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Abstract

Addressing the challenge of effectively processing long contexts has become a
critical issue for Large Language Models (LLMs). Two common strategies have
emerged: 1) reducing the input length, such as retrieving relevant chunks by
Retrieval-Augmented Generation (RAG), and 2) expanding the context window
limit of LLMs. However, both strategies have drawbacks: input reduction has no
guarantee of covering the part with needed information, while window extension
struggles with focusing on the pertinent information for solving the task. To miti-
gate these limitations, we propose Chain-of-Agents (CoA), a novel framework that
harnesses multi-agent collaboration through natural language to enable informa-
tion aggregation and context reasoning across various LLMs over long-context
tasks. CoA consists of multiple worker agents who sequentially communicate to
handle different segmented portions of the text, followed by a manager agent who
synthesizes these contributions into a coherent final output. CoA processes the
entire input by interleaving reading and reasoning, and it mitigates long context
focus issues by assigning each agent a short context. We perform a comprehensive
evaluation of CoA on a wide range of long-context tasks in question answering,
summarization, and code completion, demonstrating significant improvements by
up to 10% over strong baselines of RAG, Full-Context, and multi-agent LLMs.

1 Introduction

Despite their impressive performance across a wide range of scenarios, LLMs struggle with tasks that
involve long contexts [8, 63, 57]. Numerous application scenarios demand extremely long contexts,
such as question answering [85, 22, 69], document and dialogue summarization [25, 93, 91, 90, 12],
and code completion [20, 43], where the inputs contain entire books [32, 33] and long articles [16].

To tackle the challenge with long context tasks, two major directions have been explored as shown
in Table 1: input reduction and window extension. Input reduction reduces the length of the input
context before feeding to downstream LLMs. Truncation approaches [1, 67] directly truncate the
input. Retrieval Augmented Generation (RAG) [81] extends this direction by retrieving the most
relevant chunks through embedding similarity. However, because of low retrieval accuracy, LLMs
could receive an incomplete context for solving the task, hurting performance. Window extension
extends the context window of LLMs via finetuning to consume the whole input [13, 44, 48]. For
example, Claude-3 [5] directly allows reading 200k tokens for each input. However, when the window
becomes longer, LLMs struggle to focus on the needed information to solve the task, suffering from
ineffective context utilization such as the “lost in the middle” issue [37, 3, 42].
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Source
Docs

Who starred in her final film role in the 1964 film directed by the 
man who also did Vera Cruz and Kiss Me Deadly?

Fill

Robert Aldrich, an iconoclastic American film director, .... His 
notable films include "Vera Cruz" (1954), "Kiss Me Deadly" (1955)

Chunk 1

Robert Aldrich, the director of "Vera Cruz" and "Kiss Me Deadly," 
also directed "Hush...Hush, Sweet Charlotte" (1964), ... Mary Astor, 
... appeared in a cameo role as a little old lady waiting to die.

 Mary Astor, ... appeared in a cameo role as a little old lady waiting 
to die. Robert Aldrich, the director of "Vera Cruz" and "Kiss Me 
Deadly," also directed "Hush...Hush, Sweet Charlotte" (1964), ... 

The answer is: Mary Astor.

Chunk 2

Split

Query: {Query}, Current Source: {Chunk i},You
need to read current source text and summary of

previous source text (if any), and generate a
summary to include them both...

The source is too long and has been summarized,
you need to answer based on the summary...

Chain-of-Agents Communication Input preparation of Agents

Chunk 3Query

Robert Aldrich...Vera 
Cruz, Kiss Me Deadly...

Mary Astor... 
a cameo role as...

No related information

Stage 1: Worker Agent: Segment
Comprehension and Chain-Communication

Stage 2: Manager Agent: Information
Integration and Response Generation

Fill

Gold Answer    : May Astor

Figure 1: Overview of Chain-of-Agents, a training-free, task agnostic, and highly-interpretable
framework that harnesses multi-agent collaboration for long-context tasks. Blue boxes indicate
communication unit CUi between worker agents Wi and Wi+1. It consists of multiple worker agents
who sequentially communicate to handle different segmented portions of the text, followed by a
manager agent who synthesizes these contributions into a coherent final output.

Table 1: Comparison between Chain-of-Agents and prior methods for long-context tasks. Rec./Foc.:
being able to mitigate inaccurate receptive field/long context focusing issues. Read: the number of
tokens as model input, where n is the total input length, k is the context window limit of LLMs.
Inter.: the interpretability of the approach. Note that RAG is ‘medium interpretable’ because of the
re-ranked chunks.
Category Example Work Rec. Foc. No Train Read Agent Applicability Inter.

Input Reduction Truncation [50] ✗ ✓ ✓ k Single Generic Low
RAG [81] ✗ ✓ ✗ n+ k Single Query-based Medium

Window Extension Position Interpolation [13] ✓ ✗ ✗ n Single Generic Low
Long Context [5] ✓ ✗ ✗ n Single Generic Low

Multi-agent LLMs Chain-of-Agents (Ours) ✓ ✓ ✓ n Multiple Generic High

Motivated by the aforementioned challenges, we propose a novel framework, Chain-of-Agents (CoA),
inspired by the way humans interleave reading and processing of long contexts under limited working
memory constraints of brains [15]. The key idea of CoA is to harness multi-agent communication to
enable information aggregation and context reasoning capabilities across different LLMs. As shown
in Figure 1, CoA contains two stages. In stage 1, a series of worker agents in charge of different
chunks of long context collaborate and aggregate evidence for answering the given query. To this
end, the workers read and process sequentially, each receiving the message from previous worker and
transferring the useful updated information to the next. In stage 2, the manager agent receives the
complete evidence from last worker agent and generates the final response.

As shown in Table 1, CoA is a training free, task agnostic, and highly interpretable framework
processing entire “receptive field” by interleaved reading-processing and mitigating the long context
focusing issue by assigning each agent a short context. Different from input reduction where LLMs
need to start processing with low receptive field over reduced inputs (“read-then-process”), workers
in CoA start to process each chunk before reading all input (“interleaved read-process”), tackling
the problems that input reduction struggles with, such as, generic summarization or counting of
passages [6]. Different from context extension, CoA leverages the capability of communication rather
than trying to feed many tokens into an LLM. This is a more natural solution for complex tasks
because we assume that each LLM has its limit and there are always complex context tasks surpassing
its limit. Compared with Full-Context, CoA is also cost effective by reducing time complexity from
n2 to nk, where n is input tokens and k is the context limit of LLMs.
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We conduct intensive experiments on nine datasets, including question answering, summarization,
and code completion tasks with six LLMs, with PaLM 2 [4], Gemini [67], and Claude 3 [5] models.
We compare CoA with two strong baselines chosen from input reduction and window extension
approaches, respectively: (i) RAG, which uses a state-of-the-art retriever to obtain the most relevant
information to feed into the LLM and (ii) Full-Context (Vanilla), which feeds all input into the
LLM until reaching the window limit. Our results show that on all nine datasets, CoA obtains
significant improvement over all baselines by up to 10%. Noting that there is not enough research
on multi-agent for long context tasks, we carefully create two multi-agent baselines, including a
hierarchical structure and result merging approach to further demonstrate that CoA is superior among
other possible multi-agent frameworks.

2 Related work

Multi-agent LLMs. Multi-agent LLMs has become a popular topic [21]. A large proportion of
works focus on social simulation [52, 53] and frameworks [35]. Based on the success of them, some
works explore the game settings [39, 74, 82, 83, 47], world wars [23], economy markets [36, 76],
recommendation systems [88], and pandemics [19]. Others advance problem solving, focusing
on reasoning of short text via multi-agent debating [18, 80, 10, 66] and discussing [11, 58] for
different tasks in reasoning [18, 66], mechanics problems [49], paper review [84], knowledge
graph construction [86], and code intelligence [70, 24]. Different from the above works, we improve
problem-solving on long context tasks. To the best of our knowledge, the closest work LongAgent [92]
utilizes a tree structure to do multi-hop QA over a long input context and the sibling worker agents
do not communicate, while CoA utilizes a chain structure allowing the communication units to flow
between workers (detailed comparison in Appendix G and F.3).

Long Context Modeling for LLMs. Input Reduction: RAG is broadly leveraged to solve long
context query-based tasks [81, 2]. Combined with a strong retriever [79, 41, 73], LLMs are expected
to handle long context questions in open domains. Previous studies have augmented LLMs during
pretraining [26, 72], finetuning [34], inference [87], or directly integrating [28, 61]. Moreover, some
token-level retrieval approaches are proposed [38]. Longllmlingua [27] removes tokens from long
prompt to compress long context prompt to a desired budget. Window Extension: The context
windows of LLMs are getting longer and longer thanks to the development of GPUs. For instance,
the context window increases from 1024 (GPT-2 [56]), 2048 (GPT-3 [7]), to 128k (GPT-4 [50]).
Moreover, the newest version of Claude-3 [5] supports 200k context windows. To save the cost of
LLM training, some continual learning or finetuning approaches are proposed to extend the context
window of pretrained LLMs [46, 55, 44, 48]. For instance, position interpolation [13] modifies rotary
position encoding [64] and extends the context length of LLaMA [68] to 32k. Different from the
above works, CoA does not reduce the input length or extend the window length of LLMs, but rather
leverages multi-agent collaboration and communication to obtain the full receptive field.

Recently, a few studies have employed text chunking algorithms to divide and process lengthy text
inputs. Notably, RecurrentGPT [95] adopts a chain structure to generate long outputs in a chunk-
by-chunk manner, maintaining continuity in the storyline. WalkMaze [9] utilizes a centralized tree
structure without communication between sibling agents to do single-hop QA over a long input
context. Different from these works, CoA focuses on long input tasks with a chain structure with
inter-sibling communication (Append G).

Complex Task Reasoning. Previous works on complex reasoning have focused on decomposing the
complex question into sub-questions to solve them step-by-step. [54] decompose the questions with
an unsupervised model and answer them separately with another model. Decomposed Prompting [30]
leverages some predefined modules to classify each decomposed sub-question, then further decom-
pose if needed. Additionally, decomposing is used for human-computer interaction [77], and prompter
training [71]. Recently, many work has been proposed for LLMs, such as Chain-of-thought [75]
Least-to-most prompting [94] and Pearl [65]. However, the length of the prompt does not exceed the
context limit of a single agent. By contrast, our Chain of Agents framework is proposed to effectively
reason across multiple agents to support the unlimited length of source text.

3 Method
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Figure 1 shows the overview of our Chain-of-Agents (CoA) framework, containing two stages. In
stage 1, long context is split into chunks where each chunk can be processed by a worker agent. Then,
the worker agents communicate sequentially to produce evidence over the entire context. In stage 2,
a manager agent consumes the knowledge from the chain of workers to generate the final answer.

Algorithm 1 Chain of Agents (CoA).
Input: Source input x, query q, agent window size k,

large language model LLM(∗).
Output: Answer to the query.

Split x into l chunks {c1, c2, · · · , cl}
where ci is shorter than k
Initialize CU0← empty string.
for i in 1, 2, · · · , l do

CUi ← LLMWi(IW , CUi−1, ci, q)
end for
return LLMM (IM , CUl, q)

To formulate the task, we denote a long-context
sample as (x, y, q), where x is the input of n
tokens, y is the output of m tokens, q is an op-
tional query. Given an LLM with k tokens (usu-
ally k ≪ n) as the context window limit, the
target is to generate y with the limited input con-
text window. Therefore, we divide each source
text x into chunks x = {c1, c2...cl}, so that each
chunk can be completely fed into the LLM agent
backbone model.

3.1 Stage 1: Worker Agent: Segment
Comprehension and Chain-Communication

In Stage 1, CoA contains a sequence of l number
of worker agents. Each worker Wi inputs the concatenation of a chunk ci from source text x, a query
q, instruction for a specific task for worker agent IW , and the message passed from the previous
agent, denoted as “communication unit” CUi−1. The communication is unidirectional, passing from
worker agent i− 1 to i. The worker agents process them and output the message CUi for next worker,
expressed as:

CUi = LLMWi(IW , CUi−1, ci, q), (1)
CUs produced by worker agents vary across different tasks. For question answering, CU contains the
evidence for the manager to answer the question. For summarization, CU contains the summary of
the previous texts. For code completion, CU contains the code summary with function/class names
and explanation. Effectiveness on diverse tasks demonstrates the flexibility of CoA (Appendix C).

The multi-step worker communication in CoA expands the model context to the full receptive field,
meaning that the last worker can read the full input no matter how long the input is. Therefore, CoA
is extensible to inputs with different lengths by adjusting the number of worker agents.

The left side of Figure 1 underscores the necessity of collaborative communication among workers to
effectively address complex, long-context reasoning tasks. We observe that 1) Although the question
is unanswerable given c1, W1 generates related evidence that is useful for answering the question;
2) with the partial answer from the previous worker, W2 further reasons with the current source to
complete the full reasoning chain across agents and generate the interpretative reasoning chain; 3)
W3 finds no related information in the chunk 3, it directly rewrites CU2 by putting the correct answer
as the first token of CU3 without adding any unrelated information (Appendix F.4). This shows that
if workers are independent (such as tree structure communication), it is impossible to answer hop two
while the answer of hop one is held by another worker (Appendix G).

3.2 Stage 2: Manager Agent: Information Integration and Response Generation

In Stage 2, after multiple steps of information extraction and comprehension by worker agents, the
manager agent produces the final solution. While worker agents extract relevant information in a
long-context source, the manager agent synthesizes relevant information accumulated by the end
of “worker-agent-chain” to generate the final answer. Specifically, given the instruction for manager
IM and query q, the manager agent consumes accumulated knowledge from last worker CUl and
generates the final answer Response:

Response = LLMM (IM , CUl, q) (2)
The benefit of using a separate LLM as the manager agent is to decompose the duty of analyzing
chunks in the long-context source (“worker agents”) and producing the final answer (“manager
agent”), so that every agent can fulfill its duty to the most3.

3Other design choices: Our experiments show that using the last worker Wl to directly generate the final
result leads to a performance drop. Besides, feeding the manager with all CUi or some CU that is related to the
answer (decided by Wi) also hurts the performance because of confusion led by conflicting CUi.
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Table 3: Dataset Statistics. Avg. Input/Agents is the average words/agents (8k) for source input.
Question Answering Summarization Code

HotpotQA MuSiQue NarrativeQA Qasper QuALITY QMSum GovReport BookSum RepoBench-P

Avg. Input 10603 12975 71787 4236 4936 12524 9239 108478 7105
Avg. Agents 2.35 2.88 12.45 1.12 1.31 2.57 2.03 18.63 1.69
Query-based ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

3.3 Time Complexity Analysis

Table 2: Time complexity.

Encode Decode

Full-Context O(n2) O(nr)
CoA O(nk) O(nr)
RAG O(nk′) +O(k2) O(n/k′) +O(kr)

We compare the time cost of full-context
input and Chain-of-Agents theoretically
in a decoder-only setting. We assume the
response generated by LLMs contains r
tokens on average, the input has n tokens,
the context limit of LLM is k, and the
length of each chunk in RAG is k′. The
time complexity is shown in Table 2 (Ap-
pendix A). As can be seen, the encoding time of CoA is less than Full-Context because k ≪ n in
long context tasks, while they have the same decoding time. This demonstrates the efficiency of CoA
compared with the Full-Context baseline.

4 Experiment
4.1 Experiment Setup

Datasets. We conduct experiments on nine long context datasets across three task types (Table 3):

• Question Answering. We consider five QA datasets from the LongBench [6] and SCROLL [60].
HotpotQA [85] is a Wikipedia-based multi-hop QA dataset. It requires reasoning across multiple
passages to find the answer. MuSiQue [69] is a multi-hop QA dataset. It is much more difficult than
HotpotQA as it contains more hops in one sample, unanswerable questions, and harder distracting
content. NarrativeQA [31] is a QA dataset over entire books or movie transcripts. The answers can
be abstract or extractive, yes/no, and unanswerable. Qasper [17] is a question answering dataset
over NLP papers. It also contains extractive, abstractive, yes/no, and unanswerable questions.
QuALITY [51] is a dataset based on stories and articles with multiple-choice questions for each
sample. The model needs to select the correct answer among choices.

• Summarization. We pick two summarization datasets from SCROLLS. QMSum [93] is a query-
based summarization dataset, formed by meeting transcripts from multiple domains such as
academic and industrial products. GovReport [25] is a generic summarization dataset containing
long reports published by the U.S. Government Accountability Office. We also use one dataset
for long context memorization tasks. BookSum [33] is a collection of datasets for long-form
narrative summarization, including novels, plays, and stories. We use the book-level partition of
the BookSum dataset for experiments.

• Code Completion. We pick RepoBench-P [43] which is collected from GitHub repositories, and
the model needs to generate the next line of code given the long code base.

Metrics. We report the geometric mean of ROUGE [40] for Summarization tasks, code similarity
score [6] for Code Completion task, exact match for QuALITY dataset [60], and F1 score for the rest
of the Question Answering datasets [6].

LLMs. We use six LLMs in total as the backbone of CoA across all experiments (Appendix B).
PaLM 2 [4] is a series of models with a dense left-to-right, decoder-only language model pretrained
on a high-quality corpus of 780 billion tokens. We use text-bison@001 and text-unicorn@001
for the experiments with an 8k maximum context window. Gemini 1.0 [67] is a family of LLMs
proposed by Google. We use gemini-ultra for experiments. The input limit is 32k tokens for Gemini.
Claude 3 [5] is a family of large language models developed by Anthropic. The family includes
three state-of-the-art models in ascending order of capability: claude-3-haiku, claude-3-sonnet,
and claude-3-opus. These models are capable of consuming 200k tokens in the context window,
providing a strong baseline for long context tasks. Although our framework is flexible to use diverse
types of LLMs as workers and manager, we use the same model for each Wi and M if not specified.
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Table 4: Overall results of CoA. CoA significantly outperforms Vanilla and RAG using various
backbone LLMs on all datasets.

Question Answering Summarization Code

LLMs Baselines HotpotQA MuSiQue NarrativeQA Qasper QuALITY QMSum GovReport RepoBench-P

text-bison
Vanilla (8k) 45.57 26.87 11.96 26.56 61.86 15.45 20.60 56.30
RAG (8k) 51.91 33.83 14.20 27.20 55.28 15.59 20.83 55.63
CoA (8k) 53.62 37.09 25.26 37.17 65.42 16.77 26.11 58.25

text-unicorn
Vanilla (8k) 51.09 29.67 14.45 27.81 83.40 16.61 23.50 53.87
RAG (8k) 58.01 40.38 19.12 24.44 83.00 16.83 21.43 50.49
CoA (8k) 62.04 42.49 20.37 38.01 83.80 17.67 26.48 60.39

gemini-ultra

Vanilla (8k) 40.62 23.61 7.71 20.59 57.40 12.10 26.18 49.09
Vanilla (32k) 45.09 27.93 7.21 21.71 58.60 10.24 26.96 73.04
RAG (8k) 51.13 31.56 14.51 18.70 62.40 12.70 25.87 72.94
CoA (8k) 54.26 35.09 25.26 35.10 80.60 12.84 26.98 73.05

Baselines. Our principle of choosing baselines is to find the strongest and most typical approaches
from input reduction and window extension. The first baseline is Vanilla. It directly consumes tokens
until the context window of LLM is fully utilized, implying a 200k window LLM if using Claude 3.
The other one is Retrieval-Augmented Generation (RAG). We use the state-of-the-art retriever [79].
Following [81], we first segment the source text into chunks of 300 words and re-rank them using
a retriever. Top-n chunks are then fed into the downstream LLM until the context window is fully
utilized. GovReport dataset does not contain a query initially, we create a pseudo query “What is the
summary of the whole government report?” as the query to rerank.

To evaluate the performance of CoA compared with possible multi-agent approaches, we carefully
construct two approaches. Similar to CoA, we also assign each chunk ci to Wi using similar
instructions to generate CUi. In these approaches, worker agents are parallel and independent
while CoA is sequential. Multi-Agent Voting (Merge) Each agent directly generate an answer ai
according to ci. A majority voting is applied to all answers ai to decide the final answer. Multi-Agent
Hierarchical Structure (Hierarchical). Inspired by [9], we propose a hierarchical framework, where
the communication forms a tree structure between workers Wi and manager M . For each worker, it
first judges whether ci contains useful information. If true, it generates a communication unit CUi.
Then, all CUi are sent to the manager M to come up with a final answer. Besides, we append an
integer number L at the end of every approach to clearly remind the window size limit of LLM. For
instance, “CoA (8K)” refers to the base LLM used in CoA with window size 8K.

4.2 Overall Results of CoA

Question Answering. Table 4 shows the results of Question Answering tasks on all three models.
CoA (8k) outperforms Vanilla (8k) by a large margin on all 8 datasets, including 13.30% on
NarrativeQA, 12.82% on MuSiQue, and 22.00% on Quality, for text-bison, text-unicorn, and gemini-
ultra, respectively. Also, CoA (8k) outperforms RAG (8k) model for all 8 datasets using all three
LLMs, demonstrating that CoA achieves higher performance than RAG. In other words, using multi-
agent LLMs outperforms RAG models. It is also worth noting that for gemini-ultra, Vanilla (32k)
improves the Vanilla (8k) baseline, yet it is still lower than CoA (8k). CoA also obtains compatible
performance with with state-of-the-art models (Appendix E), while keeping robustness of window
size (Appendix F.2).

Summarization and Code Completion. Table 4 shows the results of Summarization and Code
Completion tasks. Similarly, CoA (8k) also outperforms all Vanilla (8k) and (32k) baselines on all
three datasets, demonstrating the strong capability of CoA on various tasks. It is worth noting that for
GovReport, RAG fails to improve the baseline with pseudo query. By contrast, CoA improves the
performance significantly, showing that CoA can also be applied in non-query tasks (Appendix F.1).

Long Context LLMs. As Claude 3 models support 200k of tokens, we call these models long
context models (LCM). Table 5 shows the performance of the LCM on two datasets. As can be seen,
CoA (8k) outperforms Vanilla (200k) significantly, showing that with only an 8k context window,
CoA achieves a much higher performance than LCM with a 200k context window. Also, CoA
improves the performance with the samples that can be fed into a 200k context window (no truncation).
Moreover, the improvements over the Vanilla (200k) and RAG (8k) become higher when the model
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Table 5: Comparison with long context LLMs on NarrativeQA and BookSum. CoA significantly
outperforms Claude 3 with 200k context limits. No Trun./Trun. indicates the source text in the sample
is less/more than 200k tokens which does not need/needs truncation for vanilla (200k) baseline.
Average is the mean value across all samples.

claude-3-haiku claude-3-sonnet claude-3-opus

No Trun. Trun. Average No Trun. Trun. Average No Trun. Trun. Average

NarrativeQA
Vanilla (200k) 8.00 2.50 7.17 5.58 2.44 5.15 7.23 2.35 6.56
RAG (8k) 5.94 4.22 5.71 9.09 5.17 8.50 6.13 4.29 5.86
CoA (8k) 18.31 21.34 18.80 16.63 16.47 16.51 24.38 21.26 23.96
BookSum
Vanilla (200k) 11.98 11.70 12.04 12.17 11.90 12.10 14.11 13.67 14.00
CoA (8k) 13.28 13.73 13.70 14.92 15.05 14.96 17.74 16.68 17.47

Table 6: Comparison between CoA and other multi-agent frameworks. CoA with sequential agents
outperforms other designs with multiple parallel agents including Merge and Hierarchical.

HotpotQA MuSiQue NarrativeQA Qasper QuALITY QMSum GovReport RepoBench-P

Vanilla (8k) 45.57 26.87 11.96 26.56 61.86 15.45 20.60 56.30
Merge (8k) 42.96 26.66 11.27 26.78 59.30 9.42 25.38 33.66
Hierarchical (8k) 50.62 29.40 17.04 31.39 64.20 15.19 16.54 27.96
CoA (8k) 53.62 37.09 25.26 37.17 65.42 16.77 26.11 58.25

size increases from Haiku to Opus (11.63/11.36/17.4 for NarrativeQA, 1.66/2.86/3.47 for BookSum).
This demonstrates that CoA benefits from stronger models to achieve higher improvements.

Other Multi-Agent Frameworks. As shown in Table 6, Hierarchical (8k) outperforms Vanilla (8k)
on five out of eight datasets, demonstrating the hierarchical approach can also improve the vanilla
baselines significantly. Merge (8k) is lower than Vanilla (8k) except for GovReport, showing that
merging is especially effective for long summarization tasks such as GovReport. As can be seen, CoA
outperforms Hierarchical and Merge on all eight datasets. The reason behind the results is because
Hierarchical and Merge do not allow workers to communicate with each other due to their parallel
designs. Thus, each worker can only maintain the information in its own chunk ci which blocks the
understanding of the whole text, hurting the performance greatly.

5 Analyses

5.1 CoA Improvement is More Obvious When RAG Fails to Retrieve Gold Answer

To demonstrate this, we first classify the samples in NarrativeQA dataset into different bins according
to the position (index) of the chunk in RAG processed input that contains the gold answer. Then, we
compute the average score of the CoA and RAG results of different bins. Figure 3 shows the results.
As shown in the figure, RAG performs better when the index is smaller (the gold answer is nearer
to the top), showing that downstream LLMs rely significantly on the quality of RAG re-ranking.
Besides, the performance of RAG is positively correlated to CoA’s when it successfully retrieves the
gold answer. However, when RAG fails, CoA can greatly improve the performance (much higher
than the tendency line).

(a) Claude 3 Haiku (b) Claude 3 Sonnet (c) Claude 3 Opus

Figure 2: Performance of Claude 3 on BookSum. Improvement is more obvious for longer inputs.
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Figure 3: Comparison on NarrativeQA. X-axis/Y-
axis indicate RAG/CoA performance while each
point represents a bin. The number indicates the
chunk index of gold answer (ratio of number of
samples in bracket), and the size of the point indi-
cates the improvement of CoA over RAG.

Figure 4: Performance of CoA and Full on Nat-
ural Questions. CoA mitigates the lost-in-the-
middle issue. X-axis is the index of document
with gold answer where small number indicates
gold answer is closer to start.

Figure 5: A case study of RAG (left) and CoA (right) on HotpotQA. The sequential agent communi-
cation enables CoA to perform complex multi-hop reasoning over long contexts.

5.2 CoA Improvement is More Obvious When Long Context Models Meet Longer Inputs

We compare the performance of CoA and Vanilla with Claude 3 on BookSum. As shown in Figure 2,
CoA can outperform the vanilla baseline by a large margin on various source lengths. It is worth
noting that, when the length of the sample increases, the performance even increases for CoA, and
the improvement over Vanilla (200k) baseline becomes more significant. The improvement of CoA
reaches around 100% when the length is larger than 400k. Thus, we can conclude that 1) CoA can
still enhance the LLM performance even though the model has a very long context window limit; and
2) CoA delivers more performance gains when the input is longer.

5.3 CoA Mitigates “Lost-in-the-Middle” Phenomenon
To assess the “lost-in-the-middle” [42] effect on Vanilla and CoA models, we replicated the original
study by randomly selecting 500 samples from their dataset to create a QA dataset. The results are
displayed in Figure 4. The Vanilla model exhibits a significant "lost-in-the-middle" issue, with a
performance range of 6.13 (±2.17). In contrast, CoA shows resilience against this issue, with a
narrower performance gap of 4.89 (±1.91), demonstrating that CoA effectively mitigates this problem
by providing each agent a shorter context to focus on.

5.4 Multi-agent Collaboration in CoA Enables Complex Reasoning over Long Context
Figure 5 displays a sample prediction from HotpotQA. To find the correct answer, RAG retrieves text
chunks with high semantic similarity with the query. However, conducting multi-hop reasoning is
challenging as the critical first-hop answer often lacks semantic relevance to the query. In contrast,
CoA operates differently: the first agent explores related topics without knowing the query’s answer,
aiding subsequent inference. The second agent, also unaware of the answer, broadens the topic
scope by incorporating new information. The third agent finally discovers the answer, synthesizing
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Table 7: Ablation on CoA. Manager plays an important role in CoA, and left-to-right yields the best
performance among other reading orders including Right-to-Left and Permutation.

HotpotQA MuSiQue NarrativeQA Qasper QuALITY QMSum RepoBench-P

CoA 53.62 37.09 25.26 37.17 65.42 16.77 58.25
w/o Manager 48.58 26.79 20.80 29.66 58.80 16.50 56.16
Right-to-Left 51.83 29.77 21.57 36.60 62.80 15.91 55.10
Permutation 56.05 34.55 23.60 37.42 64.60 16.50 58.43

Table 8: Comparison of three multi-path augmentation through judge or voting. Multi-path CoA
furthers enhance the performance.

HotpotQA MuSiQue NarrativeQA Qasper QuALITY QMSum RepoBench-P

Bi-direction: left-to-right and right-to-left paths (2-way)
w/ judge 54.11 36.97 24.47 39.23 65.00 16.41 49.69
w/ vote 51.46 34.16 21.59 37.42 64.60 9.51 38.70
oracle 62.12 48.02 32.84 46.37 71.80 18.83 59.67

Self-Consistency: five left-to-right reasoning paths (5-way)
w/ judge 57.17 38.82 21.58 36.24 62.80 17.06 46.97
w/ vote 57.49 40.78 25.56 39.15 68.60 8.35 35.56
oracle 67.07 55.74 39.89 52.74 80.40 20.81 63.52

Permutation: five random order reasoning paths (5-way)
w/ judge 59.17 42.37 25.47 37.65 63.40 17.81 52.45
w/ vote 58.29 39.17 26.58 38.09 67.60 8.31 35.44
oracle 75.73 60.16 39.58 52.22 79.80 20.88 67.80

information from earlier agents and new data to complete the reasoning chain. This collaborative
approach highlights CoA’s ability to facilitate complex reasoning across long context tasks.

5.5 Ablation Study: Effectiveness of Manager and Alternative Design Choices
To demonstrate the effect of the manager, we conduct an ablation study that uses the last worker to
generate results directly. As shown in Table 7, “w/o Manager” hurts the performance significantly,
dropping more than 10% on MuSiQue. This demonstrates the important role of the manager. Next, to
empirically verify that left-to-right yields the best performance, we evaluate other orders of reading,
including Right-to-Left by reading from the last chunk to the first one and Permutation which reads
in random order. As shown in Table 7, on most of the datasets, left-to-right yields the highest score,
demonstrating the advantages of natural reading order.

5.6 Multi-path Chain-of-Agents Further Enhances Performance

We manually investigated the results over these three orders (left-to-right, right-to-left, permutation),
and we found that other orders sometimes can produce better answers than left-to-right. Inspired by
this observation, we explore two approaches to select the best result among multiple paths. w/ vote
applies majority voting over the final results while w/ judge uses an LLM to judge the most reliable
CUl of diverse paths and generate the final answer. Oracle picks the best path by evaluating score of
each path, yielding the upper bound performance. Table 8 compares three multi-path augmentation
approaches. Surprisingly, results show that 1) all ensemble approaches (Bi-direction, Self-consistency,
and Permutation) can further enhance the performance of CoA and 5-way Permutation yields the best
improvement, 2) majority voting (w/ vote) of final answer is better than using an LLM as judge (w/
judge) in Self-consistency, but worse in Bi-direction, 3) using LLM judge (w/ judge) works well on
long result generation tasks (QMSum, RepoBench-P), and 4) there is large space to improve because
oracle (choose as answer the one with highest performance) is much higher than either w/ judge or w/
vote. We leave the direction of multi-path reasoning to future study.

5.7 Practical Time Complexity

We run an analysis to show the practical time consumption of the proposed CoA on HotpotQA dataset.
We choose llama3-8b as the backbone model for preventing additional untrackable latency due to the
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Table 9: Practical time analysis on HotpotQA dataset. Avg. # of Input/Output shows the total input
and output tokens for each model.

Running Time (s) Avg. # of Input Avg. # of Output Avg. # Agent Output

Vanilla (8k) 1.33 5912.85 2.40 2.40
RAG (8k) 2.41 16479.91 2.75 2.75
CoA (8k) 3.10 10840.95 38.38 11.30

Table 10: Information loss of text-bison model on different datasets.
HotpotQA MuSiQue Qasper NarrativeQA QMSum

CoA performance 54.87 40.38 37.03 24.04 17.01
Information Loss 1.46 1.65 3.92 3.88 0.91

network of API queries. As can be seen in the Table 9, Vanilla consumes the least amount of tokens
and generates the least of tokens as well. However, it truncates the input thus maintaining a low
performance. Although RAG generates fewer tokens than CoA (by adding retrieval and downstream
input together), it needs to read the whole input by Retrieval models which also consumes additional
time. Overall, RAG is faster than CoA by around 30% in this example. Parallel decoding. For
decoder-only LLMs, CoA agents can run in parallel. Before CUs are produced, agents can start to
read their assigned paragraphs and wait for the CUs to come. We conduct an approximation by asking
the model to generate one token for each sample. The output time is shown to be short and negligible,
mimicking the encoding time of each sample. We have found that the running time of CoA can be
reduced by 57.21% on average, leading to a 1.32-second running time for each sample, closing to the
running time of the Vanilla baseline.

5.8 Information Loss

To probe the information loss during information propagation in CUi, we further propose a metric to
analyze. For each sample, we compute the highest score between the communication unit and the gold
answer, and if this score is higher than the score of the final prediction, we compute the difference and
refer to this information loss, formulated as Infomation_Loss = max(0,maxli=0 score(CUi, Y ) −
score(Ŷ , Y )) where score(*) is the performance metric for each task and dataset, Y is the gold
answer and Ŷ is the prediction. Table 10 shows the information loss of text-bison. If choosing the
communication unit with the highest performance, around 1%-4% performance gain can be obtained,
meaning that 1%-4% of the information is lost during the chain communication. While every method
might have information loss, CoA design ensures final results yielding negligible information loss.

6 Conclusion

In this paper, we propose Chain-of-Agents, a multi-agent LLM collaboration framework for solving
long context tasks. It is a training free, task/length agnostic, interpretable, and cost-effective frame-
work. Experiments show that Chain-of-Agents outperforms RAG and Long Context LLMs by a large
margin despite of its simple design. Analysis shows that by integrating information aggregation and
context reasoning, CoA mitigates lost-in-the-middle and performs better on longer samples.

Limitations. While CoA features with a simple and effective design, future directions can address the
following limitations to further improve its prowess and efficiency. First, communication effectiveness
can be further improved via finetuning or in-context learning because current LLMs are aligned
with human norms which is not optimal for communication between LLMs. Second, CoA does not
explore other forms of communication approaches, such as debating or complex discussions. Third,
the cost and latency of running CoA can be further reduced, such as replacing some LLMs with more
effective models via model routing [62].
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[33] Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir
Radev. Booksum: A collection of datasets for long-form narrative summarization. arXiv
preprint arXiv:2105.08209, 2021.

[34] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020.

[35] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for" mind" exploration of large language model society. Advances in
Neural Information Processing Systems, 36:51991–52008, 2023.

[36] Nian Li, Chen Gao, Yong Li, and Qingmin Liao. Large language model-empowered agents for
simulating macroeconomic activities. arXiv preprint arXiv:2310.10436, 2023.

[37] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle
with long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

[38] Yucheng Li. Unlocking context constraints of llms: Enhancing context efficiency of llms with
self-information-based content filtering. arXiv preprint arXiv:2304.12102, 2023.

[39] Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu. Avalonbench: Evaluating llms playing the
game of avalon. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

[40] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81, Barcelona, Spain, 2004. Association for Computational
Linguistics.

[41] Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau
Yih, and Xilun Chen. How to train your dragon: Diverse augmentation towards generalizable
dense retrieval. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023, pages 6385–6400, Singapore, December
2023. Association for Computational Linguistics.

[42] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 12:157–173, 2024.

[43] Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

13



[44] Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May,
Luke Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and
inference with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

[45] Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with
large language models. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pages 286–299. IEEE, 2024.

[46] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

[47] Gabriel Mukobi, Hannah Erlebach, Niklas Lauffer, Lewis Hammond, Alan Chan, and Jesse
Clifton. Welfare diplomacy: Benchmarking language model cooperation. arXiv preprint
arXiv:2310.08901, 2023.

[48] Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind:
Efficient infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143,
2024.

[49] Bo Ni and Markus J Buehler. Mechagents: Large language model multi-agent collaborations
can solve mechanics problems, generate new data, and integrate knowledge. Extreme Mechanics
Letters, page 102131, 2024.

[50] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[51] Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel Bowman. QuALITY:
Question answering with long input texts, yes! In Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 5336–5358, Seattle, United States, July 2022. Association for
Computational Linguistics.

[52] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceed-
ings of the 36th Annual ACM Symposium on User Interface Software and Technology, pages
1–22, 2023.

[53] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Social simulacra: Creating populated prototypes for social computing
systems. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology, pages 1–18, 2022.

[54] Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, and Douwe Kiela. Unsupervised
question decomposition for question answering. In Bonnie Webber, Trevor Cohn, Yulan He,
and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8864–8880, Online, November 2020. Association for
Computational Linguistics.

[55] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

[56] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

[57] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[58] Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li.
Branch-solve-merge improves large language model evaluation and generation. arXiv preprint
arXiv:2310.15123, 2023.

14



[59] Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. ZeroSCROLLS: A
zero-shot benchmark for long text understanding. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Findings of the Association for Computational Linguistics: EMNLP 2023, pages
7977–7989, Singapore, December 2023. Association for Computational Linguistics.

[60] Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan
Xiong, Mor Geva, Jonathan Berant, and Omer Levy. SCROLLS: Standardized CompaRison
over long language sequences. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors,
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 12007–12021, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics.

[61] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. arXiv
preprint arXiv:2301.12652, 2023.

[62] Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thomp-
son, and Mikhail Yurochkin. Large language model routing with benchmark datasets. arXiv
preprint arXiv:2309.15789, 2023.

[63] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[64] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[65] Simeng Sun, Y. Liu, Shuo Wang, Chenguang Zhu, and Mohit Iyyer. Pearl: Prompting large
language models to plan and execute actions over long documents. ArXiv, abs/2305.14564,
2023.

[66] Xiangru Tang, Anni Zou, Zhuosheng Zhang, Yilun Zhao, Xingyao Zhang, Arman Cohan, and
Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
reasoning. arXiv preprint arXiv:2311.10537, 2023.

[67] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[68] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[69] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue:
Multihop questions via single-hop question composition. Transactions of the Association for
Computational Linguistics, 10:539–554, 2022.

[70] Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao
Yan, and Zhoujun Li. Mac-sql: Multi-agent collaboration for text-to-sql. arXiv preprint
arXiv:2312.11242, 2023.

[71] Boshi Wang, Xiang Deng, and Huan Sun. Iteratively prompt pre-trained language models for
chain of thought. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2714–2730,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.

[72] Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee, Zihan Liu, Mohammad Shoeybi, Yi Dong,
Oleksii Kuchaiev, Bo Li, Chaowei Xiao, Anima Anandkumar, and Bryan Catanzaro. Shall
we pretrain autoregressive language models with retrieval? a comprehensive study. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 7763–7786, Singapore, December 2023.
Association for Computational Linguistics.

15



[73] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan
Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training.
arXiv preprint arXiv:2212.03533, 2022.

[74] Shenzhi Wang, Chang Liu, Zilong Zheng, Siyuan Qi, Shuo Chen, Qisen Yang, Andrew Zhao,
Chaofei Wang, Shiji Song, and Gao Huang. Avalon’s game of thoughts: Battle against deception
through recursive contemplation. arXiv preprint arXiv:2310.01320, 2023.

[75] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
ArXiv, abs/2201.11903, 2022.

[76] Martin Weiss, Nasim Rahaman, Manuel Wuthrich, Yoshua Bengio, Li Erran Li, Bernhard
Schölkopf, and Christopher Pal. Rethinking the buyer’s inspection paradox in information
markets with language agents, 2023.

[77] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. Ai chains: Transparent and controllable
human-ai interaction by chaining large language model prompts. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA,
2022. Association for Computing Machinery.

[78] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighof. C-pack: Packaged resources
to advance general chinese embedding. arXiv preprint arXiv:2309.07597, 2023.

[79] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources
to advance general chinese embedding, 2023.

[80] Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of
large language models collaboration: An in-depth analysis via debate. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023.

[81] Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subrama-
nian, Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long
context large language models. arXiv preprint arXiv:2310.03025, 2023.

[82] Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf.
arXiv preprint arXiv:2309.04658, 2023.

[83] Zelai Xu, Chao Yu, Fei Fang, Yu Wang, and Yi Wu. Language agents with reinforcement
learning for strategic play in the werewolf game. arXiv preprint arXiv:2310.18940, 2023.

[84] Zhenran Xu, Senbao Shi, Baotian Hu, Jindi Yu, Dongfang Li, Min Zhang, and Yuxiang Wu.
Towards reasoning in large language models via multi-agent peer review collaboration. arXiv
preprint arXiv:2311.08152, 2023.

[85] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics.

[86] Hongbin Ye, Honghao Gui, Aijia Zhang, Tong Liu, Wei Hua, and Weiqiang Jia. Beyond
isolation: Multi-agent synergy for improving knowledge graph construction. arXiv preprint
arXiv:2312.03022, 2023.

[87] Dani Yogatama, Cyprien de Masson d’Autume, and Lingpeng Kong. Adaptive semiparametric
language models. Transactions of the Association for Computational Linguistics, 9:362–373,
2021.

[88] An Zhang, Leheng Sheng, Yuxin Chen, Hao Li, Yang Deng, Xiang Wang, and Tat-Seng Chua.
On generative agents in recommendation. arXiv preprint arXiv:2310.10108, 2023.

16



[89] Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum,
Tianmin Shu, and Chuang Gan. Building cooperative embodied agents modularly with large
language models. arXiv preprint arXiv:2307.02485, 2023.

[90] Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry Wu, Chenguang Zhu, Budhaditya Deb,
Ahmed H Awadallah, Dragomir Radev, and Rui Zhang. Summn: A multi-stage summarization
framework for long input dialogues and documents. arXiv preprint arXiv:2110.10150, 2021.

[91] Yusen Zhang, Ansong Ni, Tao Yu, Rui Zhang, Chenguang Zhu, Budhaditya Deb, Asli Celikyil-
maz, Ahmed Hassan Awadallah, and Dragomir Radev. An exploratory study on long dialogue
summarization: What works and what’s next. arXiv preprint arXiv:2109.04609, 2021.

[92] Jun Zhao, Can Zu, Hao Xu, Yi Lu, Wei He, Yiwen Ding, Tao Gui, Qi Zhang, and Xuanjing
Huang. Longagent: Scaling language models to 128k context through multi-agent collaboration.
arXiv preprint arXiv:2402.11550, 2024.

[93] Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan
Awadallah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev. QMSum: A new
benchmark for query-based multi-domain meeting summarization. In Kristina Toutanova, Anna
Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell,
Tanmoy Chakraborty, and Yichao Zhou, editors, Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 5905–5921, Online, June 2021. Association for Computational Linguistics.

[94] Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Huai hsin Chi. Least-to-most prompting
enables complex reasoning in large language models. ArXiv, abs/2205.10625, 2022.

[95] Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily)
long text. arXiv preprint arXiv:2305.13304, 2023.

17



A Proof of Time Complexity

Assuming the source text containing n tokens, window limit of LLM is k tokens, and the responses
contain r tokens in average. For decoder-only LLM, we grasp the operations for attention calculation
as the time cost unit. Then, for Full-Context LLM, total operation for encoding input source text TFull
is:

TEnc = (1 + 2 + · · ·+ n) =
(n+ 1)n

2
= O(n2) (3)

Similarly, decoding starts when the model already generate all input. Thus, the first decoded token
attends to n positions. Total operation for decoding response is (r ≪ n):

TDec = (n+ 1 + n+ 2 + · · ·+ n+ r) =
(n+ 1 + n+ r)r

2
= O(nr + r2) = O(nr) (4)

For Chain-of-Agents, we first split the source into ⌈n/k⌉ chunks. Thus, total encoding time for all
input is:

TEnc = (1 + 2 + · · ·+ k)× ⌈n/k⌉ = (k + 1)k × ⌈n/k⌉
2

= O(k2 × n/k) = O(nk) (5)

Decoding starts when the model already generates k tokens. Thus, the first decoded token attends to
k positions. The total operation for decoding response is (r ≪ k):

TDec = (k+1+k+2+· · ·+k+r)×⌈n/k⌉ = (k + 1 + k + r)r × ⌈n/k⌉
2

= O(nr+nr2/k) = O(nr)

(6)
Similarly, for RAG models, encoding time is retrieval time O(k′2 × n/k′) = O(nk′) plus the
encoding time of downstream LLM O(k2). Decoding cost is the time of retrieval embedding
generation O(n/k′), plus the generation of the downstream LLM O(kr).

B Implementation Details

For all experiments, we use Vertex model garden 4 API to use all six models. Maximum generation
token is set to 2048 for gemini-ultra and set to 1024 for the rest of the models. We set temperature to
0 for all experiments except for Self-consistency setting. Table 11 shows the prompt for all models.
for task specific requirement of 9 datasets, we follow the original LongBench [6] and SCROLLS [60].
For RAG model, we use the model provided by Huggingface5 and run on A100 GPUs to rerank the
chunks. Algorithm 2 shows the algorithm to chunk the input to cater the window size.

Algorithm 2 Chain of Agents (CoA) Input Chunking Algorithm.
Input: Source input x, query q, agent window size k, instruction Iw.
Output: A list of chunks C = {c1, c2, · · · , cl}.

Split the source x into sentences s1, s2, · · · , sn
Initialize c← empty string, C ← empty ordered set,
Initialize length budgets B ← k − count_token(q)− count_token(Iw).
for s in s1, s2, · · · , sn do

if count_token(c) + count_token(s) > B then
Append c to C, initialize c← empty string

end if
c← c

⊕
s //

⊕
indicates concatenating two strings with a blank.

end for
if count_token(c) ̸= 0 then

Append c to C
end if
return C

4https://cloud.google.com/model-garden
5https://huggingface.co/
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Table 11: Prompt of all models for query-based tasks.

Vanilla

{Task specific requirement}
{Source Input x with truncation if needed}
Question: {Question q}
Answer:

RAG

{Task specific requirement}
{Retrieved Chunks of Source Input x}
Question: {Question q}
Answer:

CoA

Worker Wi:
{Input Chunk ci}
Here is the summary of the previous source text: {Previous Communication Unit (CUi−1)}
Question: {Query q}
You need to read current source text and summary of previous source text (if any) and generate a
summary to include them both. Later, this summary will be used for other agents to answer the
Query, if any. So please write the summary that can include the evidence for answering the Query:
Manager M :
{Task specific requirement}
The following are given passages. However, the source text is too long and has been summarized. You
need to answer based on the summary:
{Previous Communication Unit CUl}
Question: {question}
Answer:

Table 12: Prompt of all models for non-query-based tasks.

Vanilla
{Task specific requirement}
{Source Input x with truncation if needed}
Answer:

RAG
{Task specific requirement}
{Retrieved Chunks of Source Input x}
Answer:

CoA

Worker Wi:
{Input Chunk ci}
Here is the summary of the previous source text: {Previous Communication Unit (CUi−1)}
You need to read the current source text and summary of previous source text (if any) and generate a
summary to include them both. Later, this summary will be used for other agents to generate a summary
for the whole text. Thus, your generated summary should be relatively long.
Manager M :
{Task specific requirement}
The following are given passages. However, the source text is too long and has been summarized. You
need to answer based on the summary:
{Previous Communication Unit CUl}
Answer:

C Example Outputs

We pick one sample from HotpotQA in Table 13, QMSum in Table 14, and RepoBench-P in Table 15
to show the prediction of Chain-of-Agents, in the order of question q, Communication Unit CU of
agents, and final prediction of manager. We also observe that 1) the first worker usually explores the
most number of paths, including 3 or more topics because the agent is not sure about the result and
willing to provide more information for the next ones. 2) The final worker usually narrows down to
one answer with a much shorter CU, and 3) The speed of narrowing down will be faster for simpler
samples, producing a small reasoning graph.
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Table 13: Example output on HotpotQA dataset.

Question Gary L. Bennett was a part of the space missions that have a primary destination of what celestial body?

Worker 1 Gary L. Bennett, a scientist and engineer, has contributed to various space missions, including Voyager,
Galileo, and Ulysses. He has worked on advanced space power and propulsion systems and has been
involved in planetary protection measures. Bennett’s expertise has been instrumental in ensuring the
scientific integrity of celestial bodies and preventing harmful contamination. He has received numerous
awards and accolades for his contributions to space exploration and is recognized as a leading expert in
the field of planetary protection.

Worker 2 Gary L. Bennett, a renowned scientist and engineer, has made significant contributions to space missions,
including Voyager, Galileo, and Ulysses. His expertise in advanced space power and propulsion systems,
as well as planetary protection measures, has been crucial in ensuring the scientific integrity of celestial
bodies and preventing harmful contamination. Bennett has received numerous accolades for his work,
including the NASA Exceptional Service Medal and the COSPAR Distinguished Service Award.

Worker 3 Gary L. Bennett, a distinguished scientist and engineer, played a pivotal role in various space missions,
particularly Voyager, Galileo, and Ulysses. His expertise in advanced space power and propulsion
systems, coupled with his focus on planetary protection measures, has been instrumental in safeguarding
the scientific integrity of celestial bodies. Ulysses, launched in 1990, embarked on a unique trajectory to
explore both the southern and northern polar regions of the Sun. During its extended mission, Ulysses
provided invaluable data on the Sun’s magnetic field, solar wind, and the presence of dust in the Solar
System.

Manager Sun

RAG Mars

Gold Sun

Table 14: Example output on QMSum dataset.

Question Summarize the discussion about industrial components.

Worker 1 The industrial designer proposed that the remote control should be made of titanium or rubber, and the
buttons should be simple. The marketing expert said that the remote control should be fancy, innovative,
and easy to use. They also discussed the trend of making products look like fruit and vegetables.

Worker 2 The industrial designer proposed that the remote control should be made of titanium or rubber, and the
buttons should be simple. The marketing expert said that the remote control should be fancy, innovative,
and easy to use. They also discussed the trend of making products look like fruit and vegetables. The
industrial designer said that they would explore the two options of titanium and rubber, and see if rubber
is expensive. The user interface designer said that they would pretend that the modelling clay is titanium
and paint it afterwards. The project manager said that they would stick with two batteries and not reinvent
the wheel.

Manager The industrial designer proposed that the remote control should be made of titanium or rubber, and the
buttons should be simple. The marketing expert said that the remote control should be fancy, innovative,
and easy to use. They also discussed the trend of making products look like fruit and vegetables. The
industrial designer said that they would explore the two options of titanium and rubber, and see if rubber
is expensive. The user interface designer said that they would pretend that the modelling clay is titanium
and paint it afterwards. The project manager said that they would stick with two batteries and not reinvent
the wheel. (ROUGE Score: 21.38)

RAG The industrial designer and the marketing manager discussed the industrial components of the remote
control. They agreed that the remote control should have a simple design, with a few buttons and a
speech recognition technology. They also discussed the possibility of adding a L_C_D_ display, but
decided that it would be too expensive. The designer suggested that the remote control could be made of
titanium or rubber, and the marketing manager agreed that a spongy design would be more appealing to
consumers. (ROUGE Score: 16.54)

Gold The industrial designer provided several options respectively for energy, material and interface. Among
these options, the industrial designer preferred traditional battery, titanium and simple push buttons
so that they would have enough money for speech recognition. After that, the user interface designer
proposed an LCD display only for output, which might be taken into account. The group also talked
about how to enable the users to find their controllers.
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Table 15: Example output on RepoBench-P dataset.

Question What is the next line of code: . . . if(type == 5 || type == 0) {

Worker 1 The method SensorDataCollectorManager.flushSensorDataCache(int type, String deviceID) flushes the
database cache for the given sensor type. If the type is 0, all sensor types are flushed. The method
first checks if the type is valid, and if it is, it calls the flushDBCache method for the appropriate sensor
collector. SensorDataCollectorManager.flushSensorDataCache(int type, String deviceID) flushes the
database cache for the given sensor type. If the type is 0, all sensor types are flushed. The method
first checks if the type is valid, and if it is, it calls the flushDBCache method for the appropriate sensor
collector.

Worker 2 The method SensorDataCollectorManager.flushSensorDataCache(int type, String deviceID) flushes the
database cache for the given sensor type. If the type is 0, all sensor types are flushed. The method
first checks if the type is valid, and if it is, it calls the flushDBCache method for the appropriate sensor
collector.

Manager LightSensorCollector.flushDBCache(deviceID);

RAG AccelerometerSensorCollector.flushDBCache(deviceID);

Gold LightSensorCollector.flushDBCache(deviceID);

Table 16: Compare between CoA and previous state-of-the-art models on nine datasets. * indicates
the model needs further training.

HotpotQA MuSique Qasper NarrativeQA Quality QMSum GovReport BookSum RepoBench-P

Previous Best 54.4 [29] 40.4 [29] 53.9* [60] 26 [29] 89.2 [59] 22.44* [60] 26.3 [60] 18.5* [78] 56.47 [29]
Ours Best 62.04 42.49 38.01 25.26 83.8 17.67 26.98 17.47 73.05

D Broader Impacts

Chain-of-Agents is a generic framework for long context tasks. users can apply this to diverse
tasks not restricting to the mentioned ones. It will greatly increase the efficiency of individuals or
companies to solve complex long context tasks. Besides, the interpretablity of such approach can
reduce the misuse of the LLMs because users can check the correctness of results and decrease
the possibility of making faults. However, similar to all prompt based approaches, this framework
requires careful prompt design for unseen large language models, users may not get optimal solution
on certain newly proposed LLMs. Besides, it may increase the number of the calls for API, causing
higher network traffic and higher latency for user pools.

E Comparison with State-of-the-Art Models

Table 16 shows the comparisons of CoA with the previous state-of-the-art performance, including
the ones requiring training (indicated with *). As can be seen, CoA achieves better or comparable
results on all datasets, improving HotpotQA and RepoBench-p by a large margin. The performance
on some datasets is lower than that of state-of-the-art models because the datasets are trained on some
domain-specific models, such as Qasper.

F More Experiments and Analysis

F.1 Short LLMs on BookSum Dataset

We have run the BookSum dataset with Text-bison and Text-unicorn models. As shown in the Table 17,
similar to the results with the LLMs that support longer contexts, CoA outperforms baselines by a
significant margin.

F.2 Robustness against Context Window Size

We set the default context window of CoA to 8k due to the limitation of text-bison and unicorn
models. To test the influence of CoA against context window change, we set window sizes to 4k, 8k,
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Table 17: Performance of text-bison and text-unicorn on BookSum dataset.
text-bison text-unicorn

Vanilla (8k) 9.13 8.15
RAG (8k) 9.38% 8.01
CoA (8k) 14.51 14.41

Figure 6: Performance of CoA on Claude 3 Haiku on the NarrativeQA dataset with various context
window sizes of an agent. Results show the robustness of CoA towards different choices of context
lengths.

16k, 32k, 64k, and 128k of Claude 3 Haiku model and evaluate on NarrativeQA dataset and see the
performance change. As shown in Figure 6, the performance of the model increases from 4k to 16k
and stabilizes to around 20 with the context window further increases. This result shows that CoA
will benefit from increasing length and keep stable when the length touches a bound.

We further analyze different agent lengths and reported the scores of text-bison-32k in Table 18. Our
results show that it can improve the baseline with various window sizes. Thus, we choose 8k for short
context models, such as text-bison.

F.3 Evaluation on NIAH Test

We conduct evaluations on the NIAH test. We follow the LongAgent [92] paper to run a NIAH
PLUS test for evaluating the long context understanding capability of LLMs. Different from the
original NeedleInAHaystack test, NIAH PLUS is more challenging because LLMs need to answer
the questions rather than simply retrieve the information (needle). The results are shown in Figure 7.
As can be seen, the CoA greatly increases the accuracy of Text-bison from 26.0% to 97.8%, showing
that CoA significantly increases the capability of LLMs to understand long contexts.

F.4 Preventing Collapse of Reasoning Chain

Experiments show that when certain irrelevant content is present in the communication unit CUi−1,
it often prevents the worker unit Wi from generating a meaningful response. This meaningless
response then propagates to the next unit, causing Wi+1 to produce similarly meaningless content and
eventually leading to a collapse of the entire reasoning chain. We call this phenomenon catastrophic
collapse. In such cases, the model’s overall performance may even fall below that of a single agent
W1. A common instance of this phenomenon is a rejection response. If CUi−1 includes rejection
cues such as “I don’t know the answer to the query” or “not mentioned”, Wi is likely to repeat

Table 18: Comparison between vanilla and CoA with various context lengths using text-bison-32k.
4k 8k 16k 32k

text-bison-32k 45.69 53.55 59.14 48.54
Ours (same base) 54.95 60.34 63.11 50.25
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Figure 7: NIAH PLUS test results of Vanilla model and CoA model. Greener/Redder cells indicate
higher/lower performance. CoA with 8k improves the performance of the NIAH test greatly compared
with the Vanilla baseline.

Table 19: Comparison of related work and their topologies.
Name or Source Task or Challenge Agent Structure Communication Schema

[14] Multi-robot planning Decentralized Circle
RoCo [45] Multi-robot collaboration Decentralized Planning Pipeline
CoELA [89] Multi-Agents cooperation Decentralized Memory Module
MAD [18] Improving Factuality Decentralized Debate
Reconclie [11] Reasoning Decentralized Round Table
WalkMaze [9] Long Input Centralized Tree Structure
LongAgent [92] Long Input Centralized Tree Structure
RecurentGPT [95] Long Output Decentralized Memory Gating
CoA (Ours) Long Input Decentralized Chain of Agents

similar content without adding any meaningful information, often leading to a final output of “not
mentioned”.

To mitigate this issue, three simple methods can be used: (1) repeatedly running the sample until
the final result is not a rejection; (2) postprocessing the communication unit to remove irrelevant
words; and (3) using prompt engineering to instruct worker agents to ignore irrelevant information
in CUi. We speculate that this issue may be influenced by reinforcement learning from human
feedback (RLHF) or chat fine-tuning, causing verbose responses that introduce excessive noise.
Further fine-tuning may be needed to address this problem, which we leave to future work.

G Detailed Comparison with Related Works

Table 19 illustrates the comparison of related work on multiagent LLM systems. Broadly, prior
work on multi-agent LLM systems for long context tasks has a centralized design, where the sibling
worker agents do not communicate during inference the communication unit only propagates between
manager and worker, and existing decentralized designs do not extend effectively to long context
tasks. To the best of our knowledge, CoA is the first to use a decentralized structure on long input
tasks and is more effective than baselines such as RAG.

The challenge of long dependency on input remains under-explored (as illustrated in Table 20). Our
target is to novelly mitigate challenging context dependency issues in long-context tasks particularly
those requiring complex reasoning. To this end, we explored various structures (WalkMaze, Merge,
Debate, Group Discussion, etc.) and found that a variant of decentralized well-existing chain
communication and this simple approach can work more effectively than others. Our contribution is
to mitigate a challenging issue (long input dependency) with a simple intuitive approach (decentralized
chain communication). We want to emphasize that centralized communication and our work solve
the long context problems in different ways, and they are not in conflict with each other. They can be
merged into a much stronger framework (e.g., adding our chain reference stage to mitigate context
dependency issues before the stages in LongAgent [92]).
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Table 20: Example for comparison of Centralized and Decentralized models.

Input Source Question: Who is the grandson of A? Source: [1],[2],[3],[4] (chunks) Evidence
in each chunk: [1: A’s husband is D], [2: A’s son is B], [3: No evidence], [4:
B’s son is C]

Centralized [92] Round 1: Manager: Who is the son of A? Worker with [2]: It is B. Others say
unknown Round 2: Manager: Who is the son of B? Worker with [4]: It is C.
Others say unknown Final answer: It is C.

Decentralized (ours) Manager: Who is the grandson of A? Worker with [1]: A’s husband is D (topic
exploration), Worker with [2]: A’s son is B (answer first hop), Worker with [3]:
A’s son is B (forward previous evidence), Worker with [4]: A’s son is B, B’s
son is C. Thus, A’s grandson is C. (complete reasoning) Final answer: It is C.

Table 20 showcases the comparison between CoA and centralized designs in mitigating agent
dependency issues for long inputs. Specifically, previous work for long input tasks, despite showing
significant improvements, usually uses disentangling algorithms such as question decomposition, to
address long-distance dependency in long inputs, and then they use centralized structure to answer
the disentangled questions one by one. Different from them, CoA does not disentangle the question
but leaves the entire question to the agents. Although chain communication is well-introduced in the
literature, to the best of our knowledge, CoA is the first work to apply decentralized communication
to long-term dependency challenges. In addition, CoA is not in conflict with existing work as it can
be considered as a plugin for other multi-agent LLM systems to improve them.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim that CoA improves LLM performance on long-context tasks
accurately reflects our contribution and is supported by experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mention that the performance of CoA drops when the answer is in the end
of long input context. Also, we show that performance of CoA can be further enhanced via
multi-path ensemble and the space for improving is significant.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We display all needed information in the appendix, including hyper-parameters,
templates, example output, and details. These ensure reproducing the main results is easy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will provide open access to the data and code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: We list the dataset details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We fix the temperature of the large language models. Thus, the running results
are fixed. For RAG model, we also fix the random seed so that the results can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We conduct time complexity anlaysis to show the computer resources needed.
Also, we state each of the API call clearly so that the resource information can be easily
accessed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics including preserving anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We add a section in appendix to discus all potential social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets in our experiments are public and properly credited with license
properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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