 76.3± 7.5 148.1± 9.8 191.4± 4.7 256
CompreSSM 0.0 96.2 97.0 96.9 97.2 97.6 -
Baseline 0.0 96.9 96.1 96.6 97.5 97.6 97.3

C.2 EMPIRICAL IN-TRAINING HANKEL STABILITY

In Figures 5, 6, 7, and 8, we provide additional empirical evidence showing the validity of assump-
tions made on the dynamics of HSVs during training for multiple experiments with various number
of layers and SSM state dimensions. The observations regarding a consistent ordering after a small
number of training steps, and contributions of smaller values hold in all cases. Note that, unlike
the analysis in the main text, which is established at each gradient step, we inspect HSVs at larger
intervals on the order of thousands of steps. This leads to the computation of the exact continuity
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Figure 4: Test performance vs. final state dimension for all our experiments. Stars correspond to
best performance, circles to the mean of the top-3 runs. Grey shapes correspond to non-reduced
models, and the shades of orange to reduced models, with tolerance decreasing with redness.

Figure 5: Single LRU block with state dimension of 64 on the MNIST dataset.

bounds becoming extremely noisy as perturbations grow. Nevertheless, we use linear sum assign-
ment tracking as our most likely guess of HSV evolution as before.
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Figure 6: Single LRU block with state dimension of 64 on the IMDB dataset.
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Figure 7: Six LRU blocks with state dimension of 57 on the CIFAR10 dataset.
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Figure 8: Six LRU blocks with state dimension of 56 on the ListOps dataset.
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