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Abstract
In the process of applying for a job across several similar firms, applicants often1

have the option to exclude certain features from a CV, e.g., photo, GPA, standard-2

ized test scores, etc. If applicants desire the best income offer possible and can3

submit multiple applications to similar positions, they may exclude or include vari-4

ous of these optional features on different applications to see which yields the best5

results, eventually accepting the highest offer. But if an analyst then would like to6

estimate what makes a good worker using the applications (features) and incomes7

(outcomes) of the finally accepted offers, she will have an endogeneity problem!8

The excluded features, which we term “obscured” will be missing not at random,9

meaning simple imputation methods such as the conditional expectation will result10

in biased estimates. We formalize this problem and present a preliminary result in11

which we reduce our obscured setting to a high-dimensional instantiation of the12

setting from Cherapanamjeri et al. [1]. Unfortunately, this reduction increases the13

number of variables by an amount combinatorial in the dimension of the problem,14

meaning the algorithmic tool for this setting will not be efficient in the original15

parameters. We present possible next steps such as approximate SGD on the MLE16

and kernelization to get around the increase in variables.17

1 Introduction18

Borrowing the fisherman occupation from Roy [5], we introduce what we call our “obscurable19

fisherman” problem much like Cherapanamjeri et al. [1]:20

Suppose agents in a small village have only one industry available to them: fishing. They may21

apply to be fishermen at various very similar firms and receive an offer of income according to some22

common policy based on the features presented in their application. However, all applications may23

optionally include FAT (Fishing Aptitude Test) scores among other features. Every agent sends24

applications to various firms including/excluding various optional features. Because all agents test25

the waters by including/excluding features, to calculate job offers, firms just take their best guess26

(a conditional expectation) as to what the values of the missing features are on each application.27

Eventually, each agent accepts the fisherman job offer the gives the highest income.28

A statistician gets access to accepted offers and applications (with obscured values). She asks:29

What makes a good fisherman?30

This anecdote sets up an endogeneity problem for the statistician. If applicants desire the best income31

offer possible and can submit multiple applications to similar firms, the application of the offer32

they eventually select will have strategically obscured features. These features are missing not at33

random (MNAR)[6] and so should not be thrown out or imputed with conditional averages by the34

statistician. Are there algorithms efficient in time and sample complexity that the statistician can35

use? In Section 2, we formally present a model of this strategic feature obscuration, which we call36

the obscurable fisherman setting. The statistician must estimate w ∈ Rd, the coefficients of a linear37

policy assigning income offers based on features. Any subset of the first k features can be obscured.38

Agents may test every possible obscuration pattern and then accept the one that yields the highest39
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(noisy) outcome. In Section 3, we present preliminary results as to the estimation of w using the40

linear estimation under model self-selection tools from Cherapanamjeri et al. [1]. Our obscurable41

fisherman setting, while a strategic missing data problem, can also be viewed as a model selection42

problem. As such, we create a reduction of a generic obscurable fisherman dataset, D, to a “good43

fisherman” (à la Cherapanamjeri et al. [1]) dataset, D̃, that is the best response to a set of models in44

the form of their setting. Unfortunately, the reduction requires an increase in the number of features45

that is combinatorial in the original dimension. Thus, directly using the algorithm they present is not46

efficient in the parameters of the obscurable fisherman setting. In Section 4 we discuss future work47

we hope will yield better results.48

1.1 Related works49

Cherapanamjeri et al. [1] is the most direct inspiration for our model; they consider agents who50

select (using a function such as max) between k linear models and a statistician that estimates the w⋆
j51

coefficient for each model. In our version, there is only one underlying linear coefficient vector, w,52

and instead agents select from obscuration patterns. The strategic selection of obscuration patterns53

means that we consider estimation under missing not at random data (MNAR) which was first54

formally defined by Rubin [6] and cannot generally be fixed with imputation of conditional averages.55

See Little [3] for a taxonomy and survey of estimation methods under various missing data patterns.56

Additionally, while we focus on a linear coefficient statistical estimation problem, there are similar57

questions that involve creating an optimal classifier given strategically obscured data. Krishnaswamy58

et al. [2] design classification algorithms that perform well under strategically obscured data and59

Liu and Garg [4] evaluate whether it is possible to build a classifier that does not implicitly penalize60

agents who choose to obscure test score data in university admissions.61

2 Model62

2.1 Agents63

Each agent (she), i ∈ [n] has feature vector: x(i) ∈ Rd drawn from a joint distribution D(x). The64

first k < d of d features are optional. That is, features at any subset Oj ⊆ [k] of indices may be65

obscured. We will call Oj , a set obscured indices, an obscuration pattern. Let Oj ∈ P where P is66

the set of all obscuration patterns. Clearly, |P| =
∑k

l=0

(
k
l

)
.67

Definition 2.1 (Obscured feature vector). For a true feature vector, x(i), and obscuration pattern,68

Oj , an obscured feature vector x(i)
j ∈ Rd is the same as x(i) except all elements at indices in the69

obscuration pattern are obscured. Formally: x
(i)
j,u = x

(i)
u ∀u ∈ [d] \ Oj and x

(i)
j,h = o ∀h ∈ Oj .70

Where o (for obscured) indicates that this a missing value and holds no inherent numerical meaning.71

When os are replaced with conditional expectations:72

Definition 2.2 (Expected feature vector). For an obscured feature vector, x(i)
j , and obscuration73

pattern, Oj , an expected feature vector, x̂(i)
j ∈ Rd, is the same as x(i) except all elements at indices74

in the obscuration pattern are expectations conditioned on all unobscured variables. Formally:75

x̂
(i)
j,u = x

(i)
u ∀u ∈ [d] \ Oj and x̂

(i)
j,h = E[xh|U(Oj)] ∀h ∈ Oj where U(Oj) are the elements at76

unobscured indices, i.e.,U(Oj) := {x(i)
u |u ∈ [d] \ Oj}77

The agent privately tests a given linear model on each expected feature vector and selects the best78

outcome and obscuration pattern. That is she selects:79

y(i) := max
j∈|P|

fj(x
(i)); j⋆(i) := argmax

j∈|P|
fj(x

(i)) where fj(x
(i)) := w⊤x̂

(i)
j + εj

Noise εj ∼ N (0, σ2) is iid and drawn separately for each model. Notice that obscuration pattern and80

model are functionally the same. That is, if an agent chooses obscuration pattern j, she has chosen81

model j. We will use these terms interchangeably.82

2.2 Learner83

The learner (he) receives a dataset of the selected obscured feature vectors and best outcomes:84

D := {x(i)
j⋆ , y

(i), j⋆(i)}i∈[n]
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First, note D will have data that is missing not at random (MNAR). Second, note that the obscuration85

pattern can be directly gleaned from x
(i)
j⋆ , thus receiving an obscured feature vector also allows the86

learner to know which model was selected, j⋆.87

The learner would like to know what makes a good outcome, i.e., estimate w, despite the non-88

randomness of the missing data. It is clear to see that the obscured setting creates endogeneity due to89

correlated errors and thus standard OLS estimates (with either conditional expectation imputations or90

dropping of missing data) would be biased.91

Example 2.1 (Learner does biased OLS). Suppose w := (1, 1), σ2 = 1
5 , and both x1, x2 ∼92

UNIF(−1, 2). Thus, x1, x2 are independent of one another and E[x2, |x1 = x
(i)
1 ] = .5 for all x(i)

1 .93

We simulate n = 200 of this example and imagine the learner does OLS on the full data set (i.e.94

allowing o = .5) and also on just the points that have no missing data. This is presented in Figure 1.95

Clearly both OLS estimators are biased.96

What time and sample efficient algorithms may the learner run such that he achieves an ε-unbiased97

estimator of w despite strategically obscured data?98

3 A reduction to Cherapanamjeri et al. [1] self-selection99

In these results, we will detail a (relatively inefficient) approach to estimating w when conditional100

expectations are known using existing model selection tools from Cherapanamjeri et al. [1]. Improved101

methods and future work are discussed in Section 4.102

Assumption 3.1 (Known Conditional Expectations). E[xh|U(Oj)] is known ∀h ∈ Oj ,∀Oj ∈ P103

Assumption 3.1 is a strong assumption stating that the expectation for all obscurable features condi-104

tioned on any possible set of unobscured features is known.105

3.1 Constructing a good fisherman setting106

In the known-index model selection setting of Cherapanamjeri et al. [1], agents select a linear model,107

fj(x) = w⋆⊤
j x(i) + εj , that provides the best sampled outcome. Importantly, the resulting dataset108

provides {x(i), y(i), j
⋆(i)}i∈[n]. Thus, while the provided outcome depends on the selected model,109

the feature set does not. We will transform our learner’s dataset, D, which contains the problematic110

x
(i)
j⋆ obscured features, into D̃, a dataset that could have come from a good fisherman setting. In111

constructing D̃ we will shift each obscurable feature such that whxh ≥ 0∀h ∈ [k]. Thus we need:112

Assumption 3.2 (Obscurable features are sufficiently bounded). The following must hold for all113

obscurable feature indices, h ∈ [k]: If wh > 0 then lh ≤ xh ∀xh. If wh < 0 then uh ≥ xh ∀xh114

Definition 3.1 (D̃, good fisherman transformed dataset). D̃ := {1, x̃(i), y(i), j⋆(i)}i∈[n] where: each115

x̃(i) ∈ Rg(k,d), g(k, d) := k
∑k−1

l=0

(
k−1
l

)
+ d and is constructed according to Algorithm 1116

Notice that x̃(i) no longer depends on the model selection! The constructed feature set is the original117

with two key changes: (1) a shift on obscured variables (2) k
∑k−1

l=0

(
k−1
l

)
additional variables to118

“one-hot encode” for every relevant conditional expectation. For a given obscurable variable, xh,119

Algorithm 1 adds a variable for every obscuration pattern it could be a part of. We will now show that120

D̃ could have come from a valid good fisherman setting.121

Theorem 3.3 (Reduction to good fisherman self-selection). Using the same εj as those from the122

obscured models, dataset D̃ would be the best response to a maximizing self-selection over |P| linear123

models where: f̃j(x̃(i)) := w0+ w̃⊤
j x̃

(i)+ εj , each w̃j is constructed according to Algorithm 2, and124

w0 :=
∑
h∈[k]

wh (−1wh≥0|min{0, lh}|+ 1wh<0|max{0, uh}|)

To prove this, we need to show that for every agent of D̃, a best response in this good fisherman setting125

would indeed still be the j⋆th model and the j⋆th model would produce that outcome. The intuition of126

this result can be seen directly from the following lemma statements. First, the transformed features,127

when multiplied by the w̃j⋆ and added to εj + w0, produce the same outcome as fj⋆(x(i))!128

Lemma 3.1 (Output of j⋆ model is stable). For a point, x(i)
j⋆ we have: f̃j⋆(x̃(i)) = fj⋆(x

(i)
j⋆ )129
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Second, due to the construction of x̃(i) and w̃j′ for all j′ ̸= j⋆, the inner product corresponding to130

each good fisherman model +εj′ + w0, will yield either the same output or less than the private tests131

the agent did for obscuration pattern j′.132

Lemma 3.2 (Output of j′ models is lowered). For a point, x(i)
j⋆ : f̃j′(x̃(i)) ≤ fj′(x

(i)
j′ ) ∀j′ ̸= j⋆133

With these lemmas, the proof of Theorem 3.3 is very direct, clearly134

f̃j⋆(x̃
(i)) = fj⋆(x

(i)
j⋆ ) ≥ fj′(x

(i)
j′ ) ≥ f̃j′(x̃

(i)) ∀j′ ̸= j⋆

Thus j⋆ is the best response and we still have the same y(i)!135

3.2 Estimating w136

After converting the dataset to one that could be the result of a maximum selection problem over137

linear models, with a few additional assumptions, the learner can run the algorithm presented by138

Cherapanamjeri et al. [1] to estimate w̃j ∀j ∈ |P| and thus have estimates for w! Recall that from139

Algorithm 2, we know which elements of w̃j are equivalent to which elements of w, so we can140

directly construct good estimates of w from good estimates of w̃j .141

Corollary 3.1 (Corollary of Thm 3.3 and Thm 1 [1] ). Let {xj⋆ , y
(i), j⋆(i)}i∈[n] be n observations142

from an obscurable fisherman model as described in Section 2. Let ŵ be the estimator of the w. Given143

assumptions 3.1 and 3.2, as well as the additional assumptions 1, 2, and 3 from Cherapanamjeri et al.144

[1], there exists an algorithm such that with probability at least .99,145

∥w − ŵ∥22 ≤ poly(σ, |P|, 1/α,B,C)
log n

n

under poly(n, g(k, d), |P|, 1/α,B,C, σ, 1/σ) running time.146

Where α,B,C are constants defined by assumptions 1, 2, and 3 from Cherapanamjeri et al. [1]147

Unfortunately, in the parameters of the obscured problem, this is not a very efficient result. Recall148

that |P| =
∑k

l=0

(
k
l

)
and g(k, d) := k

∑k−1
l=0

(
k−1
l

)
+ d. The number of obscuration patterns, i.e.,149

models and the number of variables is combinatorial in the number of obscurable variables, which150

could be as large as d− 1!151

4 Conclusion and Future Work152

We present a model of agents being able to self-select their set of obscurable features. We provide153

preliminary results of the estimation of linear model coefficients despite the selection bias that arises154

from strategic obscuration. Estimation in this setting can be viewed with both a missing not at155

random (MNAR) problem lens and model self-selection lens. Importantly, under the model-selection156

perspective, we can reduce the problem to a high-dimensional version of good fisherman setting[1].157

Unfortunately, the reduction increases the number of data dimensions such that known algorithms will158

not be efficient in the original dimensions of the problem. Further, the reduction requires knowledge159

of conditional expectations, which is a strong assumption.160

In the extended work, we hope to prove an alternate w estimation method through a more direct MLE161

estimation similar to that which done by Cherapanamjeri et al. [1]. Because the presented result has162

shown that the obscurable fisherman setting could be reduced to a version of the good fisherman one,163

it may be that there exists an analogous population likelihood function that is strongly concave with a164

stationary point at w, which could be approximately optimized via SGD. Alternatively, as there is a165

combinatorial (in d) variable problem in the reduction, there may be applications of kernelization that166

remove this issue.167
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A Supplementary material190

A.1 Supplementary material for Section 2191

A.1.1 Example192

Figure 1: Learner runs OLS on n = 200 datapoints detailed in Example 2.1. Black Xs represent
the points with obscured x2 elements (missing x2 is imputed as .5 for the green OLS). Red points
represent those which are not obscured at all.
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A.2 Supplementary material for Section 3193

A.2.1 Algorithms to compute the reduction194

Algorithm 1 Construct x̃(i)

Require: x
(i)
j⋆ ; E[xh|U(Oj)] ∀h ∈ Oj ,∀j ∈ |P|; lh, uh ∀h ∈ [k]

x̃(i) = []
for h← 1 to k do ▷ loop adds k elements

if x(i)
j⋆,h ̸= o then
if wh ≥ 0 then

Append x
(i)
j⋆,h + |min{0, lh}| to x̃(i) ▷ if not obscured, add shifted known value

else
Append x

(i)
j⋆,h − |max{0, uh}| to x̃(i) ▷ if not obscured, add shifted known value

else
Append 0 to x̃(i) ▷ if obscured, add 0

for h← 1 to k do ▷ loop adds k
∑k−1

j=0

(
k−1
j

)
elements

for l← 0 to k − 1 do
for all S ∈

(
[k]\{h}

l

)
do ▷ loop through all obscuration patterns that include h

O ← S ∪ [h] ▷ construct obscuration pattern
U(O)← {x(i)

j⋆,u|u ∈ [d] \ O} ▷ construct set of unobscured elements

if U(O) contains elements s.t. x(i)
j⋆,u = o then ▷ check if these unobscured are o

Append 0 to x̃(i) ▷ if yes, then conditional exp incomputable
else

if wh ≥ 0 then
Append E[xh|U(O)] + |min{0, lh}| to x̃(i) ▷ if no, add shifted cond exp

else
Append E[xh|U(O)]− |max{0, uh}| to x̃(i) ▷ if no, add shifted cond exp

for u← k + 1 to d do ▷ loop adds d− k elements
Append x

(i)
u to x̃(i) ▷ add unobscured value

return x̃(i) ▷ constructed feature vector ∈ Rg(k,d)

Algorithm 2 Construct w̃j to match obscuration pattern, Oj

Require: Oj , the obscuration pattern of model j
w̃j = []
for h← 1 to k do ▷ loop adds k elements

if h ∈ Oj then
Append 0 to w̃j ▷ if h is obscured in this model don’t turn on w

else
Append wh to w̃j ▷ if h is in this model turn on w

for h← 1 to k do ▷ loop adds k
∑k−1

j=0

(
k−1
j

)
elements

for l← 0 to k − 1 do
for all S ∈

(
[k]\{h}

l

)
do ▷ loop through all obscuration patterns that include h

O ← S ∪ [h]
if O = Oj then

Append wh to w̃j ▷ if this conditional exp is in this model, turn on w
else

Append 0 to w̃j ▷ if this conditional exp is not in this model, don’t turn on w

for u← k + 1 to d do ▷ loop adds d− k elements
Append wu to w̃j ▷ unobscurable vars are always in the model, so always have their

coefficients on.
return w̃j
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A.2.2 Missing proofs195

Proof of Lemma 3.1. First, note that Algorithm 1 shifts all obscurable variables, xh by196

1wh≥0|min{0, lh}| − 1wh<0|max{0, uh}| and then f̃j adds a constant term197

w0 :=
∑
h∈[k]

wh (−1wh≥0|min{0, lh}|+ 1wh<0|max{0, uh}|)

We can also do this without changing the outcome of any model (or model selection) to the obscurable198

setting because this is equivalent to adding and subtracting terms. For the remainder of the proof, we199

will refer to this affine version of the model (with w0) and treat the obscurable variables from D as if200

they are shifted.201

First we shall consider the function of Algorithm 1 and 2. Notice that, for every i, Algorithm 1202

constructs a vector such that the first k elements correspond to [shifted] actual values of xh where203

possible. Then k
∑k−1

j=0

(
k−1
j

)
elements are added to correspond to every obscurable variable’s possi-204

ble [shifted] conditional expectation. Finally d− k elements at the end are simply the unobscurable205

values that must be present. Algorithm 2 on the other hand follows the same construction pattern,206

but instead, for a given Oj , or equivalently, for an given model, places a wh in the element spot207

that represents which conditional expectation (or unobscured value) appears in the model. This is208

conceptually very similar to a one-hot encoding!209

Thus, for Oj⋆ , Algorithm 2 constructs a w̃ that210

1. For unobscurable variables, indexed by u, assigns w̃u = wu to x̃ element slots corresponding211

to each said unobscurable variable212

2. For each obscurable variable, indexed by h, only assigns w̃h = wh to the x̃(i) element slot213

corresponding to obscurable variable OR conditional expectation appearing in the given214

x
(i)
j⋆ .215

As a result,216

εj⋆ + wo + w̃⊤
j⋆ x̃

(i) = εj⋆ + wo +w⊤x̂
(i)
j⋆

Where x̂
(i)
j⋆ is the shifted version of the expected feature vector corresponding to obscured feature217

vector. This is equivalent to the statement in the lemma.218

Proof of Lemma 3.2. As in the proof of Lemma 3.1, note that Algorithm 1 shifts all obscurable219

variables, xh by 1wh≥0|min{0, lh}| − 1wh<0|max{0, uh}| and then f̃j adds a constant term220

w0 :=
∑
h∈[k]

wh (−1wh≥0|min{0, lh}|+ 1wh<0|max{0, uh}|)

We can also do this without changing the outcome of any model (or model selection) to the obscurable221

setting without changing the outcome of any model (or model selection) because this is equivalent to222

adding and subtracting terms. For the remainder of the proof, we will refer to this affine version of223

the model (with w0) and treat the obscurable variables from D as if they are shifted.224

First we shall consider the function of Algorithm 1 and 2. Notice that, for every i, Algorithm 1225

constructs a vector such that the first k elements correspond to [shifted] actual values of xh where226

possible. Then k
∑k−1

j=0

(
k−1
j

)
elements are added to correspond to every obscurable variable’s possi-227

ble [shifted] conditional expectation. Finally d− k elements at the end are simply the unobscurable228

values that must be present. Algorithm 2 on the other hand follows the same construction pattern,229

but instead, for a given Oj , or equivalently, for an given model, places a wh in the element spot230

that represents which conditional expectation (or unobscured value) appears in the model. This is231

conceptually very similar to a one-hot encoding!232

An important nuance happens when the obscuration pattern of w̃j′ does not match the obscuration233

pattern implicit to x
(i)
j⋆ . Algorithm 1 sets as 0 any elements of x̃(i) that represent conditional234

expectations (or obscurable values) that cannot be computed from x
(i)
j⋆ , which may have missing235

values. For example, if x(i)
j⋆ = (o, 1, 4) and the first two variables obscurable, one of the elements in236
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the corresponding x̃(i) will be for E[x2|x1 =?, x3 = 4], but this will be incomputable since obviously237

x1 is obscured.238

Consider an arbitrary element x̃(i)
q associated with the obscurable element at index h. That is, element239

at index q of x̃ is some conditional expectation or value of obscurable element at index h of x(i). As240

a result of Algorithm 1, if this conditional expectation or value is incomputable as a result of the241

the obscuration pattern of x(i)
j⋆ because relevant values are missing, x̃(i)

q = 0. This means, for any242

obscuration patterns, Oj′ , that x̃(i)
q is represented in, while Algorithm 2 will construct a w̃ that sets243

w̃q = wh, w̃qx̃
(i)
q = 0! Meanwhile, in the earlier private test for that obscuration done by the agent,244

she tested εj′ + wo +w⊤x̂
(i)
j′ , and she would have:245

whx̂j′,h = wh (E[xh|U(Oj′)] + 1wh≥0|min{0, lh}| − 1wh<0|max{0, uh}|) ≥ 0

(again, for this proof we redefine x̂j′ as the shifted expected feature vector) because she had access to246

missing variables and by construction of the shift its greater than or equal to zero. As a result we see247

that:248

εj′ + wo +w⊤x̃
(i)
j′ ≤ εj′ + wo +w⊤x̂

(i)
j′ ∀j′ ̸= j⋆

Where x̂
(i)
j⋆ is the shifted version of the expected feature vector corresponding to obscured feature249

vector. This is equivalent to the statement in the lemma.250

Proof of Theorem 3.3. We need to show that, for every i, were x̃(i) the underlying true features251

generated, then maxj∈|P| f̃j(x̃
(i)) would generate the y(i) and the j

⋆(i) given. Equivalently, that a252

best response would indeed be the j⋆th model and the j⋆th model would produce that outcome.253

The result directly follows from Lemma 3.1 and 3.2. First, Lemma 3.1 confirms that for all agents254

i, model j⋆ does yield the same output under both fj⋆ and f̃j⋆ settings. All that remains to show is255

that f̃j⋆ is in fact the best outcome of all f̃j . Notice that for an point x(i)
j⋆ , we know that fj⋆(x

(i)
j⋆ ) >256

fj′(x
(i)
j′ ) ∀j′ ̸= j⋆ because the agent selected j⋆. From Lemmas 3.1 and 3.2:257

f̃j⋆(x̃
(i)) = fj⋆(x

(i)
j⋆ ) > fj′(x

(i)
j′ ) ≥ f̃j′(x̃

(i)) ∀j′ ̸= j⋆

Thus j⋆ is the best response in the transformed good fisherman model set as well!258
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NeurIPS Paper Checklist259

1. Claims260

Question: Do the main claims made in the abstract and introduction accurately reflect the261

paper’s contributions and scope?262

Answer: [Yes]263

Justification: we have the results and proofs described264

Guidelines:265

• The answer NA means that the abstract and introduction do not include the claims266

made in the paper.267

• The abstract and/or introduction should clearly state the claims made, including the268

contributions made in the paper and important assumptions and limitations. A No or269

NA answer to this question will not be perceived well by the reviewers.270

• The claims made should match theoretical and experimental results, and reflect how271

much the results can be expected to generalize to other settings.272

• It is fine to include aspirational goals as motivation as long as it is clear that these goals273

are not attained by the paper.274

2. Limitations275

Question: Does the paper discuss the limitations of the work performed by the authors?276

Answer: [Yes]277

Justification: we’ve included concerns about the efficiency and assumptions of the results278

Guidelines:279

• The answer NA means that the paper has no limitation while the answer No means that280

the paper has limitations, but those are not discussed in the paper.281

• The authors are encouraged to create a separate "Limitations" section in their paper.282

• The paper should point out any strong assumptions and how robust the results are to283

violations of these assumptions (e.g., independence assumptions, noiseless settings,284

model well-specification, asymptotic approximations only holding locally). The authors285

should reflect on how these assumptions might be violated in practice and what the286

implications would be.287

• The authors should reflect on the scope of the claims made, e.g., if the approach was288

only tested on a few datasets or with a few runs. In general, empirical results often289

depend on implicit assumptions, which should be articulated.290

• The authors should reflect on the factors that influence the performance of the approach.291

For example, a facial recognition algorithm may perform poorly when image resolution292

is low or images are taken in low lighting. Or a speech-to-text system might not be293

used reliably to provide closed captions for online lectures because it fails to handle294

technical jargon.295

• The authors should discuss the computational efficiency of the proposed algorithms296

and how they scale with dataset size.297

• If applicable, the authors should discuss possible limitations of their approach to298

address problems of privacy and fairness.299

• While the authors might fear that complete honesty about limitations might be used by300

reviewers as grounds for rejection, a worse outcome might be that reviewers discover301

limitations that aren’t acknowledged in the paper. The authors should use their best302

judgment and recognize that individual actions in favor of transparency play an impor-303

tant role in developing norms that preserve the integrity of the community. Reviewers304

will be specifically instructed to not penalize honesty concerning limitations.305
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3. Theory assumptions and proofs306

Question: For each theoretical result, does the paper provide the full set of assumptions and307

a complete (and correct) proof?308

Answer: [Yes]309

Justification: assumptions are delineated. proofs are in the appendix310

Guidelines:311

• The answer NA means that the paper does not include theoretical results.312

• All the theorems, formulas, and proofs in the paper should be numbered and cross-313

referenced.314

• All assumptions should be clearly stated or referenced in the statement of any theorems.315

• The proofs can either appear in the main paper or the supplemental material, but if316

they appear in the supplemental material, the authors are encouraged to provide a short317

proof sketch to provide intuition.318

• Inversely, any informal proof provided in the core of the paper should be complemented319

by formal proofs provided in appendix or supplemental material.320

• Theorems and Lemmas that the proof relies upon should be properly referenced.321

4. Experimental result reproducibility322

Question: Does the paper fully disclose all the information needed to reproduce the main ex-323

perimental results of the paper to the extent that it affects the main claims and/or conclusions324

of the paper (regardless of whether the code and data are provided or not)?325

Answer: [Yes] .326

Justification: no experiments, we do have a very simple example, the explanation would be327

enough to recreate it328

Guidelines:329

• The answer NA means that the paper does not include experiments.330

• If the paper includes experiments, a No answer to this question will not be perceived331

well by the reviewers: Making the paper reproducible is important, regardless of332

whether the code and data are provided or not.333

• If the contribution is a dataset and/or model, the authors should describe the steps taken334

to make their results reproducible or verifiable.335

• Depending on the contribution, reproducibility can be accomplished in various ways.336

For example, if the contribution is a novel architecture, describing the architecture fully337

might suffice, or if the contribution is a specific model and empirical evaluation, it may338

be necessary to either make it possible for others to replicate the model with the same339

dataset, or provide access to the model. In general. releasing code and data is often340

one good way to accomplish this, but reproducibility can also be provided via detailed341

instructions for how to replicate the results, access to a hosted model (e.g., in the case342

of a large language model), releasing of a model checkpoint, or other means that are343

appropriate to the research performed.344

• While NeurIPS does not require releasing code, the conference does require all submis-345

sions to provide some reasonable avenue for reproducibility, which may depend on the346

nature of the contribution. For example347

(a) If the contribution is primarily a new algorithm, the paper should make it clear how348

to reproduce that algorithm.349

(b) If the contribution is primarily a new model architecture, the paper should describe350

the architecture clearly and fully.351
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(c) If the contribution is a new model (e.g., a large language model), then there should352

either be a way to access this model for reproducing the results or a way to reproduce353

the model (e.g., with an open-source dataset or instructions for how to construct354

the dataset).355

(d) We recognize that reproducibility may be tricky in some cases, in which case356

authors are welcome to describe the particular way they provide for reproducibility.357

In the case of closed-source models, it may be that access to the model is limited in358

some way (e.g., to registered users), but it should be possible for other researchers359

to have some path to reproducing or verifying the results.360

5. Open access to data and code361

Question: Does the paper provide open access to the data and code, with sufficient instruc-362

tions to faithfully reproduce the main experimental results, as described in supplemental363

material?364

Answer: [No]365

Justification: we have a very simple example of biased OLS, our main contribution is the366

theory and this example could be easily reconstructed. We are happy to provide code by367

request though.368

Guidelines:369

• The answer NA means that paper does not include experiments requiring code.370

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/371

public/guides/CodeSubmissionPolicy) for more details.372

• While we encourage the release of code and data, we understand that this might not be373

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not374

including code, unless this is central to the contribution (e.g., for a new open-source375

benchmark).376

• The instructions should contain the exact command and environment needed to run to377

reproduce the results. See the NeurIPS code and data submission guidelines (https:378

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.379

• The authors should provide instructions on data access and preparation, including how380

to access the raw data, preprocessed data, intermediate data, and generated data, etc.381

• The authors should provide scripts to reproduce all experimental results for the new382

proposed method and baselines. If only a subset of experiments are reproducible, they383

should state which ones are omitted from the script and why.384

• At submission time, to preserve anonymity, the authors should release anonymized385

versions (if applicable).386

• Providing as much information as possible in supplemental material (appended to the387

paper) is recommended, but including URLs to data and code is permitted.388

6. Experimental setting/details389

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-390

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the391

results?392

Answer: [NA] .393

Justification: no experiments394

Guidelines:395

• The answer NA means that the paper does not include experiments.396

• The experimental setting should be presented in the core of the paper to a level of detail397

that is necessary to appreciate the results and make sense of them.398
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• The full details can be provided either with the code, in appendix, or as supplemental399

material.400

7. Experiment statistical significance401

Question: Does the paper report error bars suitably and correctly defined or other appropriate402

information about the statistical significance of the experiments?403

Answer: [NA] .404

Justification: no experiments405

Guidelines:406

• The answer NA means that the paper does not include experiments.407

• The authors should answer "Yes" if the results are accompanied by error bars, confi-408

dence intervals, or statistical significance tests, at least for the experiments that support409

the main claims of the paper.410

• The factors of variability that the error bars are capturing should be clearly stated (for411

example, train/test split, initialization, random drawing of some parameter, or overall412

run with given experimental conditions).413

• The method for calculating the error bars should be explained (closed form formula,414

call to a library function, bootstrap, etc.)415

• The assumptions made should be given (e.g., Normally distributed errors).416

• It should be clear whether the error bar is the standard deviation or the standard error417

of the mean.418

• It is OK to report 1-sigma error bars, but one should state it. The authors should419

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis420

of Normality of errors is not verified.421

• For asymmetric distributions, the authors should be careful not to show in tables or422

figures symmetric error bars that would yield results that are out of range (e.g. negative423

error rates).424

• If error bars are reported in tables or plots, The authors should explain in the text how425

they were calculated and reference the corresponding figures or tables in the text.426

8. Experiments compute resources427

Question: For each experiment, does the paper provide sufficient information on the com-428

puter resources (type of compute workers, memory, time of execution) needed to reproduce429

the experiments?430

Answer: [NA] .431

Justification: no experiments432

Guidelines:433

• The answer NA means that the paper does not include experiments.434

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,435

or cloud provider, including relevant memory and storage.436

• The paper should provide the amount of compute required for each of the individual437

experimental runs as well as estimate the total compute.438

• The paper should disclose whether the full research project required more compute439

than the experiments reported in the paper (e.g., preliminary or failed experiments that440

didn’t make it into the paper).441

9. Code of ethics442

Question: Does the research conducted in the paper conform, in every respect, with the443

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?444
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Answer: [Yes]445

Justification: all requirements are conformed to446

Guidelines:447

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.448

• If the authors answer No, they should explain the special circumstances that require a449

deviation from the Code of Ethics.450

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-451

eration due to laws or regulations in their jurisdiction).452

10. Broader impacts453

Question: Does the paper discuss both potential positive societal impacts and negative454

societal impacts of the work performed?455

Answer: [NA] .456

Justification: This is a preliminary theory paper with a result that is inefficient, we don’t457

expect this will cause any societal impact, haha458

Guidelines:459

• The answer NA means that there is no societal impact of the work performed.460

• If the authors answer NA or No, they should explain why their work has no societal461

impact or why the paper does not address societal impact.462

• Examples of negative societal impacts include potential malicious or unintended uses463

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations464

(e.g., deployment of technologies that could make decisions that unfairly impact specific465

groups), privacy considerations, and security considerations.466

• The conference expects that many papers will be foundational research and not tied467

to particular applications, let alone deployments. However, if there is a direct path to468

any negative applications, the authors should point it out. For example, it is legitimate469

to point out that an improvement in the quality of generative models could be used to470

generate deepfakes for disinformation. On the other hand, it is not needed to point out471

that a generic algorithm for optimizing neural networks could enable people to train472

models that generate Deepfakes faster.473

• The authors should consider possible harms that could arise when the technology is474

being used as intended and functioning correctly, harms that could arise when the475

technology is being used as intended but gives incorrect results, and harms following476

from (intentional or unintentional) misuse of the technology.477

• If there are negative societal impacts, the authors could also discuss possible mitigation478

strategies (e.g., gated release of models, providing defenses in addition to attacks,479

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from480

feedback over time, improving the efficiency and accessibility of ML).481

11. Safeguards482

Question: Does the paper describe safeguards that have been put in place for responsible483

release of data or models that have a high risk for misuse (e.g., pretrained language models,484

image generators, or scraped datasets)?485

Answer: [NA] .486

Justification: preliminary theory paper, no risks487

Guidelines:488

• The answer NA means that the paper poses no such risks.489

• Released models that have a high risk for misuse or dual-use should be released with490

necessary safeguards to allow for controlled use of the model, for example by requiring491
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that users adhere to usage guidelines or restrictions to access the model or implementing492

safety filters.493

• Datasets that have been scraped from the Internet could pose safety risks. The authors494

should describe how they avoided releasing unsafe images.495

• We recognize that providing effective safeguards is challenging, and many papers do496

not require this, but we encourage authors to take this into account and make a best497

faith effort.498

12. Licenses for existing assets499

Question: Are the creators or original owners of assets (e.g., code, data, models), used in500

the paper, properly credited and are the license and terms of use explicitly mentioned and501

properly respected?502

Answer: [NA] .503

Justification: preliminary theory paper, no existing assets504

Guidelines:505

• The answer NA means that the paper does not use existing assets.506

• The authors should cite the original paper that produced the code package or dataset.507

• The authors should state which version of the asset is used and, if possible, include a508

URL.509

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.510

• For scraped data from a particular source (e.g., website), the copyright and terms of511

service of that source should be provided.512

• If assets are released, the license, copyright information, and terms of use in the513

package should be provided. For popular datasets, paperswithcode.com/datasets514

has curated licenses for some datasets. Their licensing guide can help determine the515

license of a dataset.516

• For existing datasets that are re-packaged, both the original license and the license of517

the derived asset (if it has changed) should be provided.518

• If this information is not available online, the authors are encouraged to reach out to519

the asset’s creators.520

13. New assets521

Question: Are new assets introduced in the paper well documented and is the documentation522

provided alongside the assets?523

Answer: [NA] .524

Justification: preliminary theory paper, no new assets525

Guidelines:526

• The answer NA means that the paper does not release new assets.527

• Researchers should communicate the details of the dataset/code/model as part of their528

submissions via structured templates. This includes details about training, license,529

limitations, etc.530

• The paper should discuss whether and how consent was obtained from people whose531

asset is used.532

• At submission time, remember to anonymize your assets (if applicable). You can either533

create an anonymized URL or include an anonymized zip file.534

14. Crowdsourcing and research with human subjects535
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Question: For crowdsourcing experiments and research with human subjects, does the paper536

include the full text of instructions given to participants and screenshots, if applicable, as537

well as details about compensation (if any)?538

Answer: [NA] .539

Justification: preliminary theory paper, no human subjects540

Guidelines:541

• The answer NA means that the paper does not involve crowdsourcing nor research with542

human subjects.543

• Including this information in the supplemental material is fine, but if the main contribu-544

tion of the paper involves human subjects, then as much detail as possible should be545

included in the main paper.546

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,547

or other labor should be paid at least the minimum wage in the country of the data548

collector.549

15. Institutional review board (IRB) approvals or equivalent for research with human550

subjects551

Question: Does the paper describe potential risks incurred by study participants, whether552

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)553

approvals (or an equivalent approval/review based on the requirements of your country or554

institution) were obtained?555

Answer: [NA] .556

Justification: preliminary theory paper, no IRB needed557

Guidelines:558

• The answer NA means that the paper does not involve crowdsourcing nor research with559

human subjects.560

• Depending on the country in which research is conducted, IRB approval (or equivalent)561

may be required for any human subjects research. If you obtained IRB approval, you562

should clearly state this in the paper.563

• We recognize that the procedures for this may vary significantly between institutions564

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the565

guidelines for their institution.566

• For initial submissions, do not include any information that would break anonymity (if567

applicable), such as the institution conducting the review.568

16. Declaration of LLM usage569

Question: Does the paper describe the usage of LLMs if it is an important, original, or570

non-standard component of the core methods in this research? Note that if the LLM is used571

only for writing, editing, or formatting purposes and does not impact the core methodology,572

scientific rigorousness, or originality of the research, declaration is not required.573

Answer: [NA] .574

Justification: no LLM usage575

Guidelines:576

• The answer NA means that the core method development in this research does not577

involve LLMs as any important, original, or non-standard components.578

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)579

for what should or should not be described.580
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