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ABSTRACT

Semi-supervised learning has gained prominence for its ability to utilize limited
labeled data alongside abundant unlabeled data. However, prevailing algorithms of-
ten neglect the relationships among data points within a batch, focusing instead on
augmentations from identical sources. In this work, we introduce RelationMatch,
an innovative semi-supervised learning framework that capitalizes on these relation-
ships through a novel Matrix Cross-Entropy (MCE) loss function. We rigorously
derive MCE from both matrix analysis and information geometry perspectives. Our
extensive empirical evaluations, including a 15.21% accuracy improvement over
FlexMatch on the STL-10 dataset, demonstrate that RelationMatch consistently
outperforms existing state-of-the-art methods.

1 INTRODUCTION

Semi-supervised learning lives at the intersection of supervised learning and self-supervised learn-
ing (Tian et al., 2020; Chen et al., 2020a), as it has access to a small set of labeled data and a huge set
of unlabeled data. In order to fully harness the potential of these two data types, techniques from
both realms are employed: it fits the labels using the labeled data and propagates the labels on the
unlabeled data with prior knowledge on the data manifold. With this idea, semi-supervised learning
has achieved outstanding performance with very few labeled data, compared with the supervised
learning counterparts (Sohn et al., 2020; Zhang et al., 2021; Wang et al., 2022c).

The state-of-the-art semi-supervised learning algorithms are mostly based on a notion called pseudo
label (Lee et al., 2013; Tschannen et al., 2019; Berthelot et al., 2019b; Xie et al., 2020; Sohn et al.,
2020; Gong et al., 2021), generated on the fly for the unlabeled data by the neural network f during
training. Such ideas can be traced back to self-training in Yarowsky (1995). Specifically, in each
iteration, both labeled and unlabeled data points are sampled. For the unlabeled data points, weak
augmentations are applied, followed by evaluating the confidence of network f in labeling these
inputs. If high confidence is established, the predicted labels are recognized as pseudo labels for the
unlabeled data points. We subsequently train f to predict the same label for their strongly augmented
counterparts.

Essentially, two key steps facilitate the exploitation of the unlabeled dataset. First, if f exhibits
confidence in the weakly augmented data point, we record the prediction as pseudo labels. Secondly,
we expect that f upholds consistency between weak and strong augmentations for each (pseudo)
labeled data point, based on the prior that they convey the same (albeit possibly distorted) semantic
meaning. For instance, given an image x and its weak/strong augmentations xw,xs, if f asserts xw

to be a cat with high probability, then f should also recognize xs as a cat, not a different animal.
However, is the consistency between each pair of weak and strong augmentations the only information
that we can use for semi-supervised learning?

In this paper, we propose to additionally enforce the consistency between the in-batch relationships
of weak/strong augmentations in each batch. See Figure 1. In the upper row, the four images are
only weakly augmented, and assume that f gives the correct pseudo-labels for them. For the strongly
augmented images in the lower row, the existing algorithms only consider pairwise consistency using
cross-entropy, which means the prediction of the strongly augmented dog shall be close to the one-hot
vector for dog, and the strongly augmented cat shall be close to the one-hot vector for cat, etc. In
addition to this regularization, we propose RelationMatch, which uses the matrix cross-entropy loss
(MCE) to capture the in-batch relationships between the images. Therefore, we hope f believes the
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Figure 1: Pseudo-labels are obtained by feeding a batch of weakly-augmented images into the model.
The model then predicts probabilities for strongly-augmented versions of these images. The loss
function incorporates both cross-entropy and matrix cross-entropy loss.

relationship between the weakly augmented dog and weakly augmented cat, shall be close to the
relationship between the strongly augmented dog and strongly augmented cat:

Relation(WeaklyAug dog,WeaklyAug cat) ≈ Relation(StronglyAug dog,StronglyAug cat).

Formally, we represent each image x with the prediction vector f(x) ∈ Rk. We use the inner
products between images to represent their relationship. Notice that such relationships are always
computed for the same type of augmentations, e.g., between weakly augmented dog and weakly
augmented cat, but never between weakly augmented dog and strongly augmented cat. For each
mini-batch of samples of b images, consider their weak (or strong) augmentations. Using f to
represent these images, we get a relationship matrix A ∈ Rb×k, where each row of A represents the
prediction vector of an image. By computing R(A) ≜ AA⊤, we get a b× b matrix, which stores
all the relationships between any two images in the batch. Notice that we will compute different
relationship matrices for weak/strong augmentations, denoted as R(Aw) and R(As), respectively.

To define the loss for matching R(Aw) and R(As), we adopt two distinct theoretical perspectives
to generalize the cross-entropy loss of vectors to MCE, deriving from both matrix analysis and
information geometry. Intriguingly, our MCE loss emerges as the natural choice from both aspects
and possesses numerous desirable properties. The diagram of RelationMatch is presented in Figure 1.
In our experiments, we observe RelationMatch incurs a significant performance uplift for STL-10,
and consistent improvements for CIFAR-10 and CIFAR-100 as well. Interestingly, we find that it
also proves effective for supervised learning scenarios.

Our contributions can be summarized in three folds:

• The introduction of RelationMatch, a novel SSL algorithm that captures in-batch relationship
consistency.

• The development of the MCE loss function, underpinned by two separate theoretical frameworks,
which exhibits a number of desirable properties including convexity, lower bounded, and
minimization properties.

• Extensive empirical validation on vision benchmarks such as CIFAR-10, CIFAR-100, and STL-
10, where RelationMatch consistently outperforms state-of-the-art methods. Remarkably, on the
STL-10 dataset with only 40 labels, our method outperforms the well-known FlexMatch (Zhang
et al., 2021) by 15.21%. It also has consistent improvements for supervised learning scenarios.
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2 MATRIX CROSS-ENTROPY FOR SUPERVISED AND SEMI-SUPERVISED
LEARNING

2.1 WARM-UP EXAMPLE

To elucidate how our algorithm captures relationships through both weak and strong augmentations,
let’s begin with a straightforward example. Suppose we have b = 4, k = 3, where three out
of the four images belong to the first class, and the fourth image belongs to the last class. We
assume that the function f assigns accurate pseudo-labels for the weak augmentations, denoting
R(Aw) = Aw(Aw)⊤ as:

R(Aw) = R


1 0 0
0 0 1
1 0 0
1 0 0


 =

1 0 1 1
0 1 0 0
1 0 1 1
1 0 1 1

 (2.1)

Since the pseudo labels for weak augmentations are always one-hot vectors, R(Aw) is well structured.
Specifically, for rows that are the same in Aw, they are also the same in R(Aw), with values
representing the corresponding row indices. In other words, R(Aw) represents k distinct clusters of
one-hot vectors in the mini-batch.

If f can generate exactly the same prediction matrix As for the strongly augmented images, our algo-
rithm will not incur any additional loss compared with the previous cross-entropy based algorithms.
However, As and Aw are generally different, where our algorithm becomes useful. For example,
given a pair of prediction vectors (p, q), if we know p = (1, 0, 0), then cross-entropy loss is simply
p1 log q1 = log q1. Therefore, we will get the same loss for q = (0.5, 0.5, 0), q = (0.5, 0.25, 0.25),
or q = (0.5, 0, 0.5). Consider the following two possible cases of R(As) generated by f during
training:

R


0.5 0.5 0

0 0 1
0.5 0.5 0
0.5 0.5 0


 =

0.5 0 0.5 0.5
0 1 0 0
0.5 0 0.5 0.5
0.5 0 0.5 0.5



R


0.5 0.5 0

0 0 1
0.5 0.25 0.25
0.5 0 0.5


 =

 0.5 0 0.375 0.25
0 1 0.25 0.5

0.375 0.25 0.375 0.375
0.25 0.5 0.375 0.5


If we only use cross-entropy loss, these two cases will give us the same gradient information. However,
by considering the in-batch relationships, it becomes clear that these two cases are different: the first
case always makes mistakes on the second class, while the second case makes relatively random
mistakes. Therefore, by comparing R(As) with R(Aw) defined in Eqn. (2.1), we can get additional
training signals. In our example, the first case will not give additional gradient information for the
second row (and the second column due to symmetry), but the second case will.

2.2 MATRIX CROSS-ENTROPY

We employ the Matrix Cross-Entropy (MCE) loss to quantify the dissimilarity between R(Aw) and
R(As), which are both positive semi-definite matrices. The loss is formally defined as follows:
Definition 2.1 (Matrix Cross-Entropy for Positive Semi-Definite matrices). For positive semi-definite
matrices P,Q, the Matrix Cross-Entropy (MCE) is:

MCE(P,Q) = tr(−P logQ+Q). (1)

Here, tr represents the matrix trace, and log is the principal matrix logarithm (see Appendix A.1). In
fact, for l2 normalized representation vectors, we have the following simplified expression:
Proposition 2.2. If P = 1

bYY⊤ ∈ Rb×b and Q = 1
bXX⊤ ∈ Rb×b are batch-normalized relation-

ship matrices, where Y and X consist of row l2-normalized vectors, then

MCE(P,Q) = tr(−P logQ) + 1. (2)
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Proof. Given that the vectors in X are l2-normalized, the diagonal elements of XX⊤ are all
1. Therefore, tr(XX⊤) = b. Substituting this into the expression for MCE(P,Q), we find
MCE(P,Q) = tr(−P logQ) + 1.

At the first glance, the MCE loss looks pretty complicated. However, as we will discuss in Section 4,
it can be naturally derived from both matrix analysis (Section 4.1) and information geometry (Sec-
tion 4.3). Moreover, it has a nice interpretation from matrix eigen-decomposition (Appendix A.2). In
Section 5, we further demonstrate that the standard cross-entropy loss can be seen as a special case of
MCE, as well as some of its nice properties.

3 RELATIONMATCH: APPLYING MCE FOR SEMI-SUPERVISED LEARNING ON
VISION TASKS

We consider a general scheme (Lee et al., 2013; Gong et al., 2021) that unifies many prior semi-
supervised algorithms (including FixMatch and FlexMatch):

θn+1 ← argmin
θ
{Lsup (θ) + µuLu (θ; θn)} , (3)

where θn denotes the model parameters at the n-th iteration, Lsup(θ) is a supervised loss. The unsu-
pervised loss term Lu(θ; θn) acts as a consistency regularization (based on the n-th step backbone)
that operates on the unlabeled data, and µu is a loss balancing hyperparameter.

During training, we always have access to some labeled data and unlabeled data. Assume there are bs
labeled images and bu unlabeled images. For labeled data, the loss is the classical cross-entropy loss.
For those b′u unlabeled data that are pseudo-labeled, we also have CE combined with MCE (where we
use pseudo labels provided by weakly augmented images, denoted as Ỹw = [ỹ1, · · · , ỹb]

⊤ ∈ Rb×k,
and we denote the prediction vectors of strongly augmented images as X̃s = [x̃1, · · · , x̃b]

⊤ ∈ Rb×k).
In summary, we have:

LRelationMatch(Y,X) = Lsup(Ysup, Xsup) + µuLu(Ỹw, X̃s)

=

bs∑
i=1

CE(yi, xi) + µu

(
bu∑
i=1

CE(ỹi, x̃i) + γu ·MCE(R(Ỹw),R(X̃s))

)
,

(4)

where R(Ỹw) =
1
b ỸwỸ

⊤
w , R(X̃s) =

1
b X̃sX̃

⊤
s are batch-normalized relationship matrices.

Note. We remark that Section 4 and Section 5 are purely theoretical and technical. Skipping these
two sections does not affect understanding and implementing our RelationMatch method. Therefore,
we choose to present our experimental results first, readers interested in the theoretical aspects are
encouraged to consult Sections 4 and 5 for a deeper understanding.

3.1 DATASET

CIFAR-10/100. The CIFAR-10 dataset (Krizhevsky et al., 2009) is a benchmark in image classifica-
tion, consisting of 60,000 images distributed across 10 distinct classes. Each class has 5,000 images
in the training set and 1,000 in the test set, all of which are 3× 32× pixels. CIFAR-100 (Krizhevsky
et al., 2009) extends this dataset to 100 classes, each containing 500 training and 100 test images.

STL-10. The STL-10 dataset (Coates et al., 2011) is another widely-used resource for semi-supervised
learning, derived from the larger ImageNet dataset (Deng et al., 2009). STL-10 comprises 10 labeled
classes, providing 500 training and 800 test images per class. Additionally, it includes 100,000
unlabeled images, some of which belong to classes outside the labeled set. All images are 3×96×96
pixels.

3.2 EXPERIMENT DETAILS

Implementation details. We adopt TorchSSL (Zhang et al., 2021) as our implementation frame-
work, which serves as the official codebase for FlexMatch (Zhang et al., 2021) and is built upon
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PyTorch (Paszke et al., 2019). We extend the TorchSSL framework to compute the Matrix Cross-
Entropy (MCE) loss alongside the traditional unsupervised cross-entropy loss. For a comprehensive
discussion on the implementation, refer to Appendix B.

Hyperparameters. To ensure a fair comparison, we adopt the same hyperparameters as used in
FixMatch (Sohn et al., 2020). Specifically, we set γu = 1 and µu = 3 × 10−3. Optimization is
performed using SGD with a momentum of 0.9 and weight decay of 5× 10−4. The learning rate is
initialized at 0.03 and adjusted via a cosine scheduler. The training batch size is set to 64, with a 7:1
ratio of unlabeled to labeled data. We employ a threshold τ , of 0.95.

Baselines. We consider prior semi-supervised learning methods similar to FixMatch, including
Π-Model, Pseudo-Label (Lee et al., 2013), VAT (Miyato et al., 2018), MeanTeacher (Tarvainen &
Valpola, 2017), MixMatch (Berthelot et al., 2019b), ReMixMatch (Berthelot et al., 2019a), UDA (Xie
et al., 2020), Dash (Xu et al., 2021), MPL (Pham et al., 2021), FixMatch (Sohn et al., 2020),
FlexMatch (Zhang et al., 2021). Most baseline results are directly obtained from TorchSSL. For
recent and future works on improving pseudo-label quality such as CPL introduced in Flexmatch, our
method can be easily incorporated with them.

3.3 EXPERIMENTAL RESULTS ON SUPERVISED LEARNING

We commence our evaluation with results in a fully supervised setting, utilizing WideResNet-28-2,
ResNet18, and ResNet50 as backbone architectures. Training spans 200 epochs, leveraging a cosine
learning rate scheduler and a batch size of 64. For CIFAR-10 and CIFAR-100, we set γs (the
relative ratio of MCE loss to CE loss) to 0.1 and 0.01, respectively. The results are summarized
in Table 1, which highlights the robust performance gains achieved by incorporating Matrix Cross-
Entropy (MCE) across different architectures and datasets. Models augmented with MCE consistently
outperform those using only cross-entropy or label-smoothing. The results affirm MCE’s versatility
and efficacy, suggesting that it can serve as a valuable addition to existing supervised learning
techniques.

Table 1: Accuracy results of our method compared to baselines under supervised settings, WRN
means WideResNet, textbfbold means the best, underline means the second.

Dataset CIFAR-10 CIFAR-100

# Backbone WRN-28-2 ResNet18 ResNet50 WRN-28-2 ResNet18 ResNet50

only cross-entropy 94.45±0.19 95.08±0.09 95.32±0.18 76.40±0.31 78.07±0.16 79.07±0.43

w/ label-smoothing 94.72±0.05 95.25±0.13 95.10±0.32 76.81±0.18 78.41±0.21 78.70±0.44

w/ matrix cross-entropy 94.79±0.05 95.31±0.08 95.46±0.16 76.92±0.17 78.37±0.14 79.11±0.52

While label smoothing (Szegedy et al., 2016) has been an effective technique for enhancing general-
ization in various tasks such as image classification and language translation, its application has been
questioned in contexts like knowledge distillation, where it’s argued to potentially erase valuable
information (Müller et al., 2019). In contrast, our Lemma 3.1 establishes that Matrix Cross-Entropy
(MCE) retains the one-hot properties of the target distribution without information loss.
Lemma 3.1 (One-hot Property Preservation). Let Z1 ∈ Rb×k represent one-hot encoded probabilities
of a batch of images, and Z2 ∈ Rb×k be their predicted probabilities. If Z1Z

⊤
1 = Z2Z

⊤
2 , then each

row of Z2 will also be one-hot, ensuring class consistency between Z1 and Z2.

Proof. Note a vector lying on probability has its l2 norm equal to 1 iff it is one hot. By analyzing
each diagonal entry of Z2Z

⊤
2 , it is clear that each row of Z2 will be one hot. The rest of the argument

is clear by analyzing each off-diagonal entry of Z⊤
2 Z2.

Lemma 3.1 elucidates that MCE captures second-order equivalences between Z1 and Z2, preserving
their clustering patterns. However, this does not imply Z1 = Z2. For instance, consider the
relationship matrices derived from different input matrices, yet resulting in identical outputs, as
demonstrated below:

R


0 0 1
1 0 0
0 0 1
0 0 1


 =

1 0 1 1
0 1 0 0
1 0 1 1
1 0 1 1
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This observation further emphasizes the unique ability of MCE to maintain class-consistency and
clustering patterns, making it a compelling alternative to label smoothing.

3.4 EXPERIMENTAL RESULTS ON SEMI-SUPERVISED LEARNING

Table 2 presents our empirical evaluation of RelationMatch against benchmark models on various
datasets. Specifically, the RelationMatch with Curriculum Pseudo Labeling (CPL) variant builds upon
FlexMatch (Zhang et al., 2021). Across the board, RelationMatch exhibits superior performance,
particularly outclassing FixMatch and FlexMatch on the STL-10 dataset when limited to only 40
labels. Importantly, the MCE loss in RelationMatch does not interfere with the quality of pseudo-
labels, offering a modular component that can seamlessly integrate with future semi-supervised
learning frameworks.

Table 2: Error rates (100% - accuracy) on CIFAR-10, CIFAR-100, and STL-10 dataset of state-of-
the-art methods for semi-supervised learning. bold means the best, underline means the second.

Dataset CIFAR-10 CIFAR-100 STL-10

# Label 40 250 4000 400 2500 10000 40 250 1000

Π Model (Rasmus et al., 2015a) 74.34±1.76 46.24±1.29 13.13±0.59 86.96±0.80 58.80±0.66 36.65±0.00 74.31±0.85 55.13±1.50 32.78±0.40

Pseudo Label (Lee et al., 2013) 74.61±0.26 46.49±2.20 15.08±0.19 87.45±0.85 57.74±0.28 36.55±0.24 74.68±0.99 55.45±2.43 32.64±0.71

VAT (Miyato et al., 2018) 74.66±2.12 41.03±1.79 10.51±0.12 85.20±1.40 46.84±0.79 32.14±0.19 74.74±0.38 56.42±1.97 37.95±1.12

MeanTeacher (Tarvainen & Valpola, 2017) 70.09±1.60 37.46±3.30 8.10±0.21 81.11±1.44 45.17±1.06 31.75±0.23 71.72±1.45 56.49±2.75 33.90±1.37

MixMatch (Berthelot et al., 2019b) 36.19±6.48 13.63±0.59 6.66±0.26 67.59±0.66 39.76±0.48 27.78±0.29 54.93±0.96 34.52±0.32 21.70±0.68

ReMixMatch (Berthelot et al., 2019a) 9.88±1.03 6.30±0.05 4.84±0.01 42.75±1.05 26.03±0.35 20.02±0.27 32.12±6.24 12.49±1.28 6.74±0.14

UDA (Xie et al., 2020) 10.62±3.75 5.16±0.06 4.29±0.07 46.39±1.59 27.73±0.21 22.49±0.23 37.42±8.44 9.72±1.15 6.64±0.17

Dash (Xu et al., 2021) 8.93±3.11 5.16±0.23 4.36±0.11 44.82±0.96 27.15±0.22 21.88±0.07 34.52±4.30 - 6.39±0.56

MPL (Pham et al., 2021) 6.93±0.17 5.76±0.24 4.55±0.04 46.26±1.84 27.71±0.19 21.74±0.09 35.76±4.83 9.90±0.96 6.66±0.00

FixMatch (Sohn et al., 2020) 7.47±0.28 5.07±0.05 4.21±0.08 46.42±0.82 28.03±0.16 22.20±0.12 35.97±4.14 9.81±1.04 6.25±0.33

FlexMatch (Zhang et al., 2021) 4.97±0.06 4.98±0.09 4.19±0.01 39.94±1.62 26.49±0.20 21.90±0.15 29.15±4.16 8.23±0.39 5.77±0.18

RelationMatch (Ours) 6.87±0.12 4.85±0.04 4.22±0.06 45.79±0.59 27.90±0.15 22.18±0.13 33.42±3.92 9.55±0.87 6.08±0.29

RelationMatch (w/ CPL) 4.96±0.05 4.88±0.05 4.17±0.04 39.89±1.43 26.48±0.18 21.88±0.16 13.94±3.76 8.16±0.34 5.68±0.19

Fully-Supervised 4.62±0.05 19.30±0.09 -

4 MATRIX CROSS-ENTROPY: THEORETICAL FOUNDATIONS AND
INTERPRETATIONS

This section provides a comprehensive theoretical foundation for Matrix Cross-Entropy (MCE),
examining it through the lenses of matrix analysis and information geometry. Further interpretations
based on eigen-decomposition are included in Appendix A.2.

4.1 DENSITY MATRICES AND MATRIX LOGARITHM

Definition 4.1 (Density Matrix on Rn×n). A matrix A ∈ Rn×n qualifies as a density matrix if it is
symmetric, positive semi-definite, and has a trace norm of one.

Density matrices can be viewed as a generalization of classical probability theory to matrix spaces.
Given their non-negative eigenvalues and unit trace, they naturally parallel the constraints in probabil-
ity theory.
Definition 4.2 (Matrix Logarithm). The exponential of a matrix A is formally defined as:

eA =

∞∑
n=0

An

n!
.

A matrix B is termed the matrix logarithm of A if eA = B.

While there could be multiple matrix logarithms for a given matrix A, the principal matrix loga-
rithm (Higham, 2008) serves as a canonical definition, particularly suitable for density matrices:
Theorem 4.3 (Principal matrix logarithm (Higham, 2008)). Let A ∈ Cn×n have no eigenvalues
on R−. There is a unique logarithm X of A of whose all eigenvalues lie in the strip {z : −π <
Im(z) < π}. We refer to X as the principal logarithm of A and write X = log(A). If A is real then
its principal logarithm is real.
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Proposition 4.4. For a density matrix A with spectral decomposition A = UΛU⊤, its principal
logarithm is:

logA = Udiag(log(λi))U
⊤.

4.2 VON NEUMANN ENTROPY AND MATRIX CROSS-ENTROPY

Lemma 4.5. For a density matrix A, its von Neumann entropy is equivalent to the Shannon entropy
of its eigenvalues:

− tr(A logA) = −
∑
i

λi log(λi).

Inspired by the simplicity and optimizability of classical cross-entropy, we introduce Matrix Cross-
Entropy (MCE) as a simplified form of matrix (von Neumann) divergence.

MCEdensity-matrix(P,Q) = H(P) +MRE(P,Q), (5)

where H(P) represents the matrix (von Neumann) entropy, and MRE(P,Q) denotes the matrix
relative entropy.

Definition 4.6 (Matrix Relative Entropy for Density Matrices). Let P,Q ∈ Rn×n be density matrices.
The matrix relative entropy of P with respect to Q is:

MRE(P,Q) = tr(P logP−P logQ).

4.3 INFORMATION GEOMETRICAL PERSPECTIVE OF MATRIX CROSS-ENTROPY

Information geometry offers an elegant perspective for generalizing Matrix Cross-Entropy (MCE)
from unit-trace density matrices to arbitrary positive semi-definite matrices. According to
Amari (Amari, 2014), a dually flat structure can be induced on the cone of positive semi-definite
matrices via the Bregman divergence, which is defined in relation to a convex function ϕ as:

D[P : Q] = ϕ(P)− ϕ(Q)− ⟨∇ϕ(P),P−Q⟩.

By setting ϕ(P) to be the negative of matrix entropy, we arrive at the Matrix Bregman Divergence
(MD):

MD[P : Q] = tr(P logP−P logQ−P+Q).

The Bregman divergence then simplifies to the MCE when P is considered as a fixed reference
term. Importantly, this formulation imbues MCE with properties from both density matrix theory and
information geometry, making it robust and versatile.

Theorem 4.7 (Projection Theorem (Amari, 2014)). Given a smooth submanifold S, the matrix PS

that minimizes the divergence from P to S is the η-geodesic projection of P onto S.

This projection theorem culminates in an important minimization property for MCE:

Proposition 4.8 (Minimization Property).

argminQ≻0 MCE(P,Q) = P.

Proof. Directly follows from Theorem 4.7.

5 UNVEILING THE PROPERTIES OF MATRIX CROSS-ENTROPY

5.1 THE SCALAR CROSS-ENTROPY: A SPECIAL CASE OF MCE

We illustrate that traditional scalar cross-entropy is a specific instance of our proposed MCE loss,
thereby establishing a conceptual bridge between them. This further highlights the spectral properties
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of density matrices and shows that MCE inherently captures both self and cross-correlations among
the classes.

Consider b pairs of k-dimensional probability vectors, denoted as {(µi,νi)}bi=1. Here, µi =

(µ
(1)
i , · · · , µ(k)

i ) and νi = (ν
(1)
i , · · · , ν(k)i ).

From the definitions of scalar cross-entropy and MCE, we have:

H(µi,νi) = −
k∑

j=1

µ
(j)
i log ν

(j)
i = − tr(diag(µi) log diag(νi)).

This equation underscores a key property of density matrices: their sensitivity to the spectral com-
ponents of the data. Next, we delve into the case where the labels are one-hot encoded, focusing
on how this formulation captures self-correlation but ignores cross-correlation. Let M ∈ Rb×k and
N ∈ Rb×k be matrices whose columns are the one-hot encoded distributions µi and the predicted
distributions νi, respectively. Define:

P =
1

b
Ib, Q = Ib ◦ (MN⊤),

where ◦ represents the Hadamard product. Then, the averaged cross-entropy loss can be expressed as
tr(−P logQ).

5.2 DESIRABLE PROPERTIES OF MCE

MCE’s ideal characteristics as a loss function stem from its underlying mathematical properties. We
list some of these properties to highlight its suitability and flexibility for learning algorithms.

Lemma 5.1. For any non-zero matrix A ∈ Rm×n, the matrices AA⊤

tr(AA⊤)
and A⊤A

tr(A⊤A)
are density

matrices.

Proof. Employ the singular value decomposition of A.

Lemma 5.2 (Joint convexity (Lindblad, 1974)). The matrix relative entropy is a jointly convex
function:

MRE(tX1 + (1− t)X2; tY1 + (1− t)Y2) ≤ t ·MRE(X1;Y1) + (1− t) ·MRE(X2;Y2) ,

for t ∈ [0, 1], where Xi and Yi are density matrices.

Proposition 5.3 (Linearity).

MCE

(∑
i

aiPi,Q

)
=
∑
i

aiMCE(Pi,Q). (6)

Proposition 5.4 (Convexity). MCE exhibits convexity:

MCE

P,
∑
j

bjQj

 ≤∑
j

bjMCE(P,Qj) . (7)

Proof. The convexity arises from the Joint convexity of the matrix relative entropy presented in
Lemma 5.2.

Proof. Use Lemma A.1 and spectral decomposition of P and Q.

Proposition 5.5 (Lower Boundedness). When P is a density matrix, MCE has the lower bound:

MCE(P,Q) ≥ − log tr(PQ) + tr(Q).

Proof. Utilize the spectral decompositions of P and Q along with trace inequalities.

8
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6 RELATED WORK

Semi-supervised learning aims to improve model performance by leveraging substantial amounts of
unlabeled data and has garnered significant interest in recent years (Chen et al., 2020b; Assran et al.,
2021; Wang et al., 2021). The invariance principle forms the basis for most effective semi-supervised
algorithms. At its core, this principle asserts that two semantically similar images should produce
similar representations when processed by the same backbone.

Consistency regularization. A prevalent method for implementing the invariance principle is
through consistency regularization, initially introduced in the Π-Model (Rasmus et al., 2015b). This
technique has been widely adopted in later research (Tarvainen & Valpola, 2017; Laine & Aila, 2016;
Berthelot et al., 2019b). Consistency regularization generally involves generating pseudo-labels and
applying suitable data augmentation (Tschannen et al., 2019; Berthelot et al., 2019b; Xie et al., 2020;
Sohn et al., 2020; Gong et al., 2021). Pseudo-labels can be created for unlabeled data and used in
subsequent training iterations (Lee et al., 2013). The conventional approach employs an entropy
minimization objective to fit the generated pseudo-labels (Rasmus et al., 2015b; Laine & Aila, 2016;
Tarvainen & Valpola, 2017). Specifically, it aligns the predicted pseudo-labels of two distorted images
(typically obtained through data augmentation). Furthermore, several studies have investigated the
generation of efficient and valuable pseudo-labels that consider numerous practical factors (Hu et al.,
2021; Nassar et al., 2021; Xu et al., 2021; Zhang et al., 2021; Li et al., 2022; Wang et al., 2022b).
Consistency regularization has proven to be a simple and effective approach, serving as a foundational
component in many state-of-the-art semi-supervised learning algorithms(Sohn et al., 2020; Zhang
et al., 2021). Also, the SimMatch (Zheng et al., 2022) introduces consistency regularization based on
contrastive learning which can be seen capturing relation structures on representation level.

Improving pseudo-label quality. Existing discussions on consistency regularization mainly center
around enhancing the quality of pseudo-labels. For instance, SimPLE (Hu et al., 2021) introduces
paired loss, which minimizes the statistical distance between confident and similar pseudo-labels.
Dash (Xu et al., 2021) and FlexMatch (Zhang et al., 2021) propose dynamic and adaptive pseudo-
label filtering, which is more suited for the training process. CoMatch (Li et al., 2021) suggests
incorporating contrastive learning into the semi-supervised learning framework, jointly learning two
representations of the training data. SemCo (Nassar et al., 2021) accounts for external label semantics
to prevent pseudo-label quality degradation for visually similar classes in a co-training approach.
FreeMatch (Wang et al., 2022c) recommends a self-adaptive adjustment of the confidence threshold,
taking into consideration the learning status of the models. MaxMatch (Li et al., 2022) presents
a worst-case consistency regularization technique with theoretical guarantees. NP-Match (Wang
et al., 2022a) employs neural processes to enhance pseudo-label quality. SEAL (Tan et al., 2023)
proposes simultaneously learning a data-driven label hierarchy and performing semi-supervised
learning. SoftMatch (Chen et al., 2023) identifies the inherent quantity-quality trade-off issue of
pseudo-labels with thresholding, which may hinder learning, and proposes using a truncated Gaussian
function to weight samples based on their confidence.

7 CONCLUSION

In this study, we shift the focus away from the conventional strategy of refining pseudo-label quality.
Instead, we propose RelationMatch, an innovative semi-supervised learning framework that leverages
the consistency of relationships within a batch during the training process. Central to this framework
is the introduction of Matrix Cross-Entropy (MCE), an elegant loss function that we meticulously
derive from two distinct but complementary angles: matrix analysis and information geometry. Our
theoretical exploration delves deep into the properties of MCE, firmly establishing its suitability as a
loss function and revealing its intriguing connections to classical cross-entropy.

We further cement the practical utility of MCE through extensive empirical evaluations conducted on
multiple vision benchmarks. These experiments corroborate that our approach consistently surpasses
existing state-of-the-art methods while maintaining computational efficiency. By comprehensively
addressing both the theoretical underpinnings and practical implications of our approach, this paper
aims to serve as an innovative contribution in the realm of semi-supervised learning and loss function
design even in self-supervised learning regimes.
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REPRODUCIBILITY STATEMENT

To foster reproducibility, we submit our experiment code as supplementary material. One can directly
reproduce the experiment results following the instructions in the README document. We also give
experiment details in Section 3.2 and Appendix B.
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A MORE ON MATRIX CROSS-ENTROPY

Kornblith et al. (2019) suggests that a good measuring similarity of neural network representations
should be invariant to orthogonal (unitary) transformation.

Lemma A.1. Suppose A ∈ Rn×n is a density matrix, U ∈ Rm×n is a unitary matrix, then UAU⊤

is a density matrix.

Proposition A.2 (Invariance property). MCE(P,Q) is invariant under simultaneous unitary trans-
formation on both P and Q :

MCE(P,Q) = MCE
(
UPU⊤,UQU⊤) . (8)

A.1 DENSITY MATRICES

Here we give more discussions on density matrices. One can easily convert a density matrix into a
probability distribution by the following proposition.

Proposition A.3. Suppose we have X = {xi|i = 1, 2, · · · , n} as an othornormal basis for Rn, then
any density matrix A ∈ Rn×n induce a probability distribution on X: P (x = xi) = x⊤

i Axi.

For ease of exposition, we introduce the diag operator from Rn to Rn×n. It is defined as:

diag(a) :=


a1 0 · · · 0
0 a2 · · · 0
...

...
. . . 0

0 0 · · · an

 .

Given a probability distribution, we can easily convert it to a density matrix as well, either as a
diagonal matrix in Proposition A.4 or as the orthogonal projection in Proposition A.5.

Proposition A.4. For any probability distribution
∑

i P (x = xi) = 1, we can construct a diagonal
density matrix as follow:

Adiag =


P (x = x1)

P (x = x2)
. . .

P (x = xn)

 (9)

Proposition A.5. Suppose we have X = {xi|i = 1, 2, · · · , n} as an orthonormal basis for Rn, for
any probability distribution

∑
i P (x = xi) = 1, we can construct an orthogonal projection density

matrix as follow:

ψ =
∑
i

√
P (x = xi)xi,

Aop = ψψ⊤ =
∑
i,j

√
P (xi)P (xj)xix

⊤
j .

One can verify that P (x = xi) = x⊤
i Adiagxi = x⊤

i Aopxi. However, Adiag is mixed state, while Aop
is pure state, according to the definition below. This is because Adiag has maximal rank while Aop
has rank 1.

Definition A.6 (Pure state and mixed state). A density matrix A is called a pure state if its rank
equals 1 and is called a mixed state otherwise.

Interestingly, one can define the following entropy which can be seen as the generalization of entropy
to the matrix form.

Definition A.7 (Matrix (von Neumman) entropy). The mixedness of a density matrix can be quantified
by matrix (von Neumann) entropy: − tr(A logA).
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A.2 PCA-INSPIRED INTERPRETATION

Given positive semi-definite matrices P and Q, let their eigen decompositions be P = VΛV⊤ and
Q = UΘU⊤. From the definition of the matrix logarithm, it is clear that logQ = U logΘU⊤.
Next, we simplify the expression of tr(−P logQ) as follows:

tr(−P logQ) = tr(−VΛV⊤U logΘU⊤)

= tr(−ΛV⊤U logΘU⊤V)

=− tr((ΛV⊤U)(V⊤U logΘ)⊤).

Let the i-th column of U and V be ui and vi, respectively. Since the trace is related to the matrix
inner product, we can derive that tr(−P logQ) = −

∑
i,j(v

⊤
i uj)

2λi log θj .

Ultimately, we obtain:

tr(−P logQ+Q) = −
∑
i,j

(
v⊤
i uj

)2
λi log θj +

∑
j

θj . (10)

From this simplification, it is evident that
∑

j θj serves as a regularization term that penalizes θj . The
expression of the loss function also highlights the involvement of the correlation between eigenvectors
and eigenvalues. When P and Q are covariance matrices or correlation matrices, their eigenvectors
and eigenvalues are closely related to PCA.

A.3 ANALYSIS THE OPTIMAL POINT

What do we get if we achieve the optimal point of MCE loss? The Lemma 3.1 gives a nice
characterization.

Interestingly, we can directly obtain the singular value decomposition for one-hot encoded data.
Consider a (pseudo) labeled dataset (xi, yi)

B
i=1. Define the supporting (column) vectors mi ∈ RB

for class i as follows:

mi,j =

{
1, if yj = i.
0, otherwise

Denote m̂i =
mi

∥mi∥2
and ei ∈ RK as the i-th coordinate (column) vector. Then,

∑K
i=1 ∥mi∥2 eim̂⊤

i

yields the singular value decomposition for the one-hot encoded dataset. Since eigendecomposition
is closely linked to singular value decomposition, we can obtain similar results for the correlation
matrix.

B MORE DETAILS ON EXPERIMENTS

B.1 IMPLEMENTING DIFFERENTIABLE MATRIX LOGARITHM

Theorem B.1 (Taylor series expansion (Hall, 2013)). The function

logA =

∞∑
m=1

(−1)m+1 (A− I)m

m
,

is defined and continuous on the set of all n× n complex matrices A with ∥A− I∥ < 1. For all A
with ∥A− I∥ < 1,

elogA = A.

For all X with ∥X∥F < log 2,
∥∥eX − I

∥∥ < 1 and

log eX = X.

We have two different methods:
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1. Using Taylor expansion of matrix logarithm.
2. Using element-wise logarithm as a surrogate. (For theoretical properties, please see previous

sections about connections between cross-entropy and matrix cross-entropy).

During experiments, P and Q can add a λI as a regularizer for more stable convergence. We compare
the above two methods on STL-10 using RelationMatch with CPL, and results are summarized in
Table 3. Taylor expansion performs much better than element-wise logarithm.

Interestingly, in the self-supervised learning regime, Balestriero & LeCun (2022) reinterpret Sim-
CLR (Chen et al., 2020a) as doing element-wise matrix cross-entropy between relation matrices.
Therefore, we left the utilization of matrix cross-entropy in self-supervised learning for future work.

Table 3: RelationMatch (w/ CPL) with different matrix logarithm implementations

Method STL-10

40 labels 250 labels

Element-wise 80.39 ± 4.05 89.98 ± 0.47
Taylor expansion to order 3 86.06 ± 3.76 91.84 ± 0.34

C COMPARSION BETWEEN SIMMATCH AND RELATION MATCH

Our approach is mainly a natural extension of CE (Cross-Entropy), and we find out that when using
one-hot pseudo-labels in semi-supervised settings, our new method can be understood as capturing
the relation. SimMatch, on the other hand, utilizes contrastive loss for consistency regularization of
the relation, which differs from our starting point.

Another point that we need to emphasize is that our method has very good theoretical properties (as
shown in Section 4 and 5), and at the same time, our method can be easily applied to most existing
methods. It should be noted that on CIFAR10, our performance is better than SimMatch (attach a
comparison table), which also indirectly demonstrates the differences between our approach and
SimMatch through experimental evidence. Therefore, for the sake of fairness, we will not consider
using SimMatch as a baseline for performance comparison in the current version. We will include
SimMatch as a baseline when we have sufficient computational resources to conduct experiments
applying our method to SimMatch.
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